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DIFFUSION OF STRONGLY MAGNETIZED COSMIC RAY PARTICLES IN
A TURBULENT MEDIUM

V.5, Ptuskin

Institute of Terrestrial Magnetism, Ionosphere and Radio
Wave Propagation, USSR Academy of éciences, I42092 Troitsk,
Moscow Region, U4sR

CR propagation in a turbulent medium is usually consi-
dered in the diffusion approximation. The methods of the de-
rivation of a corresponding diffusion equation for different
cases are proposed, for example, in the reviews /I,2/ and
in the literature cited there. Here we obtain the diffusion
equation for strongly magnetized particles in the general
form and discuss the influence of a large-scale random mag-
netic field on CR propagation in interstellar medium.

CR diffusion equation. ngare assumed to propsgate in a8 medi-
um with a regular Ileld and an ensemble of random MHD wa-
ves, The energy density of waves on scales smaller than the
free path 1 of CR particles is small. We use the collision
integral of the general form which describes interaction be-
tween relativistic particles and waves in the quasilinear ap-
proximation /3/. Wave polarization is described by the pola=
rization density matrix
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Here 83(?)=5x (R)2; €5 (%) (>0) are the Fourier-components of ,the
electric field of waves, the z-axis is directed along H ;
the index J. characterizes the type of wave (there exist
Alfven, fast and slow magnetosonic waves). Energy densities
of a random magnetic field of waves_for transverse aRQ longi-
tudinal gomponents with respect to are equal to MY (K)
and M} (K), respectively. The interaction between relativis-
tic particles and waves is of resonant character - particles .
scatter under the condition

WHR) - Wy = SWy , §=0,%4,... (2)
Taking into account smallness of the phase velocity of waves
- as compared with the particle velocities vac, it is conve-

nient to introduce the resonant value of the wavenumber
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Here o2, p, Ty are charge, momentum and gyroradius of a par-
ticle, M = P,/p.
The effective frequencies of relativistic particle
gcattering in a turbulent medium are given by the relations
( "V is the azimuthal angle for ¥, ):
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Note that out of the three Stokes parameters & , 2, , 2,
equations (4), (6) involve & and &, o whereas for an axial-
ly symmetric wave distribution in the k-space they involve
only & . All the guantities referring to waves are defined
in a co-moving reference frame. <

. In the weak turbulence approximation used here, Y << wy.
Actually, in integstellar medium for particle energies of

I Gev, Y ~ I0"® W, « The latter inequality means that par-
ticles are strongly magnetized and CR diffusion is locally
one-dimensional, i.e. it proceeds only along the magnetic
field. This fact allows us to pass over to the drift appro-
ximation and to average the kinetic equation (including the
quasilinear collision integral) over fast particle rotation.
The weak inhomogeneity of the regular magnetic field and mo-
tion of the medium with a nonrelativistic velocity # =
=c(&x H). H"* ,are taken into account in the Arife approxi-
mation (here &, is a regular electric field in a laboratory
frame of reference, whereas in a co-moving frame of refe-
rence, in the approximation of infinite conductivity an
electric field is equal to zero).

In the time intervael af»»y-+ and on the scale 4z>> /~
~vUy-t the distribution function is close to isotropic. The
isotropic part of the CR distribution function £(t,8,p)
obeys the diffusion equation, which in this case has %he fom
%é-v: Dyof+ (et 2 (p37,))vf - V(ﬂ"+ﬂ’w)-§;%}é_ (5)
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Here Dy = Dihily, Wy=uw®, ¥'=H/H, the velocity u. , the
diffusion coefficients along the field D, and by the abso-
lute va]lue of the momentum are, given by '
Dy= L {du (1o )z yd/o e, 4 . 3 ) (5t yd) [s pky-2
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The CR diffusion equation in the form (5) was first derived
for a simplified collision integral in the paper /4/ (see
also /2/).
Diffusion in 8 medium with a rangom diffusion tensor. The

[ @3 been considered above to be weakly omoge-
neous and regular on the scales of the order of l. In in-
terstellar mediumSH*/H* < O,I for 1 ~ I po. Strong field
fluctuations <% H/H ~ I are observed for I ~I00 pc >>1, On
this scale the field H should be considered random. There apé
pears the problem of particle diffusion in a medium with a
random diffusion tensor. -

Assuming the tensor fluctuations D; 5(r) to be weak,
one can obtain in the quasilinear approximation the equation
for the distribution functio_g <f> averaged over the ensemb-
le of fluctuations < Dj_:j (t,2) (we put u = U, = 0):

A
?;tf? - VLéD“j> vj<{> + Kef> = o, »
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Ikt ion] v < (4-2, 2)> .
The correlator of the Fourier-components of the tensor %Dij
is agsumed to be

CBD (4,1) 3T, (10,R) 5= 015> (B4 ) Ujun (2, £-6)()

The integral-differential equation (7) is reduced to
the diffusion equation if the correlation time,for $D is
smalls 7T;<<(%/<D> ., In this case the term K <f> in eq.
(7) can be disregarded, and the effective diffusion tensor
for <f£> is equal to Dijeff = “Dij>‘

In the case of static fluctuations, more precisely for
Ce>>/2/<D> , we obtain from (8) in a first approxima-
tion
3
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The second term in (IO) has the order (50)</D and is al-
most always small for 5D . p . But for the case Dji=D,h:}:
formula (I0) leads to a zero diffusion coefficient a%ross d
the regular homogeneous field < Hy:

Diey = (3 ”4")‘\‘?)' 5 Dyjely = 0. o

This result apparently suggests a compound diffusion in the
system /5,6/, i.e. an imposition of two independent wander-
ings: that of a magnetic field line.and of a particle moving
along this line. The summary transverse displacement of par-
ticles is here r, ¢« t % (under a usual diffusion T, co £%2)
The compound diffusion is violated if the local diffusion
coefficient D, # O, The standard perturbation theory (IO) .
does not, evidently, give E correct result for an anomalous-
ly small Dy«< D, (SH/H )X, This is just the case with CR
in interstellar medium, where D, ~ r> v% /D, ~ I07% D, ,
and SH/H ~ I. The problem has not yet been strictly solv-
ed (see the Discussion in /6-8/), Phenomenologically, diffu-
sion across a regular field occurs due to spreading of
ramdom field lines which were initially at a distance rH
from one another /9,I0/. If correlation between lines vani-
shes at a distance S;, one can use (8) with the correlation
function

R - B -2 2D,z
U (718)= Vg B0 2, (e P it Tl T2

For~§Lpower—law spectrum of random field inhomo%eneities
SH* (k) er x4, (¢50) the quantity QC(K)%A(?“/H)'z (Kl_)i’ﬁ
/I1/, which gives

DL,,H ~ 0,2 @k—f‘-yf D,. (13%)
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We obtain a different ex%ression if the spectrum has one
main scale L, see /10, II/.

The estimate (I3) with an account of SH/H~I leads %o
the conclusion that on the average the CR transport is evi-
dently realized with a diffusion tensor close to an isotro-
pic one.
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