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Abstract
Work during the period January 1 - June 30, 1985, has concentrated
on the completion of the derijvation of the equations’oF motion for the
Spacecraft Control Laboratory Experiment (SCOLE) as well on the
development of a control scheme for the maneuvering of the spacecraft.
The report consists of a paper presented at the Fifth VPI&SU/AIAA

Symposium on Dynamics and Control of Large Structures, June 12-14, 1985,
Blacksburg, VA,
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MANEUVERING OF FLEXIBLE SPACECRAFT WITH APPLICATION”
TO SCOLE

by

L. Meirovitch, R, D. Quinn and M. A. Norris
Department of Engineeriny Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Avstract

This paper is concerned with the derivation of the equations of
motion for the Spacecraft Control Laboratory Experiment (SCULE). For
future reference, the equations of motion of a similar structure
orbiting the earth are also derived. The structure is assumed to
underyo larye riyid-body maneuvers and small elastic deformations. A
perturbation approach is presented where the guantities defining the
rigid-body maneuver are assumed to be relatively large, with the elastic
deformations and deviations frow the riyid-body maneuver bheingy
relatively small. The perturbation eyuations have the form of linear,
non-self-adjoint equations with time-dependent coefficients, An active
controi technique can then be formulated to permit maneuvering of the
spacecraft and simultaneously suppressing the elastic vibration.

1. Introduction

~ 3ome of the contemplated NASA missions involve experiments
consdsting of the control of flexible bodies carried by the shuttie in
an earth orbit. Other missions invoive laboratory simulations of
simitar experiments. Hence, a formulation capable of accomnodating both
types of experiments is desirable. To this end, we propose to derive
Layrange's equations of motion for the spacecraft of Fig., 1 reyarding
the structure as orbiting ahout the earth and then modify these
equations so as to describe the laboratory experiment. In the
derivation, the shuttie is treated as a riyid body and Che beam and
antenna as flexible, distributed-parameter members. Ihe equations of
motion can be further modified for the case of a riyid antenna.

The equations describing the maneuvering of a riyid space structure
consist of nunlinear ordinary differential equations. On the other
hand, the eyuations describing the small elastic displacements of a
flexible structure relative to the riyid-body maneuver are linear

*Supported by the NASA Research Grant NAG-1-225 sponsored by the
Spacecraft Control Branch, Langley Research Center.
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partlal differential equations. Hence, the complete equations of motion
describing a flexible body during a maneuver represent a set of
nonlinear hybrid differential wquations.

! Hybrid systems possess an infinite number of deyrees of freedom,
In :practice, however, it is necessary to reduce the number of degrees of
freedom to a finite one, which implies spatial discretization and
truncation. Substructure synthesis often proves useful as a method of
discretization and truncation, particularly in the case of distributed
substructures. Even in the case of discrete substructures, a set of
linearly independent veclors can he used as adwissible vectors to reduce
the number of equations of wotion.

In this paper, we propose a perturbation technigue whereby Lhe
flexible spacecraft maneuver is assumed to consist of a combination of a
rigid-body maneuver and small perturbations, including rigid-body
deviations from the riyid-body maneuver and elastic vibrations.
Regarding the rigid-body maneuver as known, the perturbation equations
for the vibration control reduce to a set of linear ordinary
differential equations with known time-varying coefficients.

2. Eyquations o _.'o:jon of the Spacecraft

1t is convenient to refer the motion of the spacecraft Lo a yiven
reference frame xgyyZys where the frame can be regarded as being

embedded in the riuid shuttle. The reference frame has six deyrees of
freedom, three riyid-body translations and three riyid-body rotations.

We propose to derive the equations of motion by means of the
Lagrangian approach. To this end, we must first obtain expressions for
the_kinetic energy, the potential eneryy and the virtual work.
Con51der1ng Fig. 1 and denoting the position of the oriyin O of Che
frame xqygzg by the vector R and the position of a point § in the

shuttle relative to 0 by r, the position of S relative to the inertial
frame XYZ is Rb = R & r. Moreover, denoling by a the vector from 0 Lo o

nominal point A on the appendage and by u the elastic displacement
vector of the point, the position of A in the displaced configuration

is EA R+ a v u, 1L omust be noted thab the veclors ©, a4 and 11 ape
1ikely to be measured relative to axes Xg¥eZge In view of the above,

the velocity of, a point $ in the shuttle is

&

where R 1s the translational velocity and o is the anyular velocity of
the frame xgygzg with respect to the inertial frame. Similarly, the

=_B+g>¢_|: (L)
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velocity of a point A in the appendage is
Ba =R tux (g +u)+i (2)

where U is the elastic velocity of the point relative to the Xo¥Y0oZo
frame. Hence, the kinetic eneryy of the spacecraft is

1 v o2 1 o2
T=3 | |55] dmg + jm R} “dony
ms ‘ A
=hf Rrwxgllamg g R+Fgx (arw ¢ Py
ms IIIA
: 1 ; . 1 " 2
=gl e gl Belex gg) + g ) 1E)my

A

-+
el
-
—
Lu—
=

o\ ding + oy x Im W dmg | b fm e (g x a)dmy
A A A

M my
) b (g x wdmy (3)
where '
Sg =/ L dng + [ g diny (4)
Mg ny

and g, Wiy and woare the masses of Lhe shutble, Lhe appendaye and Lhe
entire spacecraft, respectively. Also, IU is the total mass moment of
inertia matrix of the undeforwed structurce about point 0, Note Lhat
|5|2 denotes the inner product %-x.

The potential eneryy is due to the combined effects of gravity and
strain eneryy. Assuming that the oriyin of the inertial coordinate

system coincides with the center of the yravitational field, the
gravitational potential can be expressed as
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) dmA] (5)

where m, is the mass of the earth and G is the universal gravitational
constant.

The strain_energy can be expressed as an energy inner product
denoted by [ , ] (Ref., 1}, The total potential eneryy then becomes

V =

n.‘"_|_li-‘

uul + v, (6)

The virtual work is due to external forces, includinyg control
forces. Denotiny by fS the force vector per unit volume of the shuttle

and by iA the force vector per unit volume of the appendaye, we can
write the virtua) work as

W= [ fordilg dUg + [ fpedRy dDy (7)
) b
S A
where Dg and Dy are the damains of the shuttle and appendage,
respectively.

Next, we propose to discretize the system in space. To this end,
we express the elastic displacements in the form of linear combinations
of admissible functions, or

- 4 =4 (8)

where © is a matrix of space-dependent admissible functions and ¢ is a
vector of time-dependent generalized coordinates. Introducing Eq. (8)
into Ey. (3), the kinetic eneryy takes the matrix form

LooTe LT R Loely oo olol s o1 0T
=g R B+ 5 Ly # RO Sy +5 ¢ Mg H RCg+ RC g
24 v 30T ang - 3 qM g gL ey (9)
! IIIA
where
T= ) 0 dny, i =g w3 dny (10a,b)
oM A
Lplw) = f ol dny th(g) = | P dmy (10c,d)
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and

1
!

Mp= f 314 dmy (10e) |
m i
! A |
is the mass matrix of the appendage. The symbol C represents a rotation é
matrix from the inertial frame XYZ to the xgyp2g frame and its elements
are nontinear functions of Euler's anyles . The tilde over a typica)

vector y denotes a skew symmetric matrix of the form

0 v -y ]

- z Y

v |-y, 0 v, (11)
v -y 0 J

Recognizing that the magnitude of R is large and y is small in

comparison with the other vectors in Eq. (b) and ignoring terms of order
higher than three, a binomial expansion permits us to write

v = - Gm [mlRIHl - R (S +I U dn )lRl—BJ (12)
g ety >0 mA" AT

Introducing Eq. (12) into Eq. (6) and considering Eq. (8), the potential
eneryy can be written in the form

1T Gméu &ne T.T _
where |
Kp = Lo, o] (14) 5

is the stiffness matrix of the appendage. The virtual work can be shown
to have the expression

To(g)sg + q'sg (15)

6W = ET065 + M
vwhere

£ Ay | (16a)
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W=f Flggdog+ [ g, doy + [ fre ddyg (16b)

|
!

. T
Q IDA¢ £a by (16¢)
are generalized force vectors in terms of components about xo,yd and zp
and D(a) is a matrix of trigonometric functions of the Euler angles
defined by the expression

y = D(g)a (16a)

Lagrange's equations of motion can be written in the symbolic form

d (oT aV T
UL BN (174)
dt Tap” 9B
a%.(ﬂgj _er, %! = DrM (17b)
aa -~ ~
d oT aT 3V
vl band B vl i vl (176

so that, consideriny Eqs. (9), (13) and (15) and premultiplyinyg Eqg.
(173) by U'T, the equations of motion for the spacecraft in orbit are

o+ cTs gy + ooy + clailsg + 2c3Tag + ¢T(@" + 3 )7
Ging Tre o7 ST T wmtr e o (1
+ e {mg + CT(Sy + dy) - 3[R R CT(Sy +wg)]) = CF  (1va)
. :T Vo ~ i o Gy o~
P +w L + SCR + by + [ [CRI + J{w) + » JI(uw) ] LCR17 [y
U" U" 'U ~ " ~ d ~ IRI
+ Lo b+ J{w)1 y e e (TR1s, = (18b)
. {m
Mg+ TR+ F G+ ¢TmTa@ iy + —2 T 0R
i IRi

~ -~

F L)+ [Thle) + La(@) + K,y = g (18¢)
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where

J{w) = [ (aw + [awl)e ding (18d)
n
A

+

and

| =

é.= {18e)

18]

Premultiplying Eq, (17h) by 07T s equivalent to considering Layrange's
equations in terms of yuasi-coordinates (Ret. 2). HNote Lhat the

position vector R, its time derivatives, and the Euler angles 3 have

been considered to be of arbitrary maynitude, with the result that wmany
nonlinear terms appear in Eqs. {18).

[

3. Equations of Motion for the Laboratory Experiment

In the laboratory experiment, the spacecraft is not actually free
in space, but suspended from the ceiliny by means of a cable or a
beam. The followinyg analysis applies to either case. The support is
likely to affect the dynamic characteristics of the system. Hence, in
the sequel, the support is added to the free model in the form of an
elastic member.

Consideriny Fiy, 2, the position vector for an arbitrary point C on
the—cable is B, = ¢ + ¥, where ¢ is a position vector and y is the

eladtic displacement of the cable, both of which are measured with
respect to the inertial frame. The position vector for the point U is

g t e (19)

where the subscript B denotes evaluation ab the point B and ¢ is Lhe

vector from point B (ball joint) to the point U fixed on the shuttle,
measured with respect to the xgyyzg frame. The velocity vector of an

arbitrary point'C on the cable is then
Ec =¥ (20)

and the velocity of point 0 is

B."QB'*“B"‘Q (21)

B e
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The kinematics for the shuttle body and appendage remain the same as for
the unrestrained spacecraft im space. Hence, the kinetic eneryy for the
entire structure is

: 1 o 12 1 Y 1 t 2
i T='72f ‘Bcl dITIC '|'-ZI l_lss‘dms'i'—gj ““'!\‘ dmA
m. m m
¢ ) n
=gl 1 %mg + 51 Qi+ e e e+ )l g
Mo mg
v Mg rex(etary + Qlddm,\
My
= %-I |Q|ddmc + %-m\@uld + % %]10% + %-m(g x e)(w« e)
e
+ W % So) b (wox e)efw x 5,) + ok f |ﬁ|2dm
gt 7 2 < PR R T 7S 1N A
A
+ QB' j‘ U diny + [ by x g)dmA L (e x B)elw x u) ity
my My My
v 50 lexglZ gt [ Gele % u) duy (22)
M y
where
g 3ptme, B=ate (23)

The elastic displacement vectors u and w have been assumed to be small.

~+ The expression for the virtual work is yiven by Eq. (7), but the
potentidl eneryy must be medified. The acceleration of yravity will be
assumed to be constant and can be expressed as y = - yy, so that the
yravitational potential is :

Vo= e+ w)ey dng f (R b ghegdmg v [ (R vavu)eydmy

M Mg My (24}
where R is defined by Eq. (19) and U, is a unit vector in Lhe Z

direction. The elastic potential eneryy for the system can be expressed
as

V. =-% Lu,ul +-% Lw,w] (25)

where [w,w] is the energy inner product for the cable, which includes a

SRRl U e S SR e R e



MANEUVERING OF FLEXIBLE SPACECRAFT

stiffening effect due to the weight of the spacecraft model. Because a
cable has 1ittle inherent bending stiffness, the stiffeniny effect can
be significant,

. As with the appendage in the precediny section, the elastic
displacement of the cable can be approximated by a linear combination of
admissible functions, or

U L) - (20)

where ¢ is a matrix of space-dependent admissible functions and 1 is a

vector of time-dependent generalized coordinates. Introducing Cys. (8)
and (26} into Eq. (22), the kinetic eneryy takes the matrix form

Tebalg ¢ dalty + nd v 2875+ §T e s + 5 GG

¥ ﬁT¢gcﬁﬁg * @ngcﬂ§T$g AN
+ gT [ b dmy g + QTLA(Q)Q - %-qrth(g)g (274)
My
where
e ) ey (2/)
My

has—been redefined and

' T T
MC = p'y dmc + 0t Yig (27¢)
Me
is the combincd mass matrix of the cable and of the structure lumped at
the end of the cable, in which WB denolbes the matrix ¢ evaluated at B,

Introducing Egs. (8) and (26) into Eqs. {24) and (25) the pntential
energy can be written in the matrix form

r.T

=
"

2Ty 50w+ mugg ¢ gleTog v g g ¢y ke (28)

vhere

i
N—
=

(2‘.;'11)
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and

Ko = Lwsyl (29b)

is the stiffness matrix of the support, Considering Eqs. (19} and (2b),
the virtual work can be expressed as

T

8W = F Cygén + ﬂTD(g)ég + gng (30)

where all the terms have been defined previously. The effect of the
friction of the ball joint can be assumed in fthe form of an external
torque. Hence, we let i =, + M in Eq. (30), where M. is a vector of

control moments and e is a vector of frictional moments caused by the
ball joint.

Lagrange's equations remain in the symbolic form of Egs. (17), with
the exception of Eq. {17a) which must be replaced by

oT av TaT,e .
T (-;ij + an qBC F (32)

Usiny the same approach as in Sec. 2, the eyuations of motion for the
laboratory experiment can be shown te have the form

- Mcn + |p (,TS g4 + CTwTSBm + q;l Ttbg + leT TmTtbg

+ lpgc‘r(?.iz + ;T)'ﬁg + (nhpg - "T Jy + K ch @ glngk {33a)

[y + JTIBg + SECwBﬂ +8g 4 [0(8) + JTJ(Q)
_f‘-/ Q— -uTv . N . "9

+ [CyJbdy v Lud v J{a)]g LCQ‘IQB M (33h)

Mﬂg ¥ ETCWBQ AL LA din,
Iy
Py + L)+ [Tpla) 1 Lp(a) 1 Kly = 4 (33¢)

where J{w) is redefined by replacing g with b in Fq. {18d) and

FRTE
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Iy = Ig+ me e+ ETSO + SgE (33d)

'1s‘the mass moment of inertia of the spacecraft about point B. In this
case, the set of Euler angles o is assumed to be of arbitrary maynitude,
which is responsible for many nonlinear terms in Eqs. (33).

A simulation and Lontrol
The nonlinear equations of motion for the orbiting spacecraft heve
the same basic form as for the laboratory experiment. Hence, the
approach to the solutfon suyyested here applies for both situations,

Consider a first-order perturbation on the quantitiosg R and x.

R+ R

Ro* B g7ty (34a,b)

where the first order terms B, and ¢, are swall compared to the zero
order terms 30 and T Introducing Egs. (34) into the nonlinear

equations of motion, Eqs. (18) or (33), and separatinyg orders of
magnitudes, we obtain zero-order and first-order perturbation equations.
The zero-order equations can be used for the maneuvering of the
spacecraft and the first-order equations for vibration suppression and
riyid-body corrections. Before proceeding with this technique, we will
first develop some expressions relatiny the perturbations in the Euler
angles, g, with small anyular deflections, g, expressed in the body-
fixed frame. This is done so that all the variables in the perturbation
eyuations can be expressed in the body-fixed frame, *he frame in which
state measurements will be taken and actuating forces will be applied.
Note that a sel of Euler anyles of arbiteary maynilude dg nol form o
vector whereas the angles g, being small, can be thouyht of as a vector
yuantity.

First consider Eq. (16a) which relates the velocities of the Luler
angles to the body fixed angular velocities, w. Introducing Eq. (34b)

into ky. (lba) and neylecting higher-order terms, we obtain the
perturbed angular velocity vector

where
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Yo © D(E‘,O)éo - D(ﬁl)éo + D('E.U)él (36a,h)

Using similar considerations, it can be shown that the body-fixed
perturbation angles can be related to the perturbed Euler anyles by the
expression

g D(‘i‘.u)‘él (37)

Note that the vactor g is a first-order perturbation of o set of quasi-
cnordinates (Ref. 2). Taking the time derivative of Eq. (3/) and
introducing into Eq. (36L), the perturbed angular velocity vector, @
is related to the angles g by the expression

w = &E@ T (38)

Takinyg the time derivative of Eq. (38), the perturbed engular
acceleration becomas

by = o+l (39)

Recall that the elements of the transformation matrix C from the body-
fixed frame to the inertial frame consist of trigonometric functions of
the Euler anyles, so that a perturbation of Cthis matrix will also
invelve the vector g. This relation can be derived using Ey. (37).
Instead, consider the frame 0' which differs from the 0 frame by the
angles g. Then, the transformation from the U' frame to the U frame

is [1 + #] where 1 is an identity matrix. Letting Cq be the

transformation matrix from the 0 frame to the inertial frame, the total
transformation matrix, C, from the U' frame to the inertial frame can be
expressed as

(4v)
where
(41)

In keepinyg with our objective of expressing the first-order perturbation
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equations in the body fixed frame, Eq. (34a) is replaced by
(42)

where B, 1s now a vector measured with respect to the 0 frame. The

control forces and moments can also be expressed in first-order .
perturbed form as follows:

E=E5+tE» B=llg+th (43a,b)

Introducing Eqs. {34) through (43) into Eqs. (18) and neylecting
higher-order terms, we obtain two sets of equations of motion for the
spacecraft in orb1t. The zero-order eyuations, which yovern the motion
of the structure as if it were rigid, can be expressed as

~ ~ am .
" Te o J~Te e A VR PR
Mo+ CoSgin * Coodeo * “{ﬁlmu+(l“m$@Wﬁﬂ“L¢0
0 N
. hm *‘T T
(ﬁO ||{ |3 Ocde + 1 mo + mUIO 0" lju (44b)

The first-order equations, which govern the small scale motions of the
structure, can be expressed as

— . ST N S Yo T N
- m51 + dmuugl + [mu tuy t ngl S r ugSlt * [mU by b Hjbug
T T 0y — .
+ F(ﬁ oy &ndﬂi'kiuw)1~nu)+ My = ﬁl (45a)

oTe 4 oeTxTn 4 oTrsT W ~2 e 4 F
0R1 + den L 50Dn” bal ﬁ]RI b F[ﬁl

FIG [I&I’T FolL [;\EJ]]E
ol 0 " “o' 2ol I8

¥ [ilﬁT raltal b (Tl s 5 ﬁ]s -
0o T Yoo glpdtp T eI T MY
+ [;Tm'+ J.Iq + [J b bk ﬁ$]( = N (45h)
0 09 0" Yo g =M
TR+ &ﬂ@%&l ¢rDu P 35 AR, + Vg
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STNT Tas o exTST TST =T
t [y = Jy8 + [0 wy - Jguy + ¢ HIE
! + Mg+ Lag F L+ Ly + K dg o=+ § (45c) 1
where
T Gm R
M= - Ts [l - 3Cd~d£f)"{ﬂ (45d)
~ N Gme —~
=R+ (%R ] (45e)
R
Ty o, Me +Ts ToTs
Qg = - [*CRy* " !3 VERy gt [ b egan, dng (45f)
R m
A

For the laboratory experiment to be successful, the deflections of
the cable (translation of the spacecraft) should be small. From purely
rigid-body dynamic considerations, the point B {ball joint) must be
close to the center of mass in the direction normal to the axis of
rotation during a maneuver. Hence, the vector §B can be considered to

be small in the following analysis. Because the motion of the cal » hag
been assumed to be small, introduciny Eq. (3b) into kyq. (33b), the z - -
order equations for the laboratory experiment are simply

: . vT _
Ly *wplyey = Yy (46)

The motion of the cable, yn, can be expressed with respect to the body-

fixed frame, as was done with the vector &]
spacecraft., Introduciny Eqs. (36}, (39), (4U), (41) and (43) into bys.
(33) and neylecting higher-order terms, the first-order equations of
motion for the laboratory experiment can be expressed as follows:

for the orhiting

o T~ T
ML“ + ZLCn + [L + LL + K In + ¢B BB + 3¢B“U Bﬁ + wu[m + uU]SBP

o d’g + PQP &bg + qJB[m + mo:]‘b( = F + u,JT]- (47a)

-~

T el

SngQ + zséangﬁ + Sg[ﬁg ¥ ﬁéijB

e L ST
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" “T "‘T ~~—
+ I8 + [IBmO tag Iy + [13%1]@

. LR C TP L S et o It
| b [ Tqug + aplaug + Clgualug + SlCagl]8

+ ¥g + [GEE +dglg + [0 JBJU * fEBh]$]g

=g+ Uptth (47b)
B I o P
¢ ng + 24 wg Yo + (mu + mU)mBn

ST ST (Tae o NTST T T T
LI AT o wy = JU]Q + [ Wy = JUmU b LLoﬂJ 16
+ MAg + LAE.I + U:-A + LA + KAJH = QU + 91 (47C)
where
Eo = - tpligSyee * Saig! - (g + )¢ g (47d)
My = SpC o (47e)
Qg = - [aTQO + | ¢ngbg0 dmy + mJCOQJ (477)
- m
N A

For the orbitiny spacecraft, Eqs. (44} can be solved for Ey(t) and
Mo(t) for any desired maneuver strategy Bo(t) and go(t). For the
laboratory experiment, Eqs. (46) can be solved for mu(t) for any

desired wo(t). In either case, these quantities can then be substituted
into the Pirst-order equations (Eqs. (45) or (47}) producing a set of
Vinear eyuations with known time-varyiny coefficients which yovern the
small deviations from the rigid-body maneuver and elastic motions of the
structure. These linear equations can be expressed in Che matrix form

" " -k
My & Gg o+ (KS * KNS)E =E (48)

where for the orbitiny case

{49a)
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*
£ =6 4 Up+ ;] (49b)
My Sy ¢
VO 0 m 0 0
m=lsh 1, ¥ My=[0 m 0 (49¢,d)
0 m '
= ~T
'-_..rl "T ' "'T“‘ f ""r‘: ™
ZMom 0 2 05 0 2w 0‘:
~To ~T T o~ Ty
6= -2@is) T 1@l e agry ¢ el S+ 9, (49¢)
ST T ~Te T o
_-Z(moib) [yt + )] 2Ly _
r—Mo[ﬁé + W] Fg + [Jiﬁ + 'IT]SU [?J% + e ]
K = ; + ET[EZ + M el AP 1]5 {497)
5 0 00 0°0™0 00
~Tes@ | ma Te T T
K [mo + H] dpg * ¢ B Ly Ky
[ . a . —
<T ~T T
- MU'-UU UJUSU fu.olll
T T ST ST o
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and for the laboratory experiment
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In both cases, the mass matrix is symmetric. However, for the orbiting
structure, the mass matrix is time invariant, whereas for the laboratory
configuration, it is not. This is the case because the mass matrix of
the cable, M., must be calculated with respect to the budy-fixed frame,

and hence it is a function of the transformation matrix Cy(t). However,
Me and hence M can be considered time invariant if the axis of rotation

is The axis of synmetry of the cable. In both cases, the time varying
matrix G, multiplying the velocity vector, is skew-symmetric. This
matrix contains the Coriolis (yyroscopic) terms.

The stiffnecs matrix has been split into two parts, one part, Kg,
with purely synmetric terms, the other, Kyg, with the Lerms which lead
to nonsymnetries. Of course, Kyg can be separated into symmetric and

skew-symmetric matrices if desired. As can be seen in [qs. {19y} and
(b0f), the terms containing the angular acceleration, wU, ot the body-

fixed frame lead to nonsymmetric terms in the stiffness matrix. In
fact, many of Lhese terms are skew-symmetric, and hence, circulatory.
Note that the perturbaticon of the Euler equations resulted in some
nonsymmetric terms containing only the angular velocity vector W This

is not surprising, because it is well known that a steady-state riyid-
body rotation about the axis of intermediate inertia is unstable. UOwing
to the nonsymmetry of the stiffness matrices, the vibration problem is
non-self-adjoint in both cases.
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Because we ignored structural damping, the matrix G was found to be
purely gyroscopic, and hence conservative. However, the stiffness
matrix was found to contain circulatory, nonconservative terms. Hence,
during a rotation, the structure may be vibrating about an unstable
equiltbrium state, requiring active vibration control to stabilize the
desired maneuver.

Gravity has a much stronger influence on the laboratory expgriment,
hoth because the force of gravity is greater, and because the opposing
force is a point (cable) force rather than a body (centrifugal) force as
with the orbiting structure. Hence, the static elastic displacement of
the structure must be considered in determining the stable equilibrium
orientation. It has been previously dssumed that the ball joint is in
the vicinity of the rigid-body center of mass along the axes orthogonal
to the cable. That is, point B is near the center of mass, or perhaps
somewhere above it. We now wish to find the stable equilibrium
orientation and elastic deflection of the structure for a yiven ball
joint location. For the laboratory experiment, the static portions of
Egs. (48) can be expressed as

Kerggr = Egr (51)
where the static stilfness is
_ —
kC U 0
"" ~ r‘\/___
Kgp =| U Sgleul eyl (5la)
- T T
.10 I [Cug] Ky B
and the static force is
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Equations (51) form a sel of nonlincar alyehraic eyuations which can be
solved for X7 the static eyuilibrium orientation and elastic
deflection of the structure. The elastic deflection is coupled with the
anyular orientation of the structure. Hence, the true center of mass
depends on the orientation. The orientation about the lonyitudinal axis

of the cable {direction of yravity) is arbilrary. Ihis means Lhal q
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rotation about this axis will not affect the static orientation or
elastic deflections. Any orientatifon can be made to be the stable
equilibrium position by properly locating the ball Jjoint using Egs.
(51). Hence, a sinyle-axis rotation, that is not affected by gravity,
can be accomplished about any desired axis once the proper ball Jjoint
lTocation has heen determined.

The SCOLE design challenye maneuvers are time-optimal rotations
beginning and ending in a state of rest. Provided the axis of rotation
is the cable axis, the eigensolution of the structure hefore and after
the maneuver will be the same. Duriny the mancuver, the gyroscopic and
stiffness matrices, and hence the eigenvalue problem, are functions of
time. Solving the eiyenvalue probiem at each time step would be
inefficient and of Tmited usefulness. However, a Lruncaled set of the
premaneuver eigenfunctions can be used as a set of admissible vectors to
reduce the order of the equations of motion. The eyuations in reduced
form can then be solved using o discrete-time Lechnigue.

A most desirable control technigue for a maneuver excites the
elastic modes as Tittle as possible. The obvious method is te apply a
force that is proportional to the rigid-body wode corresponding to the
maneuver. Because the modes are orthoyonal, the other modes are not
excited, The control forces must be distributed throughout the
structure to maintain it in its initial state of deformation. O
course, this would require distributed actuators and can only be
approximated with discrete actuators, so that the elastic modes will be
excited somewhat.

For simplicity, consider a rotu.ion about the mass center in the
direction of a principal axis. The eyuation yoverning such a maneuver
can.be expressed as

where aU(t) is the desired angular acceleration, My(t) is the moment
delivering this desired performance and Iy is uhe mass moment of

inertia. For reasons mentioned above, we wish to apply the moment by
means of distributed actuators, so that Mo(t) is the resultant moment

produced by forces F(p,t) distributed throuyghout the structure or
Molt) = fu r{p) Flp,t) ab(p) (53)

Introducing the definition of Iy and Ey. (53) into Eq. (52), the
equation voverning the maneuver can be expressed as
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Jrip) F(pot) dd(p) = [ ayft) mlp) r(p) dn(p) (54)

where r(p) is the distance from the mass center to point p, where r(p)
'is porma) to the axis of rotation, and m(p) is the mass density of the
structure at point p. Considering Eq. {54), and consistent with our
desire for the force to be proportional to the rotational mode, the
force density can be expressed as .

Flp,t) = ag(t)m{p)rip) (bb)

Because the force is proportional to the rotatiopal mode, it is
orthogonal to all of the other modes, so that it will excite only the
desired rotational maneuver. Note that the force is also proportional
to the mass, so that the mass acts as the control yain. This suyyests
that when this force is applied with discrete actuators, the actuators
should be located at the point of maximum mass for maximunm efficiency in
riyid-body control.

5. Conclusions

The equations of motion for the structure both in orbit about the
earth and in the laboratory are nonlinear, even when the elastic
deformations are small. The nonlinear terms result from the large
rigid-body maneuver. Through a perturbation approach, the nonlinear
equations of motion can be transformed into a set of eyuations governing
the riyid-body motions and a set of time-varying, linear equations
governing small deviations from the prescribed riyid-bhody maneuver, as
well. as elastic motions. The first-order equations are non-self-
adjeint. The mass matrix is time invariant so that it need only be
inverted once in a discrete time simulation. The order of the equations
can be reduced using the premaneuver eigenfunctions as admissible
functions. For the laboratory experiment, a single-axis rotational
maneuver, which is unaffected by gravity, is possible. The control
force for the rigid-body rotation should be proportional to the
corresponding rigid-body mode, with the mass actiny as the control
gain. Also, the actuators should be located at the points of maximum
Mass .
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Figure 1. SCOLE Configuration
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