ON THE STATISTICAL SIGNIFICANCE OF EXCESS EVENTS - REMARKS OF CAUTION AND THE NEED FOR A STANDARD METHOD OF CALCULATION
R.Staubert

Astronomisches Institut der Universität Tübingen, Tübingen, Germany

Abstract

Methods for calculating the statistical significance of excess events and the interpretation of the formally derived values are discussed. It is argued that a simple formula for a conservative estimate should generally be used in order to provide a common understanding of quoted values.

1. Introduction. Substantial nonuniformity exists in the cosmic ray literature with respect to how the statistical significance of features or excess events is being calculated (e.g. point sources, spectral lines, light curves). Consequently, there is no mutual understanding about what the confidence in some result might really be when a number of 'standard deviations' are being quoted. Some of the proposed procedures for calculation need to be taken with caution. On the other hand, there is a clear need for the adoption of a standard method to allow the reliable intercomparison of quoted results and create a common understanding of the associated confidence.

A number of methods and formulae have been proposed together with sometimes extended mathematical derivation or justification(Ref. 1-4). It has become clear however, that some of these methods need tobetaken with caution. On the other hand there is a very simple formula which is being widely used by X-ray astronomers providing a common understanding.
2. Statistical Significance. An example for the statistical situation which we like to discuss is given in Figure 1.

Numbers of events x_{i} are plotted versus bin number $i=1 \ldots . . n$, corresponding to intervals of some physical variable (e.g. energy, phase, electric charge, time, ...). In the example given there seem to be 'excess events' in bins 1 and 2 as compared to the 'background' defined by the other bins. The excess is ON - α OFF,
when ON and OFF are the integrated counts in channels 1 to 2 and in channels 3 to n, respectively and $\boldsymbol{\alpha}$ is the ratio of the corresponding number of bins, here 2/(n-2).
Fig. 1. Statistical example.

The general questions then are"
I. Does the excess wormepond to the presemes of a physical signel?

It is important to distinguish between these two questions. They correspond to the assumption thet one out of two altermetive nypothesis is true:

- whe mul hypothesis Ho is, that there realy is ondy beckground,
.." the hypothesim Hi is, thet a true signal existe in addition to baetrground.
When a statement is made about a statistical situtiong it should be wlear uncer which hypothesis this statement holds.

The firste of the two questions may be answered by giving the probability for a chance occurance of the observer excess by a statictical flutuation (under HO). It is of course newesmery to use the proper statistiw (eng. bimomial stetistic for small mumbers of events? "t a low probability for the chance occurance of 'encessevents' is foumd, it is then uswaly eomeluded that the presence of a physical signel. $s=1$ ikely" From there on hypothesis one is advocated and ald statememw mere should refer to Hin

Qndy under Hi the term wigniticence whould be used. in particular the often used formula (on - α OFF)/ $\alpha \sqrt{\text { OFF }}$ is useless (es are a number of other formulae, see eng. (4)) " Also the probabidty whim answers the first question should not: be comverted into a significance (as is sometimes done by using the integrated Geussian diewnibutiom, evem incases where the Gumsian statistic does mot apply)

In amewerimg the semend question then the presence of a wignal is assumed (Hi), The 'significence of the signal' k wam be defimed as the ratio of the best ectimate of the signal to its uncertanty In the bese of Foissomiam countimg wtutimuc fom which the varimem is equal to the mean a straightomward error propagation leade to the well. known formula (in terme of the above defined variables):

$$
\text { mignificance } \quad \Leftrightarrow=\frac{O N \cdots \alpha F}{\sqrt{O N+\alpha x^{2} O F}}
$$

[1]

 that in (x this formue is interpreted incommetty) Formule [1] may be also derived by uming the more complicated maximum likelyhood retio (b).

A general writicism of the work of (3) and to come extent of (1) and (2) is given in (6) . While it is very important, mot to overestimate statisticel significmeen Fef. (3) does too much, leading to an underemtimate.

More recentiy, (m) has contributed significantly to the confumion by trying to show that formula [i] is incorrect and whould be freplewed by mother complicated formula. The main argument is that the new formula fits much better to Monte Camo simulations than formula $\{1$ does "The whole discussion is misheading and suffers from the fact that no diwtinctiom between Hi and Ho H mede" while formula [1] refers to Hi the Monte Garlo simulations as well as the mew formula refer to Hoy so their distributione are necemsarily different..

For the exmmpe given in Fig. 1 (with a unit of 1 for the scale of counts x_{i} ' the two questions can be answered as follows:

1. The probability (under Ho) for a mance ocwurance of 1.4 events in bins 1 and 2 whith an average rate of 6 in two
 Foissonian statistic gives the momewhat 1 arger probability of 3n $6 \times 10-3$.
2. If one feels thet the probability of $10-3$ is low enough to postulate the existence of a physical signal (Hi), them the significtance of this signal is

$$
\mathrm{t}=\frac{14-(2 / 10) 16}{\sqrt{14+(2 / 10)^{2} 16}}=2.6 \text { Etandard deviations }
$$

To putit in other words again we coneider Figure 2.

Figure 2
Fepresentation of event rumber distributions.
 deviation of the baveground o $\sqrt{0 F F}$, one gets an estimate for the whance ocewrance umder the muld hypothesis Ho.
 Etanderd deviaticom of the background and the mignal, as is come by formula [l] under Hiy one gets a different estimaten
 (umder idemticed. womditioms) wil. l. lead to a null remult (ON

シュ Fimal r"smarks
 usumbly quotsd when the detertiom of somesignal iselaimed. Bomsequently a formula meferimg to Hy (existamee of a (igmal) whoudd be used.
 anct has as sumb the relidale intereomparisom of stated valuse of Eigrificemcen dt is up to the individual from what level of
 ressult " Dum parmomal view je that using formula [1] a
 should beremerned.

Fefsemmces

1. Hearn, D. 1969, Nuc, Inetr "Methods 79, 200

