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The iron/chromium redox energy storage system has the capability of

providing inexpensive, reliable bulk energy storage suitable for the

efficientcaptureof energy from IntermittentsoUrcessuch as solar or wind

energy,and it has,with recefltdevelopa_ntsin higher temperatureoperation

at NASA-Lewis Research Center (i),the potential for meeting the require-

ments of electric utility applications such as load levellng and peak

shaving. All of the reactant species in the system are soluble in hydro-

chloricacid at practicalconcentrations,a featurewhich perndtsscaling of

the energy section of the system independently of the power section (2].

The negativeelectrodecouple is Cr3+/Cr2+and the positiveelectrodecouple

is FeB+/Fe2+;both couplesare in the fona of chloridesdissolved in hydro-

chloric acid. The electroc/wndcal conversion reactiuns take place on inert

carbon felts. The solutionsmay be separatedby an ic_-selectivemembrane,

which pem_its charge transfer with little cross-mixing of the reactive

species (3).

DurL_ discharge of this system, Cr2+ is oxidized to Cr3+ at the nega-

tive electrode, and Pe3+ is reducedto Pe2+ at the positive electrode. In

one configuration, using a two-tank system, the solutions are pumped

continuouslythrough the reactor gefleratingefle_jyand gra_klallyreducir_

_e stats-of-chargeof the bulk solutions° During cha_ing of the system,

energy is delivered from an external source and stored by reversing the

electrode _actionsand gradually raising the state-of-chargeof the bulk

solutions.

This system has been under _evelopm_t since 1974 wi_h the direction



and active participationof the Lewis ResearchCenter of the National Aero-

nautics and Space Administration(N_SA-J_)-.withFundingfrom both NASA and

the Department of Energy (I-11). Semi-permeable membranes have been ......................

developedby Ionics,Inc.that are sufficientlyconductiveand selectiveto

meet the requirements fo.tsolar and wind energy applications {12). The

system has been scaled up to a ikW, 11 kwh size withoutdifficultyand many

systemfeaturessuch as flow, shunt _arrents,electrochemicalbalance,mixed

reactants,temperatureeffectsand catalyst systemshave been studied.

Giner, Inc..hasbeen involved in the development of this system since

1975, with emphasison the negative electrode (13-16).Early in the project

it was observed that the bare carbon felt was adequate to support the

Fe3+/Fe2_ reactions but the Cr3+/Cr2+ reactions requiredcatalyzationto

proceed at reasonable polarization and efficiency. Gold at a very low

loading (12-15microarams/cm2) was found to be a suitable catalyst"for the

negativeelectrodebut with the disadvantagethat it simultaneouslylowered

the overvoltage for hydrogen evolution accelerating this parasitic co-

reactionto unacceptablelevels.

This problem was surmountedby adding lead chlorideto the electrolyte

and electrodepositinglead, in situ, over the gold-activate_carbon felt

(14-20).The lead has a high overvoltage for hydrogenevolution and is also

an excellent catalyst for the Cr3+/Cr2+ reactions. With this catalyst

system the negative electrode can be cycled at moderate rates with low

polarizationand little interferencefromhydroge_evolution.

During extensive testingof the negative electrode,both at NASA-LeRC

and at Giner, Inc., it was observed that the performance of the negative

electrode could be somewhat variable both in terms of reactivity for the

ORIGINAL PA(_E _
_. i:_R QUALITY2
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_, Cr3+/Cr 2+ redox reaction as well as the level of hydrogen evolution on

cha_e. In the previous program (16),it was _eten_h_edthat a _nent of

this variability could be attributed to the carbon felt subStrate,

specifically the heat treatment temperature (1250-2300°C, followin_

pyrolysis of the rayon felt at 750°C}. The effects of this factor were

found to be mitigated by an aold or alkaline treatment preceding the gold

catalyzatlonprocess. Beyond this it was observed that _Icreas_lgthe gold

loading was not beneflclal and that the lead loadlng, measured by anodlc

strlppingduring cyclic voltsm_etry, showed a consistentcorrelationwith

reactivity. At this point the investigation turned to physical surface

analysls methods in an attempt to clarify the obseEvatlons gathered by

electrochemicaltesting; and to attempt to optJ_2e bhe ca%alyzatlonpro-

cess.

Uslng transmissionelectron microscopy(TE_ and scanningtransmlsslon

electron_tcro_copy{STEM),uncatalyzedcarbon felt f_bers were found to be

fluted-resen_ling a bundle of smaller fibers but otherwise smooth and

generally free of partlcles. Gold-catalyzed felts exhibited opaque

particles in the range of 10-500nm scattered over the surfaces. Energy

dispersive analysis by X-ray (EDAX) showed these particles to be gold.

Estimates of the gold surface area also Showt_ direct correlation with

reactivityand the observed lead loadlngs.

These two lines of JJlvestlgation,the effecc_of the carbon felt sub-

_ straitand optimizationof the gold/lead cstalln;tsln_e_ were co_t_luedin

this phase of the program, as well as new areas of investigation as

sum_rize_ below.

3
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B.

- The research and development work presented in this re_ort was directed

to-two broad tasks as outlined below. The first task, Electrode

Development, represents an extension of the previous work, and the second

' task was addressed to performance factors of significance to advanced

: developmentof the iron/chromiumredox syste_

T_S_ I. EUCTRmZ _

A. Characterizationof Carbon Pelt Substrates
B. CatalyzationProcedureOptimization
C. Performancein System Hardware
D.. Specificationsfor Substrateand Catalyzation

• _. Temperature Dependence
B. CrossoVerEffects
C. AcidityLevel

The characterizationof carbon £eltS was initiatedwith a broad range

sampling of temperatures for the heat treatment, from 1250° to 2300oC.

Thesewere carefully controlled preparationspurchasedfromFiber Materials,

Inc.,in contrastto the randomsamplingof coam_rciallyavallable materials

-, examined in the previous program. The samples ineluded a set that was

"scoured"(solventwashed to remove si_ing before pyrolysis).

The initialtest resultS, in concertwith the resultsof the previous

_,.:. prog_a,_,suggested a processing temperature of 1650°C fo_ optimum

electrochemlcalperformance. On this basis, a second set of carbon felts

was ordered in a narrower band around 1650oc. Before these samples were

received, it was discovered that there were several discrepancies in the

gold catalyzation procedure as practiced at Giner, Inc.compared to that

used at NASA-LeRC (8). A preliminary investigation of catalTzation

prnceduresindicatedconsiderableperformance variations associated with

4
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processing parameters. As a conseqUence, the carbon felt characterizstio_

study, which was originally anticipated to yield a single sample £ot use L_

furtherstudi_s,was extendedto partially overlap the catalyzationoptlml-

zation study_(_qKI-_, in order to generate a broader base.of ingormatlo_

The general conclusions and reconuuendatlonsderived from this study

regarding carbon felt processing factors are that the starting material

should be unscou_ed and the optimum heat treatment temperature is in the

range of 1650° to 1750°C. A broadertemperatureselection,1500° to 1800°C,

would probably be acceptable if used in similarnarrow banG, e_o 1500° to

1600°C or 1700° to 1800°C,etc.

A variety of gold catalyzationparameterswere studiedover the course

of the programas outlinedbelo_

K0H I N 80uC 0.5 hours
45% 90°C 2.0 hours

Dried: After rinsingto pH 7
Damp: After rinsing to pe 7
Damp: .AfterpH 5 pre-soak

After pH 7 p_-soak
After pH 9 presoak

Solvent/WettlngAgent
Water/Methanol
Water/Acetone

Solution
Temperature: 0% 25O, 50°C
Volume: Saturation,small excess,large excess

Exposure
5 minutesto 16 hours
open or closed amtainer

HeatingTime and Temperature
Drying at 100°C for i-2 hours
Dryingand baking at 250-270°Cfoe 2 hours

5
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Both electrocl_ic_l measurements and surface analyais t_l_iques were

used _o evaluate cataly_tion partners. The recon_ded process c_ters

on the lx_lished NASA procedure (8) with the i._osition of some additional

controls (see section v-_.

InJtiallys three variations of a basic methahollc/gold deposition

process were used to catalyze carbon felt samples (Section V-A)I other

factors, such as processir_ temperature_, were examined later. The cataly-

zation methods were I) the Double Immersion method, a Bet of procedures

developed in the prevlous program for rigorous control of the total gold

loading, 2) the NASA-I method, a standard method used at NASA-LeRC, and 3)

the NASA-II method, a modification of the standard method in which the gold

chloride concentration was reduced by half and the volume doubled.

The standard NASA catalyzation procems (_A-I), and more pa_tlcularly

the modified process (NASA-II), presented an opportunity to observe the

solutions "in process" by way of the excess solution volume, in cOntraSt to

the Double Inversion method in which the solution was designed to be totally

absorbed by the carbon felt sample. For NASA-If electrodes, it was

immediately noticed that _he excess gold chloride solution had a faint blue

color. For NASA-I electrodes, the excess gold chloride solutlon looked

clear and colorless at first. After two hours, however, it changed to

purple. The next day the solution was still purple and had become

noticeably cloudy. These colors are reported to be doe to suspended gOl_

particles, the formation of which Is initiated by contact of gold chlorld(

solutlon with the felt (21). Based on the blue color, observed in the l@.gA-

II preparation, the particles were at_tlclpated to be very stoat1, on th,

6
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order of 1.0 nm diameter (nucleates). The actual gold cL_stallt_es on

carbon fiber, observed by transmission electron microscopy, were large_ than

1 n_ rangtn9 from 10 to 25 r_ The purple color seen fo__I_S/_-I electrodes

Was reportedto indicate larger paL%Icles, on the order of I00 nm diameter.

The actualgold cEystallitesdepositedon the caclxm fiberswere observed to

be on average smaller than 100 n_ (20-60 nn_, but larger than the gold

partlclesdepositedby the NASA-IImethod. The gold crystallltesdeposited

by the Double Immersionmethod were within the sam range as the particles

deposited by the NASA-I method (25-35 nm). These observations also

suggestedthat meta111c gold is formed when the methenollc gold solution

contactsthe carbOnfelt. Previously it had been assumedthat gold chloride

was de_i_ed, requiringthermal decompositionto gold. Similar results,in

termsof particle slze__wereobtained in a study of controlled procedural

variations (Section V-B), but the correlation wlth electrochemical

perforn_ncewas less obvious.

The smaller and more uniformgold particles depositedby the NASA-II

meth_ resultedinhigherelectrochemicalactivity,includinga higher level

of hydrogen evolutlon, a combination that would lead to low charging

efficiency. These same electrodesexhibitedhlgh lead depositswhich my be

consistentwith hlgher gold surfa_ arw. The Values for lead deposition...........................,

consistentlyexceededthe theoreticalqUanltltyof lead available, however,

which may have resulted in some unplaced gold leading to higher hydrogen

evolution rates, such a condition would not be expected In a flow cell

which may suggestthat the N_SA-IImodificationis worth fuctherstudy uncut

flow con_Litlons.

7



OF POOR QUALITY.

The NASA-I catalyzation procedure, yielding larger, less uniform

particles, resulted in lower electrochemical activity but higher charging

efficiency values. The Double Immersion method, yielding gold particle

sizes within the same range as the NASA-! method, resulted in electro-

chemical performancewhich was quite different(low activity, low charging

efficiency)suggestingthe i_fluenceuf factorsin additionto gold particle

size, or non-representativemlcreBcopysamplings.

In the course of ca_alyzlng electrodes over a period of many months,

other processvariablesthat could affectthe gold deg._Itwere noted. Some

of these are relatedto the.precatalyzationstate of the carbon fe.ltsuch as

its moisture content, damp or dry, and its residual pH. Other factors are

the wetting agent used (methanol or acetone), and the temperature of the

catalyzingprocess. The work done to determinethe effectsof these factors

is discussedin SectionV-C.

With regard to the Selection of a wetting agent and a damp versus dry

precatalyzationstate for the carbon felt, the small sample of test data was

not sufficientto clearly differentiatethe factors tested. Both wetting

agentshave been used successfullyat NASA-LeRC. It was also concludedthat

the damp/dryconditionof the felt per se, prior to catalyzation,was not a

significant factor. A _elated factor, the residual pH of the felt after

pretreatmentin KOH, was consideredto have more potential influenceon the

subsequent catalyzation; pH values of 5, 7 and 9 were studied. The mean

particle size was fairly consistentin all cases,but the rangeof sizes for

the pH 9 samples was much larger. Again, the data do not permit any clear

selection of conditions but suggest rather that I) a pH range of 5 to 9 i,.



|

i_! an acceptable precatalyzation aonditlOn for the carbon felt, and 2) still

_-'_i other factors influence the catal_ion or testing pro_ess.

i Three cataly_atton tenperatu_es Were studied; O, 25 and SO°C. It was.....
,!

fouhd that there was a .progressiVe increase in gold particle size with

increasing catalyzation tmpatature, as anticipated. The range of particle

sizes also Increased with increasing temperature. The electtochmlcal per-

_ £ormance data was quite scattered but the values for relative charging

:.':: efflcle,cyimproved scmwhat with increasingcataiyzatlontemperature.This

"i.: data suggests that, although catalyzation tmperatu_e affects gold particle

_:'_ size in an expected manner, here again there are other factors influencing

electrochemical perfomance.

,:! In the above studies directed to defining the critical factors in the

. gold catalyzatton process, .the electrochemical perfor_mce obse_Ve_, as
.. 0.

• • _o_ed, was frequentlyerraticsuggestingthat some Influentlalfactorswere

" not being controlle_ One such factor is the carbon felt subs_rats,which

:: can e_thibit variations in physical and chemical properties and has been

" found to influence performance, as discussed earlier. The _ pretreatmnt

':., process is directed to neu_ralizing scm of the chemical properties of the

felt, but it is obviously not completely effective and does not address

variations in physical properties such as density, thickness ahd surface

are_ Thus the carbonfelt remainsas a potentially_.nfluentlalfactortlmt

is probably not completely controllable. /_nother factor is the cyclic

V_r/ testingproceduresus_. & Study of reproducibility(Section

'. V-D) was directed to the latter, assuming that the _arbon felt subst'tate

over a. stall area would be sufficiently uniform in properties. A concerted

9
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effort was then ._de to control all other factors in the catalyza_-ionm_d

testinq processes. For this purpose,_three felt samples (from a small

section of one lot of felt) were catalyzed in three separate operations

using the same catalyzation method (NASA-I). Each sample was then cut into

three strips to provide a total of nine samples for elect.rochestlcaltesting.

Examination of the resultingse_ of test data In the context,of a selection

of previous test data showed that the data point,s nearly span the full range

of the previous data and thus could mask any differences beb_en catalyza-

tlon by the Double Immersion method through the NASA-II method. There was a

definite grouping of points around values characteristic of NASA-I

preparations but it is apparent th_..._a large number of data points might be

needed to obtain a sta_istically significant value.

At the completion of the catal_st procedure optimization stuck,,it was

concluded that i) there are factors influencing the gold catalyzatlon

process that were not determined or sufficiently controlled for closely

predictable results in terms of gold particle size or performance, 2) the

cyclic voltammetry testing methods are only suitable for qualitative

analysis and broad distinctions in performance; the results may be best

interpreted on a statistical basis over many samples for the present state

of refirement in cyclic voltat_etry, catalyzation, electrode preparation end

xllng.

In an extension of the catalyst optimization task, an att_Yc was made

to define the physlcal character of the lead deposit i.e.,pa_ticlas versus

a continuous layer, and on-the-gold versus on-the-carbon _ibers or evenly

distributed on all surfaces (Section V-E). Transmission and scanning

I0
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tran_ission electron microscopy techniques were ueed...to examine the surface

for Particles, and both.,l_AX and X-ray dot: mapping tecbniqu_._ :,_e used for

_terial analysis. Lead in particulate fore was not observed in any case;

the lead that was detectedappearedratherto cover the entire fiber wi_:ha 1

d

thin layer, The disposition of _he lead in specific relation to the gold

could not be clearly established.

The effects of reactantcrossover Were exaxld,nedbriefly using cyclic

voltametry. Fromthese studiesit was concludedthat there were no signifi-

cant e_fects associatedwith crossover, i.e.Fe2+ in the chcomlum solution

and Cr3 �inthe iron solution. [In studies at NASA-LeRC, Fe3+ in the

chromiumsolution,a situationwhich can be avoided, was found to be detrl-

mental, however (I0)].

MinoD.investigationsof the effects of temperatureand acidity level

were also performed. The resultswere generally as anticipatede_. greater

reversibility with higher temperature and aciditylevel. The effectsof

temperature, especially with regard to the shift in the chromium complex

equilibrium ("open-clrcultvoltage hysteresis"phanon_, were addressed

more speclficallyby work done at _-LeRC (1,10,11).

Finally, optimizednegative electrodeswere tested in systemhardware,

a 1/3 squarefoo_flow cell, with generallygood results.

11



II. LB_ff_agJqICAL T_nm RROC_S

All of the e]e_troche_cal testing-40e_formc_l on this program was done

by cyclic voltammetry in a three electrode cell. The details of the elec-

trode mounting, cell configurations, solutions, standard sweep sequences and

data reduction, are described below. Individual variations, such as the use

of FeC13 and higher concentrations and temperatures, are described

separately.

The "waxed-clip" electrode holder was used to mount all test

samples studied in this program. This type of electrode holder was dev-

eloped at NASA-Le_ to reduce contact reslstance-problems and the undesir-

able compression of the carbon felt associated with the tantalum wire

electrode holder used earlier (15)o The holder, shown in Figure I,

consists of a binder cllp with added copper contact surfaces and a heavy

threaded brass connector rod. A 1.5 cm wide strip of felt was clamped

between the copper contacts and 1.3 cm of its length isolated by means of

pressure frOm the stop-off cla_x The entire binder cllp assembly was then

submerged momentarily in hot (13000 Ceresln wax, allowing the melted wax to

wick up the felt as far as the end of the stop-off clamp, as depicted in

Figure 1. To provide ah external electrical contact, a length o5 the con-

neetot rod was masked with Teflon tape prior to dipping. The stop-off clamp

and nasking were removed once the wax had hardened. 'I_us, only the unwaxed

1.5 x 1.3 cm (2cm2/uide) felt section was exposed to the solution for

testing.

12
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B. P.lee_t_h_,t_al_ c_ll

The test cell, illustcattedin Figure 2, cunsistedof a 75 ml glass

vessel threaded to accept a plastic screw cap provided with five stan_rd 1

taper ports (EEOModel 494). The center port contained a specially designed I

Teflon plug with threaded contacts to which the waxed-clip electrode was

attached. Counte_ electrodes, consisting of graphite rods (Ultra-Carbon

"F") contained in fritted glass tubes, were placed on either side of the

working electrode. A saturated calomel reference electrode (SCE) and

nitrogen gas bubbler occupied the remaining ports. The gas bubbler was

equippedwith a two-wayStopcock so that nltrogencould be bubbled through

the solutionor over the surface. A mall Teflon-coveredmagnetlcstirring

bar was generally provided for in situ mixing of react_mts. During.teSting,_

the stirring was stopped and nitrogen bubbling was switched to a surface

flow.

c. _wa_na _ _u_n_e

Electrical contact problem, particularlyw_th regard to varia-

bility, can be reduced substantially through the use of the waxed-cllp

holder. However,the actual potsntlals,especiallyat the switchingpoints,

remains_t undefined. Consequently, electronic compensation for IR

loss was used for all tests in this progr_

The device used measures the current flowing to or f_om the working

electrode and feeds back a proportional voltage in series with the input

signal to the potefltiostat. The tri_ular linear potential sweep signal,

rather than the working-to-reference voltage, is used as the input for the



potential axis of the voltanmogra,_ The iR compensation point is determined

by monitoring the working-to-reference potential on an oscilloscope while

increasing the level of compensation; the onset of oscillation represents

the beginning of over-compensatlon. It appeared that being within 1/4 to

1/2 of a turn (on a ten turn potentiometer) of the oscillation point was

adequate compensation in most cases, i.e., the effect of closer correction

was negligibly small..

D. 2=Ja Eu mdmum

All measurements were made versus a saturated calo_-I electrode

(SCE). The felt test electrode was always saturated with solution by

evacuating the cell after inmersion of the electrode, and the solution was

deaerated with nitrogen before each run. Pairs of counter electrodes in

fritted glass tubes were designated for each solution composition to reduce

cross-contaminatlon between tests. For routine negative electrode testing,

the three compositions examined in sequence were I) HCI, 2) HCf, PbCI2, and

3) HCf, PbCI2, CrCI 3.

A Wenking potentiostat was used to control the electrode potential in

response to a cyclic linear potential sweep signal provided by a Hewlett-

Packard function generator (Model 3310B), The cell working-to-reference

potential was used to drive the Y-axis and the resulting current (as voltage

drop across a 1.0 ohm precision resistor) was recorded on the X-axls of a

Linsels X-Y recorder (Model 1700). When electronic iR compensation was

used, the triangular sweep signal rather than cell working-to-reference

potential was used to drive the potential axis, as discussed in Section C

above.

14
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!i On the previous program (16), the negatiye potential region was
_, explored usL_ a gold-activated carom felt in 1.0 N h_rochlo_ic aci& The

_);" negative electrode test region was initially set at 0.0 to -1.0 _ _S. SCE.
"' ,?

_-_
_:_ It was observed that no-reactions other than _+ reduction (hydrogen

_i_:: eVolutic_ occurred over a wide potential region in hydrochloricacid. It

_:,! was also demonstrated that the sweep rate could be changed from 10 mV/s to

)iil.' I00 mV/s withouteffecton the observed current. Since this was the case, a

__!: sweep rateof i00 mV/sec.wasselectedfor this particulartest, H+ reduction

..:?.. on gold-actlvatedfelt in HCf, to avoid excessivehydrogenevolutlc_ For

_' most other tests the sweep rate was kept at I0 mV/s. An exception waS the
,L

_:i high concentrationsolution testingwhere the s_eep rate bs_dto be reduced

- _., considerablyto stay within Instnznentallimits.

_i!ii When iR co_pensation was introduced, it was found that in many c_Ses
!

_:,_:.- the current became almost asymptotic at -I000 mv which sometimes induced

_2.': irreversibleoscillationin the potentiostat. For this reason,the negative

-;:i_?_- electrode test _egion was shifted 50 mV more positive, i.e.+50 mV to -950

_ _ mV vs. SCE. The potentialwas always applied at approx__mat@ly0.0V.

=_ A roUtinenegative electrodetest procedurethen consistedof recording

...._:-,_.. cyclic volta_ogre_S in the following sequence (as a co_p_ite figure:

_" 11 g+ Et_hl£f._ in 1.0 It HE1. The hydrogen evolution

_, characteristicsof the gold-activatedfelt were initiallye_eninedin 1.0N

-;::," HCl only. The hydrogen evolution rate on gold was generally five to ten

=:, times greater than other reaction levels. Consequently, the H+ reduction

-_':: curve on gold/carbonfelt (ku/O is frequently sho_n with a current scale

_ :" multiplier in the composite Voltam_o_rm_

:o

o,°'

o ,.
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2) 2+la 1t+12-o - At the completion of

. the first test, the counter electrode set was exchangedand lead chloride

. was introduced. The lead chloride concentrationwas 10-3 N (whichis close

to the saturation level in hydrochloric acid)..In order to achieve this

concentrationit was necessaryto add lead chloride crystals to the.50 ml

cell volume of hydrochlori.cacid to avoid a volume charge. This procedure

was found to be somewhatundesirablein the previousprogramboth becauseof

the small quantity of material involved and the difficulty in achieving

i co,_letedissolution. Consequently,insteadof adding lead chloride to the

i, solution,a large volmne of 1.0N HCf was premlxedwith 10-3 N R_CI2 and a

50 ml quantity of this solution was substitutedfor the rICl-onlysolutionused in the previous test. The solutionwas stirredand deaeratedagain for

--i_ 20 minutes.

! Cyclic Voltammogramswere then recordedover the same potential _ange,
i
! at i0 mV/s staTcingat 0.0V, to measure lead plating (Pb2+ reduction_-550
,i
-_ mV vs. SCF_, the subeequenthydrogenevolutionon the lead-on-gold(-800to

-950 mV Vs. SCE); and lead deplatlng (PboXidation_-500 mv vs. sc_ on the

return sweep. A voltan_o_ram was typically recorded after the third or

fourthcycle. Later in the programthis was extendedto 10 or more cycles.

"? 3) _3+/Cr 2+ Reaox _ After completionof the testingwith

:J lead chloride, the counter electrode set was again exchange_ and chromic

chloride (CrCI3.6H20_ Baker Reagent Gd.) was added to the solution for

measurementof the Cr3+/Cr2+ redox reaction. FoE routinetestingonly, a 50

mM concentration of chromic chloride was used. The solution was stirred

with t.hemagnetic stirrer and by bubbling nitrogen for 20 _ 30 minutes

16



after the salt addition. Dissolutionof these qUantltlesof chromicchlo-

e/de occurred almost imme4iately;.extensive stirring was used to ensure

uniform concentrationof reactantswithin the felt electrodestructureand

eq/ilibrlumwith the bulk solution. I

Cyclic vo%tammograms were again recorded over the +50 to -950 mV

potential rangeat i0 mV/s startlngat 0.0V vs. SCE. The chargingreaction

(Cr3+ reduction) begins coincident with lead plating at about -525 mY vs.

SCE and shows a peak at about -650 mY. Most electrodes showed a mlnlnu_ in I
i

the cathodic current following the Cr3+ reduction peak and preceding the I

onset of hydrogen evolution. On the return sweep, thedlscharge reaction

(Cr2+ oxidation) begins at about -650 mV vs. SCE and shows a major peak at

about -550 mV_ the trailing side of this oxidationpg_k generallyexhiblted

a shoulder and smaller peaks trailingoff towards0.0.V......

In order to search for performance effects related to parameters

such as catalyZatlonand type of felt subStrate,it was necessaryto extract

and condensethe informationcollectedby cycllc voltammetry. This was done

by tabulating selected anodlc and cathodic current features and curve

integrationsto yield charge or coulombl¢capaclty(c_rrentX time). These

methodsof selectlngdata points are describedin datail below.

I. Curr_t Data. The anodic and cathodic current data points

that were typlcally selected from the voltanmograms and tabulated for

qualltat_vecomparisonsare illustratedin the representativevoltammograms

shown in Figures 3 and 4. The curves shown in Figure 3 are a composite of

two separate voltammograms recorded on the same grid. The first curve

ii
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•" ORIGINAL PAC_ iS
OF. POOR QUALITY

" exhibits the electrochemicalfeaturesdisplayedby a gold-activatedcarbon

: felt in hydrochloricacid before the additionof lead chloride. The only

reactionobserved is l_]rogenevolution. The data point selected to re_._-._.

sent the level of •thisreaction is the current measured at the potential

sweep switching point, -950 mY vs. SCE. This is referenced as data point

"1" in the figure, and has been symbolized as "IcH+ on Au/C", the H+ reduc-

tion currenton gold-on-carbonfelt at -950 inV. This data point was found

to be highly sensitiveto the accuracyof iR compemation _ and was thus

somewhat less reproducible than other data points. The Second curve in

Figure 3 exhibits the electrochemicalfeaturesdisplayedby a carbon felt

electrode(similarf_atureswith or withoutgol_ in hydrochloricacid after

the addition of lead chloride. The cathodic reactionsobserved then were

lead plating followed._y.!_.y_dx_ogenevolut.i.o.nand, on the return (anodic)

sweep, lead deplating° The data point selected to reDre_entthe level of ._

hydrogen evolution after the addition of lead chloride is referenced as

point "2" in the figure, and has been symbolized as "IcH+ on _b/Au",the H4

reductioncurrentat -950 mV vs, SCE. _e level of the lead plating reac-

tion is referencedas data point "5" in the f.lgure,and has been symbollze_

as "IcPb2+"_the Pb reduction current. The subsequent deplating reactio_

level is referencedas data point "6"and has been symbolizedas "IaPb", th.

Pb oxidationcurrent.

• The curve shown in Figure 4 illust_ates the electrochemicalfeatur_

displayedby a carbon fel_ electrede (withgold in this illustration)aftE

the addition of both lead chloride (in_N)and chromic chloride (50raN)t

the hydrochloricacid (Ib0. The level of hydrogenevolution (_ �redUctl(

18
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superimposed on Cr3+ _ctio_ at -950 mV is refermaed as data point "3'.

A .data.point col le_ted to represmt _ cathode minimum betwem the C_ +

reduction peak and hydrogen evolution is identified mJ point "4" and has

been symbolized as + rain.".

The data point selected to represent the level of the negative elec-

trode chazging reaction is referenced as current peak 17" and has been

s_bolized as "IcC_ +_, the C_ + reception current. The data point selected

to represent the level of the negative electrode discharge reaction is

referenced as point "8" in the figure and has been symboli2ed as "IaCr2+",

the Cr2+ oxidationcurrent.

The data point numbers described above have been keyed to the columns

of data shown in the Appendix Tables. The columns of data, representing

different felt Substrates...and.goldloadings or procedures, were then

examined for trends.

2. _ Data. The anodic and cathodic current data points

described above are subject to some experimental error related to the

accuracy of the iR conpensetionused end the degree to which the resistive

elements are reproducible and amenable to compensation, e.g., ohmic

potentialdrops (resistivity.of the diffusionlayer)versus llquiddiffusion

potentialand surfacefilm resistance. By coet_rison,the area definedby a

curve (currentX time) is less _blguous. In addition,,_asure_nt of the

charge permitted quantitative separation of various features of interest.

Po_ example, the a_ount of lead plated on the cathodic side can be

de_enot_ed (before the addition of chrc_ic chloride) by measuring the area

under the anodic part of the curve for lead oaidation, designated OaPb.

19
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" This value is relatively unan_iguous compared to the cathodic charge, which

is the sum of the.Lead._lating charge, Qc_b2+, (both from within the felt
I

, and from bulk diffusionto the surfaces)and the H+ reductioncharge, Q_..

The lead oxidationcharge,OaPb,was assumedto be the same before and after

the addition of chromic chloride. This assumption was made based on the I

appearanceof the compositereactionsfor pb2+/pband C_+/Cr 2+ at the i0 mM

Cr3+ concentration, investigated in the last program 1161. Thus the lead

oxidationcharge, QaPb, (measuredbefore the addition of chromic chloride)
I,
," was subtractedfrom the total anodic charge measured for the combined reac- I

_ tions (QaPb+ OaCr2_ after the additionof chromicchloride, to yield the

_. Cr2+ oxidationcharge, . Since the catalyticsurface changeSthrough

the anodic portion of the curve (i.e.lead deplatesl, the total chromium

77-:• . charge in some instances was separated into two segments, the major peak

};" region before the end of lead deplatlng, referredto as "QaCr2+ Peak", and_.,

_;:'. the trailing region referredto as "QaCr2+ Trailing". The trailing side of

, the lead oxidation peak was used as the dividing line. In addition, in

_ order to provide a more complete analysis of the data in some instances,

_ four cathodicarea integrationsof the same cyclic Voltal_ogrmnswere deter-

ilI mined. These are describedbelow.-

,: 11) QcPb2%H+ - The cathodiccharge in 1.0mM Pb2+, IN HCI electrolyte.

o_: 121QcH+ - The cathodic charge due to hydrogen evolution in 1.0 mM
:;7.

i_ Pb2+',IN HCI electrolyte. 0cH+ was obtained by subtracting OaPb from

%eb2+, rl+.

(3) QcCr3+ - The total cathodic chargedue to Cr3+ reductionin L0 e_4

l_ 2"_, 50 n_t Cr3+, IN ItC1 electrolyte.

20
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(4) QcdCr3+ - The cathodic charge due to Cr 3+ reduction in excess of

the anodic charge due to C_2+. oxidatio_lOaCr 2 �„�œ�i.ea

--- QcdCr3+ - QcCr3 OaCr2+.

_ This value probably represents an approximation of the reactant/product

i diffusion to and from the surface of the felt sample i.e. Cr3+ reduced at

the sue'facemay diffuse into the bulk of the solution and thus be

" unavailable for oxidation on the return sweep. Theoretical values for C_ +

: within the felt were also calculated (QtCr3_.

,. The various charge segments discussed here are illustrated in Figure 5.

Curve segmentswere integratedby the paper,weight-ratiomethod.

i

i'
i.
i "

'/

./.
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Au on Carbon l_elt in IN HCI
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on Pb/_
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Figure3. RepresentativeVoltammogramShowingpb2+/pbDataPoints
Summarizedin Tables.
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Cr3+/Cr 2+ Redox Reaction in Pb/Au/Carbon Felt

Q IaCr +

0
.,4

I

Ic_+ \ A
IoH �\!

mlnImum V U

0
IeCr3+

l I l ,,. j

-1000 -500 o

Potential

Figure: 4. Representative Voltammogram Showing Cr3+/Cr 2+ Data Points
Summarized tn Tables.
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III. _ {_,IILWI(M i_

^. _ Imm_ _.aua

In the previous program (16}, carbon felts with widely varying

physicalpropertiesan_ from several vendors were being investigated. SinCe

controlof the absolutequantityof gold depositedwas a primaryconcern, a

processwas developed that tailored the gold solution volmee approximately

to the absorptionaapacityof the felt s_le while holding the gold loading

per square centimeter constant. This was referred to as the "Double

Immersion"process (to distinguishit from earlier "dropwlse"methods).

For this program, test samples 7 x 7 cm were cut from each

temperature-runof felt. Each san_le was cleaned accordingto procedures

developed in the last progrsL. The cleanin_ procedure consisted o_ vacutuu

filling the felt wlth.IN KOH, heating.to75 - 85-oc for 30 mintltes,rinsing

to approximately neutral pH and drying at I00 - 110°C for I hour. (Some

surface effects observed for this process are discussedin Section V-R-4D

Gol_ was depositedon the felt from an aqueous/methanolsolution.

The use of alcohol as a co-solvent/wettingagent was first inveSti-

gated on an earlier program (15). Initially, 50/50 Isopropanol/watersolu-

tions were used. The currentprocess, based on methanol, was developed in

furtherexperimentsat N_SA-LeRC(6-8,20),and has yielded excellent £esults

in i kW, II kWh prototypesystem tests (6-8),

In an early atte_ to prepare a relatively large selectionof elec-

trodesby the alcohol-assistedgold process, a large VOlUme of app oprlate

solutionwas pre-mlxed. Becauseof the processingtime involved, a portion

of the solution experienced several houro of st'andlngin the container.

Over this period of time (<8hours),the initial yellow color of the gold
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chloride solution was observed to fade significantly and small black fibrous

;, strands and needle_ were observed throughout the solution, indicating

precipitation of metallic gold. Since the premlxed solution had not

previously b_n stored for any length of time, the short-term instability ofL

gold chloride in alcohol solution had not been observed. This _otential
•

J

problem of gold precipitation in the presence of alcohol was obviated by I

preparing and storing only the aqueous portion of the solution; the required 4I

quantity of methanol was then added to the exact volume of aqueous solution

q
required immediately prior to use. The toual volume of solution required i

I
for each t-ypeof felt was selected on the basis of the mean water absorptlon

values measured; the gold concentration was adjusted in each case to give

the desired gold loading. Tailoring of the solution volume and concentta-

tiGn in this way permitted complete wettin_ without excess solution foz.each

felt type in spite of large variations in thickness, apparent density and

liquid absorption capacity over the range of samples.

For this program, _he standard gold loading %_s 12.5 mlcrograms/cm2 of

projected area, Half the quantity of aqueous gold selution needed for this

loading was diluted with three parts absolute methanol to a volume

sufficient to saturate the felt. The other half of the gold was applied in

a Second immersion cycle. The solution was transferred to a shallow

polyethylene container of the apptoximata dimensions of the sample, 7 x 7

cm. The felt was then immersed in the solution and al lowed to absor5 the

entire volume. Subsequently, it was dried for 2-3 hours at ambient tempera-

ture and then oven-dried at I00 - llO°C for an hour. This process was then

repeated placing the fel£ into £he aqueous/methanol gold chloride solution

from the opposite face, to try to achieve uniform distribution of the gold.

28
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: :_ Finally, each sample was baked at 26S - 275°Cfor 2 hours. This last

step wa_ considered to accon_olishthermal reduction of the gold chloride
}

_'_- deposit to metallic gold_ the validity of this assue%otionis discussedin

' Sections V-A and B. .

, Electrodes delivered to NASA-LeRCon the last program (16) were

__. reportedto show performancecharacteristicsin full cell tests that differ

i _ from the characteristics of electrodes prepared at NASA-LeRC. This wa_

i unexpected since the method used to prepare the electrodes (Double

_ Immersion)was not intended to be a variation of _ny essential feature of

the NASA-LeRCprocess,as understoodat that time. A careful review of the
! ;

:-_: details of the proceduresin a NASA publication(89at the beginnin_of tills

, program, however, revealed several diffezences which, separately or in

combinatlon,could be significant;these are listedbelow..

| ,,

:_ I. Pretreat_eatin 45% KCR for 2 Pretrestmentin IN KO_ for 30
_ hours 90°C. minutes80°C.

_. (Bothmethods of pretreatment were used for electrodes delivered on last
i " program,withoutapparenteffect)

i_ 2. Felt is saturatedwith water and Dry felt is immersedin gold
:° dm_>-_ried before immersionin sol_tion.
i. gold solution.

i_. 3. ExcesS gold solution is used. No excess gold solutt_,.

: 4. Electrode soaked in gold solution Electrode air dried fot' 2.-3 hours
in sealed plastic bag overnight before dWin_.

' beforeoven drying.

_'- The most significantdeparturesseemed to be in the third and fourth

items listed above. In the NASA method the electrode is immersed in gold

__ solution, removed and immersed in a second portion of gold solution, in

\
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which it is allowed to stand in a sealed plastic bag overnight before ove'_

dD:ing. In the Double Immersion method, the electrode is i,merse_ in gold

solution for I-2 minutes and then dried in air for 2-3 hours followed by

oven drying; this process is repeated, immersing the electrode f'.'omthe

opposite face.

The next most significant departure would seem to be in the volume of

gold solution used. In the Double I,merslon method the quantity of solution

used each time is approximately adeqlate to saturate the dry felt, an_ the

total quantity of dissolved gold is deposited on the felt. In the NASA

method there is a fair excess of gold solution (partially due to the use of

a "damp-dry" felt) and no drying between in1_ "_ons_ thus the total q_antity

of gold deposited may be less accurately determined (the excess solutions

show evidence of colloidal gold). In spite of this, the gold loading

obtained in te_ms of particl'e size could be quite reproducible, and more

in_ortantly, the activity o£ the gold deposit could be higher; e.g.,in the

last program (16), the surface area of the gold deposit was found to be more

significant than the actual gold loading.

c. cNAsA-n

In order to explore the possible effects of the "excess-volume"

feature of the standard NASA process, a much larger excess of solution was

used in some instances (this has been referred to as the .."NASA-II"method in

this report). In the standard _SA method, using i0 m] of solution for a 7

x 7 cm felt sample gave an excess volume of about 5 ml. For the NASA-If

method, 20 ml of solution were used giving an excess volume of about 15 ml.

The total notential gold loading in the _gA-II method, If all of the gold

3O
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were deposited on the. felt, would _ti11 have been 12.S ndcrOgra_/cm 2, but

the gold concentration in the solution was half that. of the lq_-I r_chod.

_is factor was explored further in a separate study presented in Section

V-B.

The effects, of the pre-catalyzation state of the carbon felt (dry,

damp, residual pH and catalyzation te_erature} are addressed in Section

V-C. The test data obtained for these three catalyzatton processes are

covered in detail in SectionV-A "Effectsof ProcessVariations".
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_,_ IV. _ _ RECI_SlI_ _

Pot the characterization of carboi_ felts, Fiber Materials,
-i, k

-._. Incorporated (PMI) processed stripS from a single roll of ,'_._:oMfelt at six
" o ,.

_: t_mperatures. The entire roll was first pyrolyzed (>50f.°C}and then.cut

into 8 -9 inch wide strips fo_ graphitization at the following six

:i'.i,"' temperatures: 1250°, 1350°, 1500°, 1650°, 1800°, and 2300°C (referre_ to as

:"' Phase I, Lot 011882). The locations of the strips on the roll.are shown in

i,_' Pigure 6.

_" Fiber Materials, Incorporated also prepered "scoured" samples fo_ NAgA-
,2..2,!

=2.'

,'i';; LeRC (Lot .0211821 at the same six processing temperatures_ scouring refers

_:':/_ to solvent washing of the rayon felt ..precursorbefore pyrolysis to remove

: sizing. At the_request of the contract monitor, these samples were inclu_k_

_..._ in the initial screening,

...._ On the basis of early test results (see Figures 7 and 81, the un-

_,_!i'i scoured felt sample processed at 1650°C appeared t-_ give the optimum :I

_" performance. _his agreed with the results obtained in the previous program

:_:" (161. On thi_ basis, a second set of samples was ordered from F_I, proces-

s:" sed at 50° intervals around 1650°C (1550°, 1600°, 1650 °, 1700 °, 1750°C_
.!;r

":;' referred to as PhaSe If, Lot 0518821, with the objective of more sharply

.>- defining the optimum processin_ _emperature and/or establishing, an

i, ?/_,

i__ .. acceptable range.

, With the discovery of.several discrepancies in the gol_ deNsition

:;'_'"'., processes between the standard NASA method (NASA-I) and the standard Gin_.r,

Inc. method (Double _mmersion), the carbon felt characte_izat.ionstudy was

' ; extended, overlapping the Catalyst Optimization S_u_y (Section V). Pot this

.2 i
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_eason, discussion of some of the deta.is deferred to the_ex_ section. ....................

2DdU m

1. _ Charac_eristieA

Visual exan_nation of the six Phase I rolls of felt indicated

some thickness varia_ion, particularly noticeable for the 1250°(: felt. All

materials were nominally 1/8 inch. The thickness of each felt roll was

sampled in I0 places: 3 places across the width on each end, and 4

. additionalplaces down _ length. The data points were taken by measuring

across 2 x 2 inch metal plates placed on either side of the felt. The

measurements for all six felts are presented in Table I. The 1250Oc felt

shows an average thickness of 70.7 mils (1.8nu_ compared to 143.5 mils

(3.64n_) for the 1650°C _It. The overall range is 54 - 130 mils. This

variationin thicknepspresents some difficulties in making quantitative

cc_parlsonof some properties.

Weight and thickness measurements of the scoured carbon felts are

presented in Table II. These data and a _alue for carbon density of 2.0

9/cm2 were.used to calculate the theoreticalquantltlesOtl_2+ a_Id0cCr3+

which appear in some o£ the tabulated data. Similar data Is presented in

Table Ill fo_ the Phase IS felts_ the_e samples were more uniform than the

Phase I sampl_s.

The Phase. I unscoured carbc_ felts were catalyzed by all three

of the procedures described in Section III, Double Innerslon, N&SA-!

(standardprocedure)and t_A-II (excesssolutlen).

The Phase I scoure_ carbon felt samples were catalyzed by the Double

I_,ersionnwtbod only.
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-:. The PhaSe II..ca¢bon felt sm_ples were catalyzed by the NASA-I

':,. (standard)method only.

All samples were. mounted in the "waxed-cllp" holder as

= describedin Section II-A and subjectedto the stan_rd cyclic voltan_ry

.. routinesdescribedin SectionII-D. Representativevoltam_ogramswere shown

; in Figures 3 and 4.

. Comparative data were extracted f'romeach of the voltammograms :

:.- obtainedby integratingportionsof the curves to obtainthe charge segments

illustratedearlier in Figure5.

For the Phase I felts catalyzed by the Double InVersion method, the

charge segment data are presented in Table IV for unscoured samples and

:" Tables V and VI for scouredsamples (correspondingcurrentdata points are

presented in Tables AI-I.and AI'-IIin &ppendi¢ I]. A number of the charge

. segmentdata points were plotted versus carbon felt processingtemperature.

These are: the hydrogen evolution charge QcR+ vs. T in Figure 9, lead

deposited 0aPb vs. T in Figure i0, chromous ion oxidized QaCr2+ vs. T in

• Figure lOa, and relative charging efficiency OaCr2+/OcU+ vs. T in Figure 1L

It can be seen that the scouredfelts exhibitedmore activitygeRerally but

•" showed lower chargingefficiency,except for felts processedat 180O°C or

_::. higher. The unscoured felt processed at J.650°Cappeared to represent a

:.- reasonable compromise in properties and the data obtained with unscoured

felts were used as the basis for selectingthe processingtemperaturerange

:': for Phase II felts. ReprodUcibilityof the tes_ data is discussed in Sec-

tion V-D.
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ks discussed earlier, the set of Phase I unscoured felts were also

catalyzed by the standard NkSA method (N_q&-I) and a _i£_ed N_q& _thod

(NASA-II). The charge segment data for both of these sets of samples are

presented in Tables VII and VIII (corresponding current data points are

presented in Table AI-III in Appendix l). The results obtained with the

NASR-I method are compared to the results obtained with Double Immersion

method and then with results obtained.tetth bhe NASA-II method, in the

followingfi  w.

I%,.SA-Zvs. Double Immersion I_A-I vs. N_SA-II

0oH+ vs. T Figure 12 Figure 16

OaPb vs. T Figure 13 Figure 17

OaCr2+ vs. T Pigure 14 Pigure 18

OaCr2+IOcS+ vs. T. Pigurs 15 Pi_re 19

The felts prepared by both the NASA-I a,d II methods showed higher

activity in general than samples prepared by the Double Immersion method but

some similar trends with felt processing temperature i.e. higher hydrogen

evolution rates for the lower felt processing _empera_ures (1250 ° and

1350°O and higher charging efficiencies in the mid-temperature range. The

charging efficiencyvalues for the graphitefelt (2300°0 were exceptionally

high in both cases, a feature not observed in any previous testing.

The _ase Ii sa_le_, processed in a narrower temperature band around

1650°C,were catalyzedby the standa_ _ method only. The charge segment

data are presented in Tables IX and X (correspor_ing curr6nt data in Table

AI-IV in Appendix I). The plots of charge segn_nt data points versus carbon
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i •

i, felt processing ten_erature are aB follo_I 0oR+ vs. T in Piqure 20, OaPb

!. vs. T in Flqure 21, 0aCt 2+ vs. T in Plgure 22 and 0aCr2+/0cll + vs. T in

Pigure 23,0 Although there is substantial vartabtlit_,/n.,_lectrochemical

performance over this processing temperature range and no clear optin_n is

apparent, it may be concluded that the entire ranqe (1550 - 175000 yields

carbon felt acceptable as a substrate for the negative electrode.

-, D. _ and Recomme_aktons

The expected negative elects.odeperformance vs. carbon felt .grocessing

factorsis as follows:

! •

' _ED:

1650 - 1750°C;
..

- __: ...........

1500 - 1800°C;

>1800°C_ SC00RI_

<IS00°CT 80_ SC00R_ _ t_SC0UR_

_, HIGH _, LOW COST, E_T LOW _ E_ICI_

_. >1800oct

LOW ACTIVITY,_RAGIL_,_qSI_ "
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•. TABLE I. PHASE I CHARACTERIZATIONSTUDY - UNSCOUREDFELTS

CARBON FELT THICKNESSMEASUREMENTS
" :(FMI-C-I[8,_L'otOII'8B_,Un_coured-_

i Felt
, Processing

_ . _re Thlcknessby Location (mils) H_ean(mils) SLd._D v.

_, 83 54

1250°c 80 55 70.g 12.2

_. 82 73 71 85 71 55

_, 143 138

1350°c 13g 144 141.7 3.4

141 135 145 143 145 144

- 146 137

! -r"o0°r' 143 141 140.5 3.3

142 141 143 I'36 140 136

• 148 136

: 1650% 150 143 143.5 5.7

150 148 137 146 136 141

, 141 110

"_', 1800°c 139 114 124.1 l 1.7 .i
i t'

135 123 I09 126 128 I16

i-_.._ 136 108
t

. 2300°c 136 I13 125.6 10.3

: 134 128 120 130 134 I17

i 40
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TABLEIf. PHASEI CHARACTERIZATIONSTUDY- SCOUREDFELTS

WEIGHT AND THICKNESSMEASUREMENTSOF 49 cm2 SAMPLES
(FMI-:C_I-/8L_t-021182,Scoured£arbon Felts)

Felt
Processing
Temperature Wetght(1) MeanWeight Thickness(2) MeanThickness

(oc) (g) (g) (mtls) (mtls) Stand. Dev.

1250 1.340 1.3@8 69, 63 65 5.2
: 1.374 70, 59

1350 1.266 1.266 61, 69, 60 63 4.9

1500 1.435 1.423 97, 103 115 18.4
! 1.411 137, 123

i 1650 1.448 1.431 125, 129 126 4.1
_' 1.413 i30, 121.!

1800 1.424 1.422 124, 123 131 9.4
_. 1.420 143, 134

2300 1.281 1. 244 136, 128 133 4, 6
• : 1.208 138, 131

(1)One measurementper sample.

(2)Multiple measurementsper sample, one sampleper ltne.

!"

I
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TABLEIV. PH_ASEZ CHARACTERIZATION STUDY,IUNSCOUREjDFELTS)

ComJ_artsonof Quantities of Reactants Reducedor Oxtd_ed to

quantities of Reactants Theoretically Available

All felts activated by Double Immersion Process - 12.5pg AU/cm2. Theoretical
reactant quantities available based on calculated open volumeof felt sample and
solutlon concentration.

FeltProcessingQtPb2+ QaPb QcH+ . QtCr3+' QcCr_*t4i QaCr2+ Q_HCr3+

_I" Theor. Meas. Meas(3) Theor. Meas.'' Meas. C_Tc. (5)(mcoul) (mcoul) (mcoul) (mcoul) (mcoul) (mcoul) (mcoul)

1250 70 119 483 1740 1478 1073 405

1250(1) 79 162 t898 1968 1990 1500 490

1350 130 105 520 3240 871 649 222

1500 121 108 164 3020 1031 538 493

1650 128 97 133 3190 1025 636 389

1650(2) 128 112 63 3190 1261 666 595

1800 102 86 57 2540 619 289 330

2300 10.3 .... 70 . 67 257_0 580 217 ,, 363

1) SecondSample of 1250°C felt

2) Values taken from Fe2+ Crossover test befOre addttten of Fe2+

3) QcH+ = QcPb2+, H+ - QaPb(QcPb2+ is defined to be sameas QaPb)

4) qcCr3+ = qcCr3+, Pb2+, H+ - *QcPb2_, H+ ; (*meas. without Cr3+)

-**C 3+ 3+5) qcd r = QcCr - QaCr2+; (**charge attributable to diffusion)
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TABLEVI. PHASEI CHARACTER)_Z_ATION STUDY(SCO,.UREDFELTS)

Comparisonof-Peak and T:ratling Cr2+ Oxidation Charges

Processing Q Cr2+ qaCr2+(peak) QaCr2+(trat ]fng_

F_Toni" c_'co_,lC,co°,_ c°cou_

1250(1) 1.418 1,266 152

1350(1) 1,322 1,062 260

1500(1) 1,013 661 352

1650(1) 888 348 540

1800(1) 2,829 2,313 516

2300(1) 1,281 699 582

(1)FMI-C-1/8 Lot 021182, Scoured, Activated by
Double ImmersionProcess - 12.5_9/cm2.
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.: TABLEVlll. NASA-IVERSUSNASA-IICATALYZATIONMETHODS

'. Comparisonof,,?eakand TrailingCr2+ OxidationCharges, ..

Felt Processing QaCr2+ QaCr2+ (peak) QaCr2+(tralllng)
Temp.
(°C) (mcoul) (mcoul) (mcoul)

1250(1) 1149 917 232

1350 1187 787 400

1500 1275 965 310

1650 1109 838 271

t800 346 217 129

2300 :890 529 361

: 1250_2I_t_ 2186 1082 1104

1350 1895 1372 523

1500 2110 1812 298

1650 2284 2013 271

1800 2647 2245 402

2300 1391 810 581

(1) FMI-C-1/8 Lot 011882, activated by NASA-I method, 12.5 pg Au/cm2

(2) FMI-C-1/8 Lot 011_9_, activated by NASA-II method, 12.5 pg Au/cm2
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• V. OPI'I_ZI_TI(I_I OF GOLD _I_Z_',g_['IOIZ ....

: A. F, .fa r Y irg ir.,% im

As discussed in Section III, three variations of a basic methano-

lic/_old'depositlon process were used to catalyze carbon felt samples in the

initial phase of this program. These were i) the Bouble Immersion method, a

set of procedures developed in the previous program for rigorous control of

the to_al gold loading, 2) NASA-I, the standard method used at NASA-LeRG,

and 3) NASA-II, a modification of the standard method in which the gold

chloride concentration was reduced by half and the volume doubled.

The electrochemical performance of these electrodes and correlations to

gold particle size are presented here. Some of the data has be_n presented

under the heading of carbon felt processing factors (Section IV) since these

two tasks were partially merged, as discussed there. All of the electrode

samples were mounted in the waxed-clip bolder and subjected to the cyclic

voltammetry routines described in Section II. The cathodic and anodic

charge segment data were extracted from the cyclic volta_mograms In order to

facilitate cO_risons. The tabulated data were presented in Secb-ion IV,

TableS IV, VIE and VIII. Other graphical comparisons are disuussed below.

1. C  Luli ofN A-IandDo le

a. _ _olution Charact_risEi_s

The hydrogen evolution currents for NASA-I catalyzed felts

at -950 mY vs. SCE on gold-o_-carbon in HCl were sinttlag in range t_ those

observed for Double Immersion Catalyzed felts, {the complete sets of values

are presented in column 1 of Table AI-I and Table AI-III, Appendix I), As

has been noted in earlier reports, this parameter is probably only indicative

of the presence or absence of gold. After the addition of PbCI 2 (1 raM),the

i r,r,_ :'i_ • • • . ..........
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- hydrogen evolution currents in BC1 are somewhatht_her for Double Immersion

,. electrodes than for NASA-! electrodes for all processing temperm_.u_s-

- (column 2 of Tables AI-_ and.AI-IIZ, Appendix I}.

__ Figure 24 shows the total .cathodic charge attributable to hydrogen

evolution (%H+) versus felt processing temperature, l_y..this _easur¢ the

-. Double Immersion eleot.rodes always exhibited more hydrogen evolution than

the NASA-! electrodes, again suggesting the RAS&-! electrodes are more

:: favorable in this respect.

_" b. pb2+/pb R_ox Charac'_ertstt_

Lead loadlngs,as measured by anodtc lead charge (OaPb)are

. shown versus felt processing temperature in Figure 25. The loadingS for

.,,- NASA-I felts were always slightly higher than for _ouble rnmbrsionfelts
2

• (exceptfor one 1250°C sample) but the values for both sets &re general ly

-_- close toqether_

.'_ The theoretical quantity of Pb2+ available within the open volume of

". each felt (OtPb2+)was calculated for each sample for comparisonto measured

oxidationcharge. These values are illustratedin Figure 26 as percentof

".:. theoretical(OaPb/%Pb2+) versus felt processin_ten_perature.._othtypes of

- electrodes for 1250°C felt exhibitedvalues greater than 100%. The other

-- NASA-I felts had values generally less than 100% and in every case the
:

:- values for NASA-I felts equalled or exceeded those for Double Immersion

_., felts.

_- ¢. + l_dox _racteristic_

• The Cr3+/Cr 2+ redox performance of the six Phase I felts

-. catalyzedby both methods is illustratedin Figure27 in tenus of the total

chromous ion oxidation charge. The NAS&-I values exceed the Double
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O0000001-TSF13



.i' I_nersion valueB and were almost invariant with proceseinq temperature

•.. except at 1800°C. The pattern8 /_or the two sets of electrode_ are clearly

diffecent.,#

.i."/. The fraction of available chromic ion reduced (Qccr3+/Otcr 3+} is shown

:" versus felt procesctng temperature in Figure 2R. This traction was always
I

, greater f_r NAS&-I felts than Double Immersion felts, but. followed a similar
',r

trend..

' The fraction of available chromous ion oxidized is shown versus felt

processing temperature in Ptgure 29. The NASA-I felts displayed higher

values and there was less similarity between _e sets of values.

' Figure 30 shows the ratio of the "pea_ ano,_ic chromium charge to the

"trailing" anodic chromium charge versus felt processirR temperature. The

l_A-I felts had the higher value of this ratio for every temperature.

The net efficiency of conversion, i.e., the fraction of chromous ton

. produced that is subsequently oxidized, is shown in Figure 31. There was

: more scatter in these sets of values, e.g.,these efficiencleswere greater

;- for NAS&-I felts for 1500°, 1650°C and 2300° but greater for Double

" " Immersion felts for every other temperature.

d. m c2+ EtXoxLz

,. To illustrate the relationship to lead loading, the anodic

_o,:/ chromium charge (OdOr2+) has been plotted versus lead loading (as 0aPbl in

Figure 32. There al_ears to be a _t better correlation fer the Double

_ Immersion method, as found in previous testing (161, tha_ for the H_SA-!

method. There is an overall correspondence between the t_wosets of values,

Figure 33 shows the ratio of anodic chromium charge to anodtc lead

68
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_ charge as a function of felt processing temperature. _11e maximum value for

"_ Double Im_rsion felts occurred at 1250°C. Fox this tea_erature the .N_A-I

felt has a lower ratio than the Double Immersion felt. For all other

tenvperaturesexcept 1800°C, however, the RP_A-! felts exhibited much higher_

ratios with a maximum at 1500°C.

Figure 34 represents the ratio of anodic chromium charge to cathodic

_lydrogeneharge versus felt processing temperature, which may be a relevant

overal I measure of relative charging effieiency. By this measure the R_gA-i

felts looked better than the Double l_mersion felts at every temperature.

. There is a distinctive peak a_ 1500°C'_ this is matched by the value at

2300°C, which is an unusually high value for graphite felt.

a. _ _ Characteristics

The hydrogen evolution current for NASA-II catalyzed felts

(made with excess gold solution) at -950 mY vs. SCE on gold-on-carbon in UCI

: ranged from 580 mA for 1250°C felt to 960 mA fo_ 1800°C felt. The NASA-II

felts exhibited considerably higher hydrogen evolut-ion than N_gA-I felts for

all process temperatures except 1250°C (the complete set of Values is

presented in Table AI-III, Appendix I).

Figure 35 sh_ws the hydrogen evolution current for each felt at -950 mV

..- in HCI after the addition ef PbCI 2 (I mM). The currents in HCI were

i " _at. greater for RASA-II felts for all te_eratures.

:.... Figure 36 shows the total cathodic charge attributable to hydrogen

evolution (Oc_ on Pb/Au versus felt processing temperature. The NAgA-II

_:_, electrodes followed the same pattern as NASA-I electrodes but showed

considerably more hydrogen evolution. With e_tended cycling the rate of

b9
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hydroqen evolution decreased in both cases. For _SA-II electrodes the rate

ekarted at even higher values but decreased quite rapidly.

b. pb2+_..Charac_eristics

Lead loadings, as measured, by anodic lead charge (OaFO).are

shown versus felt processing temperature in Figure 37. The loadings for

NASA-II felts were considerably greater than for MASA-I felts for every

temperature. There was not a smooth trend in loading with processing

temperature for NASA-If f_its, nor was the pattern Similar for NASA-I and

NASA-II.

The theoretical qqantity of Pb2+ available within the oper_volume of

each felt (0_pb2_was oalculated for each sample for comparisonto measured

oxidationcharge. These values are illustrated in Figure 38 as percent of

theoretical (0_Pb/OtPb2+)versus felt processing temperatur_ All the

I_SA-IIvalues exceeded100% and were greaterthan the NASA-I values.

C. Cr3+_- -2+ Redox Characteristics

The total chronot_s ion oxidationchargeis shown versus felt

processingtemperaturein Figure 39. Similar plots for chromium reduction

chargeare given in Figure40, The NASA-IIchromiumchargesalways exceeded

the NASA-I chromiumcharges. The greatestchromousion oxidationcharge was

showh by NASA-II1800°C felt. The greatestchromicion reductionchargewas

shown by NASA-II 1250°C.

The fraction of available chromic ion reduced is shown versus felt

processingtemperaturein Figure 41. This fractionwas greater for NASA-If

felts for every processingtemperature.

The fraction of available chromous ion oxidized is shown versus felt

processingtemperaturein Figure 42. Again the NASA-If felts displayed the

7o
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higher values.

• The net efficiency of conversion, i.e.,..thefraction of chromous.lon

produced that is subsequen£1y oxidized, is shown in Figure 43. These

efficiencles were greater for NASA-I felts for all temperatures except

:: 1800°C..

Figure 44 shows the rati_ of the "peak" anodic chromium charge to the

.. "trailing"anodic chromium charge versus felt processing temperature. The
"'" I

•- NASA-I felts had the higher ratio at 1250° and 2300°C, while the NASA-II

= felts had the higher ratio at all other tm_eraturesd The NAgA-II values

increasedwith increasin9processingtemperatureuntil reachinga nmx._mm at

1650° and thereafterdeclined.

i " d. _+_ Pb and Cr2+ Relati_hi_

TO illustrate the _elationship to lead loa_Lng, the anodie

i: chromiumcharge (QaCr2_ has been plotted versus lead loading (as QaPt0 in

Figure 45. The values for both sets of electrodesshow a fal.rlyco_Isterlt

..: increasein CE3/CE2_ redox activity with increasinglead loading, as found !

in previous t_tlng.

Figure 46 shows the ratio of anodic chromium charge to anodic lead

charge as a function of felt processing temperature. The Values for both

_ sets are similar, exceptat 1800°C.

- Figure 47 represents the ratio of anodlc chromium charge to ca£hodic
!

hydrogenchargeversus felt processingtemperature,_hlch may be a relevant

," overall measureof rela£1vechargingefficiency. By thismeasurethe NP_A-I

• felts looked better than the NASA-II felts at every temperature. The best

.... performingelectrodeswere NASA-I 1500° and 2300°C.

2
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3.  IthaoldPa tlcleSiZ

The standard NASA catalyzatlon process (NASA-I), and mote

particularly the modified process (NASA-II_,presented an cpportunlty to

observe the solutions "in process"by way of the excesB solution volume,,in...

contrastto the Double Immersionmethod in which the.solution was designed

to be totally absorbed by the carbon felt sample. For N_SA-II electrodes,

it was immediately noticed that the excess gold chloride solution had a

faint blue color. The appearanceof the solution renai_ed unchangedover

several weeks of observat£on. For NASA-I electrodes, the excess gold .

chloride so.lutlonlooked clear and colorless at first. After two hours,

however, it changed to purple. The next day the solution was still puzple

and had become noticeably,cloudy. These col.orsare most probably due to

suspendedgold particles,the foz_atlonof which is initiatedby contactof

gold chloride solutionwith the felt. Based on the blue color, observed in

the I_%SA-IIpreparation,the particlesshould be.very small, on the order of

1.0 nm diameter (nucleates). The purple color seen for NASA-I electrodes

should indicate larger particles, on the order of I00 nm diameter (21}.

These observations also suggested that metallic gold.is formed when the

methanollcgold solution contactsthe carbon felt. Previously it had been

assumedthat gold chloridewas deposited,requiringthermal decc_pesitionto

gold.

In order to look at gold particle sizes in relation to catalyzation

method and observed p_rformanc_, - selection of the samples tested were

submitted for examination by transmission electron microscopy (TEM). The

resulting photographs showing representative views of gold particles on the

carbon fiber surface in each case are presented in Appendix II. For purpose

72
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of comparison, the length and width of each particle was measured and

averaged to give a mean particle dimneter (R) and the value of on_ standard

dev.tation (s). These values are presented below for each catalyzation-

method together with selected charge segment data representative of

electrochesdcalperformance.

CATALYZA_CR METHOD,PERFORMANCEA_ G_ PAR_CLE SIZE.
(MeanParticleSizes by TS_

CTLYZ. C-FELT QaPb QaCr2+ QcH+ 0Cr/QH Au PARTICLE
MEIHOP _. SIZE (r_

CO0 (too CnC) (nO) CR) (S)

IqASA-! 1800 89 346 21 16.5 31.2 34.7

NASA-I 2300 ii0 890 25 35.6 19.7 5.4

l_-I 1500 112 IZ75 36 35.4 62.4 34.7

Dbl Imm 1800 86 289 57 5.1 37.8 10.6

Dbl _ 1500 108 538 164 3.3 27.2 42.3

NASA-II 1500 177 2110 302 7.0 26.3 11.9

NASA-If 1800 265 2647 548 4.9 9.&......4.9

From this data there is some evidence that the NASA-II catalyzation

procedure yielded smaller and more uniform gold particles which was

reflected in higher electrochemicalactivity, includinga higher level of

hydrogen evolutlon_ the latter resulted in low charging efficiencyvalues,

however. It can be seen that these electroo_ had very high lead deposits

which may be consistent with higher gold surface areas. These values
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r

"_ _nsistentl¥ exceeded the theocetical quantity of lesd available, however,

: which may have resulted in some unplated gold leading to higher hydrogen

_:. evolution rates. (su_l. a c_dition would not be expected in a flow ceil).

The N_SA-I Qatalyzation procedure, gave larger, less unifom particle_ ..........
_," ,,

resulting in lower-elect_cal activity but higller charging efficiency

_o"_ value_. The Double Immersion .methodyielded gold particle sizes within the

o_'- same range as she SkSk-I method. The elect_ochmical performance of

_ " electrodes catalyzed by this method, however, was quite different (low

:'i'., activity, low _ging efficiency) suggesting the influence e£ factors, in.

; :.- addition to gold partials s£ze_ or non-representative samplings.
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[.

In the previous Section,.it was _otedthat variations in some of

:. the steps in the catalyzat_on process resulted in clear differences in

electroch_ical performance,and sc_e variations in gold particle sizes• In

._" order to explore this further, a set of carbon felt samples were catalyzed

_. under carefully controlled conditions incorporating precise modifications.

_;. The modif.lcationswere directed primarily at the effects of gold solution

" concentratlon/volume, solution/felt contact condltions and time, and baking.

_:,_ Six 49 cm2 samples were cut from Lot 011882 - 1650°C carbon

_i: felt for this study. Each sample was cleaned in IN KOH for about 30 minuEes

_-i_:; at 90°C, rinsed thoroughly and dried at ll0°C. All felts were exposed to

the gold solution in the dry state (i.e.,the damp-drled procedure was not

i_:_ used). All of the samples were subjected to the same i_itial immersion

_:. procedure, except for double solution volume in one case (DVP-16) z flve

i_.: minutes in solution in air, wlth rotation of the sample after 2 minutes•

[/: After the initial 5 minute Inmersion, samples varied in the type of extended

,_ storage (open to the air o_ enclosed in a plastic bag) and the storage time
i •c,

!_:' (from zero to 16 hours) At the end of the storage periods, all of the
.___,
E

_:_:! samples were oven-dr2ed a_ ll0°C for 2 hours; then five of _ six samples

_ were baked at 270°C for 2 hours, the sixth sample (EVA-180) was not baked.

q:' These parameters are summarized in the table below_

L

,.i_,
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Sample Solution Type of Wet-Storage Baki_
I.D. VOI.(nil) Storage Time (hrs.) Te_(°C)

=- , , , I • t I_UL __ L . . i_ i t m__ _ : _ - -_

EVP-15 16 closed* 16.0 270

DV_-15 32 closed': 16.0 270

EVA-SB 16 open 0.0 270

EVA-30B 16 open 0.5 270

EVA-180B 16 open 3.0 270

EVA-180 16 open 3.0 ---

*enclosedin plasticbag

The e!ectronmlcrographsobtainedfor each of these samplesare

shown in AppeldixIII, FiguresAIII-I to 6 (magnification90,00OX;imn = 11

nm). The three "open-immerslon"samples (EVA-SB, EVA-30B and EVA-180B}do

not show slgnif/cantdi_tingulshingfeatureslall three sables show similar

particle sizes,althoughthe shorterexposure-tlmesamplesappearto include

smallerparticlelin addition. The "flash evaporation"of the solvents from

sample EVA-SB apparentlydid not give riseto largeparticlesas Was antlci-

pate4. The sample that was not baked at 27_°C (EVA..180)shows one large

particle and other Particles of "typical" 8i2e, and the gold partlcles

apparently form without the aid of thermal dec(m_Ition at 270°C_ These

:.: findingsmay suggestthat depositionoccurs by adsorptionfrom a colloidal

gold state,inducedby contactwith the carbonfelt (as discussedin section

A above, excess solutions were observed to be violet or blue in color,

indicativeof colloidal gol_D.

The sample prepared with double volume (and half the gold

concentratlo,#and stored in a plastle bag for 16 hours (DVP-16),exhibitsa

lO0
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particle size range s_milar to the open-exposure samples discussed above.

The comparison sample, using no excess solution (EVP-16), shows an

extraordinaryrange of particle sizes, from 10-400_, making an evaluation

dlfflcult.

In general, it is difficultto clearly identifya processingeffect on

i particlesize for the parametersexamined. In view of the observationsthat
!_ gold particlesare formedbeforethe 270°Cbaking step and appearafter only

._ a brief immersion in solution followed by rapid oven drying, the initial

i'.i
i:'_: momentsof the catalyzationprocesscould be a very significantphase in the

L"_ preparationof an electrode.

- Cyclic vol_rams were recorded,in the usual manner for all six of

% these samples. For _rison, selecteddata values were extractedfrom the

,_ voltanmograms_charge segmentdata is presented in Table Xl (correspondlng
E

:!,.. currentdata points in Table AIII-I, Appendix III). S_ of these values,

ii representativeof electrochemicalperformance,togetherwith gold _oart/cle
i ,

E- sizes (averagedlameter,X, based on mean of len_h and width measurements,

_r:" and one standard deviation,s) are presented below. There is no obvious

i correlation between performance and gold particle size. The two samples

prepared by Variations of t_he NASAprocess, EVP-16 and DVP-16, exhibited

: Cr2+ redoX activity in the range between NASA-I and NASA-II preparations.

. The DVP_I6 sardis prepared with excess volume showed an exceptionally low

.... hydrogen evolution rate resulting in very hlgh charginq efficiency. The

.- unbaked sample, EVA-180, showed the highest Cr2+ redox activity and was

reproducible. These samples also show the highest lead loading. These

facto_, would seem to indicate a high gold surface area but this was not

confirmedby electronmlc_oscopy. In a similar inversion,the sa_le exhi-

! lol
i •
=
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biting the smallest particle sizes, EVA-5B, gave the lowest Cr 2+ redox

activity.

Sample Vol. Exposure Time QaPb QaCr2+ QcH+ QCr/GH Size of Au
I_. Condition Part. (n_

(ml) (hr) (mC) (mC) (_D _ s

EVP-16 16 Closed 16.0 136 1709 51 33.5 102 88

DVP-16 32 Closed 16.0 129 1458 7 208.0 27 25

EVA-5B 16 Open 0.0 123 1154 20 57.7 18 11

EVA-30B 16 Open 0.5 149 1838 171 10.7 18 19

EVA-180B 16 Open 3.0 147 1969 23 85.6 28 20

(REPFAT) " " " 174 1993 143 13.9

E_'A-180" 16 Open 3.0 272 2361 327 7.2 89 109

(REPEAT) " " " 270 2443 313 7.8

*samplenot baked at 270°C

i ii , , i i
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- In the course of catalyzing electrodes over a period of ..any

" months, other process variables that could affect the gold deposit were

noted. Some of these are relatedto the precatalyzationstate of the carbon

felt such as its mols_ure content, damp or dry and its residual pH. Other

-_i.,:, factors are the wetting agent used (methanol or acetone), and the

temperature of the catalyzing process. The work done to determine the
_y

i_ effe_csof these factorsis discussedin this section.

__ In eatller work on thls program, after the pretreatment

_ process in KOH the felt was normally oven dried. The objectiveat that time

_' was to control the total amount of gold deposlt.ed(to study gold loading
_

_)i_i effects) by using a quantity of gold solution equal to the absorption

_2_.:. capacity of the £elt sample (i.e.no excess solution). The absorption

-_:/" capacityof the felt was determined by weighingthe _wterLSaturatedfelt at
_'. •

-_" the end of the pretreatmentprocess and again after drying. At NASA-LeRC,

_' the customarypractice was to t_wel-dry the felt samples to a "damp"state

_: after the pretreatmentprocessand then proceed directly to catalyzatlon.

_: In the damp state the caEbon felt absorbs less gold solutiongiving rise to
_ •

,_£;_. the "excess" solution noted in Section III. In the study of controlled

_' variations in Section B above, all of the samples were prepared from dry

_5ii felts (i.e.oven-dried after pretreatment_. Examinationof that data does

...., not indicatea significanteffect that could be attributedsolely to the use

;::i of dry felts. In fact, sample preparation EVA-180B, which most closely

-_o.: resen_led the Double Immersion process (a dry £elt method), is quite

_ : differentin electrochemicalperformance from electrodes prepared by the

• :o;_

=_ .r I04
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Double Immersion process.

This sam factor was investigated in a separate study in _dlich the use

of acetone rather than methanol was also examined. Pour _,_riattons were
0

studied using 1650°C felts. These arez

1) _hanol/dw 3) /_cone/dry

2) mch_ol/_ (s_s_-I) 4) _tone/da_

a. __

Fou¢ samples of 1650 ° felts (Lot 051882) were activated by

followlng the standardNASA procedure (_s3A-l}wlth certainmodlficatlons.

The modificationfor the sample designated"methanoldry" tinsto apply the

gold chloride solution to a thoroughly dried felt. Pot the sample

designated "methanol damp", the standard procedures were used without

modification. The modificationfor the sample designated"acetonedamp" was

to substituteacetonefor methanol. The modlficattonSfoe the sample deslg-

hated "acetonedry"were to substituteacetonefor methanol and to apply the

gold chloridesolutionto a thoroughlydried felt.

"Dry" felts were thoroughly oven dried. The term "damp" was inter-

preted to mean internallymoist but withoutvislble externalmoisture. Damp

felts were obtained by placing the wet felts between layers of absorbent

towels (Shut-Wipe125 MecltumDuty, 2 Ply Wipers)and gently applying pres-

sure wlth a hand ¢oller. In all cases, I0 ml of solution containing 12.5

mlcrogramsAu/cm2 was applled to 49 cm2 of felt, 5 ml to each side.

b.

The cathodic and anodlc charge segment data extracted from the

voltammogra_aare glven in Table XII (correspondingcUrrent-datapoints from

the voltammogramsare given in Table AIV-I in AppendixI_.
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The hydrogen evolution current (IcH +) on Au/C in HC1 at -950 mV (SCE)

ranged from 160 n_, for t;.he methanol-damp electrode to 610 ._,. for the
D

acetone-dry electrode,

From Table XII it is seen that the total cathodic charge attributable

to hydrogen evolution (0cH+) varied from I0 mC for the acetone-dan_sample

• to 117 mC for the acetone-dry sample. There was no particular correlation

between_H + values and IcH+ values. This Is not unexpectedbased on pre-

vious results.

' Lead loadirgs,as measured by anodlc lead charge (OaPb)are shown for

each optimization felt in Table XII. The values were within the range

previously determinedfor standardNASA-I felts.

The CE3+/Cr2+ redox performanceof the four samples is given in Table

XII in terms of the total chromousion oxidationcharge. The.OaCr2+ values

were within the range of values shown by the standard NASA-I felts except

for the high value of 1580 mC for the acetone-drysample_

To illustrate the relationship to lead loading, the anodic chromium

charge (QaCr2_ has been plotted versus lead loading (as OaPb) in Figure 48.

The data exhibit the typical direct relationship observed and appear to

approacha somewhatbetter linear correlationthan usual.

Values for the ratio of anodlc chromium charge (OaCr2+1 to cathodic

hydrogencharge (OcH_, which may be a relevant overall measureof relative

chargihgefficiency,are presentedbelow. The values of this ratio for the

fouroptimizationfelts _arewithin the range of values found previously for

. NASA-Ifelts with the hig._estvalue being shown by the acetone-dampsan_le.
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i-\-

,. Methanol/Dry 24.9 1144 ......... 46 .......

Methanol/Danp 20.2 890 44

:, Acetone/Dry 13.5 1580 117

:- _tone/D_ 80 802 10

From an examination of the above data it is clear that this small

' sample of test data Is not sufficientto clearly differentiatethe factors
o

tested. Both wettL_ agents have been used sucoessfullyat NESA-IaeRC.It

was also concludedthat the damp/dryconditionof the felt pet so, prior to

_',,. catalyzabionwwas not a significantfactor. A relatedfactorwthe residual

ii:::. pH of the felt after pretreatment in KOH,was considered to have _ore

_i!_i: pOtential..tnfluence on the subsequent catalyzation. This is discussed
i::;: below.
i /.

.... On this progr_n the carbon felts have always been pretteated
y ,
o'L

_T in KOH according to procedures developed on the last program (161. The

_ felts were always thoroughly rinsed after this pretreatment, but it was

:-4;,i"
.::_' observed that water dripping from the rinsed felt could vary from pll5 to

-::::,_,:. 9. For this reason,this _act:or was examined over thl8 pH range under more
¢:?,

.... controlled conditions.

.. a. __

:::T. Nine samples from the 1700°C felt (lot 0314821 were soaked in
,__::.!'

:!::':. _ethanol,rinsed,damp-driedandthenplaced in45_KO_at 90°(:for2 hours.

-'i::!: The samples were subsequently rinsed to pH 6, soaked in distilled water

I-Ao.:
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' overnight {pn 6) and then drained and dried. Subsequently,, three emmples

each were.in._...ersed in water with pH adjusted to 5, 7 and 9 (usln9 KOHor

Hell, vacuum deaereted and allowed to soak for one and a half l_ure. From

. these pit controlled rinses, the sau_les were damp-dried and then catalyzed

'__i according to the rest of the standard NASAprocedure (8). An additional
control point Was introducedby holding the tem_rature of the aqueousgold

chloride solution at 25°(:after mixing with methanol priot to i1_erslonof

the felt.

- TWo electrodas at each pH value Were subjectedto the standard cyclic

_ voltammetryroutinesdescribedin SectionII. In addition,after completion

" _i". of the last voltammogram (IN HCf, lmM PbCI2, 50 mMCrC131 at 25°C, the

....__: temperaturewas raised to 45°(:and then 65°(:.The usual charge segm_t data

!i" were extractedfrom the voltanmogra_for comparisons.

ii!!!!iI Charge segmentdata are plotted in Figures4g and 50 versus test

temperature. It can be seen that the electrochemicalperformancewas not

_iill :, reproducible for any pl_ value sample tested. A plot o¢ QaCr2+ versus QaPb
_5; shown in Figure51 illustratesthe directrelationshipusually found between

_72:_ these values,however.

-_: These samples were also submitted for examination by transmission

%;:::! electron microscopy ITEM). The photographs are shown in Appendix IV. For

_ comparison, the average gold particle size was determined in each case;

i"" these values togetherwith selected electrochemical performance data are

!_!_i__ presented below,

2/.) ;.
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CAT. SIZE (n.0
(OC) _ (nO) (nO) (n(:) (nO) (_) (s)

.j

A 25 5 178 1883 132 14.3 66.3 68.8 1
B 25 5 113 832 12.3 67.6 53.7 31.2

A 25 7 138 1023 126 8.1 56.4 29.8
B 25 7 213 2155 108 20.0 31.6 16.1

A 25 9 236 2281 920 2.5 67.9 93.3
B 25 9 121 545 80 6.8 57.3 92.5

The mean particle size (X) is fairly consistent in all cases, but. the range

of sizes for the pH 9 samples was much larger as reflected in the large

standard deviation values (s).

Again, the data do not permit any clear selection of conditions but

suggest rather that 1) a pH range of 5 to 9 is an acceptable precatalyzation

condition for the carbon felt, and 2) still other factors are influencing

the catalyzation or testing process.

3.

It was noted that the mixing of the aqueousgold chloride and

methanol was an exothermlcprocess raisingthe solutiontemperatureby 5 -

10°C. This could be of signiflcance since the solution was customarily

mixed immediatelybefore use (to avoid precipitationof gold) and the first.

few minute- of contact with carbon felt may be crucial, as discussed in

: SectionV-B above. In order to explorethe possibleeffectsof catalyzstlon

temperatureon electrochemicalperformanceand gold particle size formation,
L

carbon felts were catalyzed at three different temperatures with the

extremesbeyond any normal ambient range,0°, 25°, and 50°C.

I09
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. a. zam  mntml zz=ttm

Samples of 1700°C (lOt 051482)felt Were catal_ accordingto

the standard_ procedure (8)with the additionof two important_mtrol

points. In order to control any potentialeffectsof residual felt pH, as

discussed above, KOH-treated felts were soaked in water of neutral pH

immediatelybefore the damp-drylngstep prior to catalyzationo The actual

• criterion was that one and one half hours of soaking should produce no

: 81scerniblechange in the pR of previouslyboiled unbuffereddistilledwater

of pH 7.0. In addition, the aqueous gold chlorlde solutlon and reagent

grade methanol were thermostated in a water bath before and after mixing.

_:,' The temperatureof the gold depositionsolution was monitored,closely and

i" the solution applied to the damp-dried felt only when it was within one

" degree _ the specified temperature,0°, 25° or 50°Co..Thefelts were then

_ held at the catalyzationtemperature(±500 for 16 hours.

i_i Catalyzed felts were mounted and waxed as usual and tested by cyclic

volt:_metry,as describedin SectionII, first in a solutionof ImM PbCI2 in

i_ I N HCf at 25°C. Chromium chloride was then added (50 mM) and a second

�:voltanmogramwas recordedat 25°Co These samples were also submittedfor

examinationby transmissionelectronmicroscopy (TEM). i
{

,I

|.
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b.

The TEM photographsare shown in AppendixIV, PiguresAIV-6 to 8.

Charge se_t data were extractedfrom the voltammogramsand are presented

below togetherwith mean gold particle sizes 00 in each case.

crL_. P_'-oar_ Oacr_+ _ _Cr/m _ P,_'ICt_
T_. CAT. SIZE (rmO
(00 pll (mC) (.C} (taC) (X) (S)

0 7 176 1650 87 19.0 24.4 18.1

25 7 213 2155 108 20,0 56.4 29.8

50 7 132 932 28 33.3 62.0 63.1

It can be seen that there was a progressiveincreasein gold particle size

with increasing catalyzation temperature as anticipated. The range of

particle sizes (standarddeviation,s) also increasedwith increasingta,p-

eratUreo The charge segment data is quite scattered but the values for

relative chargingefficiencyimproved s_at with increasingcatalyzation

temperature.This data suggests that, although catalyzatlon temperature

affectsgold particle size in an expectedmanner,here again tkere are other

factorsinfluencingelectrochemicalperformance.
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D. R_roduclbilltv o_ El_,tro_b_d_al

In the previous studiesdirected to defining the crltlcal factors

in the gold catalyzatlonprocess,discussedin SectionsV A throughC above,

the electrochemicalperformanceobserved was frequentlyerratic suggesting

that some influentialfactorswere not being controlled. One such factor is

the carbon felt substrate, which can exhibit variations in physlcal and

chemical properties and has been found to influence performance, as

discussed in Section IV. The.KOH pretreatment process is directed to

neutralizing some of the chemical properties of £he felt, but it is

obviously not completely effective and does not address variations in

physical propertiessuch as density, thicknessand surface area. Thus the
=

carbonfelt remainsas a potentiallyinfluentialfaotorthat is probablynot

completely,controllable. Another factor is the cyclic vol_ry testing

proceduresused. This study was directed to the latter, assuming that the

• carbon felt substrate over a smali area would be suffl.clentlyuniform in

•:_ properties. A concertedeffortwas made to control all other factorsin the

catalyzatlonand £estingprocesses.
|

., For this purpose,three felt sample_ (froma s_all sectiQ1of one lot

of felt) Were catalyzedin three separaEeoperationsusing the same cataly-

zation method (NASA-I). Each sample was then cut into three strips to

, provide a total of nine samples for electrochemicaltesting. _n order to

=: exercise greater control over the catalyzatl.onprocesS, each sample was

pretreatedin a measuredquantity of potassiumhydroxideand an individual

quantity of aqueous gold solutlon was mixed with methanol (an exothermic

process) immediately prior to use and thermostatted for a fixed period of

time. The least controllable step in the process is damp-drying of the
- m



felt. This proce_Ore has not been found to be significant and was not

int_tionally _odified, but the results were observed to be qualitatively

different than in previous preparations.

Three 49 cm2 samples were cut from carbon felt Lot 011882 -

1650oc. Each felt was placed in a separatebeaker and covered with 200 ml

of IN KOH and a weight to keep it submerged. The beakers _,ereevacuated

three times in successionto remove air from the felt samples. The beakers

were then removed from the vacuum desslcatorand placed on hot plates. It

took 20 minutes for the temperatureof bhe K(_ to reach 90°C. The _ra-

ture was maintainednear 90°C for 30 n_nutesmore. The felts were rinsedin

tap water and then in dist/lled water. Subsequently the felts were

submergedin distilledwater and vacuum backfille_three times. Finally the

samples were rinsed in all.stilledwater again and submerged in deionized

water for about 22 hours.

A 12.5ml volume ef aqueousgold chloride solution (245micrograms/m1]

was placed in a dry 50 ml volmaetric. The volumetric was placed in a 24°C

water bath and While stirring,reagentgrade methanol was addeflto the mark.

The time when methanol was added was noted for each sample. After the

methanol/gold chloride solution was mixed, it was left in the water bath

_lile a _amp-driedfelt was prepared. Two minuEes of vigorous clampdrying

was used. The felts were observed to be qualitatively "drier"than in !
I

previous preparations. Immediately before use of the aqueous methan-

ollc/goldchloridesolution,a small quantityof methanol was addedto bring

the solution level back to the mark (thevolume had slightly decreaseddue

118
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to coolingJ.

Twelve minutes after the initial mixing with methanol, 5 ml of aqueous

methanoltc gold chloride solution was pipetted into a plastic tray. The

damp-dry felt was placed in the tray and pressed got about 5 seuu--nds with a

glass beaker. The felt was stored in a Teflon pan while 5 ml more gold

chloride solution was placed in the tray. The felt was flipped over_ placed

in the tray and physically manipulated as before. The felt was then

transferredto a plastic bag. TWo more felts Were actiVatedthe seineway.

One hour and 25 minuteselapsed betweenthe time the first felt was placed

in a plastic bag and the third felt was placed in a plasticbag.

The felts were left in plestlc bags overnightand then slmultaneously

air dried for five hours. The felts were heated for two hours in a pre-

heated110°C oven £ollowed by two hours in a preheated270.OC_ven.

2.

The voltmm_rams were obtained in identical fashion according

to the procedures described in section II. The lead and chromium traces

represent in each case the twenty-_hird JR-compensated cycle. Selected

current data points from the voltanmoqra_s are pre_eflted in Table AV-I in

AppendixV. The cathodicand anodlc charge segmentdata extractedfrom the

voltammograms are given in Table XIII. Table X_V _ comparisons of hoth

peak and trailing C_2+ charges and variou_ charge ratios. An abbreviated

table of values, togetherwith s_ue s_atisticaldata, is presentedbelow.
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h"

PI_P. SN_/_,.._Pb OaCr2+ OcE+ QCr/_.,,

(nO) (n_) (nO)

1 A 181 2283 58 39
1 B 129 942 13 72
1 C 113 791 36 22

2 A 116 1380 49 28
2 B 1_17 970 29 33

2 C 191 1789 80 22 1

3 A 128 854 30 28 i
"_ 3 B 123 739 29 25

3 C 129 898 33 27

. 135 1183 40 33

!,!_ _rD. Dk-V. 30 531 20 16
'."

!_:. a. _ _ Charac_ceri_tics

r" As shown in Table AV-I, the hydrogen evolution current
- __ i

!_ AugC HCI at -950mY (SCFJ ranges from 220 mA for sample 3B to 550 mA for

! sample 1A. There Is less variabilitywlthln sample .'.;than within samples 1!

[. or 2.

i" b. _12+/Pb _ Charac1:eristlc-_

i_ The lead loadlngs, as measured by anodlc lead charge

_ (0aPb),are shown in Table XIII. By thls measure also, sample 3 appears

: uniform,While samples1 and 2 do not. Seven of the nine values are fairly
J_

i close together;samples IA and 2C deviate the most.

: y

[-
;

_,.
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_o'_

! ': c. fa3 _ Characteristics...........

The Cr.3.+-/.C_2+ redox performance of the three samples is

I! I" presented in Table XlII in terms of total chromous oxidation charge
' (OaCr2+).Sample 3 is more uniformthan samples I or 2. The mean values of.

_; OaCr2 and standarddeviations for samples 1-3 are tespectivelyz 1330

: Z 821, 1380 ± 409,.and 830 _:82 mC.

.,,. The results from this study are shown in the contextof a selectionof

-_.,. previous test data in Figure52. It can be seen that the data poiJltsnearly

span the range and thus could mask any differencesbetween catalyzationby

::_" the Double Immersionmethod throughthe NASA-IImethod. There is a definite

•_._ groupingof Polnt_ arounda QaCr2_ value of 900 mC; however, it is appagent

that a large numberof data pointsmight be needed to obtain a statis_Ically

- significantvalue.

:;:_:.. Table XIV presentsvarious charge ratios,which again show the greatest

i_. uniformityfor sample 3. The charging efficiencyvalues (ratioof chromous
....o :'

:'_ oxidationcharge to hydrogen evolution charge), for example, for sample 3
--____. •

_}'i:i_ show a mean value of 26.7with a standarddeviationof I_. Six of the nine

_"" values are fairly close togetherwith a mean of 25,3and a standarddavla-

_.. tion of 2.8.

':, Presented in the context of the same previous test data in Figure 53,

,

•._,::. it can be seen that the cha_glng efficiency values show a somewhat better
_-_-o_i".

!-_._.:"- grouping around the previous comparable data point (NASA-I,Phase I) than
_:._".

:_: chromous oxidationcharge values alone; nonetheless,there is still some

_,"." very broad scatterthat could skew the results.
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TABLEXIII. ReproducibilityStudy:Sumnaryof Quantitlosof
ReactantsReducedor OxidizedandQuantltlosof
ReactantsTheoreticallyAvailablo.

*qtPb2+ qa_ qcH+ *qtCr3+ qcCr3+ QaCr2. QcdCr3+
Electrode Description Theor. Meas. Meas. Theor. Heas. Heas. Calc.

Sample (mcoul) (mcoul) (mcoul) (mcoul) (mcoul) (mcoul) (mcoul)

1A 128 181 58 3190 3192 2283 909

18 128 129 13 3190 1425 942 483

1C 128 113 36 3190 1101 791 310

2A 128 • 116 49 3190 1938 1380 558

2B 128 107 29 3190 1335 970 365
2C 128 191 80 3190 2303 1789 514

3A 128 128 30 3190 1202 854 348

3B 128 123 29 3190 1075 739 336

3C 128 129 33 3190 1169 898 271

*Theoreticalreactantquantitiesavailablebasedon
calculatedopenvolumeof feltsampleand solution
concentration.

/
y
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TABLEXIV

Reproducibility Study:-Summaryof ChargeSegmentsand Ratios.

Electrode QaC_2+(Peak) QaCr2+{trall)(mcoul.)_aCr2+lpeak).c()QaCr2+/QaPb QaCr2+/QcH+
sample tmcoul) Qa-r_+'trall:

1A 1638 645 2.5 12.6 39
ZB 465 477 1.0 7.3 72

lC 265 526 0.5 7.0 22

2A 774 606 1.3 11.9 28

2B 441 529 0.8 9.1 33

2C 976 813 1.2 9.4 22

3A 269 594 0_4 6.7 28

3B 284 455 0.6 6.0 25

3C 323 575 0.6 7.-0..... 27



Double Imm.

• NASA-I, Phase I "
Cheractert zatt on

100 -- • NASA-I, Phase II"
Charactertzatt on

_ • 0 NASA-l I _

-I- Reproductbt 1tty
Study, NASA-I

80-- • _

%
+_ 60-- •

%
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/

,* 201 • •

1250 1350 1500160017001800 2300

' Fe]tProcessingTemperature(°C)
w

Figure 53, ComparisonoF ReproducibilityStudy D,_taPoints to Previous
Data: Charging[fficienc;,vs. Fell ProcessingTemperature.
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The objective of this investigation was to ,prepare electrode

Jmmples for microscopic a_lysis of the active lead/gold catalyst structure.

The size, shape and distributionof gold catalystparticleson carbon felt

electrodeshave bern studied,principally by means of transmissionelectron

microscopy, and reported here and under previous contracts (16). The

i
_ catalyst actually present during the Cr2+/Cr3+ _edox reaction, howeve_
i .s

i. o0nsistsof metallic lead depositedfrom solution in addition_o the afore-

i, mentioned gold particles. The disposition of the lead component og _heb

F

i catalyst,while crucial to the perfomsnce of the negative electrode, has

not been systenaticallystudied. There are numerous possibilities: lead

_ may Mist, for example,as a thin plating on the gold crystallites,or even
;-%,

" directly on the carbon fiber substrate; or as particles situated on_

adjacent to, or far removed from the gold particles; or, of course, any

i; combination of these. Furthermore, it cannot be anticipated that all

: lead/gold configurations would function as equally efficient

: electrocatalyste.KnowledgeOf the _nent catalyststructurecould

.::: provideexplanationsfor some of the performancevariationsobserved. Thus,

attemptswere made to preparesuitable san%_lesfor microscopicem'°',trnatlon.

',.:_ In additlon to transmission electron microscopy, X-ray dot-mappingr-.

• r.

:i': techniqueswere also tried to examinethe lead Versus gold dlstributlen,
j,

.5= The intent was to plat-elead on identical pairs of catalyzed carbon

:-" felt electro4esamples under normal conditionsand, after establishingsome

baselineperformancecharacteristics,to preservethe lead/goldstructureby

quickly rinsingand drying the felts. One sample of each pair was retained

_._:- for analysis;the secondwas returnedto the half cell to determinewhether

[

! ,-
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this t_eatment ha_.ceused changes in performance which might be inc_cat_ve

of degeneration of .the catalyst.

The samples chosen for this experiment had been prepared for the

residual pH study discussed in Section V-D. These were processed from

1700°C felt (Lot 051482) w_ich had been cleaned in 45% KOI_ at 90°C for 2

hours. Catalyzatlon was conducted according to the standard procedure

described by NASA (8) with the addition of a soak in pS-adjusted water

immediately prior to catalyzationq _md adjub_ment of the aqueOus gold

chloride methanol solution to 25°C before use. One set of data was obtaine_

for fe_.tsprocessed at each of p_ 5, 7, ud 9, respectively.

Electrodes were mounted, waxed, and tested at 25°C in imM PSCl2 with IN

HCf in the manner described in Section II. An _ted cyclic voltam-.......

mogr_ was obtained as a n_masureof baseline performance.

As• the potential next swept toward the region of hydrogen evolution,

the cycling was stopped and potential held at -950 mV vs. SCE for five

minu_es, during which time the curren_ was monitored. The potential was

then monitored as the cell was switched to open circuit for an additional

five minutes. The iR _tion was removed at this point, as application

of a compensated potential tends to induce irreversible oscillation. By

this routine, lead was plated onto the electrode which was then allowed to

go to an open circuit potential. The pot_tial was reapplled at -500 mV vs.
;

SCE as it swept toward a more positive potential, allowing the lead to

deplate (provided that it had remained stable at open circuit). The peak

rapresenting this lead disso]u*ion, as well as the next complete cycle, were

recorded without iR c__ion.
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: _eatio. was then a&_ed gradually and a steady state volt_m.ogrem

was reccrde_ This was c_pared to the initial vol_m_gram and any changes

in behavior were noted.

The potential WaS then held at -950 mv for 5 t, inutes as before_

; however, when the cell was switched to open circuit, the electrode was

, immediately r_ved, rinsed successively in distilled water, 50 volume %

methanol/water,and twice in _mhydrousmethanol,then dried under vacuum for

•_ me hour at ambient temperature.

The dry electrode was returned to the cel i which was then subjected

•" brleflyto vacuum in o_der to draw the PbCI2/HCI solutlon into the felt.

Electrochemical characteristics of the lead/electrode interaction were

studied as described previously by applying potential at -500 mv and

•' recording the initial lead dissolution peak and one additional

plati_deplatlng cycle without iR _pe_sation. A stead-state i_

sated voltammugram was then recorded. Voltam_ograms obtained before and

!-

after drying of the electrode were then examined and compared. The lead

: " platln_deplatirg peaks were integratedby the paper-weightratiomethod to

provide a guantitativeka_Is for c_0arison.

_- A comparisonelectrode for each of those tested as above was prepared

•:' from an adjacentarea of the same felt. The second electrode of each pair

:..:_ was tOst.ed as usual in ImM PbCI2, held for 5 minutes at -950 mV, then
i .

:-:_-, removed,dried,and retainedfor microscopicanalysis.

_. An additional sample, without gold, was prepared with the objective of
. ..

• retaining lead chloride in addition to any plated lead. This sample was

. plated at -950 mV vs. SCE and then simply withdrawnfrom solution and dried

•i without rinsinglit is referredto as the "lead chloride"s_le.

'I

i
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;

i ,_i:i Initialsteady-statevolte_mogramsof I_ oxidatIonZ.reo_ctionwere

::.. recorded for the six felts tested. An example is presented in Figures 54

! _"': and 55; the vol_ram obtainedon the "control"felt is pre_nted in the

;:; first figure,followed by the correspondingdata on the sample intendedfor
i 'C"

'_:" microanalysis. The voltsmograme were generally typic'' in n_gnitudeand

_): form, of data obtained from similar electrodes in earlier testing. In

ii: particular, with the t_c_..,I:_ion of the N 5 Nit, the voltt_m:_Jr_ of el¢_'--

_ trode pairs match almost exactly, suggestingthat the behavior of control

i:4 felts would be representative of the condition of the felts held for

_: analysis, which were treated in exactly the same manner. Although peaks:__

': obtained on the pH 5 control felt were large by comparisoi_,the.Variation

i._,,...... falls within limitsof reproducibilitypreviouslyobservedon similarfelt._.
_.
_, For ease of comparison,the integratedpeak areas for all co_rable data on

i_: pH-controlledfelts, discussed in Section V-C above, have been preseated

_ togetherwith the resultsof this study in Table XV.

.... Control felts were then held at -950 mV for five minutes, generating
L_-. ,.

->:: hydrogen gas _o expel some of the lead solution from the felt. The eleo-

_: trode was then removed from potentiostatic control by switching to open

._. circuit. The_e steps were intendedbeth to simulate dryin_ and _emoval of

_"_ the electrode, and to eventually facilitateactual drying by providing a

!_!i• means to remove some of the liguld. We had hoped to obtain_by non-rigorous

_: methods, an indication of how drying in a non-oxidizing atmosphere might

_ - affect the subsequentperformanceof the electrode.

_. The results were encouraging. While holding at -950 mV the current

_ : remainednearly constantat -1.7to -1.4wA over five minutes, co.oaredwith

|_ .,
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a current of about -1.7 mA at -950 mY for the same felt during cycling

(_igure54}. Similar results were obtained on all..th_eefel.ts. On open..

circuit,the potentialquickly rose to _out -530 mV in every case.

When the potential was reapplled at -500 mV, the lead, which had ap-

parently not been adversely affected,deplated as expected;an example is

shown in Figure 56. Although the peak shapes are sawwhat distorteddue to

the lack of iR compensation, the charges in Table XV are consistent and

fairly reasonabl_ Allowing for the initialapplicationof potential,about

80 mV more positive than the usual onset of Pb oxidation,the second set of

peaks was unchangedfrom the first in each case. In addition,voltmnogrens

obtained after the reintroduction of iR compensation were almost indl-

stlng_ishablefrom those obtained before the interruptionin cycling, e.go

FigUre 57.

The resultswere different,however, when the felts were tested in the

same way after _rylng and reinmersio_1_As shown in Figures 58-60, a pulse

of cathodic currents rather than the anodic lead oxidation,peak, was

observed upon reapplicationof potential. Both anodic and cathodic,peaks

were observed .inthe next cycle, but the peaks were reducedin size and the

hydrogenreductioncurrentexaggerated.The electrodes eventually regained

most of their originalperformancecharacteristics(seeFigure61), with the

exception of the pH 5 electrode, for which the peaks remained reduced in

: size.

Since the dried felts had been relmmetsed in a solution containing

PbCI2, the cathodic pulse observed could result in plating of lead,

obscuring the meaning of any subsequent lead oxidation observed. To i

ellmlnate this possibility, a third repetition of this electrode was I
]
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mounted, waxed, and _ubjected to eXactLy the same tests given the three

control felts, except that the dried electrode was reimmersed in a IN HC1

solutionwithoutPbCI2.

The resultswere in every way typical of those ob_alnedpreviously,ul_

to the point of reimmersionof the dried felt-. Since no Pt_l2 was added to
f

: the solution, the cathodic pulse observed upon application of controlled

_! potential at-500 mV (Figure 62) may represent reduction of _ other lead

compound within the carbon felt structure. On the full sweep following

,, reapplication of the potential, neither a Cathodlc nor an anodic peak typi-

c, cal of the Ph/Pb2+ redox reaction was exhibited at the level of recording

" sensitivity used. The hydrogen evolutin rate is higher than before

'_ removal/drying, but in the complete absence of lead, gold on carbon felt

would normally exhibit a hydrogen evolution level mote than one order of

magnitude higher_ this strongly suggests the presence of a snail _unt of

lead, which might have been detected by cyclic voltamaetry at higher
_"

_, sensitivlty.

3.

The samples were analyzed by transmission electron microscopy

(TEN),scanningTEM (STEM),energy di_sive _nalysls by X-ray (_Z_v_and

X-ray dot mapping.

", For the Pb-on-Au electrodes, prepared by the controlled removal and

, dryirg process described above, TEN photographs of the carbon fiber surfaces

reveal discrete particles of gold as found in previous studies (16).The

'_'i micrographsare presents@in AppendixVI. The particlesand surfacesdo not

:' differ in any way from no-Pb samples that woald suggest lead particles or a

.ii coating. The same can be said of the STEM views of the fiber surfaces,
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discussed below. The tWo samples prepared from felts at a precatslyzatiC_ pS

of 5 and 7 were very similar, with tnhepH 7 sample showing somewhat finer ................

particles. The "pH 9" sample showed very little evidence of gold on the

carbon fibers examined. STEM photographs of the'pH 7 sample are shown in

Figure 63 at a magnification of 6400X, and in Figure 64 at a magnification

of 25,000X. Gold particles appear as the larger bright spots in the photos,

One of the particles, in_.cated in Figure 64, was identified as gold by

as illustrated in Figure 65. The same figure shows that no lead was

detectable by EDAX in the same area, nor anywhere on the fibers on any of

these three samples. Figure 66 shows three particles on the surface of the

"pH 5" sample at.a magnification of 25,000X. Of the two particles that are

c_osest together, the brighter one to the left (shown at 100,000X in Figure

67-)was identified by EDAX as _old (Figure 68), again with no evidence of

lead; the other particle is carbon. The third particle, upper right, was

also identified as gold. An Au X-ray dot map of the same region at 25,000X

does not clearly distinguish the gold partlcles (Figure 69)_ however, at

100,000X, as shown in Figure 70, the gold particle can be differentiated.

Examination of other fibers from these same sampleg by EgAX failed to

show gold or lead. A STEM photograph of a carbon fiber from the "pH 5"

sample shown at 3200X in Figure 71 gives little evidence of particles. A Pb

X-ray dot map of the same area, shown at 3200X in Figure 72, also does not

reveal any discrete particles or dl.fferen_latedareas. Similar photographs

are shown for the "pH 7" sample in Figures 73 and 74. These results seem to

suggest a thin uniform layer of lead over the entire surface of the fibers,

perhaps as a monolayer.

Analysis of the "lead chloride" sample also indicates that the lead is



present in a uniform layer, as shown in the STEMphotograph in Figure 75 and

the corresponding Pb X-ray dot map in Figure 76. In addition, there are

- differentiatedareas in the X-ray dot nap (Figure77) that can be correlated

with Visible structures in the corresponding STEM photograph(Figure78).

; These structures are most likely PbCI2 deposits, making the lead concen-

trationhigh enough on this sample to be detectedby _ (_Igure79).

4. of rbo.

• During the course of the Ph/Au analytical work describedabove it

was noted•that the carbon fiber surfaces showed a regular almost geometric

pattern of very small particles or pits at magnifications greater _han

. 25,000X such as shown in Figure 64 and 66. In order to explore the nature

of the_e structures,two uncatall_edsample_ were examlned_...1)a raw carbon

felt, and 2) a carbon felt subjected to the standard pretreatment in KOH.

: E_amlnatlon of these samples at 25,000X and 100,000X suggests that t_le

patternmay be etch pits pro_ed by the KOH pretreatment_see Figures 80 -
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i
:.- ; Substrate:

F_I-C-I/8
_-'" Lot t05158211700°C
•: ::, 2 m':/stde

Pretreated 45_ KOH
i °" Catalyst:

" 12ug Au/cm"
!...... Ao./MeOH

i:i:" . NASA-I, 25uc u
_' Test: .,-
;-.:,. WaxedCllp H01der o
_....! 30 " 1N HCl, lmHPbC12, N2, R.T. <
[:: Ltn. Pot. Sweep
_-_,:" 10 mV/sec
F--._.

,_ .... 20--

Pb O_x"idart on
;--_.,_

I_ 0 "" i i ij

" Li .::..,' f,.

i-:,::,' o- Pb2+ Reductton
_ on Pb/Au

!_'_:_. - 10 -

• %-

,C'./,

[-': :" U
! ". C. °e-

._. ¢1_

o. •
1

i ,o y,,,

_.:_.-

i __;:; - 800 - 400 0

%- ,
_,-:..,::.. Potential vs. ,_C,E(mY, iR Corrected)
L-_L,

-_.; Figure 54. Steady-State Pb/Pb2+ Voltammoqram before Re:.._ovaIand
,_i:.. Dr,:'i_g of Electrade (pH7 Felt; Control '.;ample).
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Substrate:
FMt-C-1/8
Lot d051582/1700°C
2 cmZ/s{de
Pretreated 45Z.KOH

Catalyst:
12u9 Au/cl._
Aq./MeOH
NASA-!,250C

Test:
WaxedClt p Holder
• HC1, lmMPbC12, N2, R.T............
L_,t. Pot. Sweep
10 mY/set

20 -
_-" Pb Oxidation

15 .

10 -

V B

4J

o .......
Pb2+ Reduction

-5 - H+ Reduction

U
,w4

4J

, I I I I I
-800 -400

Potentialvs. SCE (mV, IR corrected)

Figure 55. Steady-StatePb/Pb2+ VoltammoqrambeforeRe_,:ovaland
Dryingot [lectrode(pillFelt; SE_ISample).
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TABLEXV ChargesRecordedfor Pb Oxidation and Pb2+ Reduction

......... Ch_ rge l(mcoul)- ....................
IlL _ _ L I I U • __ I I

_ prig Felt pH7 Felt .... p.H9.Felt

Anodtc Cat.hodtcI Anodtc Cathodic1 Anod.tc Cathodtc1
't ' i'Prey ous D_a't_A 172 i13 231.i

. A2 178 138 202

B1 113 12G 2t3 321 121 202

Electrodes for SEH 69 81 74 97 100 143

"_ Control Electrodes:

, Initial Steady State 202 23G 103 111 95 130

' 1st PeakAfter Hol_2) 348 --- 115 --- 136 ---

i'" Nuxt Comp.Cycle(2) 357 293 138 126 160 220

, Steady SlCateAfter 243 266 111 142 103 132
" Hold

: "- 1st Comp.Cycle N.A. N.A. 55 5GO
:: AfterDryI2)

SteadyState After #8 194 134 126 108 9G
: ' Dry

L i • ' T

C "

:;:" I) IncludesH+ Reduction

2) No IR Compensation
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Substrate:
FMI-C-%/B
Lot _051582/1700°C
2 cm-lslde_-
Pretreated45Z KOH

Catalyst: _ _.
12u9 Au/cm"
Aq./MeOH
NASA-], 250C

Test:
I_xed C1t p Holde,r

30 , IN HCl, lmHPbC12, N2, R.T.
Ltn. Pot. Sweep u

10 mV/sec

20 _ 2nd Cycl
. 4-, Pb Oxidation

]st Cycle

10[,, i

go jIL .........
i I ' t ,,° f

. = _ Pb2+Reductiont...)

" -lO- on Pb/Au _J

J

,,"

- i ! J I I ._
- -80'J -400 0

. Potentialvs. SCE (mY)

Fl_ure56. Pb/Pb2+ Voltammorjrams,_fter5 minute }!,,_j
at-,:.50mV vs. SCE (pH7 Felt).
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Substrate:
FMI-C-1/8 ^
Lot t051582/1700vC
2 cm_/stde

:_ Pretreated 4SS KOH
Catalyst: _

_: 12ug Au/cm"
Aq./MeOH o:" NASA-I. 25 C

TeSt:
i 30 - WaxedC1t p Holder
; 1N HC1, lnt4 PbCl,_, N2, R.T. ._
' Ltn. Pot. Sweep_

=; 10 mV/sec
"' 20 .. ' '

Pb.Oxidation -_

; I0

" " _ L=, g )44 U ..... r -_ ,,

S-

: _ H *- Pb2+ Reduction
=_ -I0- on P.b/Au

,' U
• "so

0
4J

L_" ¢1

•,: t I ....... J 1 ,
o_i -800 -400 0

...'. Potentialvs. SCE (mY,iR Lompensated)

:.T" Fiqure 57. _.;teady-StatePb/Pb2+ Voltammo,,ramafter 5 Hinute Hold
=.. aL -950 mV vs. SC[ (pli7Felt).
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$ubstrate:
FHI-C-I/8
Lot i_051582/1700°C
2 cnF/stde
Pretreated 45% KOH

Cata]yst:
1Zug Au/_"
Aq./MeOH
NASA-|, 250C

Test:
Waxed Cltp Holder

IN HCI_ _ PbC12, N2, R.T.
Ltn. Pot. Sweep
10 mV/see

U

0

1C _

1st Complete Cycle

5 _ __Pb Oxidation

-5 - _ PotentialApplied

J
-I0. H+ Reduction Reduction

on Pb/Au

, I # ' I I ' I,

-800 -400 0

Potentialvs. SCE (mV)

Fji_ure5_. Pb/Pb_ VoltammogramsImmediatelyAfter Reim;ilersion
of Dried Electroded(pl15Felt).
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Substrate:
FHI-C-I/8 .

"" LOt t051582/1700uC
2 cm_/stde
Pretreated 45_1KOH

Catalyst:
12ugAu/c_

' Aq./MeOH
NASA-I, 25°C

': TeSt:
-'-/. WaxedC1t p Holder

- 1N HC1, ]mMPbCl_, N2, R.T.
Ltn. Pot. Sweep_
10 mV/sec u

OJ rf

ca -5 - q--'Potenttal Applted

.!

L U
*fll

*Not_.__ee:Next Cycle not
.-:::.- Recordedfor thts
_*- Samp1e _ ]_, " ca ,. l

:., , I I I i
; -800 -400 0

(v):,, Potentialvs. SCE m

_'" Figure59 Pb/Pb2 �Voltammooram*hnmediatelyafter Rei11::_ei'sion
.:,., of Dried Electrode(pll7Felt).
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Substrate:
FMI-C-I/8
Lot t(051582/1700°C
2 cm_/side
Pretreated 45S KOH

Catalyst: e
12pgAu/cm=
Aq./MeOH ^
N_A-I, 25vC

Test:
WaxedC1t p Ho]deP
1N HC1, lmHPbC12, N2, R.T.
Ltn. Pot. Sweep
10. mlf/sec

"0
20- o¢::

I0_ / "_Ist CYclePb Oxidation

_" 0 -

: la Applled

-10

H+ Reduction Pb Reduction
on Pb/Au

(J

o

e=

J l I m

-800 -400 0

Potentialvs. SCE (mY)

F_iQu_re60. PblPb2+ VoltammogramsImmediatelyafter Relmmersion
of Dried Electrode(pH9 Felt).
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SUbstrate: "i
FMI-C-I/8

.-- Lot e051582/1700°C ..

:_, 2 cmZ/_ldePretreated 45%KOH
- Catalyst:

12.g Au/c_"
Aq./MeOH ..
NASA-I,25_C

Test:

WaxeclCl t p Haldelr !. 30- IN HCl,. _ PbC12_N2, R.T.
Ltn. Pot. Sweep

, 10. mV/sec
u

'] ,_,

- _ Pb Oxidation o=
"S-

1C-

c
G,I C r ..... W:

• "--r--'-----,/
• J I_

Reductlon

-lC on Pb/Au 1

- ,e.- pb2+ Reduction

- -2C -

u

"o
0

,1=

.: m I m I ,
-: -800 -400 0

Potentialvs. SCE (mY,iR Currected)

"C Fi_i_ure61. Steady-StatePb/Pb2+ Voltammoqram.i/terReimmersion
of Dried Electrode(pH7 Felt).
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:"

. Substrate:
= FHI-C-t/8
_o. LOt _051582/1700°C
i" 2 ¢mc/slde
i Pretreated 45t KOH ._
i :I .

_:. Catalyst: ._' 12,g Au/cm_
i ' A,_ /U_d'ltt

,__ nq./rJwn ..
!., NASA-I, Z5_C
i_i Test:
_=L WaxedC1t p Holder,
_: 1N HCI; N2, R.T.
:_:-_ Ltn. Pot. Sweep
o_' 10 mV/sec u

1 £"'

_-: 10

;,. 0 Itl

• 4-a _____. _

_"

_"" _ e---Potentt al Applted
_'. -10 at -500 mV
" (SweeptngPosttive)
,_i,' H+ Reduction

- _- (Next Cycle)

t--'- .

i ...'..""

i ,_:: -800 -dO0
,;o, Potential vs. SCE(mV)

_:o_-_._ Figure62. VoltammogramsRecordedafter Reimmersionof Dried
_ Electrode in 1 N HC1 with no PbCI,,.
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OmQINALPAGEIS -
PO0_QUALrrY

Figure 63. STEMPho_ographof Carbon Fiber Surface
("pH 5" Pb/Au sample) showing Gold Particles.
(brtght spots); X6400.

Figure-64. SameView as Figure 63 at 25,000X.
The Particle Indicated Was Identified as G0ld
by EDAX(see Figure 65).
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13-APR-83 1BIO21_B
RATEJ CPS TIME I_LSEC
_-2_KEV_lOEV/CH PRSTs I_LSEC

A,H-22-_7 _ 8tFS= MEM, A FS= 5_...

ii • _J . i i j, . ... i i i

" _'_ , i i |1 i m m u i i

, ,IV
Jil' .......................

u

::,, _ _1 ......

i , j nl . i i, i| i

A",, II I
- J, i _

Ir ........ i

_"" CURSOR (KEV) --113.1 1RI EDAX
o::.-
'=_; PBLA. BKG; AULA 5BCPS

:_. Figure65. Energy DispersiveAnalysisby X-ray
:- of Particle shown in Figure 64.

m
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ORIGINAl. PACE I_
OF POOR OUALITY

Figure 66. STEMPhotograph of Carbon Ftber
Surface ("pH 7" Pb/Au s_mple) Showing Gold
Particles (center par_,.tcle is carbon); X25,000.

Figure 67. SameView as Figure 66 a.t lO0,O00X.
The Large Bright Particle was Identified as Gold by
EDAX(see Figure 68).
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13-APR-83 -.12, 48I 53
:. RATE, CP_ T I ME: 43L.SEC

I_ID-2_KEV, llZI';"V/CH PRSTI IlD_ILS',='C ................ '
A, G-7-C " B, .......
FS- • 792 MEMI A FS- 100

- - - [_ II II I I I l I J I II I i I

F _

A P
•. U B

_._. CURSOR (KEV}=I_..11_. EDAX

i_" PBLA AULA 2_5_PS

Figure68. [nergy DispersiveAnalysisby X-ray
of PartCc|eShown in Figure 67.
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o_
_ i_, •

:i2:.
.t;- Figure 69. Gold X-ray Dot Map at 25,0001 Magntfl-

%':'- cationof the Same Area shown in Figure66.

.i

-/: Figure70. Gold X-ray Dot Hap at lO0,O00Xflagnifi-
-_. cationof the same ApproximateArea shown in
-;- Figure67. Note differentiationover Gold Particle.
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ORIGINAL r.-t_,E'_" I_
.OF.POOR QUALITY

Figure 71. STER.Photograph of Carbon Fiber Surface
("pH 5" Pb/Au Sample); 3200X.

Figure 72. Pb X-ray Dot )lap of the Carbon Fiber
Surface shown tn Ftgure 71; 3200X.
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,E

Figure 73. STEMPhotograph of Carbon Fibers
•:' ("pH 7" Pb/hu Sample); 3200X.

t

t

.r[ Figure 74. Pb X-ray Dot Map of the Carbon Fibers

shown in Figure73; 3200X.
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Figure 75. STEM Photograph of Carbon Fibers

, ("PbCl2" No-Gold Sample); 5400X.

4, "•'

"m

W"

Figure 76. Pb X-ray Dot flap Corresponding to
Carbon Fibers in Figure 75; 6400X.
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ir ,_ -

,,"

i. ;,

_. Figure77. Pb X-ray Dot Mao of Carbon Fiber
:' |I

:... ("PbCl2 No-GoldSample);1600X.

i,

!:

. a.

,2,

_':
' ' S

.! Figure78. STEM Photographof the Carbon Fiber
.i,i. shown in Figure77. Note differentiationin Dot

:i Map correspondingto Depositsof PbCI in Flutesof, , Fiber (_eeEDAX Figure79). 2
''i"

_ ,'p
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i I-NOV-83 10t 5g, 83
RATE, CPS T IME 3_82LSEC
8_I-2_KEV, 18EV/CH PRST, OFF

A_ VJRIC B,
FS = 5818 MEMa A FS-- 288

_ 1_21_4 I_,_10e lo 12 1..4 1B 18I I I I 1....
_)

t II I

r ' , ....
E __ g

: CURSOR (KEV) =_Ig. 7158 EDAX •
PBLA 1 1CPS

Fi_lure79. Energy Dispersive Analysis by X-ray
of PbCl_ Deposits on Carbon Fiber
shown iX Figure 7B.
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.;-°.

: m

-ii_ Figure 80. Raw, Untreated and UnCatalyzed Carbon
-_ Fiber;STEM 25,000X.

i

Figure8_ Same Flbe_--Surfaceshown in Figure80;
; STEMIO0,O00X •
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.dl
Figure 82. Uncatalyzed Carbon Fiber after Standard
PPet_eatment tn Hot Potassium Hydroxide; STEH25,000X
(Note '_etch pits"; reference Figure 64).

Ftgure 83. SameCarbon Fiber as shown tn Ftgure 82;
STEHIO0,O00X (reference Ftgure 67).
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?

F. ¢_;JJatmm Aud_tio.s

At.._e. completion of .thi.s..s.tudy it wasconcluded that 1) there are

factors influencingthe qold catalyzatlonprocess that were not determined

., or sufficientlyControlled for closely predictableresultsin terms of gold

particle size or performance,2) the cyclic Voltammetrytestingmethodsare

,,, only suitable for qualitatlve.analysls and broad distinctions in
I

?,_ performance;the resultsmay be best interpretedon a statisticalbasis over

! many samples for the present state of refinement in c_,clicvoltanunetry,

electrode preparation and handling, and 3) the lead component of the

i_ catalyst system appears to be deposited as a thin uniform layer over the

•_ entire carbon surface, rather than concentratedon the gold or in discrete

:_ particles; additionalanalysis (e.g.by Auger spectroscopy)would be needed

=_ to confirmthis, however..

.., The recommended catalyzation procedure is the standard procedure-

" developed at NASA-LeRC (8). Some boundary conditions and additional

_ controlshave been definedas outlinedbelow:

_,_ L_ i0 - 15 mlcrog=wregold/era2

PrecabLlv_tion

I0 - 40% KOH (dependingon solutlon-to-feltvolume ratio)

- 80 - 90° C for approx.1 hour, rlnse to pH 6 - 8

,._i PrecatalyzatlonSta_e
L

•i _ Da_ dried after pH 7 soak

Solvent/WettingAgent

,"i WaterPMethanolI:3

J

" "........ "................................ _.......... -_ -: -=::--- " ....._=__--:=_-_-_:_:_q:T:



i ,

i:: solution

_. Volume: about 50 - 100% in excess of felt saturation

_:_ Temperatures20 30 C

E_osure" i 16 hours, clo_e8 contalner

i 'i: 1 hour at 1000 C _ i honr at 250 - 2700 C

! t, ,

i

i \: ..

i '"r'

i :" i

•._ _

:2'_ " t

i!il .' 1

,.'.

-- o_.
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_. mm_c_S oP Rmcm_ C¢SS-_IXIRG

The carbon felt processed at 1650°C was chosen for thls study

because It performed reasonably Well in cyclic voltammetry and exhibited no

unusual characteristics. Furthermore, its graphitlzation temperature is

similar to that of felts studied extenslvely in the last program (Ref. 16;

Lots 071379 and 122380).

The underlying characteristics of the catalyzed felt were first

established by the usual cyclic volley in IN HCf, and IN HCl with 1 mM

Pb. Ferrous chloride was then added to the solution in increments and

dissolved, followed in each case by cyclic volta,metrlc testing. The con-

oentration of iron was changed from 50 raM,to i00 raM, to 250 mM and finally

to 500 mM molar (in the actual redox battery, this amount of crossover would

be achieved only by total intermixing of the two reactant solutions). The

objective was to determine whether H2 evolution and/or Pb plating/deplating

would be affected by the presence of ferrous ion at various concentra_lons.

This procedure was repeated after the addition of chromium to the 1 mM

Pb solution. A concentration of 50 mR rather than 0.5 M Cr3+ was chosen so

as not to obscure characteristic re_ox features, particularly the level of

reduction current associated with the evolution of hydrogen. Note that the '!

_ final iron concentration represents a ten-fold excess of the cross species.

: In both tests, the half cell was cycled continuously over an extended

period (several hours) after the final addition of iron. Voltammograms were

158
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>.

._ recorded perlodlcally and compared to determine if the ferrous ion would

':: produceany gradual or cumulative effects.

The same procedure was fol lowed for the reactant crossover,studies,

'- with subsequent _lt.ti_ of F_12.4It20 (also _kl_er _'_11_i_ l_Jent_ to.

:: produce iron concentrations of 50, I00, 250, and 500 mM. TeSting was

i: cor_uctedafte_ each addition.

_. Both crossover studies were extended, at the 0.5 M iron level, by

:, allowing cycling to continue, fully compensated for JR, for as long as

i- • p._ticable after the final iron addition;four hours in the case of iron in

1 mM Pb, Somewhat over two hours for iron in 50 ml_Cr with Pb, Voltam-

7_ mogramswere taken at one-hour intervalsfor co_rison, i
-!'i

'- 2.

,. The effects of increasing Fe2_ in .thenegative electrode

solution ate shown first for a blank solution (i.e.PbCI2 in HCf but no

_'_ Cr3_ in Figure 84. AS the concentrationwas increasedfrom 0.0 to 500 raM,

:_: Pb2 |
È�ì�¨�redoxreactionwas shiftedto increasinglymore negative potentialS.

ii':L The Pb oxiOationpeak also assumeda differentshape,with a shoulderon the

trailing side becoming more p_onouncedwith increasingPe2+ _tratlo;_

•': Hydrogenevolutionincreasedvery Slightly at the 500 _ Fe2+ level.

_<_ The cumulatiVeeffectson extendedcycling at the 500 mM Fe2+ level are

_:. shown in figure 85 up to 4 hours or about 72 cycles, It can be seen that

o:- the pb2+IPb redoX _eactionshifts bacl slightly in.the Nltlve dlreotlon

_ with increasingcyclingtime, and H2 evolutiondecreasessllghtly.

The effectsof increasing_e2+ in the negative electrode solution are

..,.,_ 159
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shown iv .figure 86. As the concentration was in_reased from 0.0 to 500 n_,

the Cr3+/Cr 2+ redox reaction was..shifted to slightly more negative

potentials and the total quantity of chromium reacted increasQd. In

addition H2 evolution decreased with increasing Pe2+ concentration.

The cumulative effects on extended cycling at 500 mM Fe2+ level are

shown in figure 87 up to 2 hours or about 36 cycles. It can be seen that

there is little change in the Cr3+/Cr2+ redox reaction over t_at time period

and H2 evolution increased very sllghtly. (No_e: the additional peaks in

the 0.0 to -300 mV region appear to be impurities introduced into the

solution with the FeC12J

In general, there were a number of smal i changes in redox potentials

and peak shapesand sizes,but no indications of a significant increase in

the rate of H2 evolution attributable, t_ thepresence of Fe2+ in chromium

solutions. There is, if anything, a slight beneficial effect, perhaps due

to a shifting of the chromic ion equilibrium to favor the electrochemically

active monochloropentaaquo species.

s. cr3+Inea.,eslei,,e  luelon

k 1650°(:carbon felt was used for these crossover tests also.

Since no _pecial activation procedures are necessary for electrocatalysis of

the Fe3+/Fe2+ redox reaction, the felt was merely cleaned in KOH before use.

Ferric ohlorlde was Used in preference to ferrous chloride to avoid any

problems tJnatmight arise with air sensitivity, especially doting extended

f
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The lower end-of t_e sweep was set at 0.0 V vs. SCE for the positive

elsctrode region in order to overlap the.upper end of the negative electrode

regionl the upper end o£ the sweep for the positive electrode region was set

at 1.0 V vs. SCE to avoid the onset of oxidation reactions observed at

higher potentials.

The cyclic volta_mogram of Fe3+ in HCf is particularly eln_le, There

was no evidence under our expeEimental conditions of any reaction o_her

the Fe3+/Fe 2+ redoX reaction ouer _he range of 0o0 V to l.0 V vs. SCE. The

effect of CE3+ oh the Fe3+/pe 2+ reaction was tested both in a "CE3+ first"

and a "Fe3+ first" mode. In the former method successive quantities of

CrCI3.6E20were added to HCf, and cyclic voltamn_grams in the potential
-

region of the Fe3+/pe 2+ _eaction were obtained after each.additlon. The

purpose was to check for any reactivity of impurities lhtroduced.wlth

CrC13.6H20. After the Cr 3+ concentration had reached 0.5 M, FeC13.dH20

. was added to make the solutlon 50 mM Fe3+_ the cyclic voltammogram of

: Fe3+/Fe2+ was then recorded. Extended cycling was conducted at this point

- to find any changes of reactivity with cycling _ime. The "Fe3+ first"
p

experiment was performed to de_ermlne the initlal Fe3+_Fe2+ rea_ charao-

teristlc_ without any possible interference from Cr3+. The increments of

Cr3+ added were identical to the "C_ + first" experiment. Extended cycling

, was once again conducted after ali additions of reagents were completed.

, The concentration of Fe3+ was held to 50 _4 to stay within the limits of the

" test equipment and for greater sensitivity to the petential effects of C_ _

," on the Fe3+/Fe2+ reaction.
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i •

i- The potential range for these experiments was 0 to 1.0 V (SCE_, usJ_ a

i trL_gular wavefom at a scan rate of 10 mV/s.
•

For the _Fe3+ first" experiment the concentrations obtained by

• su_ive additions were, in the sequence tested:

_ a. IN HCl
|

L. b. S0 _ Fe3+, INHC1

! :17 c. somM 3+,so.. cr3 �¤�z..Cl
; ",'"

'?i:; a. so ._ Fe3+, 100 ._ CO+, n_ HCl

_ . e. 50 mMFe 3+, 250 nt4CO +, INHCI

_ .. f. 50 n_ Fe3+, 500 nt4Cr3+, IN HCl.

i-: The source of Fe3+ Was FeCI3.6H20 and the source of Cr3+ was CrCI3.6H20.

:' Extended cycling was conducted for 231 minutes, equal to about 70 cycles

(200.sec/cycle),with volta_no0rams recorded at times 0, 53, 139 and 227

p_: minutes. The cel I wassealed and al lowed to_/t quiescent overnight (14

!. hours]before resumingcyclingfor an a_ditlonal189 minutes. Voltammogranl

_r were recordedat times 0q 17, 83 and 189 minutes 157 cycles)
,:

i_r For the "Cr3+ first" experiment the concentrations Obtained by

_- successiveadditionswere, In the sequencetested:

% a. 50 ./4 Cr3+, 1N rrl

< b. -100 mMCr3 �œ�INHC1

i ...... r3+," c. 250 tr_ C 1H FIC1

_'#.'r- d. 500 _ Cr3+, IN HCI

!--°';:,:/ e. 500 ./4 Cr3+, 50 mMPe3+, 1N HC1.

:'i Extended cycling was conducted for 316 minutes, equal to about 95 cycles,

!': with voltamm_rams recordedat times 0, 60_ 102 and 316 minutes.

•. j
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2.

F_ure 88 shows the vol_mmogram for carbon felt in 1N HC1 --

in the positive electrode region (0.0 to 1.0 v vs. SCE), togethez with other

voltammograms. It can be seen that there are no significant reactions

apparentin this regionla the absenceof chremlumand iron.

b) _ Ja_,Itlveme_r_- Be_L__ M_az _

The effect of addingCE3+ in increasingamountsto the IN

HCI solution Is shown in Figure 89, along with other voltammograns. A_aln,

the voltammogram lles on the zero-current line from 0.0 to 1.0 V vB. SCE,

the C_ + concentrationsfrom 50 mM to 500 raM;this indicatesthat no reac-

tive impuritieswere introducedwith the chromicchloride.

e _of_ -3+on_- Fe3+Z_a2+_dox_a_io.

In the "Fe3+ First" experiment, a voltanunogramfor the

Fe3+/Fe2+ redox reactionwas obtained in 50 mM FeCI3/IN HCI before adding

any C_13 to the solution_ subsequently,CrCI3 was added incrementallyto

record voltanunogramsat 50, i00, 250 and 500 mM Cr3+. These are shown

together in Figure 88. The effect of added Cr3+ is to increasinglydepress

the level of the Fe3+/pe2+ redox reaction.

With extendedcycling at the 500 mM Cr3+ level, shown in Figure90, the

voltanmogramsremainedconstan_for 68 cycles. The systemwas then allowed

to stand on open circuit under nitrogenovernightlon continuedcycling the

163

O0000002-TSF12



next day there appeared to bO a gradual sllght shift towarde the original

higher Fe3+/pe 2+ redox currents.

In the "Cr3+ Pirst".experlment, C_Cl3 was added in Incremente up to • ......

concentr_tlon of 500 mMbefore adding Pe¢l 3. _s indicated in paragraph b

above, no reactivity was observed before the addition of PeCl3. _fter. the

addition of 50 mMPeCI 3, a voltammogram for the Pe3+/Fe 2+ reaction was

obtained, as shown in Pigure 89, which grew on extended cycling toward

highercurrent_ks (95cyclesaccumulate_.

Co_paredto the resultsobtainedforthenegativeelectrode,it aRpears

that there may be more InterferenGe from Cr3+ crossover to the positive

electrode than from Fe2+ crossover to the negative electrode, perhaps by
I

increasing the chloride complexation of the ferric ion. These general

•_: conclusions are supported by the encouraging results obta/_ed in full cell

: testing with mixed reactants at I_SA-LeRC (II).

• !

J

• i

:i 1
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Pb oxidation

g t
0B

i H+ red. reduction
-, -@ 500

FeZ+
,.i _ shift vlth increasing Fe2+ cone.

u!

4._
m

•_ --FI + reduction on Au/C before PbC12 addition
" (100 mY/set)
•, -50 -

• -800 -400 0
.q

....._ Potential (mYvs, SCE)

- Figure84. CrossoverEffects: l,tcreasingFe2+ in Negative
Electrode Solution (_4C1, Pb Z+, No Cr3+).
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Substtate Time Increments s
" Catalyst

"'. - and Test_ 0, It 2, 3, 4 hours (_72 cycles)

_. Same as
" Ft8, 11
-" 50--

!;

:.i,i" shift vlth

i"- I- Pb oxidation

!._
!"

" increasing time _ .
•

n

-- U
qm

. Q

[i -5o-
r ©

• | 4

-_ : -800 -400 0

' " Potential (mV vs. SCE)i .-

_.,_.. Figure85. CrQssoverEffects: ExtendedCyclingwith 500 mM

L Fez+ in NegativeElectrodeSolution (HCf, Pbz+, No Cr3+).

._.
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F . .

m

-- Subettate, Fe2 �Concentratio_s
Catalyst Ot 50, 100, 250, I00 .fland Test:
Same as

- FI_. ii but
with 50 M4 Cr3+
and new elect.

50 --

j shift with increasi_-- U
Fe 2+ concentration

- Cr.2_ oxidation

_" shift with

"" 0 I inc'2+Fe conc
L.

Cr3+ reduction

\

'_ '41 ehift with Idcteasin S

_C -50 _ Fe2+ concentration

B+ reduction
on Au/C

_ before addition

i of Pb2+ I
I i

i , I ,, ' , I , , t L,
-800 -400 0

Potential (mV v_ SCE)

• Figure 86. Crossover Effects: Increasing Fe2+ in Negative

Electrode Solution (HCf, Pb2+, 50 ni_'lCr3:').
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r +.,+.

+ E_

/ Cr3+ reduction

L/ .

<
,1

; " lb
(

.... -50

. shift with Increasing time

,w

I I 0 , 1 i ' I -
" -800 -400 0
• Pogential (mY vs. SCE)

Figure 87. Crossover Effects: Extended Cycling with 500 m_.lFe 2+
_ in PlegativeElectrode 3olution (tIC1,PbZ_, 50 mM Cr3+).
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Shift with Substrate,
increasins Cr3+ , D4I-C- !/8
concentration-----' Lot _1182/1650 °

II _\ 2 cm'/side160
Pretreated IN KOH-

Catalyst"
None

Test:
Waxed clip_mlder

IN HC1, N2p R.T.

80 Fe2+ Oxidation .-4

i C1 ,only

_ _ Cr3+ Concentrat:tonS

o', '50,to'o,250'5o0

-80 t

F.e3+

-,,o_ ,,o j
I00

.. 1..... I I
0 400 80C

Potential (mV vs. SCE)

Figure 88. Crossover Effects: Effect of Added Cr3+ in
Positive Electrode Solution, "Fez+ First".
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r_

Substtatez
FMI-C-I/8
Lot (}1!82/1650 °

160 -- _ 2 cm'/side
ShLft vLth J' I_ FretreaCed 1N KOH
in_reas£AS t_me _ Catalyst z,

None
Test z

... _u Waxed cl£pholder

IN HC1, N_f R,T.' Lln. Pot.'SWeep
10 mV/eec, £R Co_p.

80--

'i _e2+ oxidation •

:: 0 . ._J ....
• I i_l_il _ '"_ - I II ]JI

00 mMCr3+ (no Fe3+)-]_

" _' Ttal_ Incremeat8:

" [ O, 60, 102, 316 minutesIV (_95 cycles)

:. -80 --- _, 0

i.' U [Shlft With

! " _riincreasing cime

-160 ---

k I I ........I 1 I __
0 400 80O ,

Potential (my vs. SCE)

Figure 89. Crossover Effects: Extended Cycling with 500 mM Cr3+
in Positive Electrode Solution, "Cr3+ First".
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p.

Substratez
t_t-C-ll8

_++,:, 160 i Lot2cm&/side_1182/1650°

"'" Shift with _ PretteaCed IN KOH
tncreuin_ | Catalyst z
Cite Hone

.. Test:

. u t Wexed clipholder

-,_ _ _ IN llCl, N2, R.T.•+_: _ Ltn. Pot. Sweep

_,. 80 l_irst 68 cycles _ i _ I0 _V/sec, tR Comp.

, r

' ]j
: Fe 2+ oxidation

'' _ f Time Increments
" _ I) O, $3.. 139. 227 minutes

, _'+.:: -- IIr (_58 cycles)
_ '_ 2) on open circuit fo_ 14 hrs.

,+ _" 3) 244, 310, 416 mtnut:es
(_57 additional cycl_es,

,- _1Z5 total)
+_;_,. -8o --

L" u it_ t r"; -- '_ Fe3+ Shift with

+:" _ Reduction .-,_ '_ +FIncreasing Time

; (50 mH _e3 � �_+',:" -160 ---

!:: I I I, I t ,.
- 0 400 800

Potential (mV vs. SCE)

. Figure 90. Crossover Effects: Extended Cycling witi_ 500 m).lCr3+

:i_ in Positive Electrode Solution, "Fe3 �First".
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vii. _ OP ICZm_ IE#IL ell IWCr. IIIX. _lWE_Om ,

The purpose of varying the acidity was to determine by half.ell tests

how much.._a_.iation in eleckroche_ca! perfomanee occurs with va_iatian in ..............

acidity. The statement of work for this task called for equilibration of .... _. mm

solutions for at least one month before cc_ucting volta_etric tests. With

approval of the contract monitor, it was decided that it would only be

necessary to equilibrate the CrC13 solutions; the FeC13 a_ FeC12 solutic_B

couldbe freshlyomadebeforetesting.The rationalefo_ thisdecisionwas

thatC_CI2+ is a kineticallyinert complexwhile PeCl2+ and PeCI+ are rather

labile.The half llfeof aquatlonof CrCl2+ to yieldhexaaquo-chrcmium(III)
+

Is reportedto be approximately700 hours (22). The half-llfe of aquation

• of PeCl2+ is approximately 0.3 sec and that of FeCI+ is probably even

shorter (23).

,. A. Aeidi_r-_mvel _ on _J_ _ _

The o_ly electrode material used in these te_ts was F_-cle_ed

1650°C carbon felt, which has been found to be sul_.ahle _or battery

operation in the previously studied acidity range of L0N to 2.0N HC1. The
|

; samples were mounted in the waxed-clip holder as described eael.tee. The ten

solutions studied were as follows:

(1) 50 M4 PeCI3, 0.1N HCf.

! (2) 50 nM FeCl3, 0.5N h_Cl.

(3) 50 _ Peel3, 1.ONBC1.

:- (4) 50 Mt PeC13, 2.ON HC1.

(5) r.r,0_ PeC13, 4.0N IK:I.

(6) 50 M4 PeC12, 0.IN I_1.
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(7) 50 n_ FeC12r 0.5N EIC1.

= (8) 50 ./4 FeC12, 1.0N He1.

(9) 50 _ FeC12, 2.0N EC1.-

(10) 50 n_1FeC12, 4.0N He1.

Cyclic voltanu.ogram_were run from 0.0 V to 1.0 V (SEE). Under these

conditions C12 evolution was avoided eve_ in 4.0N EC1 and the only experi-

:- _tally observable Faradaic reactions Were the oxidation of Fe2+ and the

recluction of Pe3+.

Chlorine evolution is only Possible at somewhathigher [x_anttals. The

,::, equilibrium Potantta_ on the standard hydrogen eleotrode soale is

'L

: E 0 = 1,359 + 0.0295 log pC1 - 0_029 log [C1] 2.

:: _e standardpotentialof the Fe3+/pe2+ ¢e_ox reaction is 770 mv (S}_, and

_: the effect of chlorlde is to lower khe electrodepotmltislsm,ewhat. There-

foreunder normal batteryoperatingconditions.Cl2 evolution (at least,as it

is experimentallyaccessible in half-ceil) is not expected. Under unusual
_--=,

_- conditionssuch as overcharge#C12 evolutionmay play a role, but this was

' not investigated,
i

-.:" For reasonsthat were not determined, it was not possible to set the iR

• correctionfor these experimentsin the usual manner. Typlcally, elect_onio

_.. iR compmmatlon was increaseduntll an omslllatlon point is reached. Then
$., •

_._; the IR compensablon level wa.sreduced very slightly. However_ for these

_, acldlty-effectexl_ri_ants an unusual level of IR ¢xxRoematlonwas necessary

_-_._ to reach the oscillationpoint. If the settingwas then sl.lghtlyreduce4,

<:- oscillation still cont__nued,v was necessaryto greatly diminish the IR
:y

_satio:_ to halt the oscillation. What was done in practice was to go

through the process of settingthe IR compensationtwice.
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2.

Cyclic volta_rns showing the effect of acidity on the

Fe3+/pe 2+ reaction are preseOted In Appendix VII (Figures VII-1 _o VII-10).

Table XVI gives peak separations, and formal potentials as a function o£ _C1

concentretion, Table XVlI lists enodic and catl_ic charges as a function of

HC1 concentretion.

Some of the results for Pe 3+ electrolyte could be indicative of

Increasing reversibility of pe3+/pe 2+ redox reaction with increasing HC1

concentration, because as the HC1 concentration was changed from 0.1N to

4.0N the peak separation decreased continuously from 342 to 83 mY. The

formal potentials, Ere_x , decreased continuously from 509 mY (SCE) for 0_N

HCl to 417 mV (SCE) for 4.0N HCf. This probably reflects greater

complexatlon by ¢hlorlde of Fe3+ compared to Pe2+. The 0aFe2+ value

decreasedcontinuousl¥._Ln....thesame HCf range frO_ 4000 mC to 2785 me, while

0cFe3+ decreased from 4490 mC to 2880 mC. The OcFe3+ value was always

greater than QaFe2+, as expected from previous work. The QaFe2+ value

exceededQtFe3+ (3190mC, theoretical)by about 25% Ir_c_e instance. This

may reflect expansionof the felt in solutlono The results for Fe2+ elec-

trolyte are more dlfficul_to interpretthan those for Fe3+ electrolyte.

e,  iditv-r vel on

Por battery operation a high Cr 3+ concentration (such as 1 M) is

nee_; for voltametric testinga low Cr3+concentration(suchas 50 raM)iS

desirable. EqUllibratlonof a 50 mM C.r3+ solutlon,however,might not yield

the same.percentaqe of chromium (III) hexaaquo and chromium (llI}chloro

o0afplexesas equilibrationof % M CE3+ solution. Therefore,both concentra-

tlon levels at the five differentaciditieswere prepared. The i M solu-
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tlons were. _o. be diluted to 50 he4 CrC13 _lth acidified _iluont at the time

of testing, .The time rec_Ired.fot..diltd:J_ and testlng is short enough so

that ,no significant change could oecu_ in complex speciation. The ten

following solutions,, thereforet were prepared and set aside for equilibra-

tions

(1) 100 ntl of IN CrC13, 0.1N HC1.

(2) 100 ml of IN CrC13, 0.5)1 HC1

(3) 100 nd of IN Ct'C13, 2.0N

(4) 100 nd of IN CrC13, 2.0N

(5) 100 nd of 1M Cn_13, 4.0N HC1

(6) i000ml of 50 _ CrCI3, 0.1S HCI

(7) 1000 _ of 50 _ CrC13, 0,5N _/

(8) 1000 eLIof 50 mM CrCl3, 1.0N BCI

(9) 1000 ,,1 of 50. n_4.C_C..13,2.0N sO1

(10) 1000 nd of 50 niqCrC13, 4.0N !]C1.

After approximately six months of closed storage, the 1 M solutions

: were diluted to 50 mMand the colors compared to the original 50 mNsol_-

ti.ons. The qualitative obSe_vatic_ are summarized belo_
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i "

50 ./4 Green-g_ay
4N 1M_ 50 ,/4 G_een ...

• 50 nt4 Violet-_ray .....
' 2N 1Nm* 50 mM Greel_-qray

'" 50 .._I Violet
: 1N 1N -,_S0 J Violet-green

50 _ Violet
! ,/. 0.5N 1M_ 50 mM Violet-green

:' : 50 M4 Violet
-': 0.1N 1M--,P 50 _ Violet

:: The violet color is indicative of the conversion to the C_(lI/_) hexaaqu_

complex. ItWas aFparefltthat the diluted samples 150mM C_ +) experienced

_ a greater de_ree of conVersion to the Cr(II_) hexaaquo complex than the

- concentrated samples (iN Cr3+)I for this reason the 50 mM samples were

chosen for testing. There Wasalso more conversion at the lower acidity

?- levels; this was reflected in the elOctrochemlcal performance in these
:T"

._.- solutionsas dlsc_med below.

,_-_:; Cycllc voltamnetrywas performedin each solution,using a fresh eleo-

o:i trode in each case (from_ 1650°C felt, Double Immersion pceparat.ior_ and

_,_.. IronPbCI2. The voltammogramsare shown in Appendtx VII (Pigures AVII-II to

AVI_-I5). Performancedroppedto a lower level at low_r acid concentrations
4

_ land increaBing Cr(III) hexaaquo concentration). BeloW 4 N HCf, lead

'. deposition dominates the cathodic wave. Anodic peak currents are as

, : follc_sz

,.,: Hci 2N iN

o ,-. lalm_ 65 22 24 26 30

: A qualitativeconclusionIs that higherconcentratlonsof CrCI3 and HC1

",:" wlll retard conversionto the Cr(lil)hexaaquocomplex to some extent.
i•o

"_ 17e
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TABLEXV]

:. P=_k Separation For Fe3+/Fe2+ Redox Reaction
...... aF  LCo c -i-q

)Epc E' redox (SCE)Solution EPtm (mY)
Compostt ton

50 mMFe3+, O. 1N HC1 342 509

50 mMFe3+, 0.5N HCI 292 466

50 n_HFe3+, 1.ON HC1 229 450

50 mMFe3+, 2,ON HCI 125 438

50 mMFe3+ 4.ON HC1 83 417t

50 mMFe2+, 0.1N HC1 445 528

50 mMFe2+, 0.SN HCI 291 458

50 mMFe2+, 1,ON HCI 120 468

50 mMFe2+,_2.0N_BC1 87 452

50 mMFe2+, 4.ON HC1 45 421

=
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TABLEXVII

Fe3+ Reduction and Fe2+ Oxidation Char_]e_

Solutt on OaFe2+ QcFe3+
Compost tton (mcoul) (mcoul).

' - • i ii i i

50 nfl Fe3+, 0.1N HC1 3999 4489

50 n_l Fe3+, 0.5N HC1 3354 3586
, ,

50 nlHFe3., 1.ONHC1 3290 3444

50 _ Fe3+, 2,ONHC1 2967 3109

50 _ Fe3+, 4.ON HC1 2786 2877

50 _ Fe2+, 0.1N HC1 2325 2045

50 mHFe2+, 0.5N HC1 3483 2786

50 n_l Fe2+, 1.ONHCI 4360 3857

50 nd_Fe2+: 2.ON HCI 4889 4231

" 50 mMFe2+, 4.ON HCI 4334 3560

Theoretical quanttty of reactant,, qt' ts equal 1_o3190 mcoul

: -178"
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ob_ecttve of this _aek _ to aace_ain _ effects of teml_eta-

ture (25 ° - 65oc) on the Iron/chromlum redox teactlons o_r the reactant

concentration range of 1.0, 1.5 and 2.0 M. The usual 50 mN concentration

• was included here for iron solutions as a reference point to earlier

studies.

The typical cyclic voltsnmtcy methods used. in this proqrm (Section

II) were not entirely suitable for this study. There was the physical

- problem of the softening of the wax (used to define the electrode a_e_ and i

to isolate the contact region on the carbon felJ;), at higher t-emperatures,

. and generation of a film on the surface of the solution. There were also a

- nun_er of instr_nentation problems: at the higher reactant concentrations,

: the instrumnt limits were quickly exceeded necessitatAng a large redu_cion

•. in sweep rate, and i_ation was more dlffic_It.

In addition, one of the principal reasons for operating at elevated

temperature is to shift the chromium complex equilibrium from the less

active hexaaquo species to the more active monochloropentaaquo species.

_.,--" Since the c_ver_ion to the hexaaquo chromlu_ species occurs slowly (22),

the effects are not generally observed in short-termcyclic voltamnetry

": with fresh solutions. Temperatureeffects,in general,h_ve been addressed

, more directlysnd ._ffectlvelyin full cell testingat NASA-Le.RC(I,I0,ii).

- Samples of 1700°C fe._t(Lot 051482) were soaked in methanol,

rinsed,and cleaned in 45% potassiumhydroxideat 90°C for two hours. For

_ the Fe3+/Fe2+ reaction,no catalyzatlonis required.
o

t

,, °
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" Strips of felt were mounted and waxed as usual for testing by cyclic

i_ volt_mmetry in the half c_ll. The first of these tests Was connoted in a

!: solutiOn of 0.050 M FeC13 in 1.0 N. B:I at 25°C. The Fe3+/Fe2+ reactiOn was

examined with a linear potential sweep.rO_yerthe _ange of 0 to +1.000 volt

versus _ The sweep rate was i0 mV/sec for the 0.050 M iron solution.

Potential was first applied near +1.0 volt, before the onset of FeB+

_- redo_do_ Coetnensation for ill Was added after one c_le. A voltam_tam
I' i

• was then recorded after allowing several cycles for equilibration.Thls

;:;: procedure was repeated at 45°C, 55°C and.65°C, using the original felt

" electrode and 0.050 N iron solution. The series of tests at four te_pera-

". tures was completed in a single day to obviate any effects of thermal

 ing.

In order to aucomnoe_tethe hlgher currentsgenerated Ir_concentrated

iron solut,ons, it was necessary to reduce the sweep rate, This was ac-.

i compllshed through the use of a motor-drlvenslow-function_eneratorwith

adjustablegear ratios, The actual sweep rate was determlnedby clock_g

[_ the tln_ required to produce a 1000 mV change in potenti_l. A rate was

,_ further reducedto 0.88mV/sec for the higher concentrations(I_5M and 2.0

M). Since the function _enerator was equipped with a ramp function only,

the direction of sweep had to be reversed manually at the extremes of the

_ ,. potential range. Pot this reason, and also to save time, the range was

often intent.ionallyreducedand the er_Ints thereforedo not.correspondto

_ 0 and +l.0n_ovolt. This in no way affects the rate of sweep, however, and

:._ all reactionsof interQstOCCUrin the range of +0.200V to +0.800V.
v _

Otherwise, testing in concentrated Iron sol.utlons proceeded

i aubatantiallyas describedabove for the 50 mM iron solution,voltammogram
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were obtained at each of the four temperatures in 1.0 M FeCl 3 in 1.0 N HCf,

_ 1.5 M FeCl 3 inl.ONHC], and 2.0 M FeCl 3 inl.ONBC1. Because of the slow

sweep rates, it was not possible to complete testing at all four tempera-

tures within a single day. In such cases, the original felts and electro-

lytss-were not retained. Newly waxed felts and fresh solutions were put in

place at the start of each day.

The volts_rams for the 50 mM FeCI3 are presented in Figures 91

: through 94. The results are approximately as expected. The voltsmmograms

for the higher concentrations are presented in Ap_dix VIII. With the slow

sweep rates and high solute concentrations used in some of these experl-

: merits,an appreciable amom.¢ of ferric ion in the bulk solution could dif-

fuse to the surface of the felt during the redox reaction. This had the

effect of increasing the charge passed during Fe3 �reductionwhile

decreasing the net oxidation charge. Thus the cathodic peak was generally

several times larger than the anodlc peak. Some of the ferrous ion gen-

erated may also have diffused out of the felt. Also note the unusually

large Separation between peak ano_%c and ce_c currants observed in 50 mM

FeCI 3 a_ 25°C (Figure 91). The reaction became more reversible as the

temperature was raised. A similar phenomenon was nee observed at higher

iron concentratlons.

When comparing voltammograms obtaine_ at different concentrations of

= FeCI 3, it is necessary to take into account the fact that the amount of

charge represented by the area under a peak is dependent upon the sweep rate

as well as the scale. Each square centimeter in Figures 91 through 94

represents 0.200 Coulombst in Figures AVIII-I through AVIII-4 it is 2.78

.. 181 "
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b " •

Coulombs/c_21 in Figures&VIII-5 throughAVIII-12 it is 5_8 Couloeba/c_.

Q

_:: Samples of _700°C (lot 0515821 carbon felt were catalyzed ac-

:, cording to the standard NASAprocedure 181 as modified below. Felts pre-y

::, viously cleaned in 45 percent potassium hydroxide were rinsed thoroughly,

: o°:,': soaked in distilled water for 16 hours, then soaked for one and one half

,: hours in water of pH 7 immediately before the damp-drylng step prior to

_._: catalyzatlon. In addition,the catalyst solutionwas wan_ed to 25°C before

_:., being applied to the d_rled felt. The catalyzed felts were sealed in

°:': plasticbags and held at about 25°C for sixteenhours,then dried and baked.

,, Felts were then mountedand waxed as usual and tested'bycyclic voltam-

V_: • nmtz'y frl the half ceil. The test solutionswere 1.0Nin HCf, I mM in PbCI2,
i_oi

i - and 1.0 M, 1.5M or 2.0 M in CrCI3. Steady state JR-compensated voltam-

:_ mograms Were obtained at temperatures of 25, 45, 55, and 65°C at each

oO,; conca_rat lon.

°.; In order to accommodate the high currents at these concentrations, it

i"_"_. Was necessary to reduce the potential sweep rates in this study also, aS
k ,

io.: discussed above. A rate of 0.885mV/Sec was initially chosen and used forL
_ °e,

the tests in 1.0 M CrCl3_ the rate was thereafterincreasedto between1.72
i

_°'o and 1.77mV/sec. The exact sweep rate_ calculatedon the actual day of the

experlment,is re_ordedon each voltamogra_

o ,. Due to the slow sweep rate, the number of experiments that could be
l

:,: completed in a single day was generally limited to two. In every case,

fresh solutionswere prepared and new electrodesamples (cutfrom the same
':v, ,

.. prepara_loN were waxed and mountedat the start of each day.

i ..: 182
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2.

' The voltammogtams obtained as above are presented i_ Appendix

VIII Figures AVIII-13 through AVIII-24. When visually c_aring peak areas,

please note the following charge factors; in Figures AVIII-13 through 16,

each square centimeter on the graph represents 5.65 coulombs; in Figures

AVIII-17 and 18 the factor is 2.82 coul/cm2; in Figures AVIII-19 through 24

the factor is 2.86 coul/cm2.

As can be seen fro_ the volta_gra_s, the results on the cathodic si_e

were markedly different from those obtained in more dilute solutions of

CrCl 3. Voltammograms obtained in 1.0 M CrCI 3 all show a sharp spike in

current at or near -670 mV vs. SCE, perhaps marking the onset of Pb 2+

reduction. The current declined thereafter, exhibiting a shallow

and increasing somewhat at more negative potentials where H+ reduction

• ".... becomes significant. Contrary to previous experience, a more normal roun_

peak shape was exhibited only on the return sweep. With the exception of

Figures AVIII-17 and 18, the remaining volta_mogr_ show a long _ea_- rise

in cathodic current with increasingly negative potential. The cathodic

current came to a sharp maximum near -858 mV vs. SCE in 1.5 M CrCI 3 and

aroun_ -700 mV vs. SCE in the 2.0 M CrCl 3 solutions. After a brief but

sudden drop following the maximum, the current decreased slightly and

remained nearly constant toward more _egative potential. On the return

sweep, the current re_Tained nearly constant for a ti_e, then followed the
.-

.._ initial rise in cathodic current bauk toward the anodic side. Similar

behavior is o_merved in Figure AVIII-17 except that the sharp ma_i_u_ i_

cathodic current is lacking. The voltammogra_ in Figure A_11-18 is alone

in showing a rounde_ cathodic peak more typical of previous dat_

:
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Excep£ for a pronounced second peak in Figures AVIII-19 and 21, the

anodlo currentbehavior was unremarkableo

The rather large discrepancyin the magnitudeof the anodic and catho-

dic charges can be explained by the comparativel.ylong time allotted the

oxidationand reductionreactions(about20 minutes each, versus less than 3

minute in most previous data). During this time period, a significant

amount of Cr3+ could diffuse into the felt and be reduced, contributingto

the cathodic,c,mrge°

If_4
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Figure 91. Fe3+/Fe2+ Reaction at 25°C. In O.050H FuCI3.
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. Figure 93. Fe3+/Fe" Reaction at 5 C. in O.050M FL,CI3
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: Figure 9_. Fe3+/Fe 2+ React:Ion at (_5°C. in O.OSOH Fe,_l 3.
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_, The flna] task in this program was testing of an optimized electrode in

system hardware, a I/3 square foot (300 cm2) flow cell. The-carbon felt
5

chosen was-from the Phase II material prucessed at 1700°C (Lot 051482,

.... Section I'9. The samples were pretreat_ in 45% KOH and th_ negative elec-

trode was cato lyzed by the standard NASA procedure (8) with the addedp

._.i controls outlined in Section V-P. Specifically, the felt was rinsed to pH 7

before catalyzation and the catalyzation was done at 25°C. The membrane was

_,., an lonics (_IL-AA5-LC.

A 14.5 cm2 rebalance cell was used to measure hydrogen evolution. The

- iron electrode was the same KOH pretreate_ carbon felt as used in the redox

i: cell. The negative electrode was a Giner, Inc., Type 2450 hy_rogen/acld

: (Pt/C) electrode. Ir_the first two trial runs, an Ionlcs CDIL-AAS-DC mere-

.: brane was used_ it was observed that there was Iron crossover to the

" hydrogen electrode. At NASA-LeRC, using a similar rebalance cell configura-

tion, it was also reported that platinum was migrating through the system

-" resulting in aggravated hyd=ogen evolution at the chromium electrode on

ii charge. For these reasons, for the 3rd and 4th runs Dupont Nafion n_mbrane

_: was use_ in the rebalance cell. With this membrane, no iron dlscoloratlon

: of the product water was ever observed, and the membrane remained clear.

The system was set up with 3 pumps, 2 flowmeters and 2 reservoirs of

solution (one liter). The ne_atlve electrode solotlon Was 0.9 M CrCI 3 and

10-4 M PbCI2 in 1 N HC1. The positive electrode solution was IA M FeCI 2 in

IN HCI. The solution volume was 500 ml in each case (about 12 Ah). The

- solution was pumped through the cel I at a cate of about 150 ml/mlnute on a

full cycle. A third 2-channel bellows pump was used to pump the soluEions

_! z89
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" through the ¢¢balance cell and a stall OCVcell at about 30 ml/minute. All .i

-- of the runs were done at ambient temperature.

_i) For fast cycling, the pu_pe were turned off and the inlet Port_ to the

!_ redox flow cell were closed. The syete_ was then set for auto, tic cycling

at 3 anps on a 30 minute schedule. Cherging in all cases was carried out at

constant current until the cel 1 voltage reached 1.3 Vs the system then

/" shifted automatically to voltage control. Discharge was c_r[ied out at

constantcurrentto a cell voltage cut-offof about 0.2 V.

i,. A digital coulometerwas used to record amp-hourcapacitles;the meter

• could also be switched to a higher sensitivity shunt across the rebalance
o ,

cell to recordhydrogenevolution rates.

: The first full cycle for Run # 3 is shown in Figure 95. Appreciable

-_" hydrogenevolution was only observed in this first cycle; about 1.36Ah was

_ recorded with the rebalance cell. A polarization curve generally was

_ recordedafter about 50% discharge. The performanceafter 200 rapid cycles

ii is showh in Flgure 96. The cell was then discharged into reversal and

subsequently charged and discharged to obtain a pelarizatlon curve. The

, ,,? three polarizationcurves are shown in Figure 97. Similar curves are shown

: for Run #4 in Figures98 to I00. In all cases hydrogenevolution rates were :

o'." i

:: almost undetectable. .!

9.
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APPENDIX II. - EFFECTS OF PROCESS VAI_IATIONS ON GOLD CATALYZATION

(SUI_PLEMENTAL DATA )

Figure AII-I Transmission Electron Micrograph of 1500°C Felt Samp]je
Catalyzed by Double Immersion Method, 12.5_g Au/cm_.
(90,000 X magnific,_tion;! mm --11 ren).
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_IgureAII-3TEM Photographof 1500°CFeltSampleCatalyzedby NASA-II
Method_12.5ugAu/cmz. (90,000X Magnification;I mm = 11 rim.)
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Figure AII-4 TEM Photographof 1800°C Felt Sample Catalyzedby Double
Immersion-Method,12.5ug Au/cm2. (90,000X Magnification;
I mm = 11nm.)
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Figure AI1-5 TEMPhotogPaphof 18_O°C.Felt Sample Catalyzed by NASA-!
Method, 12.5pg Au/cm . (90,000 X Magnification, 1 mm= 11 nm.)
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• Yigure AII-6 TEM Photographof IBQO°CFelt SampleCatalyzedby NASA-II
Method, 12.5_gAu/cmz. (g0,000X Magnification;I mm = 11 nm.)
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: Figure AII-7 TEMPhotograRhof 2300°CFelt SampleCatalyzed by NASA-I Method,
12.5ug Au/cm_. (90,000 X Magnification; 1 mm=11 nm,)
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_i:::i tgure AIII-I SampleEVP-16;+"Exactyolum_"=t16 Hgurs-"'CloSed"ExposuN.Substrate:
Carbon felt Lot 011882-1650oC;PretreatmentI N KOH.

: Catalyzation:
:_ Target loadingof 12.5_gAu/cm2 using aqueous/methanolsolution.
_ Gold chloridesolutionu_ed in exact volume for felt saturation.

+-;::- -49cm2felt sample immersedin-T6-m-iof solution
-felt rotatedin solutionafter 2 minutes.
-sampletransferreddirectlyto plasticbag after 5 minutes.

' -removedfrom plasticba0 after 16 hours, air dried for I hour.
_: -oven dried at ll0OC for 2 hours.
°- -bakPd at 2700 for 2 hours.
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m

•' Figure AI¢I-2 Sample DVP-16;___-_-_"D°ubleVolume",__16_ _-_._-_=_Hours"Closed" ExposuPee._
•:" 'Substrate:

Carbon felt Lot 011882-165001;;PretreatmentI N KOH
Catalyzation:
Target loadingof 12.5_gAu/cm2usingaqueous/methanolsolution.

; Gold chloridesolutionused in double volume for felt saturation.
-49 cm_ felt sample immersedin'-_-'mlof solution.
-felt rotatedin solutionafter 2 minutes.
-sampletransferreddirectlyto plasticbag after 5 minutes.
-removed from p]asticbag after 16 hours, air dried for I hour.

: -oven dried at 110°C for 2 hours.
-baked at 2700 for 2 hours.
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FigureAIII-3 .SampleEVA-SB__E_a$.t-Volume"_5 Minutes "Open"Exposure.
Substrate:

_,- Carbon felt Lot 011882-1650%; PretreatmentI N KOH.
.... Catalyzation:
" Target loadingof 12.5_gAu/cm2usingaqueous/methanolsolution.

_:' Gold c_loridesolutionused in exact volume for felt saturation.
/" -49cm felt sample immersedin--i-6--m1of solution.

-felt rotated in solution after 2 minutes.
_. -sampletransferreddirectlyto 110ocoven after 5 minutes

-oven dried at 110°C for 2 hours. -
-bakedat 2700 for 2 hours.
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': Figure AIII-4 _SampleEVA3OB; "ExactVolume",30 Minutes "Open"Exposure
: Substrate:
'. Carbon felt Lot 011882-1650°C;PretreatmentI N KOH.!

+ + Catalyzation:
' Target loadingof 12,5ugAu/cm2 using aqueous/methanolsolution.

--, _
Gold c_lorldesolution used in exact volume for felt saturation.

°+'_ -49cmc felt sample immersedin-_6-+mlof solution.
" -felt rotated in solution after 2 minutes.
.... sample transferreddirectlyto llO°C oven after 30 minutes

+ :; -oven dried at 110oc for 2 hours. --"
°::_ -baked at 2700 for 2 hours.
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£1_,,ruAIII-5 §DmDJ__EVA-180P'."ExactVolume',.180Minutes "Open"Exposure
Substrate:

-.. Car,.onfelt Lot 011882-1650%; Pretreatment1 N KOH.
Cat,_lvzatior.:

Tar,',_tleadingof 12.5_,gAu/cm2 using aqueousmethanolsolution.
G,,I'c_loridesolutionused in exact volumefor felt saturation•

_ -4 .,_ felt sample immersedin 16 ml of solution.
-f,It rotatedin solutionafter 2 minutes.
-_,,,r,le transferreddirectlyto 1100 oven after 180 minutes.

= -o _n dried at llO°C for 2 hours ---
-I ,ed at 2700 for 2 hours,

w
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:" " Flgur_ ,klII-b _S_a_mpleEVA-180; "ExactVo]ume",-]80Minu_es"Ope_n_"Exposure
_" Substrate•
. Carbon felt Lot 011882-1650°C;Pretreatment1 N KOH.

Catalyzation:
Target loadingof 12.5_gAu/cm2 using aqueousmethanolsolution.

_, Gold chloridesolutionused in exact volume fe- felt saturation.
_':: -49cm2 felt sample immersedIn-16--mlof solution.

-felt rotated in solution after 2 minutes.
°:_, -sampletransferreddirectly to 110o oven after 180 minutes
:: -oven dried at 1100 for 2 hours. --

-not baked at 270oc.
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Figure AIV-1. Gold Particles on Carbon Fiber;
• Precatalyzation pH of Felt was 5, Sample A.
.. Catalyzed at 25°C- :l_y NAS/_-f )let_hod.
,,. (TEM 90,O00X;I mm = 11 nm).
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_.i Figure AIV-2. GoldParticles on CarbonFiber;
- Precatalyzation_pHof Feltwas 5, SampleB.

Catalyzedat 25°CbyNASA-iMet-hod.
(TEM90,O00X; 1 mm-- 11 nm).
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FigureAIV-3. Gold Particleson Carbon Fiber;
PrecatalyzationpH of Feltwas 9, Sample A.
Catalyzedat 25oC_by_NASA_-I_Me--_od.
(TEM 90,O00X;I mm = 11 rim).
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Figure AIV-4. Gold Particles on Carbon Fiber;
Precatalyzation pH of Felt was 9, Sample B.
Catalyzed at 25vc':by NAS'A-[_Hethod.
(TEM 90,O00X; 1 mm= 11 nm).
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FigureAIV-5. Gold Particleson Carbon Fiber;
PrecatalyzationpH of Feltwas 7, Sample A.
Catal,jzedat 25v_AS--SA_F--IMet-l_od•
(TEtlgo,onox;I mm = 11 nm).

222

00000003-TSD02



f,

e

",=

t

i ,

i

it:.
! °o.._

[

i'.j.

.r

r ..

i . IS

F .

•. FigureAIV-6. GoldParticleson CarbonFiber;
'1"4 Precatalyzation pR of Felt was 7, Sample B.

Catalyzedat 25_C-by NASA-i_.lethod•
.. (TEM90,O00X;I mm = 11 nm).
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Figure AIV-7. Gold Particleson Carbon Fiber;
Precatalyzatio_pH of Felt was 7;
Catalyzedat OvC by NASA-IMethod.
(TEM gO,OOOX;I mm = 11 nm).
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Figure AIV-8. Gold Particles on CarbonFiber;
' PrecatalyzationopH of Felt was 7;

Catalyzed at 50vC by NASA-I,_fethod.
_ 90,O00X; :t_mm= 11 rim).
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APPENDIX VI. -..ST/JDYOF LEAD DISTRIBUTION ON ELECTRODES

(SUPPLEMENTAL DATA)

FigureAVI-I. Lead PlatedSample;Gold Particleson
Carbon Fiber. Catalyzedfrom pH 5 Felt
at 25°C by NASA-I Hethod.
(TEM 90,O00X;I mm = 11 nm).
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Figure AVI-2. Lead Plated Sample; Gold Particles on
_[ Carbon Fiber. Catalyzed i_rom pH 7 Felt

at 25°C by NASA-I Method.

_, (TEll90,O00X; I mm = II nm}.
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Figure AVI-3. Lead Plated Sample; Gold Particles on
Carbon Fiber. Catalyzed from pH 9 Felt
at 25% by NASA-I Method.

: (TEf.I90,O00X; 1 mm= 11 nm).
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APPENDIX VII. - EFFECTS OF ACIDITY LEVEL. _SUPPLEMENTAL DATA) __

v.

' SubstPate:
• _I-C-1/8 .

i ""Lot QlI882/16SOU
2 cm_/sl de
Pretreated 1N KOH

. Catalyst:
160-- None

Test:
: gaxed"clt pholdef.
:,. O.1N HC1, N2, R.T.

i-:,'_ Ltn. Pot. Sweep
[: 120 l 10 mV/s, tR Comp.

:. _ Fe2+Oxtdation
U

#p

"0
0
C

m

.. 40--

. 0

• g

" _ -40i"

!--2
i

-80

i .... _ F Reductton
i , m_lFeC13)

i -" -160

) ,!.'

i :r'

,.,_ o I I f I , , I I I ,,
;.,' Potential (mYvs. SCE)

:i;? FigureA VII -I. Effectof AcidityLevel: Fe3+ in 0.1N HCl.
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Substrata:
"" FMI-C-I/8

Lot Q11882/1650o
Z cnP/stde

' Pretreated 1N.KOH......
i +" Catalyst:

°+ 160--- None
Test:

Waxedcl tpholder tton

0.SN HCI, 112, R.T. 1Ltn, Pot. Sweep

_. 120- ='" 10mY/s, tR Comp / !,I

/' ![o.

| ,_,,

' 4C.--

i o l

" C i i ,'.

_ +'ii -4( __

i + /_,.

: _'" -8C-- 3+ Reductlono.o+'..

--:' _,_ _ -" (50 _t FeC13)
,, -].2c-- "8

!.++ _
,I

-°° -16( --

': i i I i I 1 i n i I
0 500 1000

,;. Potential (mY vs. SCE)
•__ Fe3+,' FigureA Vll -2. Effectof AcidityLevel: in 0.SN HCl.

?
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: Substrate:
! FMI-C-I/B

LotQ11882/1650o
2 cnF/si de

: Pretreated IN KOH
: Catalyst:

160 Nor.e-
.. Test:

LJaxedC1tpholder
1.ONHCl, N2, R.T.
Ltn. Pot. Sweep _ Fe2+ Oxidation

: 120 lO mY/s, IR Comp.

80 3
0

4O

-80 _ Fe3+ RedUction
(SOnfl FeCI3)

0
Potential(mV vs. SCE)

FigureJkVll-3. Effectof AcidityLevel: Fe3+ in 1.0N HCl.
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I: Substrata:

_; FMI-C-1/8: LotQ1188_/I(_50°2 ceF/stde

t . ;)retreated Itl KOH
; • Catalyst:
i .- 160-- None
,'o Test:
l" Waxedcltpholder
L. 2.ONHC1, N2, R,T.

: L|n. Pot. S_eep
'_ -- 10 mY/s, tR Colnp.

.... u atlon

i-_< e-

l - " '

"" --i ..a__
k

:- e3+ Reduction

,: -- _(50 mItFeCl3)"" U

. "'t °I'Q

-}2o--
r_

• - 16C--

.-_ )
Potential (mVvs, SCE)

FigureA Vll-4. Effectof Acidity Level: Fe3+ in 2.ON HCl.
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-160

0
Potential (mY vs. SCE)

--. Figure A VII-5. Effect of Acidity Level: Fe3+ in 4.ON HC1.
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Subs_rate:
FMI-C-I/8
Lot Ql1882/1650o
2 c_/stde
Pretreated IN KOH

Catalyst:.
80-- Ilone

,- Test: /_Waxedcltpholder ..
u O.1N IRI_ N2, R.T. / \ q_..Fe _" Oxidation

;2

g

i

1

-4C_. • 3+ Reduction

". U i
-6C.. _

-8(--

Ix, Ii. , I I I I i j e I I.
- 0 500

_° POtential (mVvs SCE)

i _' Figure A VII-6. Effect of Acidity Level: Fez+ tn O.1N HCl
i '
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Substrate:
FMI-C-1/8
Lot _}11882/1650°
2 cnP/stde
Pretreated ltt .KOH

Catalyst:
16C-- None

Test:
Waxedcl I pholder
0.5It HCl, N:), R.T. I

Ltn. Pot, Sfleep _4.---

--" 10 mV/s, tR Comp.

u Fe2+ Oxtdatt on i
(50 d4 FeCl2)

-- _

!

'_ --.
V

c

I r

m .

e3+ Reduction

m

U

,,c

-12o-- _

-16C"--

, , , , I , , ,, i I
0 500 1000

Potential (mVvs. SCE)

Figure A VII-7. Effect of Acidity Level: Fe2+ in O.SN HC1.

236

O0000003-TSE02



I

: ,Substrate:
FMI-C-I/8

200 --' Lot_11882/16500
•" 2 c_/stde

Pretreated 1N KOH
Catalyst:.

160 --- None
Test: n

Waxedclip.holder
1.ONHCl, N2, R.T. ,

.. u Ltn. Pot. S_eep
120 "- _ 10 mY/s, tR Comp.

80 .._

40"-"

g
' 4-_

® 0
S-

-40 "--

-80 -"

u _ Fe3 �Reduction
o
1"
4.a

-120 --- (..)

• o"

-160 --

-200 ""

0 500 1000

Potential (mVVS. SCE)

FigureA VlI-8. Effectof AcidityLevel: Fe2+ in 1.0N HCI.
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i ' I/ t

...t. Substrate:
,= __ | FHI-C-1/8

•+':; ot Ql1_2/1650 °
....' / E c_/s tde

....... 1 PretreatedINKOH
: :; --L Catalyst:

/:'_: -- _ T tN°_e
• | tlaxed cllpholdeP

,;.: u Fe2+ Oxldattgn_._4p / 2.ON HCl, Its, R.T.
.: - +o (m.m'4F_12),

- . imllln

; 7. '_
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. -12( -- f'
_./, tJ

• ,,_

,!

•:" I I.... •............. L I I I
'.t 0 500 I000

il Potential (mYvs. SCE)

.._ Fe2+

,:!,, Figure A VII-9. Effect of Actdtty Level: tn 2.ON HCl.
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ill

f_ Substrate: ,';2OO.. RtZ-C-I/8 .
'_ Lot 01188Z/1650"
/ 2 an_/side

Pretreated 1N KOH
Catalyst:

160-- Fe2 �Oxtdatton--__ Test: H°ne
(50 mrtFeC12) _ Waxedcltphold_r

: u r _ 4. ONHCI, N2, R.T.

• i o_
i

80._

: 40-- I

: , _ C ..,

-4( --

-8( ,._
Fe3+ Reduction

U

q_
0

• -z2(--5

/" -20(_-16C.--- 1

J i I I I J._, I I I
0

Potential (mY vs. SCE)

FigureA VII-IO. Effectof AcidityLevel: Fe2' in 4.ON HCI.

239

.. J" ?j 9

O0000003-TSE05



_"_" m ,, i " -

k

'_ _ Substrate:
100. FMI-C-1/8

' l Lot q11882/1650°
: 2 cm_/stde

' :' " Pretreated 1N KOH

,Catalyst: a
12._1Au/cnP

.. Aq./_leOH
Double Imm.-I

:::" 1 n_ .PbCl2 !_:. Test:
:" 50 . Waxedcltp holder
:: 4N HOlt N_, R.T. i

Ltn. p0t._sweep u
_!:: - 10 mv/sec, tR comp.

ii:

, !7, _
v

'_':" '" 0 "_-- ,,
,, IL

|.,

i LL,,

l

-SO - u
m_

"0

_:: _ o%

__ - 100 "

.:'-S.. -95_
i.': Potential vs. DHE(mV)

! FigureA Vll-ll AcidityLevel Effects. Electrochemical

_ Performancein 50 mY,CrCl3 in 4.ON HCf (aged).
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Substrate: t20- FMI-C-I/8 _
Lot Qli882/1650v
2 crib/stde
Pretreated ;N KOH

Catalyst:
15 12.g Au/c#"

Aq./lleOH
Double Imm.-I u

1 n_ PbCl2

Test:
10 . Waxedclip holder

2N HCl, N2, R.T. /
Ltn. pot. sweep /
10 mv/sec, IR comp.

4
5

=p e..,_..,. --_''

-10 - \'. J u
q--

J=
4.)

-15

-20 "

H ,, |

-g50
Potential vs. ME (mY)

Figure A VII-12. Acidity Level Effects: Electrochemical

Performance in 50 mHCrC13 in 2.ON HC1 (aged).
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' ' L , ,, L if 111 • III

substrate:
R4! C I/8:" m I

; LOt _11882/1650°
2 c,#/st de
PPetPeatedIN KOH

20 .Catalyst: 9
:" 12 IJgAu/cW

Aq./MeOH .Double%mm.l L
1 nfl PbC12

,';.

::: 15 ,Test:
• WaxedclIp ho-1deP

1NHC1,N_, R.T.
.,i" Ltn. pot.'sweep
: 10 mv/sec, tR ¢omp. ' _

10-

S

_; =_ _"-_
C.)

t

U

: -10 i ,
0

-, -15
.'_

:'i I
,,_ -950 0

ii Potential vs. DHE(mY)

![ Figure A VII-13. Acidity Level Effects: Electrochemical

i_" Performance tn 50 mH CrC13 In 1.ON HC1 (aged).
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"" Substrate:
FMI-C-I/B

:: LOtQl1882/16500
' 2 cnf/Stde

_ Pretreated IN KOH

" Catalyst:
• _:," 20 . 12,g Au/cm"
_' Aq./MeOH

_" Oouble lmm.-I
: 1 mr4PbC12

': Test:
_ 15_-. Waxedcl t p holder
.,-- 0.5N HCl, N;j, R.T,

_o Ltn. pot. s_eep-__ 10 mv/sec, tR comp.
':, U

i _:: -5

F '. U

:;:. - 15

:. :.. |

_-:r.
,.,_ -950 0

Potential vs. DHE(mY)

,, Figure A VII-14. Acidity Level Effects: Electrochemical

_"'. Performance in 50 mHCrCl3 in 0.5N HCl (aged).
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Substrate;
" FM]-C-1/8

Lot Q11882/1650°
2 cm¢/stde
Pretreated 1N KOH

"Catalyst:
12gg Au/cm"
Aq./HeOH
Double Im..-I

30. 1 mHPbC12

Test: I ! u
Waxedcltp holder
0.1N HCl, X2, R.T. =

, 20 • Ltn. pot. sweep <
10 my/see, tR comp.

10 j/)
4.J 0 .... I ,,,

k

!

L,_ '

-10 "

-20 .

-3g -
J_
4.a

n

-950 0
Potential vs. DHE(mV)

FigureA Vll-15. AcidityLevel Effects: Electrochemical

Performancein 50 m)_CrCl3 in O.IN HCl (aged).
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APPENDIX .V_III...-.XEMPERATUREDEPENDENCE (SUPPLEMENTAL DATA)

_- Figure A VIII-1. Fe3+/Fe2+ Reaction at 25°C. |n 1.OH FeC13.

_,-
m

i

200 - Fe2+ Oxidation

•. U

m _

/

L;

m_: -200 "

i" Fe3 �Reduction_j

"0
0

: -400 .

_:_, . Substrat'e:
" l mI-C-l/8
, Lot t051582/1700°C.
: 2 cm'/s I de
" Treated 451 KOH
" Test:
_ WaxQdCllpholder

1N HCl, 1.OH FeE13,N2
'." Ltn. Pot.. Sweep
i'.' 1.8 mV/sec, IR Comp.

' _b_ ' u.'o '
Potential vs SCE(my)
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i Ftgure A VIii-_. Fe3+/Fe2+ Reactton ai 45°C. tn 1.0ri PeCl3.

,_ 400 -
f: ....

' " Fe2+ Oxidation

<:_ 200 -
C

b
I

2,; b _ , I

, >t

Or ' !

_,/i . + Reduction

, <!: /

, ip,m

,,C

._ . Substrate:
_I-C-1/8
Lot (051_82/1700°C.
2 cm'/stde

. Treated 45_ KOH
<: - Test:

WaxedC1tpholder
1N HC1, 1.OH FeC13,N2
Ltn. Pot. Sweep

.;. 1.8 mVlsec, tR Comp.

':": .- I I I , I I I .,-
": 0 400 800 1200

:']' Potential vs SCE(mY)
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F

Figure A VIII-3. Fe3+/Fe2+ Reactton at 55°C. In LOH Fee1.

' ," "'-- u" Fe2 �Oxtdao_r

_00 - )

m

'" -21 . i

U _

Fe3+ Reduction• 0
J=
_a

. 8 0
.... _ Lot t051582/1700 C.

_ 2 cnl_/sIde
" _ :' Treated 451i KOH

Test:
_ WaxedClt pholder
I 1, HCl,1.0, FeC13,,o

_@ Ltn. Pot.eweep "-600- 1.e mY/see, tR Camp,
.J I • . i-.., I

0 400 800

', Potential vs SCE (mY)
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Figure A VIII-4. Fe3+/Fe2+ Reaction at 65°C. In 1.Or.1FeC13. ,, =

400 •

Fo2+ Oxidation

b

U

'r 200. _o

g o
: }

-200,

u Fe3+ Reductton

l,J

-400 .
• Substrate:
" FMI-C-I/8

_./. Lot _051582/1700°C.
2 cm"/sIde

' " Treated 45% KOH
. Test:

WaxedCl I pholder
IN HC1, t.OM FeC13,N.

-600- Ltn. Pot. Sweep
1.8 mV/sec, tR Comp.

, I ! | I
400 800

Potential vs SCE(mY)
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Ftgure A VIII-5. Fe3+/Fe2+ fteacttoh at 25°C. tn 1,5M FeCl3. ..._ !
I I , .

300 .

(J

200:

100 : a Fe . .t4m_

. 0
Iu
L,,

=P

-100 "

-200 -

-300, ==_._,_ _ jil Fe3+ Reduct'on" ,]-400 "
Substrate:

I I _l-c-II8 .
\ / Loi_egi_82/17oovc.
V • 2 cm_/stde

-500 " Treated 45%KOH
Test:

Waxedcl I pholder
IN HCl, 1.SH FeCl
Lln. Pot. Svmep 3'N2
(_.88 mVtsec, tR Comp.

i. 4_0 I. _, I800

Potential vs SCE(mY)
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- Figure A VllI-6. Fe3+IFe2+ Reaction at 45°C. In I.SH FeC.I
" 3 •

II I ! -- i
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300 -

". u Fe2+ Oxidation
200 "-

o
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' ¢ 0 ...... :

. t: -100 -
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" I300 " _-_o_ ' i

Reductton

Substrate:

_tw/ R,I-C-I/8

.,_
" Lot t051582/1700°C

' -400- 2 cmC/stde
- Treated 45% KOH
- Test:

Waxedcltpholder

1N HC1, 1.5M FeC13,N2
_ , Ltn. Pot. Sweep

. 0.88 mV/sec, 1R Comp.

_71 _ ' ' _o '" _uo' '.....
'_ Potential vs SCE(mV)
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F_gure A VIII-7. Fe3+/Fe2+ Reaction at BS°C. t, 1.SM FeC13.

300 Fe2+ Oxtda-

100 <

(.1 '

m

-200 .

= e3+ Reduction

(J

"¢1
o

-400 -

-500 .

1
Substrate:

FHI-C-I/8
Lot ¢0_1SS2/[700°C.
2 cm_/stde
Treated 45% KOH

Test:
Waxedcl t pholder
1N HC1, |.SH FeC1
Ltn. Pot. Sweep 3'N2
0.88 mV/sec, tR Comp.

• -- t -I , , ,
400 800

Potentta] vs SCE(mV)
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- FigureA VIIl-8. Fe3+/Fe2+ Rea_tlonat 65 C. In 1.5M FeCl3.
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Figure A VZ[][-9. Fe3+/Fe2+ Reactton at 25°C. tn 2._ FeC13.
• e

i i m I

°: 200 -
U

.... "o Fe2_,,- o Oxtdat.t0n
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:"_' v O i i ii
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.,,. -200 -
%,,,

o ,: .

. ,-- Fe3_'" "_ ' ; + Reduction
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b
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" :" 2 cm_/stde
: '_:.. Trea£ed 45I KOH
o :_. TQst:
" ;_ Waxed cii pholder
o:. 1N HC1, 2.OH FeC13,N2
'=_ Ltn. Pot. Sweep
, .... 0.88 mY/see, tR Comp.

: " ' ' '
.° ..- Potent;tal vs SCE(mV)
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Ftgure A VIII-lO. Fe3+/Fe2+ Reactton at 45°C. tn 2.OH FeCl3.
li I II IIb

p r

. y

200 -

t

u Fe2+ Oxldat4on

i "
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: Treated 45_ KOH
" Test:
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Ltn. Pot. Sweep

. 0.88 mV/sec, tR Comp.
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:. Figure A VIII-11. Fe3+/Fe2+ Reaction at 55°C. in 2.0M FeCl3.
_ v,,
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2 cmc/side
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Figure A VIII-12. Fe3+/Fe2+ Reaction at 65°C. in 2.ON FeC13"

2+
_" Fe Oxtdart on"o

g
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L

- t
-200 -

Fe3* Reductt.o_.........-400 -
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j Test:
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Ltn. Pot. Sweep 3'N2
0.88 mV/sec, tR Comp.
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_ - Figure A rill-13, Cr3+/J:r.2 �Reactionat 25°C, in I,OM CrCl3,

i' Substrate:
j, NI-C-I/8 ,,
' Lot#QSI582/1700"C.

°: ....... 2 cm_/stde

i Protreated 4St; KOH
Iio Catalyst: .12u9 Au/cm'.

:, Aq./MeOH-;!5"O.
;_., NASA-I
_, Test: u .

,i/ .°_odo,,p,o,d°,IN HCl, lm_ PbClp, ,_
", I._ CrCl_, N_ "
.. L]n. Pot.'Swe#!p
":i 0.885 mV/sec., tR comp.

t:L
IL,',
) Cr2+ Oxidation

• S,.

; - • -lO0-

'if: "°° ':r3 �Reduction
w

= ': -300 -

....... ,. I ., I., ,
'::" -800 -400 0

" Potential (mYvs SCE)
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Figure A Vlii-14. Cr3+/Cr2+ Reactionat 45°_--I_ 1.011CrCl3.

Substrate:
FM!-C-I/8 ^
LOt@OSlSS2/1700"C.
Z cm'/stde
Pretreeted 45%KOH

Catalyst:
12,g Au/cm:^
Aq./MeOH-2S"C.
NASA-I

Test:
Waxedcltp holder
1N HCl, 1ramPbCI_
1.0MCrCl_, N_ *
Ltn. Pot.'$we_p
0.885 mV/sec., tR comp. o

10( -
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E

S.

_ -100 - _'-200 - Cr3+ Reduction

u
•"30(] l, ._-"o

o
J=
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I m I m i,
-800 -400

Potential (mYvs SCE)
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Ft_jure A VIII-15. Cr3+/Cr2+"Reac_on at 55°C. in 1.OM.CrCl3"
Substrate:

, R4I-C-I/8 o
Lot#l]51582/1700 C.
2 cm'/stde
Pretreated 45_ KOH

Catalyst: .
12,g Au/cm%
Aq./_eOH-ZSuC.

[ NASA-!
Test:

Waxedcl1 p holder
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1.ON CPC13. N_ u
Ltn. Pot. sweep
0.885 mV/sec., tR comp.
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... -,ooI// ,.-300 Cr3+ Reduction
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i I i I
-. -800 -400 0
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,i: Ftgure A VIII-16. Cr3+/Cr 2+ P_£c_ at 6_°C. in 1.0M CrC13.

-" Substt'ate:
mI-C-l/8 ,
Lot#(}S! SSZ/1700YC.
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Catalyst,: a t
I_,g Au/cm'.
Aq./MeOH-ZSvC.
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Ftgure A VIII-17. Cr3+/Cr 2+ Reaction at 25°C. tn 1.SM CrCl
3'

Substrate:
R41-C-1/8 .

- Lot QSlS82/1700"C.,
2 cmC/s_de
Pretreated 45_ KOH

Catalyst:
12,9 Au/cm%
Aq./MeOH-25_C. u
NASA-I "q_

_eSt:Waxedclip holder
1N HCt, lmHPbC]q
1.5H CrC13, N_ "
1.77 mV/seo, TR Comp. CP2+ Oxidation
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Ftgure A VIII-t8. Cr3+/Cr 2+ Reactton.._t 45°C...ln..l...5H.Er.£13.
_t ..... ± ........................................ ..............

Substrate:
R41.C.118 .
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2 cm_/slde
Pretreatod 4S%KOH
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Test: u
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FigureA VIII-19. Cr3+/Cr2 �ReacJ_lonat 55°C. in 1.5M£rCI3.

Substrate:
FMI-C-1/8
Lot _51582/1700°C.
Z cm_/stde
Pretreated 45_ KOH
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12_g Au/cm'.
Aq./Me0H-25_C.
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Test: Cr2+ Oxtdati on _-u
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1N HC1, lmMPbCI_ _
1.5M CrC13, N_ " / - "_,
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FigureA VIII-20. Cr3+/Cr2+ Rea___5._C_ In 1.5MCrCl3"

Substrate:
_I-C-I/8 ,,
Lot _5158Z/1700vC.
Z cm=/stde
Pretreated 4Sl KOH

l Catalyst:
12.g Au/cm_.
Aq./MeOH-25vC.

:_ NASA-I Cr2+ Oxidation
• Test:

20(. Waxedclip holder u
: 1NHC1, 1._ PbClo

1.5M CrCl_, N_ " o
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m

• FigureA Vlll-21._Cr3+/Cr2+ Reactionat 25°C. in 2.01(CrCl3.
_r\ ' ," I

Substrate:
• _1-C-1/8 .

" l :' Lot//Q51582/1700_C.
i 2 cm_/side
'I Pretreated 45S KOH
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" 12ug Au/cm2.
";: 1. Aq./HeOH-2SuC.
_ NASA-I" Cr2+ Oxldatlon
('' TEST:

"t:. Waxedcl Ip 11older
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)
i

°iI -IOO-

o. -200-

.. -40( - k

o' : I -50C- Cr3+:. _ Reduction

-- ,:_ b

I i m ..- I-- J

Potential (mYvs SCE)

.... 265

00000003-TSG03



Figure A VIII-22. Cr3+/Cr2+ Reactionat 45°C. in 2.0M CrCl3.
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: I_II-C-I/8 .
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Figure A VIII-23. Cr3+ICr2+ Reactionat 55°C. in 2.OH CrCl3'
_ -I II

Substrate:
.. Fldl-C-II8
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2 cm=/stde Cr2+ OxidationPretreated 45% KOH-
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Ftgure A VIII-24. Cr3+/Cr 2+ Reactton at 65°C, _-2.0M CrC13.
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