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SUMMARY

A failure in an aircraft control element must be accommodated in near real time
by the pilot and/or automatic control system in order to prevent a possibly tragic
accident. A first step in this accommodation is the detection and identification of
the failure. This report presents the results of an evaluation of the failure detec­
tion filter for the detection and identification of control element failures in
transport aircraft.

With the failure detection filter the vector of filter residuals for a given
actuator type failure maintains a prescribed direction in measurement space. A
residual processor, such as the correlator and threshold detector described in this
work, can be used to detect the occurrence of a failure and to identify the failure.
Such a failure detection filter was evaluated using a digital computer linear simula­
tion of the longitudinal dynamics of a B-737 aircraft. The simulation included
sensor errors and wind turbulence.

with the thresholds set at a level determined by heavy clear air turbulence,
approximately one half of the failures in the elevator, throttle, stabilizer, and
spoiler were successfully detected. However, in heavy clear air turbulence and in
thunderstorm turbulence all of the failures were detected, while in lesser turbulence
none were detected. The primary reason for the missed detections at the lower turbu­
lence levels was the necessity to set the thresholds sufficiently high to avoid false
alarms in heavy turbulence during which the residual levels are increased.

with some measurements, such as the acceleration measurements in this system,
some actuator type failures feed directly into the measurement equation with the
result that the filter residuals from these failures cannot be confined to a constant
direction in measurement space. Also, with the state space formulation used in this
evaluation a steady state wind affects the filter residuals in the same way as does
an actuator type failure.

From the results of the simulation runs, it is concluded that false alarms/
missed detections due to wind turbulence are a significant problem which must be
overcome before the failure detection filter and correlation processor can be used to
detect and identify control element failures in transport aircraft.

INTRODUCTION

For certain anticipated failures in transport aircraft operations there are
established procedures for the pilot to follow. A typical example is the procedure
for handling an engine outage during takeoff. There are, however, unanticipated
failure modes for which no appropriate emergency procedures will be available. These
unanticipated failures must be handled by the pilot and/or the automatic control sys­
tem in real time to decrease the probability of a tragic accident.

In the case of a hard-over failure in a control element, the pilot may have only
a matter of seconds to take corrective action before the aircraft reaches an irrecov­
erable condition. In the case of a failure of lesser magnitude the pilot may have
more time to take corrective action, but the failure and, hence, the proper
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corrective action may be difficult to identify.· In either case the pilot may require
assistance from the aircraft systems to help him take the appropriate corrective
action in a timely manner.

A considerable amount of work has been done in the area of failure detection and
identification (FOI) in dynamic systems, and Willsky has provided a well known survey
of many of the available FDI techniques (ref. 1). Chow (ref. 2) and Willsky and Chow
(ref. 3) have examined the problem of generating residuals from the system measure­
ment data for use in decision making processes to detect and identify failures. The
detection of failures in sensors has been investigated by several authors, including
Motyka, et ale (ref. 4); Deyst, et ale (ref. 5); Caglayan (ref. 6); and Friedland
(ref. 7). The Generalized Likelihood Ratio has been investigated for FDI applica­
tions by Willsky and Jones (ref. 8); Chow, Dunn, and Willsky (ref. 9); Bueno, et ale
(ref. 10); Bueno (ref. 11); MIT (ref. 12); Liu and Jones (ref. 13); and Chang and
Dunn (ref. 14). The technique has been exercised in a simplified simulation of the
F-8 aircraft dynamics by Bueno and others at MIT (refs. 9-12), and Tylee (ref. 15)
has examined the use of the GLR to detect failures in a nuclear reactor. Another FOI
technique is the failure detection filter (FOF). Beard (ref. 16) developed the the­
ory of the failure detection filter for linear deterministic continuous systems using
a matrix algebra approach. Jones (ref. 17) extended this theory to stochastic and
sampled data systems using a vector space approach. Messerole (ref. 18) .has applied
the failure detection filter to the problem of detecting and identifying failures in
an Fl00 engine.

This report presents the results of an evaluation of the capabilities of the
failure detection filter for the detection and identification of control element
failures in a transport aircraft. This evaluation was conducted prtmarily by imple­
menting the failure detection filter in a linear simulation of the Longitudinal
dynamics of a B-737 aircraft and examining the performance of the f~lter in detecting
step f,:dlures in the elevator, throttle, stabilizer, or spoilers. The text includes
a development of the theory of the failure detection fi lter for fully measured sys­
tems, a brief discussion of the aircraft simulation and the filter implementation, a
presentatior, and discussion of the results, and conclusions. The aircraft simulation
is discussed in detail in appendix A. The preprocessor used to transform the mea­
surements into a f.orm suitable for use by the f.ailure detection filter is discussed
in appendix B.

SYMBOLS

•

A

B

b

2

system transition matrix

wind system transition matrix

acceleration in the x-, z-direction (body axes), ft/sec (SUb-subscript s
denotes stability axes)

control input matrix

i-th column of B

wind system plant noise input matrix

wing span, ft
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b(·) measurement bias error

transformation matrix relating W to to

correlation of filter residual with j-th output failure vector

c!
J

correlation normalized by multiplication by (1 - A)/IHfjl

normalized correlation used in computing estimate of the failure magnitude

Ncj correlation Cj averaged over an N-sample data window
..

c"f
]

correlation c!
J

normalized by division by threshold E·
J

•

..

D

F

f·
1.

G (s).
H

h

I

i

k

q

plant noise input matrix; failure detection filter gain

covariance matrix of the wind system plant noise ~

failure vector

filter transfer function

observation matrix

model of the observation matrix used in the filter

altitude, ft

identity matrix

index denoting the i-th failure vector from the set of constrained failure
vectors

sample number

turbulence scales in the x- and z-directions, respectively, ft

perturbed inertial pitch rate, rad/sec

filter error vector

pitch rate due to wind, that is, rotation of the atmosphere about the
y-axis, rad/sec

NRk vector of filter residuals averaged over an N-sample data window

covariance matrix of the plant noise ~

R~ covariance matrix of the wind system plant noise r,k

rk vector of filter residuals

r vector of steady state filter residualsss
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S (0),8 (0),
8 U( 0 ) a

q

power spectral density of the x-, angle-of-attack, and pitch rate­
components, respectively, of the wind turbulence

t

u (0)
k

time, sec

time at k-th sample, sec

trim inertial velocity in x-direction, ft/sec

control vector

components oE control vector uk •

u(O) steady state wind in the x-direction, ft/sec

u'

u'w

perturbed inertial speed in the x-direction normalized by the trim
velocity Uo

normalized speed in the x-direction due to wind, that is, normalized wina
velocity in the negative x-direction

•

u' u'
g' s

w( 0 )

x (0)
k

gust and steady state components, respectively, of

air.speed, ft/sec

observation, or sensor, noise vector

wind system state vector

components of wind system state vector Wk

wind, or plant noise, vector

steady state wind i.n the z-direction, ft/sec

system state vector

component of system state vector xk

estimate of the state vector xk

u'w

z (0)
k

a,~

4

in general, the observation, or measurement, vector; for the B-737
simulation, the vector of pseudo-measurements after preprocessing

value of the observation vector, or. pseudo-measurement vector, predicted by
the filter

measurement vector from simulation prior to preprocessing

component of the observation vector zk

failure magnitude; perturbed inertial angle-of-attack, rad

part of the angle-of-attack due to winds, rad
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r

gust and steady state components, respectively, of aw, rad

trim value of the angle-of-attack, rad

disturbance transition matrix

matrix coupling control element failure into the measurement equation

disturbance transition matrix for the wind input wk and defined by
equation (A55)

perturbed elevator position, deg

.. unit impulse function

os perturbed stabilizer position, deg

osp perturbed spoiler position, deg

ost perturbed stabilizer command, deg

oT perturbed thrust; klbs

oth perturbed throttle command, deg

detection threshold for correlation c!
J

a

wind disturbance vector defined by equation (A56)

failure time, or sample number; perturbed pitch, rad

trim value of pitch, rad

angle between output event vectors

filter eigenvalue

Hf. and
1.

•

,

wind system plant disturbance vector

RMS velocities of wind turbulence in the x- and z-directions, respectively,
ft/sec

time, sec

system state transition matrix

filter state transition matrix

wind system state transition matri.x

control transition matrix

filter control transition matrix

i-th column of ~
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Notation:

F

T

E{' }

I I
Acronyms:

spatial frequency, rad/ft

temporal frequency, rad/sec

indicates estimated value

superscript F indicates that the variable is used in the filter
formulation

superscript T denotes transpose

expectation operator

vector lnner product

vector magnitude

•

•

CAT Clear Air Turbulence

FDF Failure Detection Filter

FDI Failure Detection and Identification

GLR Generalized Likelihood Ratio

RMS Root-Mean-Square

FAILURE DETECTION FILTER THEORY

A failure detection filter (FDF) is a tracking f.ilter, or state estimator, de­
signed to assist in the detection and identification of a failure in a linear system
by selecting the filter feedback gains such that the filter residuals always lie in a
constant direction for a given failure (lie in a plane rather. than a constant direc­
tion for most sensor failures). The work by Beard (ref. 16) and .Jones (ref. 17) was
devoted to proving the existence of such a filter under certain conditions and to
developing a procedure for accomplishing the filter design.

The failure detection filter differs from many other tracking filters, such as
the Kalman Filter, in the following way: although the failure detection filter is a
state estimator, it is not designed primarily to minimize the tracking, or estima­
tion, error, and therefore its estimation accuracy is not normally as good as a
Kalman Filter. As an FDI technique, it differs from the Kalman Filter/Generalized
Likelihood Ratio approach in that the FDF design does not depend on the time history
of the failure magnitude as does the GLR. In other words, for a given failure type
(direction in state space), the FDF design is independent of whether the failure
amplitude is a step function, a ramp, or some other function of time. As an FDI tool
the primary purpose of the FDF is to generate a vector sequence of residuals which
must then be processed by decision making algorithms to declare the presence of a
failure (detection) and to declare the type of failure (identification). These

6
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decision algorithms may depend on the expected variation of the failure magnitude
with time.

Beard and Jones have developed the failure detection filter theory for a general
linear system, but the theory for a fully measured system is considerably simplified.
A fully measured system is defined as a system for which the number of independent
measurements is equal to the number of system states, that is, rk(H) = n. The air­
craft system investigated in this work is a fully measured system.

Consider a noise free, linear, time-invariant, fully measured system with a
failure described by the equations

f/

where

i 1,2, ••• ,L

(2)

xk n-dimensional state vector

Yk m-dimensional observation, or measurement, vector

uk r-dimensional control vector

E1 n-dimensional failure vector describing the direction of the failure in
state space

i index denoting the i-th failure from a set of L possible failures 4.

•

ak = failure magnitude

~ = nxn state transition matrix

~ nxe control transition matrix

H mxn observation, or measurement, matrix

A failure of a control element such as an actuator can be described by this model.
For example, suppose that in this system the i-th element of uk were the control
input in degrees to an actuator. Then the failure vector f i for this actuator
would be the i-th column of ~, and ak would be the magnitude of the fai lure in
degrees. Many changes in plant dynamics also can be represented using the model in
equation (1). Sensor failures require a different model and are not treated in this
report.

A failure detection filter designed for such a system is described by

A

~+1
( 3)
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where

...
~ = estimated n-dimensional :3tate \lector

'"Yk = predicted m-dimensional observation vector

D = filter gain

Define the filter error vector qk as follows:

From equations (1) through (4) the dynamics of the error are described by

The solution to equation (6) is

(4)

(5)

(6 )

..

•

k

L:
j=O

k-j
(~ - DH) a. f.

J ~

(7)

where qo is the initial condition of qk. Since the true system state xk is
unknown, this error is unobservable. However, the residual r k , defined by equa­
tion (8) is observable.

(8 )

•

,

8

k-1

L:
j=O

k-j-1
(~- DH) a.f.
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In general, the direction of
(sample number k) because of
by the matrix (~ - OH).

Now let

~ - DH = AI

r k continually changes in residual space with time
the repeated multiplication of the failure vector f i

(9)

•
where the A'S are the n eigenvalues of the matrix (~ - OH). Then equation (8)
becomes

•
k

r = A Hq
k 0

+ H

k-1

L
j=O

k-j-1
A a.f.

J ~
(10)

For a stable filter, A is less than 1. Nowas k increases, the transient term
resulting from the initial condition approaches zero, and the residual becomes

k-1

r k - H L
j=O

k-j-1
A a.f.

J ~

( 11)

k-1

=L
j=O

k-j-1
A a. Hf.

J ~
for: large k

Note that after the initial transient has decayed, the residual is always in the
direction Hf i as was desired. If the failure magnitude ~ is n constant a, then
the residual approaches a steady state magnitude as well as direction.

"

aBE.
l

1 - A

From equation (9) the filter gain is found to be

( 1 2)

for m = nand rk(H)::.: ..:1

for m > nand rk(H) = n

( 13)

(14 )
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Equations (3) through (14) define the failure detection filter which will pro­
duce a vector sequence of residuals rk' We now need a technique, or algorithm, for
processing the residuals in order to detect the presence of a failure and to identify
the failure. One of the simplest techniques would be to correlate the residuals with
each of the output failure vectors Hf j and to select the vector fi corresponding

to the largest correlation as the failure and to declare a failure if the correlation
exceeds a threshold. Let the correlation be defined as

( 15)

..
where <.,.> denotes the inner product. Substituting the steady state value for the
residual from equation (12), the correlation becomes ..

c·
J

ex<Hf . , Hf . > -----
J 1. 1 - A

( 16)

using this technique,
such that <Hfj,Hf i >
Hon defined by

a mis-identification would occur if the failure vectors were
exceed <Hf i , Hf i >. To avoid this difficulty, use the correla-

ct.
J

<Hf· , Hf· >J 1.

a----
IHf.1

J

( 17)

IHf. I ex cos e··
1. J1.

where eji = angle between the vectors
are computed, the failure is identified
normalized correlation, that is

i = arg max c!
j j J

Hf j and Hf i . Once the c!, j = 1,2, ••• , L,
as that vector correspondin~ to the largest

(18 )

•
A failure is declared if and only if the correlation exceeds a threshold determined
a priori by analysis and experiment, that is, if c~ > EA.

i i
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If a failure is declared, the failure magnitude can be estimated using a
different normalization of the correlation as follows:

a = c~
i

(19 )

Note that

,.
a = a cos 8,.

ii

(20)

,.
= a if i = i

When the system includes plant noise (wind gusts) and sensor noise, the correla­
tions will be random variables. Therefore, in a practical application a method is
needed to reduce the variance of the correlations and thus reduce the false alarms,
missed detections, and failure mis-identifications. Perhaps the simplest method is
to average the correlations over a window of N data points, or residuals. The
averaged correlation becomes

c'
N j

where

(21)

•

(22)

..
,.

The estimates i
NRk in place of

and
c~

J

,.
a

and
are computed as in equations (18) and (19) using

r
k

, respectively.
c'

N j
and

Note from equation (17) that in the absence of noise the correlations c~ and
c~ differ by the factor cos 8iJ,. Thus the angle between the output failure~vectors
,J
~s a measure of the ease with which the failures can be correctly identified.
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EVALUATION OF THE FAILURE DETECTION FILTER VIA SIMULATION

The Aircraft Simulation

To achieve the objective of obtaining a preliminary evaluation of the capability
of the failure detection filter to detect and identify failures in an aircraft con­
trol system, the filter was i1nplemented in a digital computer linear simulation of
the longitudinal dynamics of a B-737 aircraft using a small perturbation model.
These dynamics are described in state space by the equation

The aircraf"t state vector is defined by

xk (1 ) e

xk (2) u'

xk (3) a.
xk

xk(4) q

xk (5) oT

xk (6)_ oS

where

8 = pitch attitude

u' = normalized speed in the x-direction

a. = angle-of-attack

q = pitch rate

oT = thrust

(23)

(24)

oS stabilizer position •
The control vector is defined by

uk (1 ) °e

uk(2) oth
uk = =

uk(3) cst

uk (4) csp

1 2

(25)
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where

0e = elevator command (= elevator position)

oth throttle command

ost = stabilizer command

osp = spoiler command (= spoiler position)

The plant noise vectors wk and nk represent the winds and will be discussed
later. The state transition matrix ~, the control transition matrix $, and the
disturbance transition matrix r were derived from the continuous time system
matrices A, B, and D, respectively. The system matrices A, B, and D were
computed from data supplied by the aircraft manufacturer for various aircraft trim
conditions. All of the results discussed in this report were obtained for the
aircraft trimmed for final approach with the exception of a few simulation runs to
evaluate the effects of modeling errors.

To evaluate the performance of the failure detection filt~r four types of fail­
ures with three magnitudes for each type were simulated. These four types were step
failures in the elevator, throttle, stabilizer, and spoiler. The failure vectors
were derived from the contr.ol transition matrix for a step change of unity magnitude,
for example for an elevator position change of one degree. The three magnitudes were
chosen to represent a hard-over failure, a soft failure, and a failure of intermedi­
ate magnitude. The failure types and magnitudes are listed in table I. Of course,
these vectors change as the t-matrix changes with the aircraft trim conditions.

TABLE L- FAILURE TYPES AND MAGNITUDES

Failure

Type Magnitude

Elevator 10° , 3°, 1°
Throttle 40°, 12° , 4°
Stabilizer _6° , 3°, _1°
Spoiler 8°, 3° , 1°

The Wind Simulation

To provide a realistic wind environment for evaluation of the failure detection
filter the simulation included both turbulence, or gusts, and steady state winds.
The gust components in normalized x-velocity, angle-of-attac~, and pitch rate were
modeled using the familiar Dryden spectra (ref. 19), which are

= ------ (26)
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1 + 3( L Q) 2
w. -_.--._-----

[1 + (L Q)2]2
w

(27)

where

S (Q)
a

(28)

Q = spatial frequency, ft

b = wing span
= 93 ft

aircraft airspeed, ft/sec
216 ft/sec in the landing configuration simulated

turbulence scales in the x- and z-directions, respectively
1750 ft

= rms velocities of turbulence in the x- and z-directions, respectively,
ft/sec

After conversion from the frequency domain to the continuous time domain in
state space followed by conversion to discrete time, the state equations Eor the wind
system become

(29 )

when~

6-dimensional wind state vector with Wk (5) and Wk (6) being the steady
state components in angle-of-attack and normalized x-velocity,
respectively

wind state transition matrix

~k = zero mean, white, Gaussian random vector. sequence

In order to provide a thorough evaluation of the FDF, a wide range of wind con­
ditions were included in the simulation runs. RMS turbulence velocities correspond­
ing to medium and heavy clear air turbulence (CAT) and to thunderstorm conditions
were simulated together with steady state winds. Calm (no wind/turbulence) condi­
tions were also simulated. These conditions were summarized in table II.

14
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TABLE II.- WIND CONDITIONS USED IN THE SIMULATION

RMS gust Steady state
Turbulence velocity, ft/sec wind, ft/sec
conditions

au aw us(O) ws(O)

None 0 0 0 0
Medium 2.7 2.7 10 0
Heavy 7.0 7.0 10 0
Thunderstorm 21.0 21.0 10,39 0

The Measurements

To enhance the capability to solve the FOI problem it was desired to provide a
rather complete set of measurements for input to the failure detection filter. On
the other hand, for the evaluation results to be credible, the measurement set must
be technologically feasible, if not typical, for a modern day transport aircraft.
The measurements selected for inclusion in the simulation are pitch attitude, x- and
z-accelerations, pitch rate, airspeed, altitude rate, and angle-of-attack. The
measurements formed a 7-dimensional measurement vector zk defined by

zk (1 ) f 1 ( S)

zk (2) f 2 (Axb)

zk (3) f 3(Azb)

zk zk (4) = f 4 (q) (30)

zk(S) fS(Va )

zk(6) f 6 (h)

zk(7) f 7 (x)

The measurements zk(1) - zk(7) include errors such as noise, bias, scale factor,
and misalignment where appropriate. Numerical values for the errors are listed in
table A.1.

The FDF requires measurements that are linear functions of the state variables,
that is, measurements that can be related to the state variables via the measurement
matrix HF • The measurements zk described by equation (30) do not meet this
requirement since many of the functional relationships are non-linear. To circumvent
this difficulty a pre-processor was used to transform the measurement vector into a
vector of pseudo-measurements, or observations, Yk which could be approximated as
linear functions of the states. A detailed description of the pre-processor and the
HF-matrix can be found in appendix B.

15



The Filter

A 6-state failure detection filter was designed and implemented in the aircraft
simulation for evaluation. The model of the B-737 aircraft used to design the filter
is described by the equation

i 1 , ••• ,4

The aircraft states and controls are the same as those used in the simulation.

Xk (1 ) e
"

X k (2) u'

.. ~~. xk (3) C1

xk = = (32)
xk (4) q

xk (5) oT

xk (6) "

oS

where

e = pitch attitude

u' = normalized speed in the x-direction

C1 = angle-of-attack

q = pitch rate

OT = thrust

oS = stabilizer position

uk (1 ) °e

uk (2) oth
u =

uk(3) ost

uk (4) osp

16

( 33)



..

•

where

oe = elevator command (= elevator position)

oth = throttle command

ost = stabilizer command

osp = spoiler command (= spoiler position)

The state transition matrix ~F and the control transition matrix $F are
derived from the continuous time aircraft system matrices as discussed in appendix A,
but they are designated with a subscript F to emphasize that the model used in the
filter may be inaccurate and may differ from the matrices ~ and $ describing the
actual aircraft (simulation). The eEfect of such inaccuracies have been explored
briefly and are discussed in the results section.

The failure vectors f~ correspond to failures in the elevator, throttle, sta­
bilizer, and spoiler. The ~uperscript F is used to denote that the vectors in the
model are derived from the model control transition matrix $F and may differ from
the failure vectors used in the simulation.

Using the model just discussed the FDF is described by the equations

The filter gain was computed from

(34)

(35)

D (36)

;0

•

The FDF was evaluated using two gain matrices corresponding to values of 0.9 and 0.5
for the eigenvalues A.

At each iteration of the simulation the correlations c~ were computed Eor each
of the four failure vectors using equation (17). The correl1tions were compared to
the thresholds €j to determine if a failure had occurred. Also, the normalized
correlations c~ were computed by dividing by the appropriate thresholds •J .

c~ = c~ /8.
J J J

(37)

An equivalent detection criterion would be comparison of the normalized correlation
c* to unity. If detection occurred, the failure was identified using two different

j

17



algorithms to determine ';thich produced better results. In the first algorithm the
failure was identified (i was computed) using the correlations c! in equa-
tion (18); that is, i was the value of i which maximized the c6rrelation c~

Jduring the run. In the second algorithm the normalized correlation c~ was used in
place of c! in equation (18); that is, i* was the value of i whi6h maximized
the normali~ed correlation c~. Two failure magnitudes were computed using equa­
tion (19): one estimate usin~ the correlations c! and the other using the nor­
malized correlations c~. Using equations (21) an~ (22) these computations were
performed for moving wi~dows of 1, 10, 20, and 30 samples. The time of detection,
that is, the time when the correlation first crossed the threshold, was recorded.

The simulation was run at a sample rate of 20 iterations per second. Because
the initial interest was in detecting and identifying catastrophic type failures, a
quick reaction time was necessary. Thus, to evaluate the failure detection filter
performance, only a few seconds of flight were required in a simulation run. with
these constraints the aircraft could be flown open loop with no control system and
still not diverge significantly from its nominal path before a failure was intro­
duced. Therefore, to simplify the simulation the aircraft was flown open loop for
all of the results discussed in this report. The aircraft was trimmed for final
approach on a 3 degree glides lope.

A total of 119 simulation runs were performed to eKercise the failure detection
filter. The results of these runs are presented and discussed in the next section.

RESUT.JTS

This section presents and discusses the results of the simulation runs conducted
to evaluate the performance of the failure detection filter. The first results are
from the aircraft simulation discussed in the preceeding section and in more detail
in appendix A. in which the measurements are non-linear functions of the state. A.
preprocessor described in appendix B is used to transform the measurements into a
form suitable for use by the FDF, that is, a form in which the measurements could be
appr.oximated by linear. functions of the state variables.

As discussed in the next sub-section the results leil. to an investigation via
simulation of the filter performance using measurements which were strictly linear
functions of the state (though some of these may not be physically realizable).
These results together with some additiona.l analytical results are presented and
discussed in the second sub-section.

Results Using Non-Linear Measurements

Thresholds.- Using the filter gains correspondinq to an eigenvalue of 0.5, three
simulatIonruns of length 20 seconds each were made under condi Hons of heavy clear
air turbulence (O"u = o"w = 7 ft/sec) with no failures introduced into the system.
Each run was made with a different seed number for the random numher generator such
that each run generated a different sample function, or sequence, for the '/lind tur­
bulence and for the sensor noise. From the total of these three runs the largest
values E:- computed for the correlations c.! of the residual vector with each of
the four 6utput failure vectors using·a 1-sa~Ple window of data were selected for the
1-sample threshold values. Threshold values were similarly ohtained from the same
runs for windows of 10, 20, and 30 samples. Three 20 second runs were made rather

18
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than a single 60 second run because the aircraft system tended to diverge too far
from the trim conditions when operating open loop for longer times. A similar set of
thresholds were obtained for the filter with an eigenvalue of 0.9. These thresholds
were later used in the failure detection computation and in the calculation of the
normalized correlations c~.

J

Using the 0.5 eigenvalue gains this procedure was repeated under conditions of
no turbulence to obtain a set of threshold values which could be used in evaluating
the effects of wind turbulence on the performance of the failure detection filter.

It was realized that this procedure would not establish a statistically reliable
threshold value suitable for actual aircraft operation. However, the values thus
obtained were deemed reasonable for purposes of obtaining a preliminary evaluation of
the performance of the failure detection filter for aircraft control system FOI and
for uncovering potential problems in using the FDF for this purpose •

Effect of eigenvalues.- Eleven simulation runs were made with each of the two
filters (eigenvalues of 0.5 and 0.9) with various combinations of failures and wind
turbulence levels. Detection performance is tabulated in tables III and IV and
identification performance in tables VI and VII. For each filter the failures were
detected .in six of the eleven runs. They were correctly identified in four of the
eleven runs using the maximum correlation criterion and in two runs using the maximum
normalized correlation. The values for the normalized correlations c~ are listed
in tables VIII and IX to permit comparison between the two filters andJto give an in­
dication of the "signal-to-noise" ratio, or detection margin, Eor the filters. From
this and the other data the differences in filter performance for the two eigenvalues
were deemed insignificant in this case, and the filter gains producing an eigenvalue
of 0.5 were used to generate the remaining results unless otherwise indicated.

Failure detection performance.- Using the 0.5 eigenvalue filter, 28 simulation
runs, including the 11 discussed in the previous paragraph, were made to evaluate the
performance of the failure detection filter under various combinations of failures
and turbulence standard deviations. The failures were all single point; that is,
there were no multiple failures. Values for the correlation of the residuals with
each of the four output failure vectors were computed at each iteration for 1-, 10-,
20-, and 30-sample data windows.

In 25 of the runs these correlation values were compared with the no turbulence
threshold values to determine which failures were detected. The results, which are
summarized in table V, show that 22 of the 25 failures were detected successfully.
Three soft failures (the 10 elevator, the 40 throttle, and the _1 0 stabilizer) were
not detected in zero turbulence. These failures were not detected because the
thresholds values were previously determined by different sample sequences for the
sensor noises, and the resulting thresholds were larger than the combination of fail­
ure and sensor noise for the sample sequence used in the failure run. These results
are very optimistic in that use of the no turbulence thresholds would produce a
totally unacceptable false alarm rate. However, the results are useful when compared
with later results to show the degradation in performance due to wind turbulence •

The same correlation values were then compared with the thresholds obtained
under conditions of heavy clear air turbulence, and the resulting detection perfor­
mance is summarized in table IV. Under these conditions, that is, when the thresh­
olds are set at the maximum correlation values obtained in heavy CAT with no failure,
the failures were detected in 13 of 28 runs. Under conditions of heavy turbulence or
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thunderstorm turbulence all of the failures were detected. The throttle failures
were detected with some, but not all, of the data windows; other failures were
detected with all of the data windows. On the other hand, under conditions of medium
turbulence or zero turbulence no failures were detected. In these cases the effec·t
of the failure alone, even with a hardover failure, was not sufficient to produce
residual correlations which exceeded the thresholds.

The correlation values c~ for a 20-sample data window, normalized by the heavy
J

C~T thresholds, are listed in table IX for 21 of the 28 runs. Examination of this
data reveals that even though all of the failures in heavy CA'l' were detected, the
detection margin was very small. The maximum value of c~ was less than 1.4, and
most of the values were less than 1.1. J

The instances in which failure detection occurred (not including thunderstorms)
were examined to determine the time delay between failure occurrence and failure
detection, that is, the time that it took after a failure for the correlation to
cross the threshold. The results show that the mean detection time was 1.6 seconds
and that the detection times were generally longer for the larger data windows as
would be expected. A more detailed analysis of the detection times is probably not
warranted since the same sample sequences were used for the turbulence and sensor
noises in all of the runs, and thus additional analysis would not result in an
accurate statistical picture.

Failure identification perEormance.- As previously discussed, two procedures
were employed to perform-the f.~ilure identification computations. One procedure
selected the failure corresponding to the output event vector which produced the
largest correlation value during the run. The other procedure selected the failure
corresponding to the largest normalized correlation.

The failure identiELcation performance is summarized in tahle VII. Using the
heavy CAT thresholds no failures were detected in zero tUrlmlence and medium turhu­
lence conditions, so failure identification was not attempted in these cases. In the
13 heavy CAT and thunderstorm runs the failure was correctly identified in four runs
using the maximum correlation criterion and in six runs using the maximum normalized
correlation. Considering that there is an identification opportunity each time a
failure is detected by a data window, there were 48 identification oppor.tunities in
these runs. Of the 48 opportunities 16 failures were correctly identified using the
maldmum correlation in the identification logic, and 9 were corcectly identified
using the maximum nor.maLized correlation. From this data it is inconclusive as to
which identification criter-.ion produces better results, but hoth techniques performed
poorly.

Estimates of the f.3.ilure magni tilde were computed for each identi ftcation oppor­
tunity, tNt these resl.llts were too poor to war.cant further discussion.

Time his~~ries.- Time histor.y plots of the actual system states from the sim­
ulation and o.f. the estimated states from the failure detection filter are shown in
figures 1(a) and 1 (b) for the case of no wind turbulence and t~le spoilers failed
(stuck) at 8 degn~es. Since there is no turhulence and no commartd input, the air­
craft states ar-e only slightly pecturbed until the f.ailure at t = 3 seconds. The
action of the filter in tracking, or estimating, the system states can also be seen
in these curves. The error in the estimate of the velocity u l is caused by the
10 ft/sec steady state wind. plots of the 1-sample correlation of the residuals with
each of the four possible output faililre vectors are shown in figure 1(c). Also plot­
ted are the correlations after. normalization by the appropriate heavy CAT thresholds.
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Similar plots of the correlations computed using a 20-sample data window are shown in
figure 1(d). Note that none of the correlations cross the threshold, and thus no
failure is detected during the 5 second run. The correlations are not calculated but
are set to zero during the first 2 seconds of each run to allow the filter time to
settle. The seven components of the residual vector are plotted in figure 1(e),
where the effect of the f.::l.ilure on the residuals can be seen. Theory predicts that
the residual vector should maintaLn a constant direction after the failure. Further­
more, after the initial transient, for a step failure the residuals should attain a
steady state value equal to a constant times the output event vector, or output fail­
ure vector. ObviollSly neithec of these conditions is true in this case.

Figure 2 contains a slmil.::l.r set of plots for the same 8 degree spoiler. failure
in heavy turbulence. Note that in this case the combined action of the turbulence
and the failure have caused the correlations to exceed the threshold, and thus a
failure is detected by both the 1-sample and the 20-sample windows. Note also that
the 20-sample correlations are much smoother than the 1-sample correlations as
expected. The residuals are quite noisy, and the effect of the f"lilure noticed in
the no turbulence run is mostly obscured in this case.

The failure detection and identification performance of the filter was not
nearly as good as had been anticipated. Furthermor.e, the residuals dld not behave in
the expected manner as noted previously. In analyzing the filter in an attempt to
explain these results it appeared that this behavior may be caused at least in part
by the inaccuracies in the approximations made in the pre-processor in modeling the
measuremen"ts as linear functions of the state variables. To better. understand this
effect the simuL'l.tion was modified to produce a fictitious set of measurements
according to the linear model, that is, measurements calculated using the H-matrix
wi th the addi Uon of sensor errors (noise, bias, etc.). A number of runs were made
with this modification, and the results are presented in the next section.

Results Using Linear MeaSllrements

Thresholds.- Using the simulation modified to produce linear measllrements two
new sets of threshold values Eor the filter, one set for no turbulence and one Eor
heavy turbulence, were found employing the same procedure as beEore. These new
thresholds were used in subsequent filter computations. The filter eigenvalues
were 0.5.

Failure detection perfocmance.- Twenty-six simulation runs were made with vari­
ous failures, turbulence levels, and steady state winds to evaluate the f.::l.:Llure
detection perEormance of the FDl=~ when the filter input is a set of measurements which
are accurately represented by the measurement model (H-matrix) except for sensor er­
rors. As before, the residual correlation values fr.omthese runs were compared with
the appropriate no turbulence thresholds to ascertain if a failure had been detected.
The results, \..,rhich are summari.zed in table X, show that .21 out of 26 failures were
detected by at least one of the detection windows. All of the failures under condi­
tions of medium or heavy turhulence were detected, and 3 of the 8 failures in zero
turbulence were detected.

The same values were compared to the heavy turbulence thresholds to evaluate the
performance in a more realistic operating environment. These results, which are sum­
marized in table XI, show that 11 out of 26 failures were detected, and five of these
were spoiler failures. Only one throttle and one stabilizer failure were detected.
Broken down by length of the data window, the results show that five, five, five and
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eleven out of. 26 failures W'ere detected by the 30-, 20-, 10-, and 1-sample windows,
respectively. These results were no better than those previously obtained with the
non-linear measurements.

The normalized correlations c~ for a 20-sample data window are tabulated in
table XIII. Significant detection ~argins were obtained only for the hardover
spoiler failure. Other values of c~ were close to unity; even for the undetected
failures most of the values W'ere gre~ter than 0.9.

£~~~~~~_ide~}ific~tlonpe~!ormance.- The failure identif.ication results are
summarized in table XII. In 26 identl fication opportunities (assuming heavy turbu­
lence thresholds) only one failure was correctly identified using the maximum cor­
relation value as an indicator. Only four of 26 were correctly identified using the
maximum normaLized correlation values. For these correct identifications the
l~stimates of the failure magnitude were grossly inaccurate.

Time histories.- Time history plots of the 1- and 20-sample correlations and the
residual;-f.;;-r--the case of an 8 degree spoiler failure in conditions of no W'ind turbu­
lence are shown in figure 3. The correlations cross the threshold between 3 and
4 seconds, and a failure i.s detected. If the criterion of. maximum correlation is
used to identify the failure, an elevator (failure 1) would be selected incorrectly.
If the criterion of maximum nocmalized correlation is used, the 1-sample correlation
would indicate an elevator failure, and the 20-sample correlation would indicate a
throttle f.ailure (failure 2). Both of. these are incorrect. The residuals reach a
steady state value in less than 1 second. However, there are significant residui3.1s
prior to the fai lure not predicted by the theory (eq. U3)).

In this regard consider the system described by the equations

•

(38)

(39)

W'here

r = plant disturhance (wind) input matrlK

'''k = p-dimensional vector of plant di.stucbances (vlind)

With the failure detection filter:- nef.ined as before, the filter residuals for this
case are described by the difference equation

'"r k +1 = Yk+1 - Yk+1

(40)
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This equation has a solution

k

r k+1 H(~ - DH)k+1 qo + H~ (~ - DH)k- j rwj
j=O

(41)

If tile winds are steady state on~y (wk
state value

Hfwo
1 - A

wo )' then the residual achieves a steady

(42)

Comparison of the pre-failure residuals in figure 3 with the steady state residuals
computed_ from equation (42) for a 10 ft/sec steady state wind show excellent agree­
ment. Thus, both the theory and the simulation result::; show that a steady state wind
will propagate through the filter like an actuator type failure. This is not to say
that the steady state wind effects can never be isolated from system failures.

Plots of the residuals for an 8 degree spoiler failure with no steady state
winds are shown in figure 4. In this case there are no signi ficant residuals before
the failure, but af~er the failure the residuals do not attain the steady state
values predicted hy equation (12), viz, aflf i /(1 - >..). For an explanation of this
discrepancy consider the following development.

In cer.tain systems some of the measurements are such that actuator type failures
enter dire:::tly into the meaSllrement equation. The acceleration measurements in the
B-737 system discussed in this report are in this category. Consirier the following
formulation of such a system.

..

(43)

(44)

Suppose that a control surface fails in a manner that has the same effect as a com­
mand ~ in the i-th control input. Then the system is described by

(45)

(46)
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where

(47)

•

o

Bi = i-th column of B

In a manner similar to the development of equation (10) the filter residuals in this
case can be shown to be described by

k

= H(~ - DH)k+1 qo + H 2:
j=O

k-j
(~-DH) {ex.ljJ.

J 1
[ ex . - u. (i ) ] Dg . }

J J ~

(48)
k

HA
k +1qo + H L.

j=O

k-j .}{ A [ex. (ljJ. - Dg.) + u. (~ )Dg . ]
J 1. 1 J 1

Suppose that there are no command inputs and that the failure is a step failure of
magnitude ex at time zero. Then the steady state residual vector becomes

•
Hex(ljJ.-Dg.)

1. 1.._._-------_.-
1 - A + ago

1.
for A < 1 (49)

For the B-737 system the acceleration measurements Yk(2) and Yk(3) include
control inputs from rows 2 and 3 of BUk , as in equations (A64) for. u' and a.
Examination of the B-matrix reveals that only elevator and spoiler commands, and
hence failures, affect u' and a. Throttle and stabilizer effects enter the
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measurements through the A-matrix, since thrust and stabilizer position are system
state variables. Thus, the matrix rH is given by

•

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

rH = 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

The resulting g2 and 93 are zero, and

0 0

0 B{2,4)

B{3,1) B{3,4)

g1 = 0 g4 = 0

0 0

0 0

0 0

(50)

(51)

•

Comparison of the residuals predicted by equation (49) for an 8 degree spoiler
failure with the post-failure steady state residuals in figure 4 show very good
agreement.

Equations (48) show that ,for systems with measurements of this type the filter
residuals are not constrained to a constant direction Hfi as previously discussed
but are constrained to the plane defined by the vectors HWi and H09i • This
characteristic increases the complexity of the failure identification process.

In figure 5 are plots of the residuals for an 8 degree spoiler failure with no
winds where the failure occurs as a ramp over '.5 seconds rather than a step as in
previous cases. Here the residual vector appears to maintain a fairly constant
direction during the failure as expected from the theory.

In table XIV are the steady state correlations c'{j,k) for hardover failures,
that is, the correlations of the output event vectors, or output failure vectors,
with the steady state residuals for hardover failures, where the correlations were
computed according to the equation

c1{j,k) (52)
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Values of j and k from 1 to 4 correspond to 10, 40, -6, and 8 degree failures of
the elevator, throttle, stabilizer, and spoiler, respectively. Values of 5 and 6
correspond to 10 ft/sec and 1 ft/sec steady state winds in the x- and z-directions,
respectively. The winds were treated as failures as discussed in equations (38)
through (42). The steady state residuals were computed using equation (49) for k
equal to 1 through 4 and using equation (42) for k equal to 5 and 6. Note that in
these results the actual failures 1 through 6 correspond to columns 1 through 6 and
the assumed failures 1 through 6, that is, the output event vectors used to correlate
with the residuals, correspond to rows 1 through 6.

The results show that using the maximum correlation value as the criterion for
identification an elevator failure (failure 1) would be incorrectly identified as a
stabilizer failure (failure 3). Also, a spoiler failure would be incorrectly identi­
fied as an elevator failure. This behavior is the result of the elevator and spoiler
failures directly affecting the measurement equation and hence the residuals via the
acceleration measurements.

Model mis-match.- Tb assess the effects of inaccuracies in the filter model on
FDF performance three runs were made using a different aircraft model in the filter
than in the simulation. The model used in the filter was the landing configuration
model previously used in the other runs, while the aircraft simulation used a model
of the takeoff configuration. The three runs were similar to the runs used to deter­
mine the thresholds; that is, each run lasted 20 seconds in heavy turbulence with no
failure.

False alarms were declared in two of the three runs. In other words, the filter
model errors caused the correlations to exceed the thresholds and to falsely declare
a failure in two of the runs. Further investigation is required to determine the
amount of increase in the threshold levels needed as a function of the degree of
model error to prevent a false alarm problem due to mis-match. It is reasonable to
expect that different models may be required for operation in the different flight
regimes.

CONCLUSIONS

The application of the failure detection filter to the detection and identifica­
tion of control element failures in transport aircraft has been evaluated using a
linear digital simulation of a B-737 airplane. with the thresholds set at a level
determined by heavy clear air turbulence approximately one half of the failures in
the elevator, throttle, stabilizer, and spoiler were successfully detected. However,
in heavy CAT and in thunderstorms all of the failures were detected, while in lesser
turbulence none were detected.

The primary reason for the missed detections at the lower turbulence levels was
the necessity to set the thresholds sufficiently high to avoid false alarms caused by
wind turbulence. with th~ thresholds set at a level determined by the sensor noise
with zero turbulence 23 out of 25 failures were detected. Thus, with the FDF and
correlation processor used in this evaluation the detection performance was affected
as much by the turbulence as by the failure.

The measurements used as inputs to the FDF were non-linear functions of the
aircraft states. Replacing these with measurements which were linear functions of
the states as modeled by the H-matrix did not result in significant improvement in
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filter performance. Further degradation in performance was caused by mis-match, or
inaccuracies, in the aircraft model used in the FOF.

with some measurements, such as the acceleration measurements in this system,
some actuator type failures feed directly into the measurement equation with the
result that the filter residuals from these failures cannot be confined to a constant
direction in measurement space. Also, with the state space formulation used in this
evaluation a steady state wind affects the filter residuals in the same way as does
an actuator type failure.

From the results of the simulation runs, it is concluded that false alarms/
missed detections due to wind turbulence are a significant problem which must be
overcome before the failure detection filter and correlation processor can be used to
detect and identify control element failures in a transport aircraft •
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APPENDIX A

SIMULATION DESCRIPTION

The Aircraft

The system used to evaluate the failure detection filter was a discrete, linear,
small perturbation simulation of the longitudinal channel of a B-737 aircraft similar
to the simulation described by Halyo in reference 20. Much of the development in
this appendix follows that by Halyo. The discrete system was derived from a continu­
ous time system described by the following state equations:

x(t) = Ax(t) + Bu(t) + Ow(t)

where the state vector x(t) is a 6-component vector defined as

e
u'

a
x(t) =

q

oT
oS

and where the perturbed states are

e := pitch

u' = normalized x-velocity

a = angle-of-attack

q = pitch rate

&r = thrust

oS = stabilizer deflection

(An

(A2)

..

The thrust and stabilizer states were included to account for the engine spool
up/spool down time and for the time constant in the stabilizer actuator. The command
vector u(t) is defined by

oe
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where

~e = elevator command (= elevator position)

~th = throttle command

~t = stabilizer command

~p = spoiler command (= spoiler position)

The wind vector is defined by

u'
w

wet) = l1w

where the wind components are

u' = normalized wind velocity in the negative x-direction
w

~ = part of the angle-of-attack due to winds

~ = rotation of the atmosphere about the y-axis

(A4)

Unless otherwise specified, the quantities are defined and the equations are written
in the aircraft's stability axes.

Values for the system matrices were obtained using a computer program (TCVOPL)
which computes the aerodynamic coefficients for aircraft trim conditions specified by
the program user. Exceptions to this procedure are the coefficients for the thrust
and stabilizer states. The engine thrust is modeled as

(AS)

= -0.5 &r + 0.298 oth

The value 0.5 was approximated from engine data for the B-737.

The response of the stabilizer on the B-737 is very slow. In order to have
another control surface for restructurable controls, the time constant of the stabi­
lizer was artificially shortened to make the surface useful. The stabilizer dynamics
were assumed to be

•
oS = A66 0s + B63 0st

(A6)

= -0.667 OS + 0.667 est
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The Winds

The wind effects on the aircraft are simulated by adding them to the other aero­
dynamic forces acting on the aircraft. As noted in equation (A4) the wind is com­
posed of x-velocity, angle-of-attack, and pitch rate components, and they include
both steady state winds and wind gusts, or turbulence.

The gust components are modeled using the familiar Dryden spectra (ref. 19),
which are defined by the following:

1 + 3(L 0)2
w

(A7)

(AB )

...

• S (0)a
(A9)

'n
J . 4bn S (n)

1 +~ a
11'

(A10)

In equations (A7) through (A10) cr~ and cr~ are the variances of the gust veloci­
ties in the x- and z-axes, respectively, Lu and ~ are the turbulence scales in
these axes, b is the aircraft wingspan, Va is the aircraft airspeed, and n is
the spatial frequency of the turbulence, which is related to the temporal frequency
w by

(A11)

In order to use these spectra in the simulation, which generates random gusts as a
function of time, the spectra must be converted from functions of spatial frequency
to functions of temporal frequency using the relationship
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Angle-of-attack component.- Upon conversion to a function of w the spectral
density of ag becomes

(A13)

, which can be factored into

• (A14)

Define a transfer function Ga(s) using the realizable part of the spectrum in
(A14).

(A15 )

1 + 13 (L IV )9= ..;.;w_..:;a~_ _..,,~

1 + 2(Lw!Va)9 + (Lw!Va)2s 2

A filter with this transfer function driven by white noise with a density of a2L~v3
will produce random gusts with the spectral density specified by equation (A13)wand a
with variance a~~.

Let us now turn our attention.to obtaining a set of state equations which de­
scribe 'the filter specified by equations (A15). First convert the transfer function
to an equivalent scalar differential equation.

II

(::Y~
2L I3L .w . w+ -- ag +<lg =: f; + f;V V.. a a

or

2Va
+ (::Yag

13 V

+ (::Y ~.. . a .
<lg +-- ag

=: f; (A16)
L L

w w
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Now let and ~1 = -~ in equation (A16), and let

W1 = Y = -llg

(A17)

From equations (A17) find expressions for
.
y and

..
y.

(A18 )

Substitute these in equation (A16), and solve for c1 and c 2 •

pitch component.- Upon conversion to a function of 00 the power spectral
density of the pitch gusts becomes

j 00 (. ) -j 00 G ( • )
= 1 + j(4b/'Il"V )00 Ga)oo • 1 - j(4b/'IfV)oo a -)00

a a
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The wind gusts in pitch can be simulated by passing angle-of-attack gusts, that is
the output of the filter Ga(s), through a filter with a transfer function Gq(s)
defined by

s
1 + (4b/lfV )sa

(A21 )

To obtain a state variable representation of the filter, first find the scalar
differential equation equivalent of the transfer function Gq(s).

.. (A22)

Let

(A23)

Then

(A24)

Therefore

(A25)

.lI

x-axis component.- Upon conversion to a function of OJ the power spectral for
the gusts along the x-axis becomes

(A26)

1 1
1 + j (L IV ) OJ • -:-1--"'-""'j-:'(--L-IV~-:)-w

u a u a
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The x-axis gusts can be obtained by passing white noise with density
through a filter with transfer function Gu(s) defined by

1
1 + (L IV )s

u a

The corresponding scalar differential equation is

or in terms of state variables

W4 = u'g

. V V
- ~W

a
W4 = +- ~2L 4 Lu u

2L i /V
3

u u a

(A27)

(A28)

(A29)

...

Steady state winds.- The steady state winds have an x-axis component and an
angle-of-attack component each of which is simulated as the output of a first order
differential equation driven by white noise with a very small variance. This allows
the windS to vary slightly during a run. The desired steady state wind velocities
are used as the initial conditions. Mathematically the winds are described as
follows:

u' (t) = ~3 ; u' (0) = u (O)/U
s s s 0

(A30)

ex (t) = ~4 ; a (0) = w (O)/U
s s s 0

Wind state equations.- ~uations (A17), (A25), (A29), and (A30) can be combined
to describe the total winds as follows:

34
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where

W,

W2

W3
W =

W4

Ws
W6

(A32)

(A33)

(A34)
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The covariance matrix of the Gaussian vector ~ is

F = E{t~T}

(12 L ;V3) 0 0 0w w a

0 (2L i/v3 ) 0 0
F

u u a (A3S)=
0 0 1/V3

0a ".

0 0 0 1/y3
a

"In the foregoing formulation the wind gusts w1 through w4 were written in
aircraft body axes, and the steady state winds Ws and W6 were written in earth
axes. They must be transformed into stability axes. Furthermore, the gust and
steady state components must be added, and W1 and W3 must be combined according
to equation (A2) in order to obtain proper wind forces acting on the aircraft. This
can all be accomplished with the transformation ew as follows:

w = CwW (A36)

where

w1 u' u' + u'w g s

w = w2 := aw = Qg + Qs (A37)

w3 <Iw <Ig

and

-sin Qo 0 0 -cos aa -cos (eo - Qo + e) sin(80 - Qo + e)

Cw :; -cos Qo 0 0 sin Qo -sin( eo "- Qo + e) -cos (eo Qo + e)

- ('II'Ya/4b ) 0 (11'Va/4b) 0 0 0

" (A38)
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Discrete State Equations

The state equations for the aircraft and winds have been written as functions of
continuous time t. These equations need to be coverted to functions of discrete
time t k for use in a digital computer simulation. Such a discretization has been
discussed by Halyo (ref. 20).

..

Consider
known at time
the interval

the aircraft continuous time state equation (A1). If the state is
t k , the state at time t k+1 = t k + T can be found by integration over

t k to t k+1 • The result is shown in many texts (e.g., ref. 21) to be

where

(A39)

To simplify the notation, let x{tk )
u{t) is constant over the integral

be denoted by
t k < t < t k+1 •

xk' and assume that the command·
Then

..
(tk +1

The integral }t $(tk+1,T) dT can be expressed as

k

(A40)

e-AT dT B (M1 )
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If A has an inverse A- 1 , then

A(~+1 -t) At. J.t..
d -k+1 -k+1 -At -1 d( )e t B = e e A At B

t
k

A~+1 [-Atk +1 -Atk]_1
=e -e +e A B

The aircraft state equation now becomes

To evaluate the integral involving the wind Wet), we first convert the
continuous time wind state equation (A31) to discrete time •

•
W = AwW + Bwt

Upon integration this becomes

where ~ is the state transition matrix for the wind system.

'w = ~(k + 1, k)

~(tk+1-~)
= e
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(A43)

(A3"

(A44)
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and

(A46)

Halyo (ref. 20) has shown that ;k is a Gaussian white noise vector sequence with
covariance R;.

Since ;(t) is a white noise process, and since the intervals (~,~, + T) and
(tj,tj + T) do not overlap for j~,

Therefore,

s)

j ~ k
(A48)

j = k

(A49)

(A50)
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The matrix Cw, which transforms the continuous time wind variables W into the
variables w for use as the plant noise in the aircraft state equations, is still
valid for the discrete case. Thus

(AS 1)

We now return to the evaluation of the integral in equation (A43) involving the
wind W(T). A change of variables produces

After substitution of equation (A36), integration of equation (A44) from 0 to T, and
substitution of equation (A46), the integral becomes

(AS3)

The aircraft state equation can now be written as

...

(AS4)

where

(ASS)

and

(AS6)

The sequence nk is a Gaussian white noise vector sequence with covariance Rn•
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• rOT T {T T TT'}c ~(tj + Y)Bw}y ~(x,Y)Cw' (T,x) dx dy (AS?)

As we noted previously in equation (A48),

j # k

j • k
(AS8)

Therefore

(AS9)

it

[f (A60)

This completes the discretization of the state equations necessary to simulate
the aircraft and winds.
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Measurements

Thus far we have described the simulation of the aircraft dynamics and of the
winds acting on the aircraft. For the purposes of the work discussed in this report
the simulation needs one additional element - simulation of the measurements, or air­
craft sensor outputs.

The measurements of interest are pitch attitude from a pitch gyro, x- and
z-accelerations from body mounted accelerometers, pitch rate from a pitch rate gyro,
airspeed and altitude rate from the air data computer, and angle-of-attack from an
angle-of-attack vane. A reasonably accurate simulation requires computation of the
true value of the quantity being measured and then the addition of appropriate
errors. For each measurement these errors include some, but not necessarily all, of
the following: bias, white noise, scale factor, and alignment. The true values and
errors are combined at each sample time t k to form a measurement vector zk'

zk( 1 )

zk( 2)

•
zk = (A61 )

•

•

zk(7)

pitch.- The pitch measurement includes additive noise and bias errors.

where

e + vk ( 1) + b (1)

e = pitch = Xk(l)

b(l) = 0.23°

vk (l) = zero mean white Gaussian noise

E fv; (1 ) } = (0.23°) 2

(A62)

..

Accelerations.- The x- and z-axis acceleration measurements include noise, bias,
scale factor, and misalignment errors. The first step in obtaining a simulated mea­
surement is to compute the true value of the acceleration in stability coordinates,
A and A , from the equations of motion.Xs Zs .
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= U u'o

(A63)

AZ = Uo[U' tan a + (1 + u')a/cos 2 a] - qUo - g cos(60 + 6 - ao )
s

where

g = acceleration due to gravity

Uo = trim inertial velocity along x

6
0

= trim pitch attitude

Ob = trim angle-of-attack

e = perturbed pitch = Xk (1)

u' = perturbed inertial velocity along x = xk (2)

a = perturbed inertial angle of attack = xk(3)

q = perturbed pitch rate = xk(4)

At any time ~ values of xk are known from the aircraft state equation. The
quantities U' and a are calculated using the coefficients from the continuous
time state equation.

u' = £~[~ + B~ + Dwk ]

(A64)

• £~[Axk + B~ + Dwk ]a=

where

T
[0 1 0 0 0 0]£2 =

T
[0 0 1 0 0 0]£3 =
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These stability axis accelerations are transformed into body axis accelerations, and
the effects of accelerometer misalignment are added as follows:

(A65)

where

a = accelerometer alignment error = 0.2 0

Noise, bias, and scale factor errors are added to obtain the acceleration
measurements.

(A66)

where

s - scale factor error = .0025

b(2) = b(3) = bias = 0.32 ft/sec 2

Vk (2),vk (3) zero mean Gaussian noise

E{V;(2)} = E{V;(3)} = (0.32 ft/sec
2

)2

pitch rate.- The pitch rate measurement includes only a noise error.

where

q = pitch rate = xk(4)

Vk(4) = zero mean Gaussian noise

2 } 2E{V
k

(4) = (.02 deg/sec)
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Air speed.- The air speed measurement includes a multiplicative noise error and
a bias.

where

u' = normalized inertial velocity along x = xk (2)

uw = normalized wind velocity along x = wk (1)

a = angle-of-attack due to inertial velocity along z = xk (3)

ow = angle-of-attack due to wind velocity along z = wk(2)

b(S) = 3 kts

Vk (5) = zero mean Gaussian noise

2 2
E{Vk(S)} = (0.02)

(A68)

Altitutde rate.- The altitude rate measurement includes only a noise error.

where
.
h = Uo (1 + u')[sin(6

0
+ e - ao ) - tan a cos(eo + e - ao )]

vk(6) = zero mean Gaussian noise

2 2
E{Vk (6)} = (S ft/sec)

(A69)

Angle-of-attack.- The angle-of-attack measurement includes bias and additive
noise errors.

(A70)

where a and
The bias b(7)
respectively.

Ow were previously defined, and vk(7) is zero mean Gaussian noise.
and noise error variance were estimated to be 0.25 0 and (0.4 0 )2,
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The measurement errors are summarized in table A1.

TABLE A1.- MEASUREMENT ERRORS

Error type

Measurement Noise
Scalestandard Bias
factor Alignment

deviation

pitch 0.23° 0.23° - -
Acceleration 0.32 -.!.L 0.32 ft 0.002S i 0.2°2 2sec sec

pitch rate 0.02 deg - - -sec
Air speed 0.02* 3.0 kts - -
Altitude rate S~ , - - -, sec
Angle-of-attack . 0.4° 0.25° - -

*multiplica1:ive

Implementation

Implementation of these equations into the simulation requires evaluation of the
integrals in the expressions for rw' R~, and Rn in equations (ASS), (ASO), and
(AGO), respectively. The integrals in equations (ASS) and (ASO) and the inner inte­
grals in equation (AGO) were evaluated using a Langley software library subroutine
GLEGEN, which performs numerical integration using a Gauss-Legendre formula. The
outer integral in equation (AGO) was evaluated using the library subroutine SIMP,
which performs numerical integration using Simpson's formula. In all cases, the
aircraft transition matrix was evaluated using the library subroutine CONEXP, which
computes the matrix exponential •

.Random sequences.- The random sequences ~k and ~ have correlation matrices
R~ and R defined by equations (ASO) and (AGO), respectively. In general, these
matrices a~e not diagonal, and thus the components ~k(1), ~k(2), ••• , ~k(G) of the
vector ~k are not independent as they were with the vector ~(t) in the continuous
time case. This is also true of the components ~(1), nk(2), ••• , nk(6) of nk.

"

At time t k
covariance matrix
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the simulation generates a vector ~k of 6 random numbers with
R~ using the following technique. Let x be a vector of zero



mean, independent, Gaussian random variables with unity variance. Then the correla­
tion matrix Rx is

T= E{xx }

(A71)

= I

Let y be the vector of desired zero mean random variables Y1' Y2' ••• , YN with
the covariance matrix Ry • Now let the desired random vector y be given by

y = Gx (A72)

where the transformation G is defined to produce the desired covariance of y, that
is

(A73)

= GGT

Therefore

(A74)

If G is assumed to be triangular, one solution (of many) to equation (A74) is given
by the following:

•

•

(A75)
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Then

(A76)

..

•

•

This system of equations can be solved for the elements gij to give

gji = (":;1 -~ q;mqim)/qu

I j-1
1/2

~j - L 2
gjj = gjm

m=1

2 .; j .; N

(A77)
1 < i < j

2 .; j .; N

The same technique is used to generate the vector nk of random numbers with
covariance Rn•

Failures.- Failures in the control elements were simulated as steps or ramps in
the state variables according to

(A78 )
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where

= i-th column of the control transition matrix.

and Ok is chosen to be a step or ramp.

Because the acceleration measurements zk(2) and zk(3) contain terms which
include the continuous time control input matrix B as in equations (A64) through
(A66), any failure affecting these terms must be accounted for in the simulated mea­
surements. For the four failures simulated, only the elevator and spoiler failures
affected the B-matrix and thus introduced failure effects directly into the measure-.. . . .
ment equat~on v~a the express~ons for u' and ~. For a stuck actuator these
effects were simulated by adding terms to equation (A64) as follows:

(A79)

where

Bi = i-th column of B

uk(i) = i-th component of the control vector '1t

The term Bi~ accounts for the failure and the term Biuk(i) accounts for the loss
of that control input.
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APPENDIX B

THE PRE-PROCESSOR

The failure detection filter requires input measurements that can be expressed
as linear functions of the state variables as in equation (35). As noted in the
text, the actual measurements zk do not meet this requirement. A pre-processor was
used to obtain from the measurements a set of pseudo-measurements Yk which could be
approximated by a linear model. This pre-processor is described in the following
paragraphs.

Not only are the actual measurements non-linear functions of the state variables
in some cases, but some measurements are functions of the winds, which are not
included in the filter state vector. Therefore, one of the approximations that must
be made in obtaining a linear model of the measurements is to neglect any wind •
dependencies.

pitch.- From equation (A62) the output of the pitch attitude gyro is

Zk ( 1) = e = vk ( 1) + b ( 1 )

In this case it suffices to let

(B1)

and then Yk ( 1 ) can be mode led as

e + vk (1 )

(B2)

Accelerations.- The outputs of the body mounted accelerometers are given by
equations (A63) - (A66). The first step in pre-processing this measurement is to
convert them to stability coordinates according to
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where

ao = trim angle-of-attack

Comparison of the stability axis accelerations in equations (B3) with those in (A6S)
shows that

(B4)

where ex is an error
scale factor error s,
trim angle-of-attack.

term due to accelerometer noise vk(2), bias error b(2),
accelerometer alignment error a, and error (a - aF ) in the
From equations (A63) and (A64) 0 0

..

A~ = Uo€~[~ + ~ + Dwk ] + quo tan a + g sin(6
0

+ e - ao )
s

(BS)

Define the observations Yk(2) and Yk(3) as follows:

(B6)

The pre-processor then calculates the observations
surements zk(2) and zk(3) using equations (B3)
and (B6) these observations can be approximated as
follows:

Yk(2) and Yk(3) from the mea­
and (B6). From equations (BS)
linear functions of the states as
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6

.• ~ A
F

(2,j)xk (j) + (gjU
F ) cos(aF - aF )X

k
(1) + v

k
(2)

. 1 0 0 0
J=

6

• -~(4) + (g/U~) Sin(e: - a~)Xk(1) + ~ AF(3,j)~(j) + vk (3)
j:s1

Pitch rate.- From equation (A64) the output of the pitch rate gyro is

I~ is sUfficient to let

in which case y(4) can be modeled as

Air speed.- From equation (A6S) the air speed measurement is

Define the air speed observation as

(B7)

(BS)

(B9)

(B10)

(B11)
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The observation can be approximated as a linear combination of the states as follows:

..
AI U' + v (5)

k

Altitude rate.- From equation (A69) the altitude rate measurement is

Define the observation

which can be approximately modeled as

(B12)

(B13)

•
( F F) . (F F)- tan a cos eo - eo cos e + tan a Sln eo - ao sin e]

(B14)
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Angle-of-attack.- From equation (A70) the output of the angle-of-attack sensor
is

Define the observation

which can be modeled by

(B16)

The pre-processor computes the observations Yk from the measurements zk ac­
cording to equations (B1~, (83), (86), (89), (B11), (813), and (B15). These observa­
tions are the inputs to the failure detection filter. For use in the filter
alqorithms the observations can now be expressed as in equation (35) with the
Observation aatrix defined by equation (817).

1 0 0 0 0 0

AF(2,1) + AF(2,2) AF(2,3) AF(2,4) AF(2,5) Ap (2,6)

g/u~ cos(e~ - a~)

AF(3,1) + AF(3,2) AF(3,3) AF(3,4) AF(3,5) AF(3,6)

g/u~ sin (e~ - a;) -1

HF "" 0 0 a 0 0

0 0 0 0 0
-.!

(e~ - a;) 0 0 0 0

0 0 0 a 0 •
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TABLE 111.- FAILURE DETECTION PERFORMANCE WITH AN EIGENVALUE OF
0.9 AND THRESHOLDS SET AT HEAVY TURBULENCE LEVEL

Failure Turbulence

Type
Magnitude,

None Medium Heavy Thunderstormdegrees

Elevator 10 n/n/n/n Y/Y/Y/Y Y/Y/Y/Y
3 n/n/n/n n/n/n/n V/n/n/n
1 n/n/n/n n/n/n/n

Throttle 40 Y/Y/Y/Y
12

4

Stabilizer -6 Y/Y/Y/Y
3

-1

Spoiler 8 V/Y/Y/Y
3
1

Y/Y/Y/Y indicates detection using the 30-, 20-, 10-, and 1-sample :
windows.

n indicates failure not detected.
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TABLE IV.- FAILURE DETECTION PERFORMANCE WITH AN EIGENVALUE OF
0.5 AND THRESHOLDS SET AT HEAVY TUBULENCE LEVEL

Failure Turbulence

Type
Magnitude, None Medium Heavy Thunderstormdegrees

Elevator 10 n/n/n/n n/n/n/n Y/Y/Y/Y Y/Y/Y/Y
3 n/n/n/n n/n/n/n Y/Y/Y/Y
1 n/n/n/n n/n/n/n Y/Y/Y/Y

'rhrottle 40 n/n/n/n n/n/n/n n/Y/Y/Y
12 n/Y/Y/Y

4 n/n/n/n n/Y/n/Y

Stabilizer -6 n/n/n/n n/n/n/n Y/Y/Y/Y
3 Y/Y/Y/Y

-1 n/n/n/n Y/Y/Y/Y

Spoiler 8 n/n/n/n n/n/n/n Y/Y/Y/Y
3 Y/Y/Y/Y
1 n/n/n/n Y/Y/Y/Y

Y/Y/Y/Y indicates detection using the 30-, 20-,10-, and l-sample
windows.

n indicates failure not detected.



TABLE V.- FAILURE DETECTION PERFORMANCE WITH AN EIGENVALUE OF
0.5 AND THRESHOLDS SET AT NO TURBULENCE LEVEL

Failure Turbulence

Type
Magnitude, None Medium Heavy Thunderstorm
degrees

Elevator 10 n/n/n/Y Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
3 Y/Y/Y/Y
1 n/n/n/Y Y/Y/Y/Y

Throttle 40 Y/n/n/n Y/Y/Y/Y Y/Y/Y/Y
12 Y/Y/Y/Y
4 n/n/n/n Y/Y/Y/Y

Stabilizer -6 Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
3 Y/Y/Y/Y

-1 n/n/n/n Y/Y/Y/Y

Spoiler 8 Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
3 Y/Y/Y/Y
1 Y/Y/Y/Y Y/Y/Y/Y

Y/Y/Y/Y indicates detection using the 30-, 20-, 10-, and 1-sample
windows.

n indicates failure not detected.
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TABLE VI.- FAILURE IDENTIFICATION PERFORMANCE WITH AN EIGENVALUE OF
0.9: FAILURE CORRECTLY IDENTIFIED

Failure Turbulence

Type Magnitude,
None Medium Heavy Thunderstormdegrees

... ,.
Elevator 10 */*/*/* i:Y/Y/Y/Y i:Y/Y/Y/Y

I:Y/n/n/Y I:n/n/n/n
...

3 */*/*/* */*/*/* i:Y/*/*/*
I :n/* /*/*

1 */*/*/* */* /* /*
,.

Throttle 40 i:n/n/n/n
I:y/y/y/y

12
4

I ...
Stabilizer -6 i:n/n/n/n

I:n/n/n/n
3

-1

Spoiler 8 f:n/n/n/n
I:n/n/n/n

3
1

Y/Y/Y/Y indicates correct identification using the 30-, 20-, 10-,
and 1-sample data windows.

n indicates failure not correctly identified.
f indicates identification based on maximum value of correlation.
I indicates identification based on maximum value of normalized

correlation.
* indicates failure not detected.
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TABLE VII.- FAILURE IDENTIFICATION PERFORMANCE WITH AN EIGENVALUE
OF 0.5: FAILURE CORRECTLY IDENTIFIED

Failure Turbulence

Type
Magnitude,

None Medium Heavy Thunderstormdegrees
A ..

Elevator 10 */*/*/* */* /*/* i:Y/Y/Y/Y i:Y/Y/Y/Y
I:n/n/n/n I:n/n/n/n..

3 */*/*/* *1* /* /* !:Y/Y/Y/Y
i:n/n/Y/n..

1 */*/*/* */*/*/* i:Y/Y/Y/Y
I:n/Y/Y/n
..

Throttle 40 */*/*/* */* /* /* i: */n/n/n
I:*/n/n/Y..

12 !:*/n/n/n
i:*/n/n/Y..

-4 */*/*/* !:*/n/*/n
i:*/n/*/Y
..

Stabilizer -6 */*/* /* */* /* /* i:n/n/n/n
I:n/n/n/n..

3 i:n/n/n/n
I:Y/Y/n/Y..

-1 */*/*/* i:n/n/n/n
I:n/n/n/n
..

Spoiler 8 */*/*/* */*/*/* i:n/n/n/n
I:n/n/n/n..

3 i:n/n/n/n
I:n/n/n/n..

1 */* /*/* i:n/n/n/n
I:n/n/n/n

Y/Y/Y/Y indicates correct identification using the 30-, 20-, 10-,
and 1-sample data windows.

~ indicates failure not correctly identified •
i indicates identification based on maximum value of correlation.
i indicates identification based on maximum value of normalized

correlation.
* indicates failure not detected.
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TABLE VIII.- NORMALIZED CORRELATIONS FOR A 20-SAMPLE WINDOW WITH
AN EIGENVALUE OF 0.9

Failure Turbulence

Type Magnitude, None Medium Heavy Thunderstorm
degrees

Elevator 10 0.602 1.106 2.327
.198 .557 3.073
.605 1 .115 2.382
.598 1 .102 2.320

3 0.152 .484 .956
.098 .357 .886
.150 .483 .956
.153 .484 .959

1 .127 .453
.094 .388
.125 .451
.127 .454

Throttle 40 0.872
1.015

.869

.877

12
4

Stabilizer -6 0.818
1 .159

.807

.824

3
-1

Spoiler 8 1.009
1.604
1 .005
1 .014

3
1



..

..

TABLE IX.- NORMALIZED CORRELATIONS FOR A 20-SAMPLE WINDOW WITH
AN EIGENVALUE OF 0.5

Failure Turbulence

Type
Magnitude,

None Medium Heavy Thunderstorm
degrees

Elevator 10 0.506 1 .041 2.818
.394 .870 2.970
.511 1.047 2.823
.499 1 .032 2.799

3 0.123 .465 1.014
.108 .412 .960
.122 .468 1 .015
.123 .460 1.007

1 .11 0 .452 1.005
.099 .414 .984
.108 .454 1.005
.110 .447 .998

Throttle 40 0.453 1.007
.375 .968
.455 1.005
.448 1.001

12 1.001
.987

1.000
.995

4 1.000
.993
.999
.994

Stabilizer -6 0.444 0.986
.446 1.046
.442 .979
.441 .981

3 1.008
.969

1.010
1.002

-1 .997
1.004

.996

.992

Spoiler 8 0.715 1 .238
.746 1.377
.713 1.232
.709 1 .231

3 1 .091
1 .11 3
1.088
1.084

1 1 .031
1.041
1 .029
1 .024
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TABLE X.- FAILURE DETECTION PERFORMANCE WITH LINEAR MEASUREMENTS AND
THRESHOLDS SET AT NO TURBULENCE LEVEL

Failure Turbulence

Type Magnitude,
None Medium Heavy Thunderstormdegrees

Elevator 10 Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
iY/Y/Y/Y

3
1 n/n/n/n Y/Y/Y/Y

iY/Y/Y/Y

Thrott\e 40 n/n/n/n Y/Y/Y/n Y/Y/Y/Y
iY/Y/Y/Y

12
4 n/n/n/n Y/Y/Y/Y

iY/Y/Y/Y

Stabilizer -6 n/n/n/n Y/Y/Y/n Y/Y/Y/Y
iY/Y/Y/Y

3
-1 n/n/n/n Y/Y/Y/Y

iY/Y/Y/Y

Spoiler 8 Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
3
1 Y/Y/Y/Y Y/Y/Y/Y

Y/Y/Y/Y indicates detection using the 30-, 20-, 10-, and 1-sample
windows.

n indicates failure not detected.
i no steady state winds.
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TABLE XI.- FAILURE DETECTION PERFORMANCE WITH LINEAR MEASUREMENTS AND
THRESHOLDS SET AT HEAVY TURBULENCE LEVEL

Failure Turbulence

Type
Magnitude,

None Medium Heavy Thunderstormdegrees

Elevator 10 n/n/n/n n/n/n/n n/n/n/Y
#Y/n/n/Y

3
1 n/n/n/n n/n/n/Y

#n/n/n/Y

Throttle 40 n/n/n/n n/n/n/n n/n/n/n
#n/n/n/n

12
4 n/n/n/n n/n/n/n

#n/n/n/Y

Stabilizer -6 n/n/n/n n/n/n/n n/n/n/n
#n/n/n/n

3
-1 n/n/n/n n/n/n/n

#n/n/n/Y

Spoiler 8 Y/Y/Y/Y Y/Y/Y/Y Y/Y/Y/Y
3
1 n/Y/Y/Y Y/Y/Y/Y

Y/Y/Y/Y indicates detection using the 30-, 20-, 10-, and 1-sample
windows.

n indicates failure not detected.
# no steady state winds.
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TABLE XII.- FAILURE IDENTIFICATION PERFORMANCE WITH LINEAR MEASUREMENTS:
FAILURE CORRECTLY IDENTIFIED

Failure Turbulence

Type Magnitude, None Medium Heavy Thunderstormdegrees
,.,

Elevator 10 */*/*/* */*/*/* i:*/*/*/n
I:*/*/*/n
,.,
i:Y/*/*/n
I: n/* /*/Y

3 ,.,
1 */*/*/* i:*/*/*/n

I: */* /*/n
,.,
i: */* /*/n
i: */* /*/Y

Throttle 40 */*/*/* */*/*/* */*/*/*

*/*/*/*
12

4 */*/*/* */*/*/*
,.,
i:*/*/*/n
i:*/*/*/n

Stabilizer -6 */*/*/* */*/*/* */*/*/*

*/*/*/*
3

-1 */* /* /* */*/*/*
,.,
i:*/*/*/n
i: */* /*/n

,., ,., ,.,
Spoiler 8 i:n/n/n/n i:n/n/n/n i:n/n/n/n

I:n/n/n/n I:n/n/n/n I:n/n/n/n
3 ,., ,.,
1 i:*/n/n/n i:n/n/n/n

I:*/Y/n/n I:n/n/Y/n /

Y/Y/Y/Y indicates correct identification using the 30-, 20-, 10-, and
1-sample data windows.

~ indicates failure not correctly identified.
i indicates ID based on maximum value of correlation.
i indicates ID based on maximum value of normalized correlation.
* indicates failure not detected.
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TABLE XIII.- NORMALIZED CORRELATIONS FOR A 20-SAMPLE DATA WINDOW
WITH LINEAR MEASUREMENTS

Failure Turbulence

Magnitude, Heavy
Type

degrees None Medium
wjss wind no ss wind

Elevator 10 1.003 1.077 0.921 \ 0.929
.980 .964 .932 .979

1 .021 1 .161 .967 .954
.998 1 .011 .901 .933

3
1 .982 .909 .917

.966 .923 .970

.984 .946 .932

.978 .888 .920

Throttle 40 0.970 1.043 0.903 0.911
.791 .996 .749 .797
.976 1.120 .943 .929
.964 .977 .878 .910

12

4 .979 .908 .916
.904 .915 .941
.979 .944 .930
.975 .887 .918

Stabilizer -6 0.960 1.034 0.898 0.906
.957 .954 .923 .971
.937 1.083 .920 .906
.960 .972 .877 .909

3
-1 .977 .906 .914

.963 .922 .969

.972 .940 .926

.974 .885 .917

Spoiler 8 3.580 3.654 2.767
3.665 3.644 3.428
3.494 3.648 2.470
3.607 3.620 3.101

3
1 1.305 1 .141

1 .302 1.204
1.294 1 .1 34
1 .305 1.164

Values listed in order of ct, ci, c), c4.
ss = steady state.
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TABLE XIV.- VALUES OF STEADY STATE CORRELATION C(J,K) FOR HARDOVER FAILURES

l~ 1 2 3 4 5 6

1 0.163E-3 -0.996E-4 -0.205E-3 0.495E-1 -0.188E-3 -0.294E-3
2 .355E-5 .104E-2 - .437E-5 -.471E-2 .856E-4 .439E-4
3 .296E-3 .122E-4 -.371E-3 .272E-1 .255E-3 -.923E-4
4 -.101E-3 .123E-3 .127E-3 -.432E-1 .600E-3 .359E-3
5 .762E-4 .893E-4 -.953E-4 -.724E-2 .994E-3 .261 E-3
6 -.747E-4 .125E-3 .941 E-4 - .387E-1 .713E-3 .364E-3



10

5

8

deg

-5

u

ft/sec

a

deg
0

-5

-10

I I I I I I I I
0 1 2 J 4 5 6 7

TIme. sec

(a) Aircraft states - pitch, velocity, and angle-of-attack.

Figure 1.- Time history plots for an 8 degree spoiler failure at
3 seconds with no turbulence.
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Figure 1.- Continued.
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Figure 1.- Continued.
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Figure 2.- Ti~e history plots for an 8 degree spoiler failure at
3 seconds in heavy turbulence.
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Figure 3.- Time history plots for an 8 degree spoiler failure
with linear measurements and no turbulence.
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Figure 4.- Filter residuals for an 8 degree spoiler failure
with linear measurements, no turbulence, and no steady
s ta te winds.

82



.2
r 1

deg 0

-.2
.5

r2

ft/sec2 0

-.5
5

rJ

ft/sec2 0

-5
8

r4

deg/sec
0

rs
ft/sec

0

-.2
.5

re
ft/sec

0

-.5
.25

r7

deg
0

-.25
I I I I I I I I
0 1 2 3 4 5 6 7

Time. sec

Figure 5.- Filter residuals for an 8 degree ramp spoiler
failure with linear measurements.

83



1. Report No. 12. Government Accession No.

NASA TM-87576
3. Recipient's Catalog No.

4. Title and Subtitle A Preliminary Evaluation Of A Failure 5. Report Date

Detection Filter for Detecting and Identifying Control July 1985
Element Failures In A Transport Aircraft ~6~.~Pe-rl~0~rm-in-g-O~r--~ni-za-ti-on-~--de------~

505-34-03-07
7. Author(s) 8. Performing Or~nization Report No.

W. Thomas Bundick
r----------------------------------------~ 10. Work Unit No.

9. Performing Organization Name and Address

NASA/Langley Research Center
Hampton, VA 23665

11. ~ntract or Grant No.

14. Sponsoring Agency ~de

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

1-- -113. Type of Report and Period ~vered

Technical Memorandum

15. Supplementary Notes

Programming support was suppl ied by Mrs. Jessie Yeager of Kentron International.

16. Abstract

The application of the failure detection filter to the detection and identifica­
tion of aircraft control element failures has been evaluated in a linear digital
simulation of the longitudinal dynamics of a B-737 Aircraft. Simulation results
show that with a simple correlator and threshold detector used to process the
filter residuals, the failure detection performance is seriously degraded by the
effects of turbulence.

17. Key Words (Suggested by Author!s))

Failure Detection
Failure Detection Filter
Fault Detection
Restructurabl e

18. Distribution Statement
Unclassified - Unlimited

SUbject Category - 08

)

19. Security Classif. lof this report)

Unclassified

20. Security Classif. lof this page)

Unclassified

21. No. of Pages

84
22. Price

A05

N-30S For sale by the National Technical Information Service, Springfield, Virginia 22161






