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ABSTRACT: Misunderstanding about the term "random samples” and its implications may
easily arise. Conditions under which the phases, obtained from arrival times, do not form a
random sample and the dangers involved are discussed. Watson's U2 test for uniformity is
recommended for light curves with duty cycles larger than 10%. Under certain conditions,
non-parametric density estimation may be used to determine estimates ol the true light curve
and its parameters.

’
1. INTRODUCTION: Consider a series of arrival times t;i=1,...,N, of y-rays from a certain
source direction. The case is studied where the data contains a periodic component of strength
p (pulsed counts/total counts) and period T. In the case of detectors with low count rates, the
obvious requirement is to determine the significance of p as being due to a periodic source
against the possibility that it is only a statistical fluctuation from the uniform background. The
deduction of a possible light curve is also important. In this paper the following points are
covered: (1) the problem of “random samples”, (2) tests for uniformity, (3) non-parametric
density estimators of the true periodic light curve and (4) the determination of the light curve
parameters from the non-parametric density estimator.

2. THE PROBLEM OF "RANDOM SAMPLES": The measured data are the arrival times with
the property t;>t; - (i=2,...,N). Assume this process, apart from the periodic component in the
data, to be time independent. It is desirable ta estimate the true light curve from the arrival times.,
This is done by folding the t;'s modulo 2r, with respect to a known period T. This results in the
“sample” (01""'0N)' with U, the so called phases which are calculated as
2ue, t

9|=-—T——'- (mod 21|)-=211—T—'--k]. lﬂl....,N.-kE(N+ (1)
The choice of 2r is to allow the application of trigonometric functions on the phases. This
sample has mostly been treated as being random. This sample would be random if and only if
(a) all the 0y's are identically djstributed and (b) if they are statistically independent. If the
phases do not form a random sample, then no conclusions about the “true underlying light
curve” can be made. The fact is that the phases do not form a random sample! This can be seen

as follows:

From eq. (1) the probability density functions (p.d.f) of 0; and t; are related by the following
wrapping process (Mardia, 1972): -
LI or

| foi(ﬂ) T k)=.0 fti [2" + Tk] (2)
Since t;>1y_ it follows that fo,(0) # fo4(0) for every 0 and all i #j, thus proving that the {);'s are
not idemical‘ly distributed. Furthermore ti=ti_y+(t;-t ), which implies that t; is a function of
.- Since 0 is a function of y, it follows that U, is also a function of U;_y This shows that the
phases are not independently distributed. It should however be noted that if the time differences
vi=tj-tj-1are used, a random sample would result by folding the vy's.

From simulations of arrival times the following seems evident (let b=E(ti-4-) =1/count rate):
The distributions become approximately identical when T<b. If Txb, then it suflices to add a
constant large time to each 1, so that t,>>0. This will ensure almost identically distributed
random phases. |f the period T ezaq:lals t]he whole period of observation (T>>b), then
- ,

o =-—T-—'-‘ and fo‘(O) = 2_1'? f, (0) (3)
so that the phases are not identically distributed. |he "runs-test” (Lindgren, 1976) was used
to determine whether the phases are independently distributed: For T<b, the phases seem to
be independent random variables and for T>>b there was strong evidence for dependency,
which is also clear from eq. (3). Independency can with a 10% uncertainty be accepted for
T<3b. This result seems to be independent of the pulsed fraction.
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Thus, for T>3b, the true light curve cannot be estimated. In y-ray astronomy this problem
amounts to the case of astrophysical objects with periods that is large in comparison with b.

3. TESTS FOR UNIFORMITY: Let 0 be a random variable with p.d.f. f(0), which is assumed
to be unknown, An appropriate test in this case would be some non-parametric test:
H,: f(8) = U(8) =1/2r against My £(8) + u(e) (4)
The alternative hypothesis H; only suggests that the unknown p.d.f. is different from uniformity.
In order to compare tests, the following general foym”of §(0), which covers most cases in y-ray
astronomy, was assumed:
: t=p,-p

f(9) =p|S(6; Ul' 61) + pZS(O; Iy 62) +——2%—-—£ . (5)
The pulsed fraction and phase (mean position) of each peak are denoted for i=1,2 by p; and
Iy respectively, while &, refers to the FWHM of each peak, divided by the period T.

The two most commonly used tests for uniformity in y-ray astronomy are:

1) x*-test: The advantage of this test is that it is a non-parametric test, but its drawback is the
choice of the number of bins K (=degrees of freedom+1) and their positions on the phasogram.
The best choice far K is 1/0, where 9 is some estimate of 5. From simulations it was evident that
the sensitivity of this test increases with decreasing duty cycles.

2) Rayleigh test (Mardia, 1972): The motivation for the use of this test is its independence of
bins. It is however a parametric test that was derived for von Mises alternatives. This
corresponds to p1=1, p2=0 and $(0:p13,81) the von Mises distribution M(0;1,k). In the case of
bimodal data (as with certain pulsars), the phase difference is ~0,42 and the value of the test
statistic R is small when Py 2 p, This is the result of two nearly opposing vectors, cancelling each
other, when the test statistic

- — — - N N
R = /(C2 + S2) wlthC-—-% I cos 9|.§'=£‘- I sin Gl (6)
i=1 i=1
is computed. Consequently bimodal data may be interpreted by this test as being uniform and

real sources could then be discarded.

Two somewhat neglected 0
non-parametric tests in this area of M\_ . SOURCE FUNCTION: S(p1u,6)=M(n1u,x)
research are Kuiper's Vy test and o\ UNIMODAL: p,=0,1 1 py=0
Watson's U2 test. Their distributions ol RN SMHMPLE SIZE: N300
N n e i N TYPE 1 ERROR: n=0,05
under Hwith the corresponding critical
values are discussed by Mardia (1972).
A brief outline of each test's algorithm 061 watson's v?
is as follows: x -
2 RAYLEIGI TEST
3) Kuiper's Vg test: Let 0(y,....0y) be the @ .
ordered phases. With Us=0; y2n, the test 0.41
statistic is computed by
_ max i, min i..1 .

W U Ty Uty (D 021 oS
so that only the minimum and maximum : Teeall
deviations from the uniform distribution
are taken into account. It can intuitively 0. 04 02 03
be seen that this test will be sensitive to DUTY CYCLE &
light curves with narrow duty cycles, but B
. iy . Figure 1 Power curves of the four different
insensitive to those Wlth broad dUtY tests for uniformity, The light curve 1is
cycles. assumed to be unimodal, The subscripts for

the x?-teat refer to the deqrees of freedom.
4) Watson’s U? test: With U, as above,
the statistic is computed 35 follows:
-z L, - T - (@i-0/7¢0)) + 332 + V12w (8)

i= C
This is a type of a mean square error with respect to the uniform distribution, so that the

information of each phase is taken directly into account in the calculation of U2.
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The procedure to determine which of these four tests is the best test, would be to find the test
with the largest power. Since these tests are non-parametric, (except the Rayleigh test), one
cannot expect to find a single test with.the largest power for all choices of parameters in eq. (5).
An indication of the relative performances of these tests are given in Figure 1, which was
obtained through simulations of unimodal data. It can be seen that Watson's test is the best test
for duty cycles larger than 10% and the x2-test is best for duty cycles less than 10%. In‘the latter
case it can be seen that the power of the y?-test increases if the number of bins is increased. A
good choice is K= 1/5. At small duty cycles it can be seen that the Rayleigh test performs badly
relative to any other test. These conclusions remain independent of the pulsed fraction P

The question obviously arises whether one may use these tests for uniformity when the phases
are not random. The answer is yes, but it applies only to those kind of tests where the
distribution of the test statistic is insensitive (robust) with respect to deviations from
randomness. This has been investigated for the four discussed tests by looking for a change in
the critical values as T increases with respect to b. Fortunately these values did not change, so
that these tests may be used for any relation between T-and b.

4. NON-PARAMETRIC DENSITY ESTIMATION OF LIGHT CURVES: Although a test for
uniformity is a first step in identifying a source, the additional estimation of a light curve is very
important. The usual method to dispiay a light curve in y-ray astronomy, is to bin the data into
a histogram. The disadvantage of this method is that it is dependent on bin positions and their
sizes. A more correct way to display an estimate of the true unknown p.d.f., is through the use
of a non-parametric density estimator. This method assumes that the data is random. Since the
light curve is a periodic one, a good estimator would be a truncated Fourier series. This estimate
and its standard error can easily be computed. The application to estimation on a circle is as

follows: Let the random sample be D=(0y,...8y9 with unknown p.d.f. f(8). The characteristic

function (c.f.)zol t(0) and its corresponding estimator are

o
¢ = Je'”ef(e)do = +iB and §_ =G +if =[l>'f 550 J+i[1 % sinpo (8)
P PP RN UNPhsad n J A UM o
Using the inversion formula (Mardia, 1972) we obtain
f(e) = -211-’-(1 + ZPZI(apcos pe + Bpsin pe))
The following asymptotically unbiased estimator of f(0) is proposed:
- _ 1 m N -
f(e; D, m) —3—;(1+ Zpgl(upcospe+8psinpe) ) (9)

where m is some "smoothing parameter”. Using the method of cross-validation (Bowman,
1984), m can be estimated by m, where m is that value of m which minimizes

N 2n . . 2= = cee
[§) %, (e mide = g iy, (0:Dym) } with Dy =(8s00us0yys0yppreeesty) g

X
i=1"No
The approximate confidence band of -6} £10) = 0,1 S(8yn, 0,05) + 0,143 c = 0,140
£(0) is /\ B, = 0,123
s a. . e . § = 0,504x2n
§(0; 0, M+ s /{var §). (11) priemm

with s=1.96 being the quantity
determining the 95% confidence limit.
The probability that the true p.d.f will
be within the band, will be
approximately 95%. Figure 2 displays
an example of these bands. One can
thus use these bands, in their own
fashion, to determine the significance

PROBABILITY DENSITY

Nt , ;
OFF \ OFF A
of periodic emission. For 6<<1, one "0 20 4o 60 80 300 120 140 ngo 180 200 220 240 260 280 200 320 340 360

1 92

may encounter the problem of
PHASE (degrees)

oversmoothing. Tabulated values of M

for such cases will be presented by the -~ Figure 1 The density estimator £(0:D,M) of £(6).
authors. The 95% confidence band is indicated by IX, The

ON- and OFF-source regions are also indicated.

5. LIGHT CURVE PARAMETERS FROM THE DENSITY ESTIMATOR: Even if one does
not have any knowledge of the true p.d.f f(0), it is still desirable to know the light curve
parameters. Since the estimator is asymptotically unbiased, one may estimate the desired
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parameters as follows:: Determine the pulsed region 0, and 0,roughly. Then determine the
uniform background level c: 0 2 ‘ ‘

1
¢ = | Lf(e)de + Iezf(e)de] /2w - 0, + O'J (13)

Using this line of height ¢, determine a better estimate of the pulsed region. This may lead to a
small improvement of ¢. Obtain the light curve parameters: .

2 P
p = I (7(8)-c)d8 and p = Jale(?(e)-c)de /p (14)
] : ‘
The duty cycle (FWHM) caln be obtained graphically or numerically from the peak of the light -
curve. The latter can only be done when a specific source function S(0;11,8) is assumed:

2 "2, 2 .
2(s) = L 62 (7(8)-c)d8 / p -2 (5) gps. |
1 .
From these parameters one can obtain W g L7
8 ’
‘ : 9o :
C e W0e S

the significance of periodic emission in "uo |
terms of the usual number of standard
deviations NSIG from the uniform’

background. Using a normal distribution 5
for S(0;u,8) and the interval p+1.960 E
>
S
o

(95% area under the normal curve for
this interval) for the pulsed region, NSIG
was computed for unimaodal light curves
with a 10% periodic signal. The results
are presented in Figure 3. The latter can 0.05-
be used to determine the total number '
of events that is required to obtain a
certain level of significance. From Figure

SOURCE FUNCTION: S(0jp,8)=M(8;ju,x)
UNIMODAL: pl=0,l 1 pz'o

0- N v N N X N T '
3 it can be seen that the smaller the duty 100 1000 - 2000 . 3000 4000 5000 6000 .7000
cycle, the easier it is to identify a source. SAMPLE SIZE N . :
This method can also be applied to : FIGURE 3 Contours of significance of periodic
bimodal light curves. emisslon as function of the pulse-taty cycle

and sample size.

6. CONCLUSIONS: When the phases are formed from the arrival times, great care should be
taken if the periodic light curve and the corresponding parameters ‘are to be estimated from the-
sample. In the first place analysis should be restricted to time independent processes (i.e. the
form of the light curve should not change during the observation time). The next step would
be to perform a test for the independency of the sample. The null-hypothesis of independency
will usually be accepted for T<3b. This condition will usually also ensure that the sample
variables (phases) are identically distributed if one let 1>>0. Under these conditions the sample
will be random and the p.d.f. with its corresponding parameters can be estimated. Certain tests .
for uniformity, like those discussed in section 3, may be used whether the sample is random or
not. Watson's test seems 1o be the best test of those discussed for unimodal light curves with
duty cycles larger than 10%, while the x*-test performs better at smaller duty cycles. The best
choice for the number of bins in the x2-test is approximately 1/8. The Rayleigh test is not a very
dependable test since it is a parametric test that was derived for a very limited form of the light

curve.

Likelihood ratio tests for uniformity are presently beihg investigated by the authors. This will
result in the best test for light curves of the form of eq. (5). Such an analysis would
automatically present the light curve parameters with their corresponding standard errors.
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