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DECELERATION OF A SUPERSONIC FLOW BEHIND A
CURVED SHOCK WAVE WITH ISOENTROPIC PRECOMPRESSION

V.G. Dulov, V.A.'Shchepanovskiy

This study investigates three-dimensional supersonic ”ng*'
flows of an ideal fluid in fhe neighborhood of bodies formed by
an excision along the streamlines of an axisymmetric flow. The
uneven flow consists of two regions: regions of isoentropic
compression and regions of vortex flow. An exact solution with
variable entropy [1l] is used to describe the flow in the vortex
region. In the continuous flow region an approximate solution is
constructed by expanding the solution in a series according to a
small parameter. The effect of excision shape and flow vorticity
on jet compression and the total pressure loss cé%fficient is
studied. | “

1. Reference [1l] investigates solving axisymmetric equations
for an ideal gas with variable entropy. This flow is described

with a common differential equation for characteristic function
z(h): '

B R T Py L h
R e Ve AN
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(1.1)

Jﬁgaﬂﬁf”—"%ajh

b= -"—:-;—1 h*h (xa"'j-'-v-_ﬁ4xa + 3a®) — dax (« -— 1)],1,.,‘::.;., i

and total pressure distribution along the streamlines is written
as po = C(¥o — v)¥ (d, c, and ¥o are randonm constants). Here

and further all values are given dimensionless form: enthalpy h

¥Numbers in the margin indicate pagination in the foreign text.



relates to heat content hy, values with velocity dimensionality'
relate to the maximum velocity of steady outflow in a vacuum’
VQE;, and pressure relates to total pressure po. Under these
' cbhditions, stream function ¥ should be related to pol/VfEH;—

where 1 is the characteristic linear dimension.

Flowv(I.l)’is converted to plane (u, v) of a travel-time

curve and physical plane (x, y) with equations:

) - ¥ 0 l‘ o — | -'2. (1.2)
H=mz—as hz', v~:_.]/l~—h-—( ; ” 'c){,,r
\~]/#““¢\FM1 J—]/Q“”'“““im;f; (1;3)
- iy .
. x“", z" ] 1 x_]', .
- ( " zz-—--—;)u——a—{z—}-u(z—a " /IZ - z)]

]/" hz.) o *
In genefal, it is impossible. to make flow (1.1) adjacent /73

to the even flow by means of a curved shock because the solution
is not arbitrary{ We will discuss the possibility of joining
(1.1) with an even flow through an-intermediate region of uneven
flow Q1 (Figure 1). 1If this is set up as an exact problem, it
can only be solved numerically. To construct an analytic,
approximate solution we assume that leading shock AC (See Figure

1) is weak and the flow in 9, is isoentropic. 1In Q2, we have a
vortex flow. This flow is described with equation (1.1) and is
jéined with Q1 by means of curved shock waﬁe AB, which diffuses

in the uneven flow.
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In variables h and ¥, wave AB (see figure 1) can be
represented as h = H(¥). From (1.3), we have the following in
the phy51cal plane

- '/(w.-—\n

_- e 2 ~ (“— l—a
"“]/ (yy_ ”,* c‘”, H“"'—J(\l)

(1.4)

We use € to designate the square of the modulus of velocity in
Qi; B, v1, 02’are'the slope of shock wave AB ahd velocity vectors
21 and Q2 to the symmetry axis. Allowing for the fact that the
flow in Q1 is isoentropic, we can then write the laws of momentum

and energy conservation on wave (1.4) as:

cos (fp — 10,)
H) [ cos (ff — 0,)]

-—1 Hl(l--ll) -sm-(ﬁ-—ﬂ.) i
'u#nx+i mmﬁ—ﬂgmuﬂ.m <

A . o 1 S ’ (1.5)
LI - rd —
(= = copo e [‘~ =17 8 “*,,-;0)5*“(\" -m)]
The law of'conserﬁation of mass is satisfied, since the
coordinate of ¥ - stream function - is continuous during passage

through the shock. The ratio tgB8 = y’y/x’y gives the equation
for the wave '

(1.86)
The set of equations, (1.1), (1.5), and (1.6), and ratio
R (1.7)
COSU,——'-_"—'—W:H— : .

obtained from (1.2) are a closed system of equations for =z, H, B8,

Y1, V2 and €. Solving this system defines flow in Q2, the

‘position of shock (1.4) and the distribution of gas dynamics

parameters on the wave front.
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2. To construct an approximate solution, we must make /74
the transition to travel-time curve variables in the gas flow
equations. For problems with axial symmetry, this transition is
usually useless when studying exact problems and methods, since
the equations become nonlinear. However, this transition can be

quite convenient when constructing and analyzing approximate

solutions.

In the statement fof flow isoentropicity, i.e.. h = h(p),
taken from'thé Eiler equation transformed to variables € = u2 +
+ v2 = 1 - h, n = v2 = (1 - h)sin2v;, it follows that there is a

function‘¢(€,n)'such that:

R T T
BT TeyvEo T aview (2.1)

&
Any ¢ selected will satisfy‘the dynamic equations: identically,

and from the equatibn for continuity we obtain the ratios which

determine coordinate x:

26— [T+ T (P + ) — Py o+ 2(E— ) sy
— /71— [ 3 n n . =]/ ] &n
e .;}_ P 2 ]/Bn_(‘«‘;z—n)(«p;-_,i-}pn);" Boyi, VSn(‘—n)(¢;+<pn)

(2.2)

By excluding X from (2.2) with cross-differentiation, we obtain

the equation which contains only one function for ¢:

2 — (gl — 2P — [(2E — - 1) @n -+ 26931 5 — 21 (20¢ + 2¢4) P2
—n{2[1—] (s = n)l (cp; T %)) Pon = 2§1 (fp; + ‘Pn) +(1—m)mn(<p;+ %) = (2.3)

This is a Monzh-Ampere type equation with a quasi—linear part.
All terms in the equation contain derivatives from the unknown
function as products of two partial derivatives, and coefficients

for the products are polynomials according to variable 1 to no

- more than the second power. These properties of equation (2.3)

make it possible to search for the solution as a series according

to the powers of N. We enter the parameter € = max?n
. : ' Ql



and let

,uf=;m'“" PR
pe= 2 P E"(ph (§ n) n=en. , (2.4)
Inserting (2.4) in (2.3) gives the‘following equation for ¢y

(2 — 1) 9o.n (%.rm -—';lr ‘P'«-ﬂ) = F At (2-9)

Function F, is expressed through ¢; and their derivatives are

expressed with k < n.

lr = (25 — l) (‘Ps n— WP:.nn) ‘Pn-——a n— 257, <.7|(Pn-—s.cn + 271 (I'— 2*/) ‘Pt 3 +-
i W(Ps.n +2=qu):. 1‘Pn—-s nn“‘IQS‘PA E. "]’Pa m _TV(P- ‘fl""(l "'4§l) ‘Ps.J (fn-n n+

— ﬂl_q‘o.u)_ _q;nfa.

Here, repetitive index s indicates summation'froﬁio to n. If
2ej - }.74 0 (i.e. Mach numbef.hi7é 1), formula (2.5) is a
recurrent ratio for ¢j;. ‘Obviously F_; = 0. Then, from (2.5),
¢o = A2 x n2/2 + B, where A and B are random functions of E£.
According to (2.1), the flow corresponding to this solution is -

written with the following formulas:

;“.‘._,- n

(Vi 2%~ uds. gt = 2hpA%n,

o
Lo
.

These formulas determine flow in a channel with variable cross- /735

section area in a one-dimensional approximation (isobars for £

= const are the straight lines for x = const).,'Further
W;x : [UALQH( "}éf) 312, B ]; ‘Tnlgqgﬁﬁg
f-“ —E2i|[ ranit . 1’1 SJA wo A
L% 14 (AA" ") G 2:;>AA'—'-3;A1— ——l(l' sJ)B"4B"l*J
The flow corresponding to approximate solution d = @do + €¢1 is

described with the following equations:
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S ,--;f,,-rz(B'+2*B")l 2

Here € is set equal to one, which actually means a return to
undeformed variable 1. According to (2.6), the isobars are

second order curves.

For an‘rough estimate of apprbximation procesé accuracy, we
compare it with certain exact solutions for gas flow equations.
Since the basic approximation is an expansion according to the
angle of flow divergence, a solution in which angle ¥ remains
unchanged in the trajectories (i.e. the flow from#the gas . source.
This flow, by the way, has the simplest structure) is the natural

choice for comparison.

.:“;:‘.!“-!1, “-”.46 gt
el - N

: {M=2,2,
i N

Figure 2

Figure 2 shows graphs of the approximate solutions’ relative
deviation 6§(%) from the exact solution as a function of the angle
of cone © for two Mach numbers at the inlet. Solid lines (x =
const) are a one-dimensional approximation and dotted lines are
approximation (2.6). As Figure 2 shows, the near-axial region is
described most exactly, the second approximation nearly doubles

accurécy, and when the Mach number at the inlet (and consequently




throughout the entire flow) increases, error decreases.

3. To construct the flow in Q. we use approximate solution
(2.6). Wave AC (Figure 1) is assumed to be weak, and the angles
of turn on it are small. It is precisely in this case that

expansion (2.4) is valid. 1In var1ab1es € and n, weak shock AC is

descrlbed with the equation:

(3.1)

From the laws of conservation of momentum and mass and the laws
_fof joining the flow on AB, we obtain:

L O

Cati—al A T s
e oh, T 2'(}.».—4\,) '—A ('llll—fl.\c)

r oo

E RN PN (3.2)
'B/:__;?Ef—l ’12-\.ri+1yi;;.-:_'ﬂ2:]in+nic . 9 : B’ : ".’w
.‘.‘E wL TR I 2hp' ‘_TlAB‘—'nAC ','-'»Qgi__l 2.‘ (l, '—7&)
!/ic=i°—1f_—_-x, (A_ "{E' ,'(,'._ ml’_nAc' V"‘2B’ : (E.A’) ?} ) : ,;':.
E R i i e . ) . .._' ¢ .
where y,p and 7M,p are functions of &, determinable with /76

system (1.1) and (1.5) - (1.7); index « relates to the

corresponding leading undisturbed flow parameters.

The general system of equations (1.1), (1.58) - (1.7), (3.1)
and (3.2) determines total flow, i.e. gives the solution to the

problem of joining vortex flow (1.1) with even flow.

Shock wave AB reaches the axis if y = 0 in (1.3), i.e. if
either ¥ = %o (a) or z’> = 0 (b). 1In first case (a), we have po ="

.= 0 for total pressure on the axis, which is impossible. We will
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consider the second vériation, z’ = 0. For (1.1), this is a
singular point through which the single~parameter family of
equations z =+/1 - ho + k(ho - h)2 passes (ho is the value for
enthalpy on the axis and k is the parameter). Here, according to
(1.2), v = 0 on the axis.. It follows that the shock wave reaches

the axis and approaches it at a straight angle.

Calculations are made from the axis. Given My, and &, we find
parameter k,’which fixes the integral curve in the family of
solutions passing through the antinode point. Further, departing
from the singular point according to the analytic solution, we
solve the general system of common differential and»
transcendental equations (1.1), (1.5) - (1.7), and (3.1) - (3.2).

At each integration step for the differential equations, the

"system of transcendental equations (1.5) is solveld by iteration

[2]. Here a solution from the preceding step is selected as the

initial approximation for the iteration process. Calculation
continues up to y = Ymax: Whose. value corresponds to flow lines
P = ¥ - C—l/.c(.

max

4. The intensity of shock wave AB decreases as YABR increases

.and falls to zero when y = Ymax+ Intensity changes due to solid
wall distortion and uneven flow in Q1. At values of d < 1, the
unevenness of flow in Q1 is insignificant (when o = 0.1, the

makimum value of Av, /Ay on the external side of the shock is
0.06, and when o = 0.01, Avar /By = 10“4) and shock distortion is
duerbasically to wall distortion. In this case leading wave AC
is almost a characteristic curve and the Q) zone has significant'
dimensions. As O increases, the flow in Q1 becomes more uneven,
AC begins to differ from the characteristic curve, and zone 1
decreases. Here the vorticity in Q2 can be explained not only by
wall distortion, but also by uneven flow in front of the shock.
Note that here the hypotheses on which the solution in 7 are

based are met with decreasing accuracy.

10
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We use the solution obtained to describe the flow in
airscoops constructed by an excision along the stwweamlines of an
axisymmetric flow [3, 4]. We will discuss a secéor excision with
angle 2¢ (Figure 3 a). The combined loss coefficient for total

pressure is determined according to the formula

fln;;=!}pojS,}._ (4.1)
where S is the area of the capturable gas jet.
The average recovery factor for total pressure for this
diffusor formula is
. et S ey
. “ H ? = (l - a) ()-:(T‘T)a (l"l'.a.)o‘,‘ !
. o AVt (4.2)

Figure 3 b shows )} as a function of the angle of sector ¢ at /77

different values for S, and Figure 3 ¢ shows I as a function of
index &. The influence of ® on the recovery factor increases
with ¢. In Figure 4 the values of ¢; are determined with the

equation ¢y = Si/Ymaxs Which shows that y Ymax . N

11
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To evaluate the level pf compression for the gas jet entering
the airscoop, we determine pressure on AD (see Figure 1). On AD

h = const = hi‘ The

‘e

e

1o

I/III//I} 77777777,

2N \‘\\

ls

g .
...g .

ILLLLLLLLL A 4L 222284822

Figure 4 | -

The characteristics of intake diffusors with other excision
shapes can be determined in a similar manner. Figure 4 shows a
diffusor with a rectangular excision which can be characterized
with two parametersf the area of captured jet S and angle ¢,
shown on Figure 4 a. TFigure 4 b shows the curve for the ratio of
diffusor recovery factor (Figure 4 a) to the analogous value /78
(4.2) characterizing the influence of excision shape on

aerodynamic characteristics.
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