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ABSTRACT

The air shower array-telescopes which are currently being

used to search for and study point sources of UHE y-rays have

angular resolution _ 1°, limited by either the small total area

of particle detectors or poor timing resolution. As the sig-

nal to noise ratio depends sensitively on the angular resolu-

tion, it seems certain that this figure will quickly be sur-

passed when second generation instruments come into operation.

Since the trajectories of galactic cosmic rays with E > l0 s

GeV are practically straight lines on scales of 1A.U. or less,
these new instruments will be able to observe a shadow cast by

the moon (angular diameter 0.5°). Although the angular diameter

of the sun is practically the same, its 'shadow' will be more

complex because of its magnetic field. Thus, high angular re-
solution observations of the sun afford a means of investigating

the solar magnetic field, and also the charge composition of

cosmic rays, including the ratio of antiprotons to protons.

I. Introduction. The first search for point sources of air shower pri-

maries using fast timing to measure the individual arrival directions was

made by Clark, using an array of four 0.13 m 2 scintillators located on

the roof of the physics building at MIT. In reporting the results of

this search he commented, "The sun and moon must cast a 'shadow' in the

flux of high energy primary cosmic rays, and Observations of this shadow

effect might give new information about the magnetic fields of these

bodies." (Clark 1957) With detectors of this size, and the best avail-

able electronics, the angular resolution (resolution in zenith angle, 9)

was 4°; with a sample of 2660 events no statistically significant evi-

dence of point sources was found. Studies made in the past 3 decades

have shown that the sun's large scale magnetic field is weaker than it

was thought to be in 1957, and have shown that it is not a simple dipole

field. Nevertheless, there is no doubt that the shadow of the sun will

show effects of the kind that Clark anticipated. It is known now that

the moon has no magnetic field. Therefore the shadow of the moon pre-

dicted by Clark will be simply a geometrical shadow.

Regarding the sun, it is still not possible to predict quantitative-

ly, with certainty, what effects will be observed. On the one hand,

there is uncertainty about the magnetic field of the sun. "At the pre-

sent time, very little is known about the actual magnetic field configu-

ration and its changes", according to Zirker, writing in 1981. On the

other hand, there is uncertainty about the charge composition of the cos-

mic rays that produce air showers. One would prefer to address these un-

certainties one at a time, but having to deal simultaneously with two

interlocking problems is common enough in cosmic ray studies. Despite

the complexity some preliminary estimates will be made.
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2. The method. The essential variables are:

I) The deficit in counting rate, which determines the statistical errors.

This depends on the area A of the array-telescope and the energy E of the

cosmic rays. (This is in a regime where E and cp are indistinguishable.)

2) Theangular resolution of the array-telescope, and

3) The magnetic deflection.

Regardless of magnetic effects, the counting rate deficit due to parti-

cles intercepted by the sun or moon will equal JA_, where J is the inten-

sity and _ = 5-I0 -7 steradian is the solid angle subtended by either of

these bodies (_iouville's theorem). I will assume A = 104 m 2 for second

generation array-telescopes. Then using the observed all particle cosmic

ray energy spectrllm, for primary energy 104 , l0 s, 106 GeV the rate in

question amounts to 80,000, 1,500, and 30 counts per year, respectively.

From an analysis of the statistical limitations on the angular reso-

lution of array-telescopes it seems that an accuracy of 5 mrad at 106 GeV

will be attained in the next few years by second generation instruments.

The corresponding practical limits at 104 and l0 s GeV are estimated to be

20 and i0 mrad, respectively. Achieving further improvement will have to

await development of large area detectors capable of a much faster re-

sponse than scintillators (conference paper OG9.6-5). For comparison,

the accuracy of direction measurements in a proposed space station mag-

netic spectrometer facility will be 0.02 mrad (M_ller 1985). Thus one

can be fairly certain of detecting the shadow of the moon at 105 and 106

GeV with second generation resolution, but detection at 104 GeV seems

doubtful ' even with the more favorable counting rate.

The arrival direction of cosmic rays affected by the solar magnetic

field will also be affected by the interplanetary magnetic field and the

geomagnetic field. The latter fields will modify the arrival direction

of cosmic rays grazing the moon. To estimate these effects I will use
the _relation

8 = 300----_Z/BIdZ , (I)E

where 8 is the angular deflection (radian) in a given plane, produced by

the perpendicular magnetic field BI (gauss) in a region covered by the
integration, acting on a cosmic ray with charge number Z and energy E

(eV). This holds when 8 is not too large. In case of the earth one can

use st_rmer theory. Here I will use a St_rmer-theory calculation of

equatorial-plane orbits for illustrating approximately how cosmic ray or-

bits will be affected by the large-scale solar magnetic field. The il-
lustration is valid to the extent that the heliomagnetic field varies as

I/R 3 over a sufficient range of distances from the sun.

3. The geomagnetic effect. In this case the field integral is approxi-

mately 6-107 gauss cm (= 0.i gauss x Re).It is noteworthy that this is
nearly 2 orders of magnitude greater than for the spectrometer mentioned
above. Substituting in (i), one finds that the deflection will be unde-

tectable using array-telescopes except possibly for Fe nuclei at i0 % GeV.

4. The effect of the interplanetary magnetic field. Assuming BI = 5"10 -6
gauss (Ness 1965), one finds that in case of travel from the moon the
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effect will be completely negligible. For travel from the sun, the mag-

netic field integral will be _ 108 gauss cm, so as in the geomagnetic

case, the effect will be negligible except for 104 GeV Fe nuclei.

5. The heliomagnetic effect. The heliomagnetic field consists of a hier-

archy of structures, the largest of which are called active regions.

Typical data, given in Table I, imply

Table I. Magnetic field strength values of the magnetic field integral

(gauss) vs height (solar radii) of order 1-2.1011 gauss cm over re-

above active regions (Dulk and gions with a size of order RG, so by

McLean 1978). a simple scaling argument, comparing

the sun with the earth, one expects

height B sizable effects up to proton energies

_of 105-106 GeV, and correspondingly

1.02 300 higher energies for Fe nuclei. Table

1 shows that above large active re-
1.1 10

gions the field strength decreases

2 0.5 with increasing distance about as

I/R 3 , so to at least a crude approxi-
5 0.05

mation the field can be modeled as a

dipole. Fig. 1 shows trajectories of

20 GeV protons in the equatorial

plane of the earth (Hillas 1972). The apparent location of the occulting

object for an observer at infinity using protons or antiprotons is also

shown. According to St_rmer theory the same picture applies to the sun,

when its field is approximated by a dipole,½Provided that the particle
energy is scaled upward by a factor (MG/M e) , where M denotes magnetic

dipole moment. Choosing M_ = 3.1032 gauss cm, so that the equatorial
surface field will be

about 1 gauss, the

scale factor comes ____/p_--,\
out 2000. Hence Fig. _--._4_-_._

1 also illustrates ___ _q
the behavior of 4-104

GeV protons, or 106

GeV Fe nuclei, in the

vicinity of the sun.

Again using St_rmer

theory, the same pic &

ture can be applie d

to higher energy par-

ticles by drawing i_
/

larger circles to I J

represent the limb of l\ //
the occulting sphere, _---J

the radius being

proportional to /E. Fig. I. Trajectories of charged particles in the

It appears by inspec- equatorial plane of the earth's field, with asymp-

tion of the figure totic direction indicated by the dashed line, and

that the proton and equally spaced impact parameters (Hillas 1972).

, antiproton images The solid circle represents the real location of

will be separated the equator; the dashed circles, the apparent lo-

adequately up to cation of the occulting object for protons (p) and

about 105 GeV. antiprotons (p) at infinity.



468
0G9.5-7

6. Conclusions. Using second generation array-telescopes which I assume

will have resolving power of i0 mrad at l0 s GeV and 5 mrad at 106 GeV, it
appears that the following can be done:

I) Detect the cosmic ray shadow of the moon. This will be a simple geo-

metrical shadow, undisplaced and undistorted. The detailed character of

the shadow will provide an independent test of the instrumental resolu-

tion of whatever array is used.

2) Detect the cosmic ray shadow of the sun. This shadow will be complex,

made up of partial shadows corresponding to primary charges Z = i, 2, ...
The partial shadows will be displaced from the true direction of the sun

through angles proportional to Z/E. The larger the angular displacement,

the more these partial shadows will be enlarged and distorted. Hence,

partial shadows will only be discernable when they are near the true sun;
otherwise they will blend into the background.

3) identify the partial shadows belonging to primary protons, alpha par-
ticles, and principal charge groups through Fe, and thus measure the

cosmic ray charge spectrum for a fixed rigidity of about 105 GeV/c. The

identification can be done in an empirical manner, with only crude infor-

mation about the strength and character of the heliomagnetic field. At

an energy a factor 2-3 lower than pZctured in Fig. 1 (and all still lower

energies) there will be no discernable shadow, because even the proton

shadow will blend with the background. As one goes to higher energies,
the first shadow to appear will be the proton shadow. As E is increased

further, the proton shadow will move inward until it lies in the direc-

tion of the true sun. As this happens the shadows belonging to Z = 2 and

more will successively, for the appropriate value of E, occupy the posi-

tion where the proton shadow lies in Fig. 2.

4) measure the antiproton abundance up to _ 106 , where according to some

models the fraction of antiprotons is nearly 0.5 (Stecker and Wolfendale
1984).
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