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ABSTRACT

Evaluation of barometer coefficients of neutron monitors located

at high latitudes has been performed by using the results of the
spherical harmonic analysis based on the records from around

twenty stations for twelve years from January 1966 to December
1977. The average of data at eight stations, where continuous

records are available for twelve years, show that the absolute
value of barometer coefficient is in positive correlation with

the cosmic ray neutron intensity. The variation rate of the

barometer coefficient to the cosmic ray neutron intensity is
influenced by the changes in the cutoff rigidity and in the
primary spectrum.

I. Introduction

Many authors I) have indicated an eleven year change of the barometer
coefficients of the cosmic ray neutron monitors. Since there was no

unique technique for determing the coefficient, the results obtained by
different authors may be different. We developed a systematic method to

examine the barometer coefficient 2-4) and clarified the solar cycle
variation of the barometer coefficient more precisely.

To evaluate the barometer coefficient of neutron monitor, it is

necessary to separate strictly the cosmic ray intensity variation induced
by the primary cosmic ray variation from the one caused by the

atmospheric pressure variation. For this purpose, we used the results

obtained by the spherical harmonic analysis 5) which is performed on the
basis of the neutron monitor records from around twenty stations at high
latitudes where the cutoff rigidities Rc's are below 2.3 GV.

2. Residual barometer coefficient

The difference 3Ip between the pressure corrected neutron monitor
data [p (percentage value) and the estimated neutron intensity
calculated from the spherical harmonic analysis is expressed as

JIp =._p - y.

This subtraction enables to eliminate the effect of the. intensity
variation of the primary cosmic rays outside the magnetosphere. The
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residual barometer coefficient d_ is obtained as a linear regression

coefficient by the statistical analysis of correlation be tween the

pressure p and the diffrednce 3Ip . Results of J_ for the period, from
1966 to 1977 are presented in the reference(4). The corrected pressure

coefficient _cor is derived according to the equation

_oor :_o + _,

where Go is the reported barometer coefficient from each station.

3. Solar cycle variation of the barometer coefficient

Figure I shows the year-to-year variation of cosmic ray intensity I
and barometer coefficient _. where I and _ are the averages of yearly
mean data of eight stations (Alert, Deep River, Goose Bay, Inuvik,

Kerguelen, Kiel, Oulu and Sanae) where the continuous data are available

through twelve years from 1966 to 1977. Mean intensity of neutron
component I is normalized to 100 percent at the point of the year 1966.

Co is the yearly mean value of the isotropic component of spherical
harmonic coefficients and normalized to the value of 1966, but plotted 4Z

higher level, and Rz, the sunspot number which is an index of solar
activity is plotted inversely.

In order to investigate the solar modulation of barometer

coefficient, we analyzed the relation between the barometer coefficient
and the cosmic ray intensity. Figure 2 shows the relation between the

barometer coefficient _ and the cosmic ray intensity [. The linear

regression coefficient throughout the whole period is

_:(1.83±0.24)x10 -3mmHg with a correlation coefficient, r:0.92.
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Fig. !. The yearly variation of Co: the. isotropic component of the
spherical harmonic coefficients. [: cosmic ray neutron intensity and

barometer coefficient, they all are averages of eight stations and
error bars indicate the scatter of individual station, and Rz: the

sunspot number.
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Fiq.2. Relation between the barometer coefficient and cosmic ray

intensity variations. Lines A! and A2 represent the linear regression
line between the barometer coefficient and the cosmic ray intensity
in the solar active and the solar quiet period respectively.

4. Relation between the barometer coefficient and the cosmic ray primary
spectrum variation

In a previous paper, 4) it was reported that the variation rate of

the barometer coefficient to the cosmic ray intensity is larger in the
solar quiet period than in the solar active period. About the
quantitative relation between the barometer coefficient variation and

primary cosmic ray rigidity spectrum, an analysis is performed. The

present report is concerned with the numerical calculation to clarify the

relation between the barometer coefficient and the cosmic ray primary
spectrum variation.

We calculated the variation rate of the barometer coefficent _ .
which is defined as _=6_/61. The ratio 8J/Jo represents the variation of
the primary cosmic radiation. For a primary variational spectrum, we
assumed as

Jo (R ) ],0 ,for R>Ru

The calculations 6,8) were performed for several different values of
power 7, where A:constant' and Ru = 40GV are assumed. The curve in Fig.3

represents the distribution of _, where 7 = 1.7 is assumed. It is
, clearly illustrated by the changes in the cutoff rigidity and in the

primary spectrum. As for the computation of _ when the solar activity is
high, it is necessary to estimate the rigidity dependence of barometer
coefficient.
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F_q.3. Distributionof _y is plottedin absolutevalue.The abscissa is
the cutoff rigidity, where the neutron monitor is located, or the

mean rigidity at several stations. Curve represents the distribution

of a_, which is the result of numerical calculationS), where 7=1.7 is

assumed. A I and A2 (Averages o£ eight high latitude stations)4); ii
and 12 (Inuvik)7); BI' B9 and B_ (Averagesof severalstations)9);
C(Deep River)lO). _ v
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