
380

SH 4.1-4

NUMERICAL AND ANALYTIC DESCRIPTIONS OF COSMIC-RAY TRANSPORT

J.A. Earl
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ABSTRACT

It is not trivial to solve the equations that describe

charged particle transport with the aid of computers, fo_
instabilities, inaccuracies, and subtle artifacts are well

known afflictions of numerical analysis. Two specific points
are:

i. To avoid gross inaccuracies, pitch-angle scattering must

be treated with great care. In particular, slightly inappro-

priate numerical formulations give rise to mean free paths
that are in error by large factors.

2. A previously unrecognized artifact, "numerzcal disper-
sion", is very similar to the physical phenomenon of dis-
persion. To avoid misinterpretations arising from this
similarity, the spatial increment of the finite-difference

grid must be a small fractzon of the mean free path.

These points are illustrated by calculations based upon

finite-difference approximations to the transport equation.

I. Introduction. The diffusive idealization, which has been almost

universally invoked in discussions of cosmic-ray transport is easy to
treat analytically. However, many observed phenomena give clear evi-

dence for the presence of non-diffusive effects. One example is the so-
called "scatter-free" propagation of kilovolt solar electrons whzch is

inconsistent with diffusion, but which can readily be interpreted in

terms of the coherent mode of propagation. Although the qualitative
features of these effects have been outlzned (Earl, 1974a, 1976), the
theory is very complicated. Consequently, there is a need for reliable

numerical computations which bypass these complexities and yield con-
crete results that are well suited for comparison with observations.
This paper explores such methods within the Izmited context of

rectilinear propagation of cosmic-ray along a uniform guiding field on
which are superimposed random fzelds.

Under these circumstances, transport is described by

_f _f _ _f

(i)

in which f is particle density in phase space, _ is the pitch-angle co-
sine, and z is distance parallel to the gulding fzeld. _e parameter

s = Vt, where V is particle velocity, plays the role of a temporal vari-
able. The coefficient of pltch-angle scatterzng is given by

_i_° (3/2%) (I-_2) E_Iq-l, (2)where % _eq)_4a_ ) free path, and q Is an index that measures the
anisotropy of scattering.
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1E. + af a I af 
as llaz = ~ 111 1Jj (1) 

in which f is particle density in phase space, ~ is the pitch-angle co­
sine, and z is distance parallel to the gUl.ding fl.eld. TIle parameter 
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Diffusion refers to a configuration of slow temporal variations
of the anisotropy and weak spatial inhomogenities of the isotropi¢ den-

sity Fo (Earl, 1974b), which act as the source of a diffusive anisotropy
given by

@FO 1.2 '''l ' ' ' ' ' '''
F1 = -V _ g, (3) . q=I0

where I0 .... _--"'_-w_e •

g{u} = [(4-q)_/3] .lul1-q (4) 0.8-

is a solution of 0.6

¢ _ = -.. (s) " q:1.90.4
2. Finite-Difference Approximations _./"
to the Scattering Operator. In the .2 -
discrete formulation, the continuous

variables are replaced by a three-

dimensional grid whose spacings are O , ,,I
Az, A_, and As = VAt, and the deriv- 6 lO 30 lO0

atlvesappearingin equation(I) are [V_m_x
replaced by their flnlte-dlfference
analogs. A test of the relationships implied by diffusion can be made

without extensive calculations by replacing the differential operator
in equation (5) by its finite version and solving numerically for the
diffusive anisotropy. This procedure should give an answer consistent

with equation (4), and if it does not, the effective mean free path is

given by

+i
= (3/2) '-i _ du. (6)

Kota et el. (1982) gave an explicit flDite-difference form for the scat-
tering operator. Although this derivation seems eminently reasonable
from the standpoint of both mathematics and physics, the resulting scat-
tering operator does not pass this test near the threshold at q = 2 for

pure coherent propagation.

Mean free paths derived from this operator are given in the

figure above, where the ratio of the actual value of I obtained from

equation (6) to the nominal value that appears in equation (2) is
plotted against the number M = 2/A_ of increments in pitch-angle. The

correspondence is clo_e for q = I and fairly close for q = 1.5, but for
q = 1.9, I is a factor of ~2.5 too small and shows little indication of
converging to the nominal value as M increases. These inaccuracies are

a consequence of the fact that weak scattering near _ = 0 gives rise to
large deviations from the analytic behavior. To avoid these deviations,
I use a finite operator constructed so that equation (5) is satisfied

exactly when g is described by the analytic expression. Far from B = O,
this operator behaves the same as Kota's operator, but it also gives the

correct diffusive aniso_tropy and makes the actual mean free path
identical to the nominal one.
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3. Numerical Dispersion. In a configuration of weak scattering, parti-
cle bunches propagate coherently in a moving Gaussian profile given by

F = I/(4_D,t_/2exp{-(z - V,t)2/4D, t} (7)o

where V, is a characteristic velocity, which corresponds to an angular

distribution that is nearly isotropic in one hemisphere and zero in the
other, and D, is the coefflcient of dlspersion, which describes the
broadening of the Gausslan that arises from statistical fluctuations of
individual velocities within this distribution. (Earl, 1974a).

The finite-difference implementation leads to a very similar
effect which can be described by equation (7) with D, replaced by

The total dispersion is a superpositlon of the physical effect described

by D, and the numerical effect described by D_. To ensure that physics

dominates, the condition D, >> D_ must be satisfied. In the examples
presented below, where q = 1.8, this condition translates into a re-
quirement that Az < _/40. This condition is similar in concept to the
condition derived by Kota et al. for the validity of calculations of
diffusion, which is Az < 3%/4. However, the required spatial resolution

is much finer in the coherent regime that it is in the diffusion regime.

4. A Specific Example. To illustrate the points made above, two calcu-
lations were made which had identical values of % and AB = 0.22, but
which had values Az = %/21 (plotted as solid lines) and Az = k/210
(plotted as dotted lines) that are, respectively, well below and well

above the required spatial resolution. In the figure to the left,
snapshots of the density profiles at the instant s = 0.19%, display the
familiar coherent pulses followed by small but perceptlble wakes. At

this time, the dotted peak has moved a distance of 0.I05% to the right
of the point indicated by a vertical dotted llne at which a localized

coherent angular distribution was injected at s = 0. This corresponds
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4. A Specific Example. To illustrate the points made above, two calcu­
lations were made which had identical values of A and t:.~ = 0.22, but 
which had values t:.z = A!21 (plotted as solid lines) and 6.z = A/210 
(plotted as dotted lines) that are, resp~ctively, well below and well 
above the required spatial resolution. In the figure to the left, 
snapshots of the density profiles at the instant s = O.19A, display the 
familiar coherent pulses followed by small but percept1ble wakes. At 
this time, the dotted peak has moved a distance of O.105A to the right 
of the point indicated by a vertical dotted line at which a localized 
coherent angular distribution was injected at s = O. This corresponds 
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to a coherent velocity V_: 0.55V that is in good agreement with the
corresponding velocity of 0.53V tabulated by Bieber (1977). Simzlarly,

the FWHM width of the pulse 0.135% is in good agreement with the wzdth
0.125% expected from a combination of physical dispersion with

D, = 0.0064_V and numerical dispersion with D_= 0.001_V.

The coherent velocity of the solid line peak is less than that of

the dotted one and its dzspersion, which is dominated by the numerical
effect, is larger. To the right of point A, slgniflcant solid density

appears in regions where the dotted density is zero. This discrepancy
is relevant to descriptions of the early onset phase of solar partzcle
events, for it means that the numerical dispersion can bring particles

from the sun faster than the physzcs can, and thzs could lead to signi-
ficant errors in the timing of flare events.

The angular distributions in the figure that appears at the right
above add weight to this point. They refer to point A where the two
profiles have equal densities and, consequently, can be directly com-

pared without normalization. The dotted distribution is much more
collimated in the forward direction near B = i than the solzd one is.

It is clear that any attempts to interpret observed angular distribu-

tions of the first few particles arriving in a flare event should take
rigorous measures to exclude the effect of numerical dispersion.

5. Conclusions. Before non-diffusive transport can even be considered,
the scattering operator must be carefully tailored to give valid results
in the diffusion regime. Once this has been done, calculations that

take proper account of numerical dispersion give results in good agree-
ment with those expected from the theory of coherent propagation, but
not with those calculated with inadequate spatial resolution. This sit-

uation can lead to insidious errors, for the invalid results appear to
be qualitatively reasonable, and can be detected only by quantitative
tests.

6. Acknowledgements. This research was supported by NASA under Grant
NGR 21-002-066.
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