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Abstract

Work during the period January 1 - June 30, 1.985, has concentrated

on the completion of the derivation of the equations of motion for the

Spacecraft Control Laboratory Experiment (SCOLE) as well on the

development of a control scheme for the maneuvering of the spacecraft.

j	 The report consists of a paper presented at the Fifth VPI&SU/AIAA

Symposium on Dynamics and Control of Large Structures, June 12-I4, 1985,

Blacksburg, VA.
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MANEUVERING OF FLEXIBLE SPACECRAFT WITH APPLICATION'
TO SCOLD

by

L. Meirovitch, R. D. Quinn and M. A. Norris
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract

This paper is concerned with the derivation of the equations of
motion for the Spacecraft Control Laboratory Experiment (SCOLE). For
future reference, the equations of motion of a similar structure
orbiting the earth are also derived. The structure is assumed to
undergo large riyid-body maneuvers and small elastic deformations. A
perturbation approach is presented where the quantities defining the
riyid-body maneuver are assumed to be relatively large, with the elastic
deformations and deviations from the riyid-body maneuver being
relatively small. The perturbation equations have the form of linear,
non-self-adjoint equations with time-dependent coefficients. An active
control technique can then be formulated to permit maneuvering of the
spacecraft and simultaneously suppressing the elastic vibration.

1. Introduction

_.Some of the contemplated NASA missions involve experiments
consistiny of the control of flexible bodies carried by the shuttle in
an earth-orbit. Other missions involve laboratory simulations of
similar experiments. Hence, a formulation capable of accommodating both
types of experiments is desirable. To this end, we propose to derive
Lagrange's equations of motion for the spacecraft of Fig. 1 regarding
the structure as orbiting about the earth and then modify these
equations so as to describe the laboratory experiment. In the
derivation, the shuttle is treated as a rigid body and the beam and
antenna as flexible, distributed-parameter members. The equations of
motion can be further modified for the case of a rigid antenna.

The equations describing the maneuvering of a rigid space structure
consist of nonlinear ordinary differential equations. On the other
hand, the equations describing the small elastic displacements of a
flexible structure relative to the riyid-body maneuver are linear

Supported by the NASA Research Grant NAG-1-225 sponsored by the
Spacecraft Control Branch, Langley Research Center.
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partial differential equations. Hence, the complete equations of motion
describing a flexible body during a maneuver represent a set of
nonlinear hybrid differential equations.

Hybrid systems possess an infinite number of degrees of freedom.
In practice, however, it is necessary to reduce the number of degrees of
freedom to a finite one, which implies spatial discretization and
truncation. Substructure synthesis often provos useful as a method of
discretization and truncation, particularly in the case of distributed
substructures. Even in the case of discrete substructures, a set of
linearly independent vectors can he used as admissible vectors to reduce
the number of equations of motion.

In this paper, we propose a perturbation technique whereby the
flexible spacecraft maneuver is assumed to consist of a combination of a
rigid-body maneuver and small perturbations, including rigid-body
deviations from the rigid-body maneuver and elastic vibrations.
Regarding the rigid-body maneuver as known, the perturbation equations
for the vibration control reduce to a set of linear ordinary
differential equations with known time-varying coefficients.

2. Equations o ab, ion of the Spacecraft

It is convenient to refer the motion of the spacecraft Lo d given
reference frame x 0yoz 0 , where the frame can be regarded as being

embedded in the rigid shuttle. The reference frame has six degrees of
freedom, three riyid-body translations and three rigid-body rotations.

We propose to derive the equations of motion by means of the
Lagrangian approach. To this end, we must first obtain expressions for
thel kinetic energy, the potential energy and the virtual work.
Considering fig. 1 and denoting the position of the origin 0 of the
frame x0yoz0 by the vector R and the position of a point S in the

shuttle relative to 0 by r, the position of S relative to the inertial
frame XYL is R S = R r r. VMoreover, denoting by a the vector from 0 to a

nominal point A on the appendage and by u the elastic displacement

vector of the point, the position of A in the displaced configuration

is R A - R + a t u.	 It must he nuLud that Lhe vocLurs r, a and U ari

likely to be measured relative to axes x 0yez 0 . In view of the above,

the velocity of, a puint S in the shuttle is

I2 S =It^^xr	 (l)

where R is the translational velocity and t is the angular velocity of

the frame x0yozo with respect to the inertial frame. Similarly, the

I
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velocity of a point A in the appendage is

where u is the elastic velocity of the point relative to the xOy0Z0
frame. v Hence, the kinetic energy of the spacecraft is

T=
 2

f 1RS^Zdms	
MA R

A+ l f ^1? dAmA

=	 f 11+wx r1 2dms+IJ IR + fi x (a+u)+u^2dmAHISmA
I m1R1 2 + 1 qT 1 w +	 (w x S ) + 1 f JOIN
2	 l	 0^	 R•	 ^0	 'L 

m	
A

n

+ It • [J u dmA + w x f u dmA ] + f u• (m x ;)d MA
M
A	MA
	 mA

+ f (w x a)•(a x V) dm+ Z f 1m x ujZdmA

M
A
	m 

+ f u•(m x u)dmA	(3)

MA

where

SO = J r dmS + f a dmA	(4)

ms	 mn

and my, mA and m are the masses of the shuttle, Lhe appendage and Lhe

entire spacecraft, respectively. Also, Q is the total mass moment of

inertia matrix of the undeformod structure about point D. NOW that

,x12 denotes the inner product x•x.

The potential energy is due to the combined effects of gravity and

strain energy. Assuming that the origin of the inertial coordinate
system coincides with the center of the gravitational field, the

gravitational potential can be expressed as

.7
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V g 	- Gm e (f	 1R + rl -1dm S + f	 IR + a + ul -IdmA ]	 (5)

	

ms
	 111A

where i , is the mass of the earth and G is the universal gravitational

constant.

The strain energy can be expressed as an energy inner product
denoted by L , ] (Ref. 1). The total potential energy then becomes

V =
GCU,u] 

+ Vg	 (b)

The virtual work is due to external forces, including control
forces. Denoting by f5 the force vector per unit volume of the shuttle

and by f  the force vector per unit volume of the appendage, we can

write the virtual work as

dW = f f 5 . 611 dD S + f fA . dR A dDA	 (7)
U S	 UA

where DS and DA are the domains of the shuttle and appendage,

respectively.

Next, vie propose to discretize the system in space. To this end,

we express the elastic displacements in the form of linear combinations
of admissible functions, or

u = ^q	 (U)

where ^v is a matrix of space-dependent admissible functions and y is a
vector of time-dependent generalized coordinates. Introducing Eq. (8)
into Eq. (3), the kinetic energy takes the matrix form

1	 T	 1	 I'	 f T V	 1	 I	 f.f	 I	 f-m1? It + Z w 11 0(d+ RC SIM +-21 MM4^ I^ ( by i It G m r 4c^

y
f,i fw F W I J ar, f n dm Ag - 2 u1LA(41)`1	 6['A('_.'N	 (J)uiA

where

4 = J ro dmA, 'IT = J 'D Ta dinA	(10a,b)
MA	 mA

L A (w) = f 1 Tia T4, dm A . L A (4) = f .pTW L1, dm A	(10c,d)
mA	 mA

v,

u

7
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The virtual work can be shown
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and

M A= f *Tai dmA	(10e)
mA

is the mass matrix of the appendage. The symbol C represents a rotation

matrix from the inertial frame XYZ to the x Oyozo frame and its elements
are nonlinear functions of Euler's angles j. The tilde over a typical

vector v denotes a skew syimnetric matrix of the form

U	 vz	 -vyl

v = - vz	 0	 v„	 (11)

vy	 - v x	 U 
J

Recognizing that the magnitude of K is large and u is small in

comparison with the other vectors in Eq. (5) and ignoring terms of order
higher than three, a binomial expansion permits us to write

vR _ - Gm e [mjRj -1 - RQ + f y dmA)IRI- 3]

Introducing Eq. (12) into Eq. (6) and considering Eq
energy can be written in the form

Gm m Gm

V = 2 yTK Ay - lie + e3 RTCT(SO + Ty)If^l

where

(12)

(8), the potential

(13)

K  = It, 07

is the stiffness matrix of the appendage

to have the expression

aw = FTCSR + MTO( % + 9Tag (l5)

where

F = f 0 f S d0 5 + f0 fA dDA

s	 n

(1Ga)

i
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M = f rTfS dD S + f aTfA dDA + f Y dDAy	 (16b)
DS 	DA	 DA

g = f4^TfA dl) A	 (16c)

DA

are generalized force vectors in terms of components about x0 ,yO and z0

and U(a) is a matrix of trigonometric functions of the Euler angles

defined by the expression

W = D(S)a	 (16a)

Lagrange's equations of motion can be written in the symbolic form

dt (aT ^ + H °C T F	 (17d)
a ti

dt (^TJ as 
+ —")V = DrM	 (17b)

as

dt ( a
9

T) - ay + av _ (^	 (17c)

so that, considering Eqs. (9), (13) and (15) and premultiplying Eq.

(1713-) by D- T , the equations of motion for the spacecraft in orbit are

mR + CT S	 + CT '4y + C TwT Sdd + 2C rwT hj + C T ( w2 -1- uIT19

+ I IIti3 [ndt + CT (S O + .by) - 3[It RT CT 	 i" I'^])l i	 CTF	 (18a)

l Om + wT V + S0CR + uJ 
+ I [C ^,^, ^. J( v) f w J(Y) I Gme3 LCKJTIy

Gin	 I I? I
+ [w T4. + J(i^)]y +	 e	 • CR]S = M	 (18b)I ?̂I 3 	 U

Gm,

M Ay + 716i + -) Tw + f	 ITwTar- dnlA + ^3 ITCR
111Av
	 I R I

+ L A (in) j + [CA (rm) + L A (m) + K A ] I = (^	 (18c)

0
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where

J(m) = f (aw +[	 ])^ ding	 (18d)
mA

and

R

R = III	 (18e)

Premultiplying Eq. (17b) by D-T is equivalent to considering Lagrange's
equations in terms of quasi -coordinates (Rut. 2). Note Lhat the

position vector R, its time derivatives, and the Euler angles 	 have

been considered to be of arbitrary magnitude, with the result that many
nonlinear terms appear in Eqs. (18).

3. Equations of Motion fo r the Laboratory Experim ent

In the laboratory experiment, the spacecraft is not actually free
in space, but suspended from the ceiling by means of a cable or a
beam. The following analysis applies to either case. The support is
likely to affect the dynamic characteristics of the system. Bence, in

the sequel, the support is added to the free model in the form of an
elastic member.

Considering Fig. 2, the position vector for an arbitrary point C on
the--rable is R C = c + w, where c is a position vector and w is the

elastic displacement of the cable, both of which are measured with
respect to the inertial frame. The position vector fur the point U is

R=c B +w B +e	 (19)

where the subscript B denotes evaluation dL the point B dnd e is the

vector from point B (ball joint) to the point U fixed on the shuttle,
measured with respect to the xD yo zo frame. Tho velocity vector of an

arbitrary point C on the cable is then

R C = w	 (2 D)

and the velocity of point U is

R = wB + 11) x 0	 (21)
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The kinematics for the shuttle body and appendage remain the saute as for
the unrestrained spacecraft in space. Hence, the kinetic energy for the
entire structure is

T =f I,,,, I 2 dmC +	 f I liS I 2dms + l f I IiA	 1 2dmA

	

niC 	 ms	 ntA

= 2 f IwI 2dmC +	 f Iwli 
+ m x (e + r) dais

.	 ntC 	 mS

+	 f Iw D +m x (e+a+u) t ul^datA

MA

= 2 f IwI ldmC + 2 ml w g l l +	 t Oi g + 1 ut( ,a x e) . (^ A e)
mC

+' B (^, x S 4 ) + (w x e) • (w x S O ) +	 f itiI dmA

mA

+ wU • f u dntA + f	 u• () x b)dntA I. f	 (w x b) • ((,)x u) dntA

mA	 ntA
	

III A

+	 f 1q)x uI2 dmA + f	 u•(m x u) dmA 	(22)

	

mA	 mA

where

S D = S O + me, b = a + e	 (23)

The elastic displacement vectors u. and w. have been assumed to be small.

The expression for the virtual work is yiven by Eq. (7), but the
potential energy must be modified. The acceleration of gravity will be
assumed to be constant and can be expressed as u = - gu l so that the

gravitational potential is

V9	 f	 (c t w)•y dm E •t• f	 (R t• r)•u dills t. f	 (R r a t• u)•y <ImA

	

M
C
	 Ills	 ntA

	where It is defined by Eq. (19) and u
z
 is a unit vector in the 7	

(24)

direction. The. elastic potential energy for the system can be expressed
as

VE = 2 [u,u] + 2 [w,w]	 ('L5)

where [w,w] is the energy inner product for the cable, which includes a

2



MC = f ,p f p dinC + mi,81'4

mC

(21c)
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stiffening effect due to the weight of the spacecraft model. Because a
cable has little inherent bending stiffness. the stiffening effect can
be significant.

As with the appendage in the preceding section, the elastic
displacement of the cable can be approximated by a linear combination of
admissible functions, or

V.° 4'!1	 (26)

where w is a matrix of space-dependent admissible functions and it is a

vector of time-dependent generalized coordinates. Introducing Eqs. (8)
and (26) into Eq. (22), the kinetic energy takes the matrix form

T = I n fM n + 1 w T (I + nie fe + 2e fS ) m •F rr f , l C fS w + 1 yTM y

	

-YI C_	 0	 u	 B B o)	 A

	

TTT	 -TT TIT-.	T-1F 
C 4,13C (Pg + Q,i BC w 'Pg + 1

	

WT f	 bwP dm A 2 + gTL A(^')B 2 q LA(^)^
MA

where

wT = f	 'I, b din
MA

has--been redefined and
I

(21a)

('h1b)

is the combined mass matrix ofthe cable and of the struct:urc lumped at

the end of the cable, in which p B denotes the matrix ,p evaluated at B.

Introducing Eqs. (8) and (26) into Eqs. (24) and (25) the pr)tential

energy can be written in the matrix form

V = nTTl	 + s f cc +nu^ f y, f c	 f^fCc + 1 f Y	 f 1 n fK.n	 !_8g	 - B J	 BJ ' 9 '' J	 f 9 AJ 	 2 I c	 ()

where

p = f	 ip din C	 (211a )
III C

a

2
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and

KC - lip A
	

(29b)

i
is the stiffness matrix of the support. Considering Eqs. (19) and (2b),
the virtual work can be expressed as

SW = FTC9 8 5a + MTD(a)dy + gTdq
	

(30)

where all the terms have been defined previously. The effect of the
friction of the ball joint can be assumed in the form of an external
torque. Hence, we let M = M c + M f in Eq. (30), where M c is . a vector of

control moments and M f is a vector of frictional moments caused by the

ball joint.

Lagrange's equations remain in the symbolic form of Eqs. (17), with

the exception of Eq. (17a) which must be replaced by

d aTOV = TT.
dt (	

+	
VUC F	 (3G)

aq

Using the same approach as in Sec. 2, the equations of motion for the
laboratory experiment can be shown to have the form

MO + 1PBCTSD% + q,BCTw T S Cw + 1,13C Tmq + 2^,^c W Pq

r
+ 1p C f (w2 + wT )Uq + (nn1,^ i• r̂, T ),1 + KCn = w C TF	 (33a)

V

I llw + wT I Bw + SBGp U ^i + 1^q + Ed ((J) + b) J(w)

+ LCUI+J] + Cw	 i• J ( ,,i)]y i [C^JS U 	M	 (33b)

MO + f Cy U'3	 'T,-. + 1	 1' T ") f b1„ din

"'A

+ ,IT C U + L A (rf'A + [LA (.n)	 LA(•^.)	 KA]'.l - (!	 (33c)

where J(w) is redefined by replacing a with h in Fq. (18d) and

3
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I B	IO + me re + eTS0 + S0e	 (33d)

is the mass moment of inertia of the spacecraft about point B. In this

case, the set of Euler angles a is assumed to be of arbitrary magnitude,

which is responsible for many nonlinear terms in Eqs. (33).

4. 5iuru 1a0011 and Control

The nonlinear equations of motion for the orbiting spacecraft have
the same basic form as for the laboratory experiment. Hence, the

approach to the solution suggested here applies for both situations.

Consider a first-order perturbation on the quantities It .ind

R : it
0 

+ 
R1 ' a = aU + al
	

(34a,b)

where the first order terms R 1 and a 1 are small compared to the zero
order terms R U and a U . Introducing Eqs. (34) into the nonlinear

equations of motion, Eqs. (18) or (33), and separating orders of

magnitudes, we obtain zero-order and first-order perturbation equations.
The zero-order equations can be used for the maneuvering of the
spacecraft and the first-order equations for vibration suppression and

rigid-body corrections. Before proceeding with this technique, we will

first develop some expressions relating the perturbations in the Euler
angles, a, with small angular deflections, 6 expressed in the body-
fixed frame. This is done so that all the variables in the perturbation

equations can be expressed in the body-fixed frame, 'he frame in whic!i
state measurements will be taken and actuating forces will be applied.

Note that a set of Culer dnyles of drbitrary mdgnitudo du not form d

vector whereas the angles B, being small, can be thought of as a vector
quantity.

First consider Eq. (16a) which relates the velocities of the Euler
angles to the body fixed angular velocities, m. Introducing Eq. (34b)

into L•q. (lba) and neglecting higher-urdur Lerms, we obtain Lhe
perturbed angular velocity vector

-W0+W1
	

(35)

where
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10 = D(« O) O O , 11 = DQ 1 Q O + D(a 0Q, 	(36a,h)

Using similar considerations, it can be shown that the body-fixed
perturbation angles can be related to the perturbed Euler angles by the
expression

e a D NA,	 (31)

Note that the vector q is a first-order perturbation of a set of quasi-
coordinates (Ref. 2). Taking the time derivative of Eq. (31) and
introducing into Eq. (36b), the perturbed angular velocity vector, vi,
is related to the angles I by the expression

w1 = w On +	 ( 38)

Taking the time derivative of Eq. (38), the perturbed angular
acceleration becomes

w 1 = W	 + wd! +	 (3J)

Recall that the elements of the transformation matrix C from the body-
fixed frame to the inertial frame consist of trigonometric functions of
the Euler angles, so that a perturbation of this matrix will also
invo4 ve the vector R. This relation can be derived using Eq. (37).
Instead, consider the frame 0' which differs from the 0 frame oy the
angles L3. Then, the transformation from the 0' frame to the U frame

is E1 +] where I is an identity matrix. Letting C O be the

transformation matrix from the 0 frame to the inertial frame, the total
transformation matrix, C, from the U' frame to the inertial frame can be
expressed as

C-00+t1
	 (au)

where

C 1 = 00 0	(41)

In keeping with our objective of expressing the first-order perturbation

I
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equations in the body fixed frame, Eq. (34a) is replaced by

R=RO+C(l1
	

(42)

where R 1 is now a vector measured with respect to the U frame. The

control force3 and moments can also be expressed in first-order .
perturbed form as follows:

F = F6+ F 1 , M.= 11 0 +M I
	

(43a b)

Introducing Eqs. (34) through (43) into Eqs. (18) and neglecting
higher-order terms, we obtain two sets of equations of motion for the
spacecraft in orbit. The zero-order equations, which govern the motion
of the structure as if it were rigid, can be expressed as

T" •	 T-T_	 Gill 	 T T	 TmI2 0 + C OSd8 O + Cda 6'd8 O

 + IR I3 [m-
0 + (I - 31t OIt 0 )C OS O ^ = C^O

O	 (44,( )
Gm

S OD UF O + Ili I3 
S TOC(AO + 'doo + w0l Uw 0 = IQ 0 	(44b)

0
The first-order equations, which govern the small scale motions of the
structure, can be expressed as

ndiF 'Lnw Tft •r• [ w T + w2 F Ilf R + S Is + 2(0 S L F [m T ( a2 ( IIf 5 t.1	 h	 U	 U	 ^1	 U^	 U U	 U	 U	 (lh

+ P& + iq + 21ndkj '^ ^i 0 I mi l + I[Iiil = F l	 (45a)

STR 1 +'25^n OR l h S^IM •Fin)+ Tjlti .FFII(I

ti
+ I 11(j + C Iw o F ^' O I O •r• [ f 0( 1) 01

.v
+ [ I Ow^ + m^I Owp F [I Ow U]v T + S OliIL + `u9

+ [W o" I JA + [J O + (1)01 0 + IFTIq	 M 1	 (45b)

—T"	 —T-T	 'f I* T	 -'L	 T-
a R 1 + 2N w ORl + p Do + w O + 11111 + t (3
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+ [IT-T - JT ][i + [04 J TwT + 9^TH]^0	 0	 o- 00

+ MAg + LAg + [l A + Ln + K^+]g = go + gi	 (45c)

where

H	 l3 [I - 3CJ&UC^]	 (45d)
RO

^3 	 Gin .. i
H = [C GfZ O] +	 e3 [C OR O]	 (45e)

1^^01

_	 Gm _

g 0 = - [MTC^0 + IR I 3 ^'TC t O 
.i. 

NT^O + fm QT_
	

0) dm A] 	 (45f)
o	 n

For the laboratory experiment to be successful, the deflections of
the cable (translation of the spacecraft) should be small. From purely
rigid-body dynamic considerations, the point B (ball joint) must be
close to the center of mass in the direction normal to the axis of
rotation during a maneuver. Hence, the vector S B can be considered to
be small in the following analysis. Because the motion of the caL 	 has

been assumed to be small, introducing Eq. (36) into Eq. (33b), the 2 	 -
order equations for the laboratory experiment are simply

IWO + w01080 = M O	(46)

The motion of the cable, 11, can be expressed with respect to the body-

fixed frame, as was done with the vector R 1 for the orbiting
spacecraft. Introducing Lys. (36), (39), (0), (41) and (43) into Lqs.
(33) and neglecting higher-order terms, the first-order equations of
motion for the laboratory experiment can be expressed as follows:

MCn + 2L Cit + [LC + LC + KC ]n + %S BI + 2^VI osy + " [mu + °U]SBr

+ ip
T
9g + 2Q,0AS + 1 3 EWO + mO]^u^{ = F O + OBF	 (47a)	 ^.

..	 f

SQ^, Bi1 + 2S4w^W + SVO + OIL'	 I

0
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+I Ba + [Ie o + w0 I B 	 [1B,o114

r f I BWO + woI BWO + [ I B 01w^ + sB[ a 11a

+q+[wad,+JB1g+[JB+ wOJB +[LnJnl q

= Mo + M^ + M I	 (47b)

1
^TWBD + 26Tw0 V, B 'J + ut (wp + w j),PBO

IT" 	 [,p Tw^ - J tj1^ r [+ d - J^f,i^ I ^I+T C ^I^TICs

+ MA9 + LA  + [ LA + LA + KA]y = g G + g I	 (47c)

where

F O = - p^[IOSBw B + S Bw oj - (IIIQ,a + ,I )C BQ	 (47d)

110 = S BCO	 (47e)

g o = - C Trio+ 1
_.	

MA

DTwbbw G dm  + I) T C GRI (47f)

For the orbiting spacecraft, Eqs. (44) can be solved for F G(t) and

M G(t) for any desired maneuver strategy R G(t) and w o(t). For the

laboratory experiment, Eqs. (46) can be solved for M 0(t) for any

desired w (t). In either case, these quantities can then be substituted
into the ^ir •st-order equations (Eqs. (45) or (47)) producing a set of
linear equations with known time-varyiny coefficients which govern the
small deviations from the rigid-body maneuver and elastic motions of the
structure. These linear equations can be exprossed in Lhe moLrix Fowl

•k

Mx + Gx I• (KS + KNS )x = F	 (48)

where For the orbiting case

x  = [R i C 	 9T 1	 (49a)
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F*T
= [Fi	 Mi	 ^p + Qi]

M O 	SO 	N
m	 U	 U

M = So	 I O	 M MO = U	 111	 0

TT 	 J	
MA

0	 U	 m

2M0w0 2, LT

G = -2(o (T50)T IOw0
. `.

+ w0I 0 + [IOw0]

-2(w0D) T -[w0D +	 )0]T

MO [w0 + lil fo + [w2 + II]50

Ks = F O + ST -2 +	 III w0I0m0

T [wo + H] J^w0 + 4.	 11

.,T
M Uw 0

"Te
w0`U

KNS =
' Ts„-(w^SU)T

IUw^
.0

+ [I Ow 0]wT + SOH

-(Wo(J)T
4) w0

and	 for the laboratory experiment

xT = [ i f	 (';T	 UT .l

IVkT
= CF0 +7GFi

-0l  MT	 Qo	 Qil

MC	
II)TSI3

II) T 	 ,

M = S 1T3 4'13	 I B

T T Y 3	 IT MA

(49b)

(49c d)

2w ^;^

Wo i J0
	

(490)

2LA

[wo + N]D

w0i0r1.	 (49f)

LA + KA

w 0 
^1,

JO
	

(499)

LA

(b Oct )

(5Oh)

(5oc)

I
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2,Oa^OS B

I B10 + W01 B + [I B ai 0]

-EW01 + J0)T

T-2v	T-2-
BW 0S 13	 '113W01,

I O I Bw O 	a0 0 I
JOI 0 + aTCGpg1	 ZA + KA

2LC

G = -2(V^^WOSB)T

LC I KC

K S = S13fd0^1'B

402i0^ B

2 B0 00

	

+	 (50d)

2L 

	

[C 0131'
	

(50e)

(5Uf)

L	 TITS	 TITN
C	 QB U B	 _	 B U

KNS = -(T B 	 1A + [11i^'O 0 + S B EC OU]	 q0

- (V^f3 r^0a )T 	'I W0	 LA

In both cases, the mass matrix is symmetric. However, for the orbiting
structure, the mass matrix is time invariant, whereas for the laboratory
configuration, it is not. This is the case because the mass matrix of
the cable, MC , must be calculated with respect to the body-Fixed frame,

and hence it is a function of the transformation matrix C O(t). However,

MC and hence M can be considered time invariant if the axis of rotation

is the axis of symmetry of the cable. In both cases, the time varying
matrix G, multiplying the velocity vector, is skew-symmetric. This
matrix contains the Coriolis (gyroscopic) terms.

The stiffner r matrix has been split into two parts, one part, KS,

with purely symmetric terms, the other, KNS , with the I.erms which ledd

to nonsymmetries. Uf course, KNS can be separated into symmetric and

skew-symmetric matrices if desired. As can he seen in Eqs. ( 1190) and
(5Uf), the terms containing the angular acceleration, ^o, of the body-

fixed frame lead to nonsymmetric terms in the stiffness matrix. In
fact, many of these terms are skew-symmetric, and hence, circulatory.
Note that the perturbation of the Euler equations resulted in some
nonsymmetric terms containing only the angular velocity vector y o . This

is not surprising, because it is well known that a steady-state rigid-
body rotation about the axis of intermediate inertia is unstable. owing
to the nonsymmetry of the stiffness matrices, the vibration problem is
non-self-adjoint in both cases.

4
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Because we ignored structural damping, the matrix G was found to be
purely gyroscopic, and hence conservative. However, the stiffness
matrix was found to contain circulatory, nonconservative terms. Hence,
during a rotation, the structure may be vibrating about an unstable
equilibrium state, requiring active vibration control to stabilize the
desired maneuver.

Gravity has a much stronger influence on the laboratory experiment,
both because the force of gravity is greater, and because the opposing
force is a point (cable) force rather than a body (centrifugal) force as
with the orbiting structure. Hence, the static elastic displacement of
the structure must be .considered in determining the stable equilibrium
orientation. It has been previously assumed that the ball ,Joint is in
the vicinity of the rigid-body center of mass along the axes orthogonal
to the cable. That is, point B is near the center of mass, or perhaps
somewhere above it. We now wish to find the stable equilibrium
orientation and elastic deflection of the structure for a given ball
joint location. For the laboratory experiment, the static portions of
L'qs. (48) can be expressed as

KSTX ST - FST	
(bl)

where the static stiffness is

KC	UU

K ST = U	 SBEco^]	 C 0]T, 	(51a)

o	 TJECOO	
KA

and the static force is

T i !1 )Cog

F S •f = S 13C Oy 	 (51b)

-D C ^
	 }

Lquations (51) form a set of nonlinear alyebraic equations which can be
solved for xST , the static equilibrium orientation and elastic

deflection of the structure. The elastic deflection is coupled with the
anyular orientation of the structure. Hence, the true center of mass
depends on the orientation. The orientation about tho longitudinal axis
of the cable (direction of gravity) is arbiLrary. p his means LhaL d

,
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rotation about this axis will not affect the static orientation or
elastic deflections. Any orientation can be made to be the stable
equilibrium position by properly locating the ball joint using Eqs.
(5I). Hence, a single-axis rotation, that is not affected by gravity,
can be accomplished about any desired axis once the proper ball ,Joint
location has been determined.

The SCULE design challenge maneuvers are time-optimal rotations
beginnipg and ending in a state of rest. Provided the axis of rotation
is the cable axis, the eigensolution of the structure before and after
the maneuver will be the same. Uuriny the maneuver, the gyrosCOpiC and
stiffness matrices, and hence the eigenvalue problem, are functions of
time. Solving the eiyenvalue problem at each time step would be
inefficient and of limited usefulness.Ilowever, a truncated set of the
premaneuver eigenfunctions can be used as a set of admissible vectors to
reduce the order of the equations of motion. The equations in reduced
form Can then ba suived using d discrete-time LCLIMI yua.

A most desirable control technique for a maneuver excites the
elastic modes as little as possible. The obvious method is to apply a
force that is proportional to the rigid-body mode corresponding to the
maneuver. Because the modes are orthogonal, the other modes are not
excited. The control forces must be distributed throuyhout the
structure to maintain it in its initial state of deformdLion. Of
course, this would require distributed actuators and can only be
approximated with discrete actuators, so that the elastic modes will be
excited somewhat.

For simplicity, consider a rotu;ion about the mass center in the
direction of a principal axis. The equation yoverniny such a maneuver
can,-be expressed as

Mo(t)	 ao(t)lo
	

(y2)

where a 0 (t) is the desired angular acceleration, M O(t) is the moment

delivering this desired performance and I O is 61le mass moment of

inertia. For reasons mentioned above, we wish to apply the moment by
means of distributed actuators, so that M O(t) is the resultant moment

produced by forces F(p,t) distributed throughout the structure or

MO( t ) = f 	 r ( p ) F (h, t ) dU(p)
	

(b3)

Introducing the definition of to aril ELI. (53) into Eq. (b2), the

equation governing the maneuver can be expressed as
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f D r ( p ) F( p ,t) dD ( p ) = f D a ll(t) m ( p ) r 2 ( p ) d D ( p )	 (54)

where r(p) is the distance from the mass center to point p, where r(p)
is ;normal to the axis of rotation, and m(p) is the mass density of the
structu re at point p. Considering Eq. (54), and consistent with our
desire for the force to be proportional to the rotational mode, the
force density can be expressed as

F ( p ,t) = ao(t)m(p)r(p)
	

(bb)

Because the force is
orthogonal to all of
desired rotational m
to the mass, so that
that when this force
should be located at
riyid-body control.

proportional to the rotational mode, it is
the other modes, so that it will excite only the
ineuver. Note that the force is also proportional
the mass acts as the control gain. This snygests
is applied with discrete actuators, the actuators
the point of maximum mass for maximum efficiency it

5. Con clusions

The equations of motion for the structure both in orbit about the
earth and in the laboratory are nonlinear, even when the elastic
deformations are small. The nonlinear terms result from the large
rigid-body maneuver. Through a perturbation approach, the nonlinear
equations of motion can be transformed into a set of equations governing
the riyid-body motions and a set of time-varying, linear equations
governing small deviations from the prescribed rigid-body maneuver, as
well as elastic motions. The first-order equations are non-self-
adje-int. The mass matrix is time invariant so that it need only be
inverted- once in a discrete time simulation. The order of the equations
can be reduced using the premaneuver eigenfunctions as admissible
functions. Forthe laboratory experiment, a single-axis rotational
maneuver, which is unaffected by gravity, is possible. The control
force for the rigid-body rotation should be proportional to the
corresponding rigid-body mode, with the massacting as the control
gain. Also, the actuators should be located at the points of maxinunn
mass.
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