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ABSTRACT

This report investigates the practical aspects of a 2400-bps differential

detection minimum-shift-keying (DMSK) receiver. Fundamental issues relating

to hardware precision, Doppler shift, fading, and frequency offset are ex-

amined, and it is concluded that the receiver's implementation at baseband is

more advantageous both in cost and simplicity than its IF implementation.

The DMSK receiver has been fabricated and tested under simulated mobile

satellite environment conditions. The measured receiver performance in the

presence of anomalies pertinent to the link is presented in this report.

Furthermore, the receiver behavior in a band-limited channel (GMSK) is also

investigated.

The DMSK receiver performs substantially better than a coherent minimum-

shift-keying (MSK) receiver in a heavily fading environment. The DMSK radio is

simple and robust, and results in a lower error floor than its coherent counter-

part. Moreover, this receiver is suitable for burst-type signals, and its

recovery from deep fades is fast.

This work was performed for the mobile satellite experiment under a NASA

contract.
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I. INTRODUCTION

The Mobile Satellite Service (MSS) is a new concept in mobile communica-

tions whereby the service subscribers can initiate or receive calls almost any-

where in the U.S. and Canada using low-cost, low-power mobile terminals. The

broad coverage of this service will become possible via utilization of one or

more geostationary satellites. Therefore, the spacecraft can be perceived as

being a transmission tower that has a clear view of the continent because of

its enormous height.

Employing spaceborne platforms for mobile communications objectives is

not without its drawbacks. Indeed, a spectrum shortage, which is due to the

limited frequency-reuse capability of MSS, and a power shortage are the major

challenges facing the network designer. Many techniques must be carefully

examined and improved before consideration for MSS; in particular, digital mod-

ulation requires special attention. The candidate transceiver must conform to

the characteristics of the mobile environment as well as to the features of the

satellite. In short, spectral and power efficiency must be combined with agil-

ity and robustness. Furthermore, physical compactness and low cost must also

be achieved.

Studies conducted by the National Aeronautics and Space Administration

(NASA) [1] have suggested that low bit-rate transmission is suitable for the

MSS applications, particularly from the frequency and power conservation point

f	
of view. Moreover, the particular bit rate of 2400 bits per second (bps) is

emphasized due to its applicability to the Linear Predictive Coding (LPC) of 	 j

speech and its usefulness for message transmission of a typical size such as

1



1000 bits. Since, due to practical reasons beyond the scope of this report to

discuss, the network structure will be of the Single Channel Per Carrier (SCPC),

Frequency Division Multiple Access (FDMA) type, a small. channel spacing is de-

sirable for the sako of spectrum uptimization. Therefore, the need for a high-

performance, narrowband digital transceiver is apparent. This report will

describe one such implementation, which utilizes the spectrum efficiency of the

Minimum-Shift-Keying (MSK) approach for modulation on one hand, and the respon-

siveness and robustness of differential <letection techniques for demodulation

on the other.

MSK and its enhanced version, Gaussian MSK (GMSK), have recently been the

subject of many studies for mobile communications applications (2]. In addi-

Lion, their viability for moderate-rate data transmission over mobile channels

has been demonstrated [3]. In principle, there are three distinct methods of

signal detection that can be applied to MSK/GD1SK signals: coherent, differen-

f tially coherent (known as DMSK), and noncoherent. The noncoherent detector,

in essence, is an FM limiter/discriminator receiver. This receiver tries to

use the FM nature of MSK for signal demodulation. However, due to the small

size of the frequency deviation, the discriminator type of receivers for MSK

has not gained popularity [4]. At the other extreme, the coherent demodula-

tion approach results in the best performance if the channel is ideal. In

practice, the multipath effect plagues the carrier-phase tracking loop dra-

matically, resulting in a suboptimal performance. Nevertheless, for moderate-

rate links, e.g., 32 kbps, the coherent detector has been shown to be feasible

[5]. At our bit rate of interest, 2400 bps, the coherent technique suffers

from a large dynamic loss coupled with an excessively high error floor [4].

2
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The differential detention technique, i.e., DMSK, has gained increased

popularity in recent year:;, particularly because of its simplicity. This tech-

nique has been successfully applied to data communication over multipath fading

channels for transmission rates as low as 16 kbps, but lower bits rates, such

as 2400 bps, posed an implementation difficulty that had to be overcome. This

report describes a new baseband approach to this technique.

II. THE TWO-BIT DIFFERENTIAL RECEIVER

A version of this DMSK receiver was first suggested by Masamura at al. in

1979 [6]. The receiver block diagram is illustrated in Fig. 1. Note that the

name "two-bit differential detector" arises from the use of a 2T-delay line in

the circuit, where T denotes the bit time. Although the receiver can also be

implemented with a one-bit delay, this report deals only with the two-bit ver-

sion. After the initial suggestion, this receiver became the subject of many

investigations [7], including an in-depth analysis by Simon and Wang [8, 91.

The two-bit differential receiver determines the excess phase of an MSK
e

signal over a two-bit period. In the ideal case, this phase is either zero or

+n. Hence, it can be seen that extreme phase response linea_ •ity or group

delay flatness is demanded from both the IF filter and the delay line (see

Fig. 1) to ensure phase integrity.

The MSK signal that creates an excess phase of +n/2 every bit time can
t

be formulated as

fF

s(t) = A cos [mOt+ ^W]	 (1)

3
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where w0 denotes the carrier angular frequency and ^(t) denotes the ex-

cess phase. Ignoring the noise and the intersymbol interference (ISI) gener-

ated by the IF ilter, the demodulated signal can be expressed as

r(t) = s(t)s(t - 2T) - A 2 cos[2w0T + 4(t) - ^(t - 2T)]
	

(2)

Now let AO _ 0(t) - ^(t - 2T) and assume 

2w0T = 2Kn
	

(3)

where K is an integer. Hence, Equation (2) can be written as

r(t) - A 2 cos(A0
	

(4)

The DISK excess phase at the 
ith 

sampling instance is given by

r +n

A41 	jlll
0

at =at..I

ai # q _ I
(5)

where a t denotes the i th bit. Now viewing the MSK as a frequency-shift-

i
keying (FSK) signal, a change in data, i.e., a t # a  _ 1 , means a change

in the transmitted frequency by +1/(7.T). Hence, a ripple or error in the group

delay response of the receiver can have catastrophic results. Let d denote

1	 This is a key assumption at low bit rates and has ramifications in terms

of such system parameters as allowable Doppler shift and local oscillator
offset.
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the peak-to-peak differential delay for the two tones at frequev,r.'ms f 0 + 1/(4T)

and f 0 - 1/(GT), where f 0 is the receiver IF frequency. Hence, when ai
i

'	
ai - 1' an additional phase error may propagate through the system, down-

grading A^ to

+^r	
ai ° °i- 1

nroi 
° j

Il cos (4')	 a	 ai - 1

where

Y ° 2nf 0d
	

(6)

To reduce the distortion caused by the impetfect system phase response, the

product f 
0 
d must be minimized.

It has been shown that to optimize the receiver power performance, the

receiver's IF bandwidth must be approximately equal to the data bit rate 181.

In fact, this bandwidth provides the best balance between noise and ISI.

Hence, for the bit rate of interest, the receiver's IF bandwidth is approxi-

mately 2400 Hz. The narrowband requirement of the receiver's filter prohibits

a very flat group-delay response. Indeed, for this IF filter, it is rather

impractical to reduce the peak-to-peak delay distortion below 20 Us. 2 Using

this value in Equation (6), an upper bound on the phase distortion can be

2 Specifications were provided by Alpha Components, Inc., Mechanicsburg,

Pennsylvania, July 1984.

6

-­ 7777­7w, -7M4



determined for a given IF frequency. To do so, we assume a very low IF fre-

quency of 10 kHz; hence,

Y - 2n x (2 x 10-5 ) x 104 = 72 deg

A phase error of this magnitude will severely distort the receiver's eye open-

ing, resulting in a drastic loss of performance, particularly if the effect of

ISI is also considered.

To eradi,:ate this problem and still maintain the restriction shown in

Equation (3), the baseband implementation of Fig. 2 is used. In this figure,

the IF bandpass filler is replaced by two baseband filters that band-limit the

noise in the in-phase and quadrature signal paths. The actual low-pass filters

used had a Gaussian characteristic and their peak-to-peak delay differential

was 17 un within the passband. 3 The maximum peak-to-peak differential de-

lay of the delay lines is only 5 us. Hence,

Y	 2n(17 + 5) x 10-6 x 600 = 4.7 deg

where 600 Hz is the baseband frequency of the FSK tone. Hence, only a small

maximum phase error is associated with this receiver implementation. The above

phase error can cause only a negligible eye-opening distortion. Moreover, in

practice, the error will very seldom become as large as 4.7 deg.

3 This is easily achieved at baseband, whereas the 20-us differential delay

at IF is very difficult to achieve.

7
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To demonstrate the receiver's design viability and examine the hardware

component's precision, i.e., the noise-limiting filters and the delay lines,

the eye diagram of the demodulated signal as captured by an oscilloscope is

shown in Fig. 3. The large eye opening is a testimony to a skillful hardware

design and implementation.

III. RECEIVER PERFORMANCE IN THE ABSENCE OF FREQUENCY UNCERTAINTY

It is known that differentially coherent receivers demonstrate sensitiv-

ity to large frequency offsets. The receiver performance in the presence of

frequency uncertainty will be treated in Section IV. Section III focuses on

determining the system performance in the presence of noise and multipath fad-

ing. The results presented in this section were obtained experimentally using

the Mobile Satellite (MSAT) hardware channel simulator. The architecture and

functions of this link simulator have been described previously [10].

The receiver's static and dynamic responses have been determined ana-

lytically in [9]; however, no clue .o its error floor is provided. The

irreducible error rate or error floor is an artifact observed in mobile

channels. In some cases, this anomaly can severely undermine the link perfor-

mance. The tests performed on this receiver had the following goals:

(1) Determine the receiver performance in noise.

(2) Determine the fade margin for both terrestrial (Rayleigh model) and

satellite (Rician model) mobile channels.

(3) Determine the error floor in the presence of multipath fading.

9
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(4) Test the receiver robustness and responsiveness to a burst-like

signal.
I

(5) Evaluate the receiver in the presence of frequency uncertainty (this

topic will be discussed in Section IV).
r

A. The Receiver Error Performance

The results of these tests are primarily presented in the form of error

rate curves as functions of average E bIN e . Starting with the static

performance, Fig. 4 shows the receiver's measured error performance in the

presence of thermal noise. The solid curve in this figure shows the ideal

performance extracted from [8]. The two curves are very close, indicating

insignificant implementation loss.

Figure 5 illustrates the receiver performance in the presence of Rayleigh

and Rician fading with f  (Doppler frequency) equal to 20 and 72 Hz, l respec-

tively. For the Rician case, it was assumed that the line-of-sight-to-multipath

ratio ( LMR) is 10. This particular value of LMR represents a typical Rician

condition in the rural area, which was obtained from the propagation experi-

ments conducted in the U.S. [ 11]. These experiments were aimed at characteriz-

ing the MSAT link. Note that the effect of the satellite in the link is two-

fold, namely, the reduction of both the fade margin and the error floor. For
r

example, the fade margin at a bit error probability of P e = 0 . 001 is 3 dB for

the satellite -aided link, whereas the same error probability lies below the

performance limit of a terrestrial link ( see Fig. 5).

Theses a are typical Doppler shifts that a vehicle communicating in the 800 mHz
band will experience.

11



jr

a^

10

2

10-1
5

2

10-2
5

2

10-3
5

av

2

10a
5

2

10-5

5

2

10-6

5

2

10 _7

IDEAL PERFORMANCE

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20 22

'b /N0 , dB

Fig. 4. The DMSK Measured Static Error Performance

12



0,

10°

5

2

10-1

5

2

10-2

5

2

10

5

av

i

10-4

F

L

10 5

L

i

10 E

L

10 /0
10	 20	 30	 40	 50	 00

E 6/NO , dB

Fig. 5. The DMSK Measured Error Performance in the Presence of Fading

13



B.	 The Error Floor

The error floor associated with the 2400-bps signaling rate in a high-

frequency band such as 800 MHz poses a formidable obstacle for mobile communi-

cations via terrestrial channels. Often, frequency efficiency must be greatly

sacrificed to restrict this floor below a desired threshold. For the satellite-

aided links, however, the existence of a strong line-of-sight (LOS) component

can be helpful in controlling the link's irreducible error rate. To verify

this concept, the error floor of the DMSK receiver was measured for a range of

channel characteristics with f (I = 72 Hz, and is shown by curve A of Fig. 6.

This figure shows the irreducible error rate as a function of LMR. It should be

recognized that a large LMR, i.e., larger than 13 dB, constitutes a reasonably

stable (nonfading) link, whereas a small LMR, i.e., less than -3 dB, consti-

tutes a heavily fading (Rayleigh) link [12). At LMR = 10 dB, the irreducible

error rate is 10 -6 . This error floor is well below the network requirement

(Pe = 10 3 ) for digital voice communications.4

IV. RECEIVER PERFORMANCE IN THE PRESENCE OF FREQUENCY OFFSET

To understand the influence of a frequency offset on the two-bit differen-

tial receiver, the effect of the noise-limiting filters on the eye opening of

the received waveform must be examined. The signal at the baseband end 9' the

receiver is described by Equation ( 4), where A^ denotes the excess phase

4 This information was provided by Time and Space Processing, Inc.,
Santa Clara, California.
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gain over a 2T period and its value at the sampling time is given by Equation (5)

when the ISI created by the receiver filters is ignored. Consideration of the

ISI effect modifies the values given in Equation (5) to the following:

"0" was transmitted:

	

A^	 Probability

	0 	 0.5

	

F	 0.25

	

-e	 0.25

i

111" was transmitted

	

A$	 Probability

	-T 	 0.125
-n + 2e	 0.125
-n + e	 0.25

	

n	 0.125
n - 2e	 0.125
I - e	 0.25

Assuming the filters are of Gaussian characteristics with bandwidth B, a is

given by [8]

	e - (7/4) - arctan	 (
13/15) ex [-71/(8 x BT x BT)]	 (7)

1-(2/15) exp [-7/(2 x BT x BT)]

Note that for BT = -, e = 0. A plot of e versus BT is illustrated in Fig. 7.

Of particular interest is the value of a at BT = 0.9, since it is shown in [8]

that this value of BT results in the optimum performance for the receiver. For

j	 this value of BT, e = 16.5 deg.
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The presence of Doppler and/or local oscillator offset further reduces

the data eye opening. The phase error 6 produced because of a frequency

difference of Af is given by

6 - 2T (2n x Af)	 (8)

Therefore, the sampled signal is proportional to the following quantities:

110" was transmitted:

Quantity	 Probability

cos(161)	 0.5
cos(161 + IeI)	 0.25
cos(161 - I E I)	 0.25

"1" was transmitted:

Quantity Probability

-cos(161) 0.25
-cos(I 61	 + IEI ) 0.25
-cos(161	 - 1E1) 0.25
-cos(161 + 21EI) 0.125
-cos(161	 - 2JE1) 0.125

Observing the above tabulated values, it is clear that the eye opening is asym-

metric. The two values -cos(161 + 21El) and -cos( 161 - 21E1) are present for

a "1" transmission, whereas their images do not exist for a 110" transmission.

Therefore, a "1" results in a smaller noise margin than a "0." This asymmetry

issue is discussed in great detail in [9].

To visually observe the eye diagram distortion, the receiver eye patterns

for two Doppler values of 20 and 72 Hz were recorded using an oscilloscope and

are shown in Figs. 8(a) and 8(b), respectively. The asymmetric nature of the

18
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eye pattern is evident from these figures. The eye opening is substantially

reduced at 72 Hz, whereas this loss is neglibible at 20 Hz. It is important

to note that the sign of the frequency offset does not affect the direction in

which the closure of the eye occurs. Hence, it is expected that offsetting

the detection threshold can lessen the distortion caused by the frequency

uncertainty.

The effect of a frequency uncertainty on the receiver performance can also

be reduced by increasing the receiver's bandwidth. This approach is investi-

gated in the following subsection.

A.	 Optimum Receiver Bandwidth in the Presence of Frequency Offset

As mentioned earlier, it is shown in [B) that the optimum balance between

thermal noise and the closing of the eye occurs at BT - 0.9. In the presence

of frequency uacertainrv, however, this value of BT does not present the best

balance between noise and signal distortion. Since at moderate and high signal-

to-noise ratios the receiver performance is primarily determined by the small-

est eye opening, the following ratio may be selected as the figure of merit (m)

for the two-bit DDISK receiver:

m = cos 2 (161 + 210)	 (9)

BT

The numerator of the above ratio is an indication of the worst-case eye opening,

and the denominator is proportional to the noise power. Hence, it is desirable

to maximize m. Table 1 shows m as a function of d, where m is normalized to

its value at	 = 0. For example, a loss of about 4 dB is expected when

20



Table 1. Normalized m in dB as a Function of 6

6 (deg)	 m

0 0

5 -0.54

10 -1.2

15 -2

20 -2.9

25 -4

30 -5.3

5 -7

6 - 25 deg. To reduce tbi.s loss, a new BT that maximizes m in the presence

of frequency uncertainty can be used. Table 2 shows the gains for m relative

to its value at BT sz 0.9. Note that modification of BT adversely affects the

frequency error-free performance only by a small quantity. For instance, if

BT is increased to 1.2, a loss of 0.3 dB occurs relative to BT = 0.9 when no

frequency error exists.

From the above discussion it is concluded that in the presence of frequency

offset, moderate improvements can be expected by (1) slight offsetting of the

detector threshold, and (2) increasing the receiver bandwidth. The next sec-

tion presents a third method of combatting frequency uncertainty, a method that

is more powerful than the previous two, particularly for large frequency error .

21



Table 2. Optimum BT and Improvement on m as a Function of d

6 (deg)	 New BTa 	Improvement (dB)

0 0.9 0

5 1 0.08

10 1.1 0.2

15 1.1 0.4

20 1.2 0.7

25 1.3 1.2

30 1.4 1.8

35 1.5 2.6

40 1.6 3.8

45 1.7 5.7

50 1.9 9

a Optimized for the given 6.

B. Frequency Tracking

Combination of the Doppler shift and the local oscillator uncertainty

gives rise to frequency errors with a magnitude too large to be remedied by the

simple techniques described above for the bit rate of interest. Therefore, a

tracking loop that can correct large frequency errors is required for stabl:

and efficient operation of the receiver. Fortunately, the structure of the re-

ceiver at baseband lends itself to incorporation of an automatic frequency con-

trol (AFC) loop without substantial added complexity. The block diagram of the

receiver with the AFC loop is shown in Fig. 9. Observation of this figure re-

veals that the loop error signal is proportional to the product of the follow-

ing two signals (ignoring the ISI generated by the filters):
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r 
I 
W = cos(6 + kn)

r 2(t) = sin(6 + kn)

where k = 0 for a "0" data bit and +n for a "1" data bit, and 6 is given by

Equation (8).

Hence, the loop error signal is given by

e(t) = 2 K sin( 6 + krr) cos( 6 + kn)

or

e(t) = K sin(26)
	

(10)

where K is a constant. The error signal, e(t), is first smoothed by the loop

filter and then used to drive the voltage-controlled oscillator (VCO) to the

correct frequency. Note that the error signal is slightly modified in practice

due to the ISI generated by the transmit and receive filters.

The theoretical pull-in range of the AFC can be calculated from Equations

(8) and (10). To avoid false lock, the argument of the sine function in

Equation (10) must be lest; than n; hence,

26 = 2 x (2T) x (2n) x Af < n

or
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R 
Af <

8	 j	 .

Since R  - 2400, it is required that Af < 300 Hz. In practice, the pull-in

range is less than this value because of the ISI effect.

To demonstrate the effect of the AFC on the receiver, a number of expori-

ments in the presence of a frequency error were conducted. Figure 10 shows the

error performance curve as a function of E b/No in the presence of a 100-Hz fre-

quency offset with and without the AFC loop. At P a = 10 4 , a 5-dB improvement

results from the use of the loop. This figure also demonstrates the static

performance (no frequency error) when the loop is used. The performance loss

in this case is negligible for low P e ; however, for P e = 0.1, the loss is

about 1 dB.

To explore the effect of the vehicle's motion on the received signal's LOS

component, tests were conducted under a Rician model in which the LOS component

was shifted in the spectrum by the maximum Doppler shift. In fact, this is a

realistic worst-case assumption, since the vehicle is likely to move in a ran-

dom direction relative to the (satellite) transmitter. The offsetting of the

LOS creates additional stress on the receiver. Under this model both the dy-

namic error rate and the error floor are likely to increase. For example, the

error floor of the receiver as a function of LMR when LOS undergoes a Doppler

shift of 72 Hz is shown by curve B of Fig. 6 (no AFC).

Figure 11 shows the error probability versus E b/No for a Rician fading

channel with LMR = 10, a Doppler shift of 72 Hz, and LOS also shifted in
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frequency by 72 Hz, without the AFC loop (curve A) and with the AFC loop

(curve B). The introduction of the AFC loop has improved the dynamic per-

formance by 2.5 dB and the error floor by a factor of 2.

V. SIGNAL BAND-LIMITING

To conserve bandwidth, often it is desirabl y. to band-limit the signal at

the transmitter. If a Gaussian filter is added to the baseband portion of an

MSK transmitter, the resulting signal is known as GMSK. The tests described in

the previous sections were conducted using a quadrature type of MSK transmitter.

To evaluate the receiver's ability to demodulate GMSK signals, an FM type of

transmitter was constructed. To introduce signal band-limiting, a baseband

Gaussian filter with BT = 0.5 was included that could be switched into the

data path. Hence, without the filter the resulting signal was MSK, and with

the filter the signal was GMSK. Experience showed that this method of signal

generation (FM) creates anomalies that in turn cause a loss of about 1 dB at

the receiver. This conclusion was arrived at by using this transmitter in the

MSK mode and comparing the results with the ones obtainer: from using the quad-

rature type of transmitter. Since the purpose of this report is to evaluate

the receiver, no further discussion of the transmitter will be made.

Figure 12 shows the receiver error performance as a function of E bINe for

the GMSK signal and in the presence of a frequency offset of 100 Hz (curve A).

Curve B shows the same scenario when the AFC loop is used to track the fre-

quency error. Clearly, a GMSK signal is much more sensitive to frequency

errors than an MSK signal. Figure 13 shows the receiver performance in the
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presence of Rayleigh and Rician fading with the APC. In this figure it is

assumed that the LOS is shifted as much as the prevailing Doppler shift, which

is a worst-case assumption.

VI. RESULTS

The baseband implementation of the two-bit differential detector is a via-

ble approach to achieving the 2400-bps data reception in the MSAT environment.

This configuration is a receiver for both MSK and GMSK signals. It is robust

and is quick to recover from deep fades. This receiver can easily be imple-

mented using VLSI technology, resulting in a low-cost and compact radio that is

highly suitable for mobile satellite links. In the absence of large frequency

offsets, i.e., offsets larger than 20 11z, the receiver's recovery time is about

one or two milliseconds.

It is shown that the receiver performance degrades severely with a large

frequency error, i.e., an error larger than 20 Hz. To combat this anomaly, an

AFC loop was designed and added to the receiver. This loop is capable of

reducing the frequency error to negligible levels. The cost of the frequency

control loop on the static performance of the receiver is about 0.5 dB.

Table 3 shows the important loop parameters. Note that, in the presence of

this loop, the receiver's acquisition time is increased to about 90 ms for a

frequency offset of 250 Hz.

The static and dynamic C/No requirement of the receiver for P e = 0.001

is summarized in Table 4. This table indicates that in the worst-case situa-

tion, in which the signal experiences a Rician fading of 72 Hz and the LOS is

31



Table 3. Phase-Locked Loop Design

Parameters
	

Definitions

F
h
 - +1 1 000.00 Hz

Fp - +252.30 Hz

Go - 6.28E+03 1/s

Fo = +100.00 Hz

Se = 0.100 red (5.73 deg)

28L - 150.00 Hz

K - 1.00E+02 Hz/V
v

Kd = 0.159 V/rad

W  
= 141.43 rad/s

Tp = 9.87E-02 s

Ke = 62.89

= 0.707

T 1 = 3.14E-01 s

T2 = 10.00E-03 s

C = 2.20 uF

R1 = 2.20 U

It 	 = 4.54 U

R3 = 138.24 U

RD = 138.24 k9

Hold-in range

Pull-in range

DC loop gain

Frequency offset

Static phase error

Two-sided loop noise bandwidth

VCO gain

Phase-detector gain factor

Loop natural frequency

Pull-in time

Required mii.imum amplifier gain

Damping factor

Time constant of loop filter

Time constant of loop filter

Filter capacitor

Filter input resistor

Filter feedback resistor

Filter gain resistor

Amplifier offset resistor
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Table 4. Static and Dynamic Power Performance of the Receiver

Performance
Case Parameter MSK GMSK

Static C/Noa 44.3 44.8

With 100-11z frequency offset, C/No 48.8 ----
without AFC

With 100-Hz frequency offset, C/No 44.3 44.8
with AFC

Rician fading with LMR - 10, C/No 47.3 47.8
Doppler shift is 72 Hz, and LOS
not shifted

Error floor, Rician fading with Pe
LMR = 10, Doppler shift is
72 Hz, and LOS not shifted

Rician fading with LMR - 10, C/No
Doppler shift is 72 Hz, and
LOS shifted 72 Hz

Error floor, Rician fading with Pe
LMR - 10, Doppler shift is 72 Hz,
and LOS shifted 72 Hz

a C /No is in dB.

10-6	 --

47.8	 49.3

0.7 x 10-4	10-4
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also shifted by 72 Hz, the required C/N o values for the MSK and GMSK signals

are 47.8 and 49.3 dB, respectively. These figures are computed for an average

error probability of 0.001.
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