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ABSTRACT

Yearly average solar diurnal variations of cosmic ray

ion chamber data are inspected from a view point of

the eleven and the 22 year solar activity cycle

modulations. The ion chamber data are from Tokyo for

1948-77, Mt. Norikura for 1958-77, and Hong Kong for

1970-83. Those of Carnegie Institution of Washington
are also used. The neutron data from various stations

are further added. From an inspection of observed

data, we propose a simplest approximation that the Ii

year and the 22 year variations of the solar diurnal

variation are along 18-hour and 12-hour axes,

respectively. The 18-hour component of diurnal

variation in the ii year cycle increases toward the

solar active years. The 12-hour component is enhanced

when the solar general magnetic field is parallel to

the rotation vector, and is almost zero for the other

state. The transition occurs when the amplitude of the

18-hour component is greater owing to the transition of

the field during the maximum phase of solar activity.

The 22 year shift is consistent with the drift modula-

tion model in heliosphere. While the ii year variation

along the 18-hour axis is not interpreted yet.

I. Introduction. The present paper follows after the discovery of the 22

year variation in the phase of solar diurnal variation by Thambyahpillai

and Elliot (1953), the invariant 18-hour anisotropy which is agreeable

with the Axford-Parker theory (McCracken and Rao, 1965), and the two com-

ponent analysis of the eleven and the 22 year variation in the diurnal

variation by Forbush (1969).

Continuous observations of cosmic ray intensity by means of iden-

tical ion chambers have been started in 1948 at Tokyo, then Mr. Norikura,

Sapporo (now stopped), Hong Kong, and Kochi. Though the observation

accuracy is not so high as current muon telescopes and the neutron

monitors, the data can be used as tools to inspect the diurnal variations

in yearly basis for long time period.

If the deflection of the cosmic ray particles through the geo-

magnetic field, and the background diurnal variation due to, say, the
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temperature effect are taken into account, the observed diurnal variation

can be converted to the anisotrOpy detectable in space. The greatests

of all the yearly average diurnal variations are the eleven year solar

cycle variation and that related to the reversal of the solar general

magnetic field at nearly the years of maximum activity which makes the

22 year variation.

Though there are fluctuations, from an inspection of the vector

diagrams of diurnal variation, the eleven year and the 22 year variation

can be separated into the amplitude variations along 18-hour and 12-hour

axes, respectively. Such an approximation is given from a very rough

idea, but the shift along 12-hour axis accords with the drift model

of heliospheric modulation.

2. Display of the diurnal variations. Fig. i shows the vector diagram of

the solar diurnal variation observed at Tokyo. Hong Kong data are added

to extend the years. The data have only been corrected for the barometer

effect. The broken lines indicate expected observations if the direction

of anisotropy in space is 18 hour. The variation spectrum is assumed to

be flat upto rigidity given in the figure. The values with % in the

figure is the amplitude observable in space. If the diurnal variation

due to the temperature effect is concerned, the origin of the observed

vectors must be shifted, though the amount of shift can not reasonably be

given, for the temperature diurnal variation is not known accurately. It

can be allowed, however, the origin can be shifted so that the pattern

becomes similar to those observed by the neutron monitors. The diagrams

for other stations including those of the Carnegie Institution (Forbush,

1969) and of some neutron monitors are seen in the following Figs. 2-5.

3. Discussion. The hand writing drawing in Fig. 6 indicates our idea to

interpret approximately the variations during Ii and 22 year periods. It

can be shifted and rotated to fit the observed diagram 0_-the ani-

sotropy. There are appreciable scatter around the proposed simple varia-

tion, but one can see this kind of interpretation is possible. It is

seen that the transition from different 12-hour states occur at around

years of the reversal of the solar general magnetic field. This situa-

tion is understandable if the drift effect of modulation in heliosphere

is concerned (Jokipii and Kopriva, 1979).

Kadokura and Nishida (1984) have simulated the anisotropy of

cosmic rays in heliosphere putting the effect of drift as well as the

diffusion through the interplanetary magnetic field (IMF) and Compton-
Getting effect in the system of solar wind. They compared the results

for different states of the solar general magnetic field which is

, parallel or anti-parallel to the rotation vector. The difference appears

in the term of diffusion if restricted the position at the earth orbit.

The anisotropy due to the diffusion is enhanced during the anti-parallel

state. Since the diffusion is along IMF, the anisotropy is along 21-hour

axis. That makes the 18-hour component greater than that of the other

state. On the other hand, because of the enhancement of O-hour com-

ponent, the overall effect of the 12-hour component is almost canceled

out, while that in the parallel state remains to be significant. It

appears as the enhancement of the 12-hour component during the parallel

state compared with that of the anti-parallel state.
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As for the eleven year variation of the diurnal variation, though

the observed variation is clearly seen, the model for that has not been

fixed yet. One point which should be examined further is the distribu-

tion of the diurnal vectors in daily basis. While the average amplitude

changes, at least two patterns can exist. The one is 'that the total

distribution shifts without change in shape. The other is that the

shape of distribution is distorted; for example, the frequencies at

greater amplitudes increase compared with those at lower amplitudes.

If the latter is a real case, there are various origins which enhance the

amplitude during the solar active years. For example, the frequencies of

occurrence of solar flares, Forbush decreases and so on are greater

during the active years. Still, why the enhancement occurs along the

18-hour direction during the active years is an open question. We leave

this problem for further studies

Fig. I. Observed yearly average diurnal vectors for ion chambers .in

TokTo and Hong Kong. The broken lines indicate expected observations if
the direction of anisotropy is 18 hour in space The spectr.am is flat
upto GV written inside. The % values correspond to the amplitude in

space.
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Figs.2-5. The same as Fig.l, but for ion chambers at Mt.Norikura,
Huancayo. and Cheltenham (Forbush, I_), and neutron monitor at
Mt.Norikura (Kawasaki et al, I_83), respectively.
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Fig.6. Simplest and approximate a_pect of the 11 and the 22 year
variations of the solar diurnal variation. See text
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