View metadata, citation and similar papers at core.ac.uk

NASA-CR-177930
19850027330

NASA Contractor Report 177930

AUTOSIM
AN AUTOMATED REPETITIVE RUN SOFTWARE TESTING TOOL

Janet R. Dunham
Sam E. McBride

- Software Research and Development
Center for Digital Systems Research
Research Triangle Institute

Research Triangle Park, North Carolina 27709 ror
Goy e 98

provided by NASA Technical Reports Server
¥ .

brought to you by .{ CORE

, -

- Contract NAS1-16489

Task Assignment No. 24
September 1985

National Aeronautics and
Space Administration

t:angley Research Center
Hampton, Virginia 23665

A

https://core.ac.uk/display/42843545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA Contractor Report 177930

AUTOSIM
AN AUTOMATED REPETITIVE RUN
SOFTWARE TESTING TOOL

Janet R. Dunham
Sam E. McBride

Software Research and Development
Center for Digital Systems Research
Research Triangle Institute
Research Triangle Park, North Carolina 27709

Contract NAS1-16489
Task Assignment No. 24
September 1985

g5~ 203

List Of FIgUIES ..uiueiiiiiiniariiieieirenteiairtattssnsncersstesssesessssacessssssnssscnsess iii
ST 0 e) G I 10) [PPN iv
Acknowledgementoeiniiiiiiiiiiiiiiiii et r e es s e v
1.0 INTRODUCTION ...cciuiuiiieiernrnieinieieieeniaeeceecsernsesesesssssosssacssnses 1
1.1 Background.........ociiiiimiiiiiiiiiiiiiiiiirtitree et terars s st teasaacnnan 1
1.2 Repetitive Run Testing....cccoeveieiiiuiieiiieiniiiiiiiiniiiriiieieiarniiacecnennee 1
1.3 N-Version Error Detectionccceueeimieieieieiniiiiiiiiiiiiceiicineinnnnnene, 2
1.4 The Need for AUTOSIMcuiiiiiiiiinieiiiniiiuriieierererencecasascocncens 2
1.5 Definition of Terms Related to AUTOSIMcovveiniiieinininnnennnen.. 2
2.0 OVERVIEW OF THE AUTOSIM TOOL......cccccceveiiuiuimirnrnienecinnncasenss 4
2.1 Design GOoalS c..uieiriininieriiiiieieieiiiiiecnrereincsesesssessesncesssaanesassesas 4
2.2 The AUTOSIM Algorithmccceuieieiaiiiiiiiiiiiiiiiiiioiniiieicronenenas 4
2.3 The AUTOSIM Design...cccetiiareniuiinnracenriarerancacanmaccscesansanannns 6
3.0 IMPLEMENTATION OF THE AUTOSIM TOOL.......cccccciuiuiniernracnnans 7
3.1 Control FIOWcuiuiniiiiiiiiiiiiiiiiiiieiiiiiiiricerestesetessrscsasoscanenees 7
3.2 Descriptions of AUTOSIM Functionsccocecieiuiieiaieinnieieneinnnennn. 9
3.3 Descriptions of AUTOSIM Filesccuviieieiiruieniinieniiicnneniraaes 11
3.4 Descriptions of AUTOSIM Command Proceduresccecueaniennnane 12
4.0 AUTOSIM IMPLEMENTATION DEPENDENCIESccccovtieiacnnnnen. 13
4.1 Management of the Code Under Testceceiiiiirerniiiniainrnienacanannns 13
4.2 Code Under Test Fix-Error Mapscceueeiiiiiiiiiiiiiiiiciiionannnnne 13
4.3 N-VERSION CONTROLLER Dependenicesccceerureereecrnrnennne 17
4.4 VMS Dependencies ...couceieieieieiiiiiereioieierareseiieireenserncrosascsnss 18
5.0 AUTOSIM VALIDATION AND PERFORMANCEccccccuiernrnnncnncns 19
5.1 Validation Test ReSults ...covuvuieiinieiiiiieiiaieieninieneiiarceriataraanananes 19

TABLE OF CONTENTS

5.2 Performance MEaSUrIeS eeeerneereeeeensssceeensssscssssnncessssssssnnesosnses 19

6.0 USING AUTOSIM.....ccoeviiiiiiiiniiiiiecnrniecnracennnes eereeetncetnirereraeaes 20

6.1 Executing AUTOSIMcuvuriuiumiuiiniiniiiieiiiiiecnieceraciesessecnencenss 20
6.2 Libraries Needed.....o.coiuimuieniiniiiiiiniiiiiiiniieiiirecreisaneeceneenannne 20
6.3 AUTOSIM Error FIles.....cvuiiuiiiiiiuieniiuiiuienioniiennrecreneeecesnanaenne 20
7.0 REFERENCES.....ccciciiuiiiiiiiiitiriiiiicienteeaesatieeceestnencrssanneanes 21
APPENDIX A. AUTOSIM Schematic Logic Diagrams........cccecverenrenensencnnnes 22
APPENDIX B. AUTOSIM File Descriptions........cceeieienianreeseecenneesanacenes 54
APPENDIX C. Listing of AUTOSIM Command Procedures 81

APPENDIX D. Log of AUTOSIM Validation TestSccccceevececeiorarerecnencens 86

LIST OF FIGURES

Figure 1. Pseudo-code Description of AUTOSIM
Figure 2. Structural View of the AUTOSIM Tool
Figure 3. AUTOSIM Global Control Flow

Algorithmccccvrevnvnennnnnnn. 5

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

LIST OF TABLES

CMS Code Library for Class ATccceueuiuiuininieieinreinrucacacanan. 14
CMS Code Library for Class AT2......cccceviiieiaieierecanenarsssacecasanes 15
CMS Code Library for Class AT3....ccceveeimrieeieiereneraereneencennenees 16
AT1 Fix-Error Map....cciieiiiiiiiiiieeiiniietieearceceesnenrnrenconcnnannes 17
AT2 FIX-Error Map....cccoiiiimimiiiiiiiiiiniiiiiiecicniiecncnsasseeasannes 17
AT3 FIX-EITOT MaP....cccruiinierninieneiieirenannanenneesessncnnsncensanss ..18

iv

ACKNOWLEDGEMENT

The authors acknowledge the technical direction of John Pierce during the design
and development of the AUTOSIM software. We also acknowledge the attention given
to this project by G. Earle Migneault of NASA-Langley Research Center and in particu-
lar his recognition of our need to develop this software. Sam E. McBride coded and
tested the AUTOSIM software.

1. INTRODUCTION

1.1. Background

Digital computers are having an increasingly important role in process control appli-
cations, particularly those in which human life may be endangered such as space vehicle
and avionic systems, C> I systems, and medical life-support systems. These systems
have stringent reliability requirements as system failure is potentially life-threatening.
An example is the working figure of 10~ for a ten hour flight being used as a require-
ment for system failure probability by NASA-Langley Research Center (NASA-LaRC).1

The need for predicting the reliability of the software components of these life-
critical systems has become more apparent with the increasing functionality being
ascribed to them. The absence of a credible reliability prediction methodology for highly
reliable software makes the system reliability analyses chimerical at best. The develop-
ment of this methodology is hindered by our lack of knowledge about the underlying
nature of the failure process for embedded real-time control software. This lack of
knowledge contributes to our inability to completely eradicate or tolerate faults and to
our lack of confidence in the extent to which we have approximated the goal of zero
defects. As evidenced by the first well-publicized Space Shuttle software bug, the failure
of the initialization logic in J. Garman’s words resulted from a ‘“‘very small, very improb-
able, very intricate, and a very old mistake."2 "

This bug typifies the rare and convoluted combination of events which cause care-
fully developed software to fail. It is this type of residual fault which surfaces infre-
quently causing a rare event or small probability failure. To detect these faults requires
an order of magnitude longer time under test than the target mean time to failure.3

To contribute to the development of a sound statistical methodology for estimating
software reliability, radar tracking software was tested using the repetitive run approach
for fault rate estimation and n-version programming for error detection.4 Four imple-
mentations of a Launch Interceptor Condition (LIC) module for a radar tracking appli-
cation have been subjected to a long time under test with over 15,000,000 test cases
being executed. To expedite the collection of repetitive run failure data, the AUTOSIM
tool was developed.

1.2. Repetitive Run Testing

Repetitive run testing was first advocated by Nagel and Skrivan of Boeing Com-
puter Services.’ The repetitive run test approach provides information about the proba-
bilistic impact of detected software faults on subsequent fault detection. It involves
repetitively executing a software program using different sets of test cases from its initial
state or design stage (usually the code version at the end of acceptance testing) through
to the detection and correction of m faults. A code version is an instantiation of an
implementation of the code under test. During the repetitive runs, the sequence of pro-
gram fixes result in several instantiations or versions of the code.

Repetitive run testing provides ‘‘better” estimates of the individual fault rates. On
subsequent runs or replications, the testing begins again with the initial version of the

1

code under test, and the faults are corrected again. Replications continue until enough
observations have been collected to achieve the desired level of statistical accuracy for
estimating the program failure rates. Since the input stream of test data differs for each
replication, the order in which faults are diagnosed and the correction applied also
differs for each replication. '

1.3. N-Version Error Detection

To detect output errors from the radar tracking software, the technique of n-version
programming was employed. N-version programming, first widely publicized by
Avizienis® and further discussed by Anderson and Lee,’ involves n programmers
independently coding the problem from the same specification. A software tool, the N-
VERSION CONTROLLER,?2:9 which controls the execution of each of the n indepen-
dently coded implementations of the code under test and signals discrepancies between
the n output vectors, was constructed for this purpose. The codes under test are the
software modules being tested for their reliability. We refer to each code under test as
an Application Task; (AT;) where i=1,...,n. Using n-version programming for error
detection avoids reliance on a standard to determine output correctness.

1.4. The Need for AUTOSIM

The need for a system to automate the repetitive run test process became apparent
during the testing of the radar tracking software once we observed that diagnosing the
fault and correcting the code under test was a time consuming, error prone process. Per-
forming the diagnosis-correction task requires an individual with at least one year of
programming experience. However, after repeating the task for several replications, it
becomes very mundane and the programmer begins to perform this task by rote making
it a tedious, error prone process. Moreover, the timely completion of the diagnosis-
correction task is contingent upon the availability of the programmer. Since the programs
fail at random points in time, the speed with which the data is collected is inhibited by
the programmer’s availability. For these reasons, we decided to develop the AUTOSIM
system which performs repetitive run testing with a minimum of human intervention.

1.5. Definition of Terms Related to AUTOSIM

Understanding nomenclature throughout the AUTOSIM report is essential to under-
standing the purpose and functionality of the AUTOSIM tool. We use the following
terms throughout the report. The definitions of failure, error, and fault are consistent
with th??)e defined in ‘“Fault Tolerance by Design Diversity: Concepts and Experi-
ments.”

CODES UNDER TEST — The software modules being tested for their reliability which
are referred to as AT, for Application Task; .

CONDITIONS MET MATRIX (CMM) — The principal output from the Launch Inter-
ceptor Condition (LIC) Application Tasks.

CMS — VAX 11/780 Code Management System
DESIGN STAGE — Versions of the code under test during repetitive run testing

ERROR — The discrepancies noted (i.e., the incorrect element(s) of the output vari-
ables)

FAILURE — THE N-VERSION CONTROLLER signals a discrepancy in the output
variables of the launch interceptor condition software. For this problem, an application
task fails when it incorrectly disagrees with any of the other application tasks or the
extensively tested version.

FIX/FAULT — A FIX is the minimum code change required to correct a single error.
The FAULT is the conceptual flaw in the software which is corrected by a fix and is the
cause of the error. For simplicity, we consider the fault to be defined by the fix and use
the term fault in lieu of the term fix throughout the report although we recognize the
real fault is not uniquely defined.

IMPLEMENTATION — An independently coded version of the same functional specifi-
cation (i.e., one of the n-versions of the code under test)

LAUNCH — Critical output variable from the LIC code under test.

LAUNCH INTERCEPTOR CONDITION (LIC) Problem — A radar tracking applica-
tion which is the first AUTOSIM test specimen.

N-VERSION CONTROLLER — Testbed used for testing n versions of an AT in paral-
lel.

N-VERSION CONTROLLER INTERFACE — Tool used for monitoring the execution
of the N-VERSION CONTROLLER and viewing stored test results.

REPLICATION/REPETITIVE RUN — Repeats of the repetitive run test beginning
with the initial version of the code under test and using a different set of test cases. A
REPLICATION is sometimes referred to as a REPETTTIVE RUN.

VERSION — An instantiation of an implementation of the code under test. During the
software fault diagnosis-correction process, the program fixes result in several instantia-
tions or versions of the code.

2.0. OVERVIEW OF THE AUTOSIM TOOL

2.1. Design Goals

The automation of the error diagnosis-correction tasks requires a knowledge base
that contains information about the documented software faults and the associated code
fixes, as well as knowledge about the fault diagnosis process. These requirements
categorize the AUTOSIM system as an “expert” system which replaces a low level of
programming expertise.

In designing the AUTOSIM system, we pursued the following goals:

® separate concerns by maintaining a clean interface with the N-VERSION CON-
TROLLER and isolating the information specific to the code under test

® make the system general by storing the information specific to the code under test
and the error detection state information in generalized data structures

® minimize the complexity of the fault diagnostic task by defining error classes,
which are handled separately, and developing an efficient algorithm to minimize
the fault diagnostic time. '

Accomplishment of the first goal is important if AUTOSIM is to be used with test tools
other than the N-VERSION CONTROLLER and with different application code under
test. The second goal minimizes the amount of overhead required when modifying the
system to test code from other applications and other error detection tools. The
existence of non-unique 1-to-n mappings of faults to errors necessitates achievement of

the third goal.

2.2. The AUTOSIM Algorithm

AUTOSIM performs two principal functions: fault diagnosis and fault correction.
Fault diagnosis entails identifying which fixes to apply to the failed code based on the
information contained in the N-VERSION CONTROLLER state vector. Critical to this
identification is the implementation of an efficient algorithm for rapid identification and
testing of the candidate fixes. Fault correction entails installing the appropriate fix and
resuming the n-version testing. The logic for fault correction is similar to the logic for
the testing of candidate fixes. Figure 1 provides a pseudo-code description of the
AUTOSIM algorithm.

ON STOP OF TEST
FETCH TEST STATE
DETERMINE FAILED CODE(S)
FOR EACH FAILED CODE
TEST CODE VERSION WITH ALL KNOWN FAULTS CORRECTED
ON FAILURE SIGNAL USER

DETERMINE ERROR(S)

FOR EACH ERROR
DETERMINE ERROR CLASS

IF CLASS=ADDRESS
DETERMINE CANDIDATE ADDRESS FIXES
FOR EACH ADDRESS FIX
INSTALL AND TEST ADDRESS FIX
ON SUCCESS GET NEXT ERROR
CALL USER

IF CLASS=ABEND
DETERMINE CANDIDATE ABEND FIXES
FOR EACH ABEND FIX
INSTALL AND TEST ABEND FIX
ON SUCCESS GET NEXT ERROR
CALL USER

IF CLASS=ERROR
DETERMINE CANDIDATE ERROR FIXES
FOR EACH ERROR FIX
INSTALL AND TEST ERROR FIX
. ON SUCCESS GET NEXT ERROR
CALL USER
RESUME TEST

Figure 1.
Pseudo-Code Description of
Fault Diagnosis-Correction Algorithm

2.3. The AUTOSIM Design

Figure 2 provides a structural view of the AUTOSIM tool. The diagram shows the
quasi-static data structures, which remain relatively constant during testing, and the
dynamic data structures, which are updated by either the AUTOSIM software or the N-
VERSION CONTROLLER software.

The contents of the quasi-static data structures depend on the code under test. The
overwrite, abend, and output error maps contain information on which code fixes are
associated with different types of faults. These structures are quasi-static because they
are updated only when a new fault is identified. This identification results from the
human intervention required when AUTOSIM fails to diagnose the fault (i.e., there are
no valid entries in the error maps described in Section 4.2 of this report).

Code
Library

N-Version
Cortroller

Trace

Output
Fix/Error Map

Interface

N
Abend ,
Fix/Error Map

Qverwrite
Fix/Error Map

Quasi-static
Data Structure
Fe-=n Dynamic

t - - -2 Data Structure

O Process
@ Synchgnnization

Figure 2.
A Structural View of the AUTOSIM Tool

3. IMPLEMENTATION OF THE AUTOSIM TOOL

3.1. Control Flow

Figure 3 provides a high level description of the AUTOSIM control flow and the
associated data files. The three major functional modules which comprise AUTOSIM
are FIXID, MEAS_IMP, and RESTORE. The VMS command procedures invoked by
AUTOSIM (also depicted in Figure 3) are SIMBATCH.COM, FIXAPP.COM, and
VTEST.COM. There are 7 major types of files used by AUTOSIM. These files are
ATGEN.DAT, EXECUTION.DAT, iABEND.DAT, iCLOBBER.DAT, iCMM.DAT,
iLAUNCH.DAT, and ERRORS.DAT.

The following sections describe the AUTOSIM functions, files, and command pro-
cedures.

INPUT
FILES

ATi
souree cnde

STATUS.DAT

SIM.DAT

EXECUTION.DAT

ATGEN.DAT

iCLASS.DAT ——

PROBLi.FOR

EXECUTION.DAT ——

EXECUTION.DAT
CMM_FILE()
ATGEN.DAT

FUNCTION

OUTPUT

FILES
1
un > SIM.DAT
simulator
2
GET_SIM_DATA
gotb 1 with
) — {CLASSDAT
STATUS.DAT
(rIl)
EXECUTION.DAT
i iCLASS.DAT
FIXIb
l ATGEN.DAT
4 invokes CMS commands
FIXAPP.COM
verons PROB1.FOR
l compiles,links,cxecutcs
5 Version Tester
VTEST.COM
l EXECUTION.DAT
6
MEAS_IMP
total
agreement
all_cmm
cmm
?
all ok some improvement
goto 3
goto 1 with
with
STATUS.DAT
PROB1A s
PROBIB
PROBIC
nil
impravement
l iCLASS.DAT
7 4
restare gota
ATGEN.DAT
Figure 3.

AUTOSIM Global Control Flow

3.2. Descriptions of AUTOSIM Functions

The following alphabetical list provides brief descriptions of all AUTOSIM func-
tions. Schematic logic diagrams which describe the interfaces between these functions
are provided in Appendix A.

ABEND_ERROR — Finds the CMS generation for AT; abend error.
APPEND — Adds fixes into the fix-list for AT;.

AUTOSIM — Keeps the simulator running by identifying errors and installing fixes in
the individual applications tasks.

B_SEARCH — Finds the fixes associated with the last element generations that were
superseded into AT;’s CMS class.

CLOBBER_ERROR — Finds the CMS element generation to fix AT; overwrite.
CLOSE_FILES — Closes AUTOSIM data files before spawning a subprocess.

CMM_ERROR — Finds the CMS element generation with a fix for a particular AT;
output error.

ECHO_ERROR — Writes AUTOSIM error diagnostics to file AUTOERR.DAT.

FIXID — Identifies where an application task failure occurred and determines which ele-
ment generation to supersede in the CMS class.

GET_SIM_DATA — Gets a snapshot of global memory and prepares for new design
stage or new replication.

ID_FIXES — Identifies the fixes associated with any CMS element generation.
LAUNCH_ERROR — Finds the CMS element generation for AT, launch error.

MAKE_ICLASS — Builds the file which communicates with the DCL command pro-
cedure FIXAPP.COM. The file iCLASS.DAT tells FIXAPP.COM what elements are to
be superseded by new generations into the appropriate CMS class.

MEASURE_IMP — Measures the effect that the last fix had on a particular AT;'s
CMM.

OPEN_FILES — Opens the global input & output files.

PREP_GLO — Prepares global memory for either a new design stage or a new replica-
tion and builds the command procedure FORLINREP.COM that will compile the modi-
fied application tasks. Places the object module in the library SIMDISK:PROBILIB.OLB
and links a new executable image of the N-VERSION CONTROLLER.

READ_ATGEN — Reads AT; records from ATGEN.DAT.

READ_CMMFILE — Reads the available fixes contained in CMS element generations
from the iCMM.DAT file for the AT, under consideration.

READ_EXECUTION — Reads the file ASIM_DATA: which serves as the communica-
tion link between AUTOSIM and the spawned subprocess executing VIEST.COM.

READ_SIM.DATA — Reads last record written to SIM.DAT.

READ_TRACEBACK — Reads the AT; traceback from ERRORS.DAT after an abend
has occurred.

RESTORE — This module is executed in the event that a lame element generation was
superseded into the ATs CMS library, i.e., the element generation that was last
inserted did not contain the necessary fix. Restores the last element generation that was
superseded into the AT;’s class to its previous generation and find the next element gen-
eration to install.

SET_MASK — Sets the fix mask which is displayed by the INTERFACE to the N-
VERSION CONTROLLER and allows the operator to know what fixes are currently
installed.

SPY_GLOBAL — Accesses global memory and returns latest sequence number.

VTEST — Tests an individual AT with the contents of the N-VERSION CON-
TROLLER INPUT.DAT file and compares the CMM and LAUNCH output to that
computed by the golden AT.

VOID_FIX_LIST — Initializes the fix list to zero.

WRITE_ATGEN — Updates application task records in the file
ASIM_DATA:ATGEN.DAT. ATGEN.DAT is a direct access file containing

10

information about the CMS class for each application task.
WRITE_EXECUTION — Writes to the file ASIM_DATA:EXECUTION.DAT.

ZERO_SUPER_ELE — Initializes the supersede section (the second group of N_ATS
records) in the file ATGEN.DAT. This is to ensure that only the next
element/generation elected to fix an error will be superseded into the appropriate AT;
class in the CMS library.

3.3. Descriptions of AUTOSIM Files

The following alphabetical list provides descriptions of the AUTOSIM data files.
More complete descriptions can be found in Appendix B.

ATGEN.DAT — Contains the trace of CMS element generations that were installed,
indicates those that are presently installed, and those which can be superseded.
ATGEN.DAT is accessed by the functions READ_ATGEN and WRITE_ATGEN.

EXECUTION.DAT — Contains information pertaining to results of executing the code
in error with the diagnosed fix. EXECUTION.DAT is accessed by the functions
READ_EXECUTION and WRITE_EXECUTION.

iABEND.DAT — Contains a history of the abend failures which have been documented
for each AT, during the execution of the Launch Interceptor Code. The function
ABEND_ERROR accesses iABEND.DAT.

iCLOBBER.DAT — Contains a history of the overwrite failures which have been docu-
mented for each AT, during the initial execution of the Launch Interceptor Code. The
function CLOBBER_ERROR accesses iCLOBBER.DAT.

iCMM.DAT — Contain the fault-error maps for the documented faults. The function
CMM_ERROR accesses iCLOBBER.DAT.

iILAUNCH.DAT — are used when an AT, fails and the failure does not show up as an
abend, overwrite or as disagreement in the Conditions met matrix. The function
LAUNCH_ERROR accesses iLAUNCH.DAT.

ERRORS.DAT — Contains all system trackbacks when a routine in the N-VERSION
CONTROLLER ends abnormally. The function READ_TRACEBACK accesses
ERRORS.DAT.

11

3.4. AUTOSIM Command Procedures _

The following alphabetical list provides brief descriptions of the AUTOSIM com-
mand procedures. Listings of the command procedures can be found in Appendix C.
AUTOSIM.COM — Submitted as a batch job to start the execution of AUTOSIM.
FIXAPP.COM — Creates working versions of each of the AT’s.

FORLINREP.COM — A dynamically created command procedure which compiles the
application tasks, places them in PROBILIB.OLB (the problem 1 object library) and
links the N-VERSION CONTROLLER.

SIMBATCH.COM — Submitted as a batch job to start the execution of the N-
VERSION CONTROLLER.

VTEST.COM — Tests fixed version of AT with error-invoking input case.

12

4. AUTOSIM DEPENDENCIES

4.1. Management of the Code under Test

The VAX11/780 Code Management System (CMS) is used to manage the library
containing the code under test.}l CMS is a program library system for software develop-
ment and maintenance which operates as an online librarian by keeping track of the
source code files. Each CMS library contains elements, generations, and classes.

A CMS element is the basic structural unit in a code library. An element consists of
one or more ASCII files that represent a meaningful unit. An element is created and
named when a file (or files) is transferred from a working directory to the CMS library
via the CMS CREATE ELEMENT command. The AUTOSIM elements are functionally
defined modules of the each implementation of the code under test.

A CMS clement generation represents a phase in the development of that element.
When an element is created and placed in the CMS library for the first time, CMS
creates generation one of that element. Each time the element is reserved, modified, and
replaced in the CMS library, a new generation is created. The AUTOSIM generations
are the functionally defined modules with different fixes applied.

A CMS class is a set of generations of different elements. A class is established to
define a set of generations that make up the whole of part of a software system at a
specific stage of development. The AUTOSIM classes pertain to the different codes
under test, i.e., to the different AT; .

Tables 1, 2, and 3 depict the organization of the code library for the testing of the
Launch Interceptor Condition Software. The module names are the actual names of the
different software modules given by the programmers. A number identifies each fauit in
an ATi.

In developing the AUTOSIM code library, we partitioned each AT into modules
which correspond to conditions of the LIC problem and into modules which contain sub-
routines common to the test condition modules. Mocdules with no fixes were coupled
with modules that had corresponding fixes (i.e., placed in the same CMS element) to
save storage space. Subsequent gencrations of each element are the versions of the code
under test with different fixes applied. CMS stores the subsequent generations of a
CMS element by retaining the code differences from the first generation element. The
update of the version of the code under test to correct a fault does not necessarily result
in the installation of the next generation of an element. For example, installation of the
fix associated with Fault 8 may be required for element A09 of AT1 prior to installation
of the fix associated with Fault 7.

4.2. Code Under Test Fix-Error Maps

Fix-error maps define the relationship between code under test output errors (in this
case errors in the CMM and in LAUNCH) and fixes which correct those errors. Tables
4, 5 and 6 depict the fix-error maps for the three implementations of the LIC problem

13

TABLE 1. CLASS DESCRIPTIONS OF AT;

ELEMENT

GENERATION

DESCRIPTION
Module Name | Faults Corrected |

ATl

AN

main
main 12

A2

condl
condl 9

A3

0 = [

cond2
cond3

cond2
cond3 10

cond4
condS

cond4
condS 2

cond4
condS 4

cond4
cond5 2,4

A0S

cond6
cond?7 .

cond6
cond? 3

AD6

cond8
cond8 6

cond9
cond10

cond9
cond10 11

A08

condll
cond12
cond13
cond14
cond15
main

anglea
anglea 1
anglea 1,7
anglea 1,8
anglea 1,7.8

AD10

[l AV W VS I S Oy

dista
rad

dista
rad 5

14

TABLE 2. CLASS DESCRIPTIONS OF AT;

CLASS | ELEMENT { GENERATION DESCRIPTION
Module Name | Faults Corrected
AT2 BO1 1 problb

2

problb

1

15

TABLE 3. CLASS DESCRIPTIONS OF AT;

ELEMENT

GENERATION

DESCRIPTION

Module Name

Faults Corrected

AT3

1

1

main
condl
cond2

main
condl
cond2

o2

cond3
cond3

03

cond4
cond4

condS
cond$

Q05

el LS [N IS PN e

condb
cond?

[)

cond6
cond?

condb
cond?

1,7

cond6
cond?

1,16

cond6
cond?

1,7,16

cond8
cond8

@7

cond9
cond9

o8

cond10
condl0

10

09

condll
condll

11

C010

condl2
cond12

12

Q11

cond13
cond13
condl3
condl3

13
2,13

co12
Qo013

condl4
condl4
cond1s
cond15

14
15

C014

radcir
radcir

18

Qo1s

perdis
perdis

20

Q16

aglcos
aglcos
aglcos

17
17,18

17

W R P 2 [0 = [= 2D = [G R = [= [= [8 = [D) s [ND e

abcisa
ordnat
dist
erTStp
viind
aretri
quad
verin
verout

16

respectively. The rows in these tables identify the fault/fix number; the columns in these
tables identify bit errors in the CMM, LAUNCH, abend errors and overwrite errors.

4.3. N-VERSION CONTROLLER Dependencies

The functions PREP_GLO and GET_SIM_DATA comprise the two points of com-
munication of AUTOSIM with the N-VERSION CONTROLLER.

PREP_GLO prepares global memory for either a new design stage or a new replication,
and builds the command procedure FORLINREP.COM that will compile the modified
application tasks. It then places the object module in the library
SIMDISK:PROBILIB.OLB and links a new executable image of the N-VERSION

TABLE 4. FIX-ERROR MAP FOR AT1

FIX CMM OUTPUT (i) ABENDS OVERWRITES
m |{1{2|3(4|s|6{7]|8f9f10}11)12{13]|14]15]|RAD | ANGLEA | comMON2
1 X

2 X

3 X

4 X

s X

6 X .

7 X X X X

8 X

9 | x

10 X

11 X

12 X

X indicates an error in output CMM (i), an ABEND error, or an OVERWRITE error. .

* indicates that FIX 6 is applied when simultaneous errors in CMM 8 and 13 occur.

TABLE 5. FIX-ERROR MAP FOR AT2

FIX CMM QUTPUT (i)

ID |1)213]4[5]161718]9]10711 12113} 14| 15| LAUNCH
1 X

X indicates an error in output CMM (i), an ABEND error, or an OVERWRITE error.

17

. TABLE 6. FIX-ERROR MAP FOR AT3

FIX CMM (i) - ABENDS

1121314151617 1819 110}11 712113} 14] 15 | radir | aglcos | perdis

0o | la [| e Jus {o fe
”

o
Py

10 X

11 X

12 X

13 X

14 X

15 X

16 X

17 X

18 X

19 X X

20 X

X indicates an error in output CMM (i), an ABEND error, or an OVERWRITE error.

FIX 3 and FIX 4 constitute changes to perceived faults which were non-existent.

CONTROLLER.

GET_SIM_DATA, upon normal halting of the N-VERSION CONTROLLER, reads the
record corresponding to the last sequence number from the SIM.DAT file. If the halt
occurs during a replication, the module FIXID is invoked. If the halt occurs at the end
of a replication, the command procedure FIXAPP.COM is spawned.

4.4. VMS Dependencies

The VMS command procedures VTEST.COM, SIMBATCH.COM,
AUTOSIM.COM, and FORLINREP.COM are critical to the execution of AUTOSIM as

described in Section 3.4. These Procedures may change as a result of upgrading of the
VMS DEC Command Language.!2

18

5. AUTOSIM VALIDATION AND PERFORMANCE

5.1. Validation Test Results

Upon completion of unit testing of the AUTOSIM modules and white box functional
testing of AUTOSIM, we tested AUTOSIM by repeating eight of the repetitive runs or
replications executed during a previous conduct of the experiment.? The test replications
selected were replications for which interacting faults were and were not observed. The
testing surfaced the following problems:

® AUTOSIM execution of replication 1 identified a fix that should not have been
applied.

® AUTOSIM execution of Replication 2 surfaced an error in the subroutine
GENER of the N-VERSION CONTROLLER where an input (x,y) pair was not
re-initialized.

® AUTOSIM execution of Replication 16 indicated that in the original replication a
program version being tested had a fix to a previously corrected error inadver-
tently removed.

Logs describing the validation testing are provided in Appendix D.

5.2. Performance Measures

Performance of AUTOSIM was of interest for two reasons. First, we were
interested in the reduction in human effort actually achieved from using the AUTOSIM
tool. Replications of length 10,000 input cases executed without the use of AUTOSIM
averaged two days to complete. These replications required the availability of a pro-
grammer who spent approximately four hours per day monitoring the system and instal-
ling the appropriate fixes. The AUTOSIM replications of the same length averaged six
calendar hours to complete and require a maximum of one-half hour of monitoring time
per day.

Second, we are interested in the efficiency of the AUTOSIM algorithm in diagnos-
ing the appropriate fault. We are currently measuring the efficiency by number of
VTEST invocations per fix required. The LOG.DAT and the CHART.DAT files con-
tain the data required to compute this statistic.

19

6. USING AUTOSIM

6.1. Getting Started

AUTOSIM is executed through the N-VERSION CONTROLLER INTERFACE.?
To start AUTOSIM, type SIM1, select option 13, and answer the prompts.

6.2. Libraries Needed
The following libraries are needed to run AUTOSIM:

PROBI1LIB.TLB — which contains the N-VERSION CONTROLLER and the AT source
code.

AUTO.TLB — contains the AUTOSIM source code.

MTRSRC.TLB — contains the N-VERSION INTERFACE source code.
These files presently reside on AIRLAB System 3::DRAO:[SIM.PROBL...].

6.3. AUTOSIM Error Files

The AUTOERR.DAT file contains AUTOSIM error information. Two types of
information are stored in this file. The VMS System error message number when a sys-
tem level error occurs and an AUTOSIM error message when AUTOSIM cannot nor-
mally execute its function. The former system level messages can be obtained by typing
“exit [msg. no.]". The latter AUTOSIM error messages should be completely self-
explanatory.

20

7.0. REFERENCES

1.

10.

11.

12.

13.

J. R. Dunham and J. C. Knight, eds., “Production of Reliable Flight Crucial
Software: Validation Method Research for Fault-Tolerant Avionics and Control Sys-
tems Sub-Working-Group Meeting,” NASA Conference Publication 2222, NASA
(1982).

John R. Garman, “The “Bug” Heard Round the World,” Software Engineering
Notes 6 pp. 3-10 ACM Sigsoft, (October 1981).

Douglas R. Miller, “Some Statistical Issues in Assurance of Very Highly Reliable
Systems,” IEEE Computer Society Woirkshop on Laboratories for Reliable Systems
Research Abstract(April 1983).

J. R. Dunham and J. L. Pierce, “An Experiment In Software Reliability,” NASA
CR - 172553, NASA, Langley Research Center (March 1985).

Phyllis M. Nagel and James A. Skrivan, ““‘Software Reliability: Repetitive Run Ex-
perimentation and Modeling,” NASA CR-165836, NASA, Langley Resarch
Center, Hampton, Virginia (February 1982).

A. Avizienis, “Fault Tolerance: The Survival Attribute of Digital Systems,”
Proceedings of the IEEE 66(10)(October 1978).

T. Anderson and P. A. Lee, Fault Tolerance Principles and Practice, Computing La-
boratory, University of Newcastle Upon Tyne, England Prentice/Hall International,
London, England (1981).

William F. Ingogly, et al., “N-VERSION SIMULATOR INTERFACE Mainte-
nance Guide Version 1.0,” RTI Report No. 43U-2094-12b, Research Triangle In-
stitute (October 1983).

William F. Ingogly, et al., “N-VERSION SIMULATOR INTERFACE User’s
Guide Version 1.0,” RTI Report No. 43U-2094-12a, Research Triangle Institute
(October 1983).

A. Avizienis and J.P.J. Kelly, “Fault Tolerance by Design Diversity: Concepts and
Experiments,” Computer 17 p. 69 IEEE Computer Society, (August 1984).

VAX DEC-11/Code Management System Document Set, Digital Equipment Corpora-
tion, Maynard, Massachusetts (May 1982). AA-M681A-TE

VAX/VMS Document Set, Digital Equipment Corporation, Maynard, Massachusetts
(September 1984). AA-Z101A-TE

M. Jackson, Principles of Program Design, Academic Press, New York (1975).

21

APPENDIX A. AUTOSIM SCHEMATIC LOGIC DIAGRAMS

Each of the following pages corresponds to a single AUTOSIM module, or to part
of an AUTOSIM module. The module name is given in the upper left hand corner of
each page, and other AUTOSIM routines called by the module or module fragment are
listed in the lower left part of the page. Modules are numbered sequentially in order of
occurrence in the drawings, from first drawing to last, and in left-to-right order within
each drawing. Arrows drawn from a subprocess box point to the number of a called
module or to a continuation page for the current module. Continuation pages are num-
bered as fractional extensions of the module number; e.g., module n. would have its
continuation pages numbered n.1, n.2, and so on, and continuation page n.m would
have its sub-continuation pages numbered n.m.1, n.m.2, etc.

Each box on the diagrams represents a process or subprocess in the AUTOSIM, and
lines connecting the boxes represent program control flow. Subprocess execution is from
top of page to bottom, and from left to right within the same level. Conditionally exe-
cuted boxes have a small circle drawn in the upper right hand corner, and the branch
condition is printed above the box. Boxes that are executed iteratively have an an aster-
isk drawn in the upper right hand corner, and the iteration condition is printed above
the process box that controls the iterated subprocess. Null branches are indicated by a
horizontal line above the word “Null.”

Data assignments are listed below a process box, if they’re needed to understand
process logic. An escape on an error condition is indicated by an arrow leading from an
empty process box. Section 3.2 of this document contains an alphabetized list of all
modules, with brief descriptions.

Jackson,13 pp. 17-42 describes the notation used in these diagrams in greater detail.

174

maedule: ABEND_ERROR

open(ABEND_FILEG))

call
READ_TRACEBACK

function

ABEND_ERROR

dowhile
(.not.found)

found=0 tind a match between

the traceback

externals;

ECHO_ERROR
READ_TRACEBACK

and docunmiented abendy

assign atgen variables

restore_ele
at_cle
super_ele

close(ABEND_FILE(i))

read(ABEND_FILE(i))
function,position,ele,gen

does function
and line number
match traceback?

((function.eg.module)
.and. (position .cg. linc))

read element index 0
read(ele(2:3))ele_i

has an abend

occurred here before?

(at_ele(ele_i,i)
dt.gen(1)

found=1

nul}

null

- mcdule: APPEND

do while ((fix_list(j,i) .ne. 0)
.and. (j .le. MAX_FIXES))

funection
APPEND

do while ((j .le. MAX_FIXES)
.and. (k .le. 3))

find first zero
- element in fix_list

j=j+1

Externals:

ECHO_ERROR

copy fixes for
last ele/gen installed
to fix_list

fix_list(j,i) = fixx(k) *
i=j+1
k=k+1

madule: AUTOSIM

function

AUTOSIM
.
— doi=1,N_ATS
call end_repl = consider cach call call call call LIBSSPAWN
OPEN_FILES GET_SIM_DATA application task PREP_GLO VOID_FIX_LIST KYS$ASCEFC ('EF_CLUSTER’ SYSSSEIEF(64) SIMBATCH.COM

/v\m et

assumc no ati
errors:

cmm_err(i)=0
ati_error(i)=0

Is there an ati_
crror or is it end
of replication?

\ else

in cither casc:
ati_crror or end

of replication

call

ID_FIXES

do while (code .ne. PERFECT)

.not. de'CPlV (at_ervor) cz. (endrepl))
all O code = O null [i
FIXID crcate new ati’ find]
end_repl source file and ind next fix
deal with it
else
é(canm) .and) ((-not. end_rel) .an ese
.not. end_repl)] (rem_n_diff(j) -ne. 0)) else (code .eq. BETTER) (code .cq. NO_BETTER)
LIBS 0 , NOBETTE
SPAWN test new atl code = code = last clement cr(x) last element gener® LIBSSPAWN LIBSSE
- . . .\ M
P.COM source file BETTER PERFECT cration inS!a%lcd ation installcd made FIXAPP.COM J:‘gﬁ Cﬂs P
madc some na impravement VIEST MEAS_
improvement
LIBSSPAWN call
VTEST.COM | MEAS_IMP
call call call
[D_FIXES FIXID RESTORE
Extcrnals:
SYSSASCEFC RESTORE
SYSSSETEF ECHO_ERROR
OPEN_FILES FIXAPP.COM
GET_SIM_DATA VTEST.COM
FIXID SIMBATCH.COM
CLOSE_FILES PREP_GLO
MEAS_IMP VOID_FIX_LIST
LIB$SPAWN ID_FIXES

9

Lz

module: B_SEARCH

initialize
local
variables

function
B_SEARCH

is the element

generation we
arc looking
for the first:
or last one?

top=1
found=0
bottom=N_REC(i)
middlc= (bottom+top)/2

(ele_gen.eq.ati_ele _g/en(top,i))

else

(ele _gen.eq.ati‘ele _gen(top,i))

do while

found=1
middle=top

0 found=1
middle=bottom

externals:

nonc

2

(.not.found) 7 doj=1,3
find a match for copy fixes for
the clement this clcm.cnt
generation generation
last installed
- . . N -
adjust top fIX).((j).=f1x_.let
and bottom till (j,middle,i)
match is found
else
(ele4en.(t.ati_elle_gen(rrﬁddle,i)) (ele_gen.gt.ati _{le _gen(middle,i)) else
bottom=middle 0 top=middle 0 e

middle=(bottom+ top)/2

middle=(bottom+ top)/2

8

) B) B B) B)
module: CLOBBER_ERROR
function
CLOBBER_ERROR
do while (clobfc. clabber(i))
open rcad rcad clement index sct ATGEN.DAT close
(CLOBBER_FILE(j)) (CLOBBER_FILE(i)) read the next recard read(ele(1)(2:3)cle_i variables: : (CLOBBER_FILE())
clob,cle,gen restore_cle
at_cle
super_cle
rcad
(CLOBBER_FILE(j))
clob, cle, gen

Extcrnals:

ECHO_ERROR

module: CLOSE_FILES

Externals:

none

function

CLOSE_FILES

close (unit=1, SIMDISK:SIMDAT)
close (unit=3, ATGEN.DAT)
close (unit=4, EXECUTION.DAT)
close (unit=10, AUTOERR.DAT)
close (unit=11, 1ICLASS.DAT)
close (unit=12, 2CLASS.DAT)
close (unit=13, 3CLASS.DAT)
close (unit=15, FORLINREP.COM)

29

module: CMM_ERROR

))))
function
CMM_ERROR
Is thc cmm
index in bounds?
((j .gt- 15) .and.
(launch .ne. allJaunch(i)) (j .le. 15)
call o Yes, we have
LAUNCH_ERROR a cmm crror

do while ((.not. latched) .and.

(z .le. RECLCMM)) (target .cq. 99)
z

Initialize local . (o] . sct ATGEN.DAT

call variables: find a fix Was a cxit foroed read clement index ' variables
READ_CMMFILE() target, latched, candidate from (.not. latched)?| | e2d(eleltarget)(23) restore._cle, at_cle

rem_cle_i, z cle_i super_cle

t. RECLCMM)
(cle(z) .ne. = ((rm.kfnd.l(lalchcd)) clse
cle(z) isa rem_cle_i=cle_i _ aall
potential candidate z=2+1 target=sav.z ECHO_ERROR
c]s'c
((z .gt. 1) .and.

a_ele(ele_j,i) .
gen(z)

(rem_ele_i .ne. elei))

rcad clement index

This clement gen-O

This element generation
is not installed, consider|

rcad(c]c(z)(Z-_‘i)) crauqn is installed it as a candidate and
cle_i consider next one for ;
% \ clse
., O (o} sav_z=z
target=nxt(z) a next candidate force an cxit sav_cle_i=cle_i
cxists
latched=Yes
—== "\ target=99
(at_ele(1_clei,i) .ne. £
gen(z+1 clse
Rcad new . O null =
rem.z=z clement index T.hls f:]cmcr}t gencra- by latchcd=Yes
read(cle(target)) tion is not installed REC_CMM
t_cle_i

latched=Ycs

[

module: ECHO_ERROR

get time
ierr SYSSASCTIME

Externals:

SYSSASCTIME

function
ECHO_ERROR

write (AUTOERR.DAT)
the time

write (AUTOERR.DAT)
the failure message

[43

(-not. constraints_mct)

ati_error(i)=Yes

J))))))
maodule: FIXID
function
FIXID
call call find the call call
READ_ATGEN ZERO_SUPER_ELE error type WRITE_ATGEN MAKE_ICLASS
(clobber(i) .ne. 0) (abend(i)) clse
* (o]
ATi overwrite ATi abend ATi output crror
call . R . ifanyof O
ABEND_ERROR abend(i)=No ati_crror(i)=Yes constraints
1,23,0r4
are not met
do while((all_cmm(j,i) .eq. emm(j) ' /
call o . o {
CLOBBER_ERROR clobber(i)=No ati_error(i)=Yes find com o N
disagreement CMM_ERROR cmm_crr(i)=Yes
Extcrnals: =it

READ_ATGEN

ZERO_SUPER _ELE
CLOBBER_ERROR

ABEND_ERROR
CMM_ERROR
WRITE_ATGEN
MAKE_iCLASS

133

anadule: GET_SIM_DATA

do S=1,N_ELE(t)

call READ_SIM_DATA

) J
function
GET_SIM_DATA
cnd of a
replication?

((cum_case_switch)and{cum _case =cum_case_b))

preparc to return g
cach ATi to its
initia] state

dot=1N_ATS

10 its initial statc

rcturn ATGEN.DAT)

GET_SIM_DATA=1

at_cle(s,t)=1
super_cle(s,t)=1
restore_cle(s,t)=1

cxternals:

READ_SIMDATA

READ_ATGEN
WRITE_ATGEN
MAKE_iCLASS

is this gencration * call call
onc of this clement? WRITE_ATGEN MAKE_iCLASS
{at_ele(s,t).ne.1)
0 null

WRITE_EXECUTION

consider outputs
from cach ATi

do 1=1N_ATS

ATi did not
ABEND

call
WRITE_EXECUTION

GET_SIM_DATA=0

(not ABEND(1))

null count cmm
differences

0

dos=] 15

cmm disagrecment?

(cmm(s).ne.all_cmmis,t))

null

rem_n_diff(t)=
rem_n_diff(t)+1

module: ID_FIXES

function
ID_FIXES

read(iCLASS.DAT)
ELE_GEN

B_SEARCH

APPEND

Externals:

B_SEARCH
APPEND

33

B J)) ' ' A
madule: LAUNCH_UERROR
function
LAUNCH_ERROR
© o open rcad(ATILAUNCH_FILE) . closc
(ATi LAUNCH_FILF) cle,gen get element index updatc arguments (ATi LAUNCH_FILE)

Extcrnals:

ECHO_ERROR

rcad{clc(1)(2:3))
cle_i

restore
at_cle,super_cle

module: MAKE_iCLASS

function

MAKE_iCLASS

do (j=1, N_ELE(}))

consider each CMS

rewind(iCLASS.DAT) clement for ATi

*®
write record containing
element name and
generation number

super_ele(j,i))

write(iCLASS.DAT) formatted
string with element name null
and generation number

Externals:

none

LE

modulc: MEAS_IMP

rcad the results

function
MEAS_IMP

do j=1,15

count the differcnecs between

from VTEST the ati’s and the gold’s cmms
(cmm(j) .ne.
all_ecmm(j,i))
call *
READ_EXECUTION disagrcement?
: O
n_diff_VTEST= null

n_diff VTEST+1

Extcrnals:

READ_EXECUTION
WRITE_EXECUTION

measure
improvement

.
call O call call
WRITE_EXECUTION WRITE_EXECUTION WRITE_EXECUTION
MEAS_IMP= MEAS_IMP= MEAS_IMP=
PERFECT BETTER NO_BETTER

-~

module: OPEN_FILES

Externals:

ECHO_ERROR

function
OPEN_FILES

open (unit=1, SIMDISK; SIMDAT)
open (unit=3, ATGEN.DAT)

open (unit=4, EXECUTION.DAT)
open (unit=10, AUTOERR.DAT)
open (unit=11, 1CLASS.DAT)
open (unit=12, 2CLASS.DAT)
open (unit=13, 3CLASS.DAT)
open (unit=15, FORLINREP.COM)

38

6¢

madule: PREP_GLO

function
PPREI_GLO

e

-

e

end of
replication?

stopper_flag= .f:lls:]

(end_repl)

initialize 0
replication
variables

null

/m dok=14

cum_casc=0
cum_cpu_gold=0
replication=
replication + rep_scale

initialize initialize
system constraints
statistics

cum_system,_stat=0

cxternals:

SET_MASK
FORLINREP.COM
ECHO_ERROR

.
consider cach
array
clement

constraints_total(j,k)=0]

doj= 1N ATS

consider cach ati

do j=1 ,N_CONSTRAINTS

writc to
FORLINER.COM

spawn DCL command
proccdure FORLINREP

endof the * LINK SIMULATOR
replication? delete ati objeet modules spawn(FORLINREP.COM)
purge sim.exc
(end_repl) (.not. end_repl)
jinitialize variables m? was there an error
hti & write ati records with this ATi?
ko FORLINREP.COM
/m (e ()
ﬁx(j)=1 initialize writc ATi null sct ati simulator 0
cpu_fa\'l(j)=0 cpu timer records to variables,sct FIX_MASK ,and
casc_fail(j)=0 - FORLINREP.COM write to FORLINREP.COM | .
at_pointer(f)=1
Py I /N
. * write compile probli design_stage(j) = call write compile problj
cum_cpu(j,k) =0 write lib/replace design_stage(i)+1 SET_MASK write lib/replace
probli.obj in problj.obj in
PROBILIB.OLB FROBILIB.OLB

maodule: READ_ATGEN

function
READ_ATGEN
rcad(ATGEN.DAT,rec=1i) rcad(ATGEN.DAT, rcad(ATGEN.DAT,
at_cle rec=i+N_ATS)super_cle rec=i+2*N_ATS)rcstore_cle
check return code check return code check return code
icrr#0 ierr#0 jerr # 0
call null call null call null
ECHO_ERROR { ECHO_ERROR ECHO_ERROR

Externals:

ECHO_ERROR

module: READ_CMMFILE

function
READ CMMFILE

do k=1, (REC_CMM%

REC_CVMM do s=k, REC_CMM?*j
position pointer at read the REC_CMM
open first record for records for
(CMM_FILEC(})) cmm(j) | cmm())
read v read "
(CMM_FILE()) CMM_FILE())
ele, gen, nxt

Externals:

none

module: READ_EXECUTION |

function
READ EXECUTION

[A%

rewind read read read
(E}(ECUHON D AT) (exmtion-dat) (execution.dat) (EXECUHON.DAT)
) rem_n_diff cmm all_cmm
check check check
return code return code return code
(ferr£0) A o) A
ECHO_ERROR ECHO_ERROR
(ierr#0)
ECHO_ERROR
externals:

none

module: READ_SIMDATA

function
READ_SIMDAT

read last record

find last .
sequence number ;VI;ECS 15:'(;'

sequence_num =

check return code

(ierr .ne. 0)

call 0]
ECHO_ERROR

SPY_GLOBAL()
read (SIMDISK:SIM.DAT,
key=sequence_num)
Externals:
SPY_GLOBAL

null

43

maodule READ_TRACEBACK

function
READ_TRACEBACK

find trackback
for this ati

beginning of a
traccback?

do while(kcy_find# num_abends)

rcad
(simdisk:crrors.dat)
buffer

rcad
(sim.disk:crrors.dat)
buffcr(1:6)

module=
buffer(1:6)

buffer(1:6)=KEY /\

null

do j=1,N_ATS do while (.true.)
.. open count number read till
(simdisk:crrors.dat) abends end of file
. ~Tead backspacc(simdisk:
if(abend(j)) (simdisk:crrors.dat, crrors.dat position
cnd =999 at previous record
num_abends = O
num_abends+1
key_finds =
key_finds+1
Extcrnal:

nonc

line_num=
buffer(52:53)

194

module: RESTORE

build skclcton

for CMS
command

do while ((j .le. 15) and
(emm(j) .eq. all_anm(j,i))

1.0

RESTORE

1 . . get the fix
get at.c,St siate find where ati candidatcs for | g5 white ((ar_ele look ahcad onc
for aus CMS Zf‘d gold the cmm in | (ele,) .ne. candidate
class 1sapree . gen (k)) .or.
g dxsagrccmcnt (.not. super_ele
(ele_i,i))) ‘
L
find last element/
" generation which 1.2
.. was superseded
call j=j+1 into the ati_class
READ_ATGEN for this cnm
call 1.1

cmd_string = ’cms inscrt i,
forfgen=1at. class/supcrsede’

READ_CMMFILE

Did we restore
different
clements?

Arc the clement
candidates gen-
crations of the
samce clement?

call
WRITE_ATGEN

call

MAKE _iCLASS

look ahcad two
candidatcs

'

13

'

1.4

(void)

cmd_string

Spawn

nuil

module: SET_MASK

function
SET_MASK

do while ((k .le. MAX_FIXES)
and (fix_list(k,j) .ne. 0))

set bit in
k=1 fix mask for
corresponding fix

fix(j)=ibset (fix(j),fix_list(k,)) *
(3:)=0
k=k+1

Externals:

none

module: SPY_GLOBAL

Externals:

none

function
SPY_GLOBAL

assign SPY_GLOBAL
last sequence number
from global memory

SPY_GLOBAL =
sequence_num

47

module: VOID_FIX_LIST

function
VOID_FIX_LIST

do i=1,N_ATS

consider
each fix

do j=1,MAX_FIXES

initialize *
fix_list

*®

fix_list (j,i)=0

Externals:

none

6y

module: WRITE_ATGEN

function

WRITE_ATGEN

write(ATGEN.DAT,rec=i)
at_ele

write

(ATGEN.DAT,rec=N_ATS+i)

write
(ATGEN.DAT,
rec=2*N_ATS+i)

super_ele
check check check
return code return code return code
(ierr.ne.0) (terr.ne.0) (ierr.ne.0)
ECHO_ERROR ECHO_ERROR ECHO_ERROR
externals:
ECHO_ERROR

0s

module: WRITE_EXECUTION

function
WRITE_EXECUTION

rewind write write write
(EXECUTION.DAT) (EXECUTION.DAT) (EXECUTION.DAT) (EXECUTION.DAT)
) rem_n_diff cmm all_cmm
check check check
return code return code return code
(ierr.ne.0) A (ierr.ne.0) A_
call 0 null call 0 null
ECHO_ERROR ECHO_ERROR
(ierr.ne.0)
call Y null
ECHO_ERROR
externals;
ECHO_ERROR

module: ZERO_SUPER_ELE

function
ZERO_SUPER_ELE

do j=1,N_ELE()

initialize
super_ele

-

super_ele (j,i)=0

Externals:

nonc

5

[49

madule: VIEST.FOR

VIEST.FOR
call call
OPEN_FILES CLOSLE_FILES
daj=1,15
call inputs = Filpd out which . call cull
READ_EXECUTION ISPY_GLOBAL() application task we save atl autpuls GOLD WRITE_EXECUTION
arc dealing with
else clse
at_num .cq. 1) (aLnum .eq. 2) (at_num .eq. 3)
call 0 call 0 call 0 all_emm(j,at_num=
PROBIA - PROB1B PROBIC cmm(j)

*AUTOSIM SPECIFIC - rcads from GLOBAL.DAT

Extcrnals:

OPEN_FILES
READ_EXECUTION
ISPY_GLOBAL()
PROBIi

GOLD
WRITE_EXECUTION
CLOSE_FILES

ISPY_GLOBAL()

include
’(globaly

ISPY_GLOBAL =
inputs

53

APPENDIX B: AUTOSIM FILE DESCRIPTIONS

54

ATGEN.DAT:

purpose:
Keep track of what CMS element generations are presently installed in the
ati_class and what CMS element generations were previously installed in
the ati_class.

background:
Each of application task has its own CMS class, i.e. there are N_ATS
CMS classes defined within the CMS library ASIM_CMS_LIB. There are
N_ELE(i) elements in the CMS class corresponding to ATi. N_ELE is an
N_ATS integer*4 array defined in AUTO.INC along with other data variables.
ATGEN.DAT is organized into three different groups of records; each group
has N_ATS records. All application tasks have one record within group of
N_ATS records. Specifically, ATi has its records located at record
positions i, i+N_ATS, and i+(2*N_ATS). NOTE! To enable this random access
of records, ATGEN.DAT was created as a DIRECT access file. To insure
proper file integrity DO NOT EDIT ATGEN.DAT. Records within the file
ATGEN.DAT may be modified manually with the Fortran program MODATGEN.

reference: .
ATGEN.DAT is referenced with unit number 3 in the open, read, and write
statements to this file. the open statement is as follows.

open(unit=3, file=ATGEN.DAT, access='DIRECT’, status="OLD’)

data structures:
at_ele - a 17 by N_ATS element byte array containing the fisrt group
of N_ATS records. This group of records indicates what
generations of the CMS elements are currently installed
in the CMS class for each application task.

super_ele - a 17 by N_ATS element byte array containing the second group
of N_ATS records. This group of records indicates what CMS
class elements are to be superseded with new generations.

restore_ele - a 17 by N_ATS element byte array containing the third group
of N_ATS records. This group of records indicates what
generations of the CMS elements were installed in the previous
version of the CMS class for each application task.

record formats:
first group: at_ele -or-
atl's (10i3)
at2’s (01i3)

55

at3’s (17i3)
second group: super_ele -or-
' atl's (10i3)
at2's (01i3)
_ atd’s (171i3)
third group: restore_ele -or-
- atl’s (10i3)
© at2’s (01i3)
at3’s (17i3)

56

AUTOERR.DAT:

purpose:

log AUTOSIM errors of the nature (1) out fixes for an ATi, or (2) open,

read, or write errors.

reference:

AUTOERR.DAT is referenced with unit number 10 in the following open

statement.

open(unit=10, file=="AUTOERR.DAT’, access='SEQUENTIAL’, status="OLD’)

data structures:
module - character*(x), the module in which the error occurred

file - characterx(x), the file that was be referenced when the
error occured

fail_msg - the message accompanying the failure (i.e. open, read,...)

lostat - i*4, either the return status code from a open, read,... , or
the CMM that did not have any more fixes

stamp - character*23, the time the failure occurred

record format:
stamp
-or- (a) ftime in format dd-mmm-yyyy hh:mm:ss.cc
module file fail_msg iostat
-or- ("ERROR: <’ a,’> ', a, 1Ix, a, ’; iostat =, 110)

57

EXECUTION.DAT:

purpose: , :
serves as the communication link between the spawned subprocess VTEST
and the AUTOSIM program. VTEST updates the last two records which
contain the output from the GOLD and the ATi's CMMs. MEAS_IMP, a function
of AUTOSIM, updates the first record which contains the number of
differences between the GOLD’s and the ATi’s CMMs.

reference:
EXECUTION.DAT is referenced as unit 4 in the following statement:

open(unit=4+, file="EXECUTION.DAT", access='SEQUENTIAL’, status="OLD’)
data structures:
rem_n_diff - a three element integer*4 array containing the number of
differences between the GOLD’s CMMs and a particular ATi's.
the valid range of values for these fields is a integer
greater than or equal to 0 but less than or equal to 15.

cmm - a fifteen element integerx4 array containing the GOLD’s
CMM outputs. each element in this array has the value
of either a 0 or a 1.

all_emm - an N_ATS by fifteen element integer*4 array containing
each of the ATis" CMM outputs. each element in this array
has the value of either a 0 or a 1.

record formats:
first record: rem_n_diff (’’, 3i3)
second record: ecmm (', 15(i1,",’))
third record: all_ecmm (' 7, 45(i1,","))

58

IABEND.DAT:

purpose: _ :
The iABEND.DAT files contain a history of the abend failures
which have been documented for each ATi during the execution

the Launch Interceptor Code.

reference:
the IABEND.DAT files are referenced individually with unit number 30
in the following type of open statement:

open{ unit=20, file==iIABEND.DAT, access="SEQUENTIAL’, status="OLD’)

data structures:
function - a character string of length six. this variable contains the
the name of the module in which the abend occures.

position - a character string of length two. this variable contains the
where in the module the abend occurred.

ele(1) - a character string of length three. this variable contains the
CMS element with the source for the particular module under
consideration.

gen(1) - a byte variable. the generation of the CMS element with the fix
required to fix the abend in the given module.

record format:
function position ele(l) gen{l)
-or- (t1,26,t9,32,£13,23,t18,i2)

59

ICLASS.DAT:

purpose:
the records of iCLASS.DAT indicate to the spawnned FIXAPP.COM which
CMS elements are to be superseded with new generations, i.e. which

fix to install.

reference:
the iICLASS.DAT files are referenced through the N_ATS integer«4 data
array AT_UNIT. each ATi's iCLASS.DAT file is assigned a unit number
which is stored in the ith element of the AT_UNIT array. currently,
~ AT_UNIT(1)=11, AT_UNIT(2)=12, AT_UNIT(3)=13. the iCLASS.DAT files
are made available through the statement:

open{ unit=AT_UNIT(i), file=iCLASS.DAT, access="SEQUENTIAL’,
+ status="OLD’)

data structures:
ele_gen - characterx10, the CMS element name and generation which
is to be or was superseded in the CMS class for the ATi
presently under consideration.

record format:
ele_gen -or- (1x, lal, 1i2.2, ' for(’, 1i1, "))

iCLOBBER.DAT:

purpose:
The iCLOBBER.DAT files contain a history of the overwrite failures
which have been doucmented for each ATi during the execution of the
Launch Interceptor Code.

reference:
iCLOBBER.DAT files are referenced individually with unit number 20
in the following type of open statement:

open(unit=20, file==iCLOBBER.DAT, access="SEQUENTIAL’, status="OLD")
data structures:

clob - integer*4, the clobber value indicating which common region
was overwritten

ele(1) - character*3, the CMS element containing this section of
code with the common region in which the overwrite occurred

gen(1) - byte, the generation of CMS element from above with the fix
to stop the overwrite from occurring again

record format:

clob ele(1) gen(1)
- or - (t1,i1,t4,23,£9,i1)

61

iCMM.DAT:

purpose:
The iCMM.DAT files contain a history of failures and associated fixes
in the conditions met matrix which have been recorded for each ATi
during the execution of the Launch Interceptor Code.

reference:
ICMM.DAT files are referenced individually with unit number 40
in the following type of open statement:

open(unit=40, file=iCMM.DAT, access="SEQUENTIAL’,
+ status="OLD’, recl=24)

data structures:
ele(REC_CMM) - a REC_CMM element character*3 array, the CMS elements
which contain the section of code in which it is
possible for this cmm to fail

gen(REC_CMM) - a REC_CMM byte array, the generation of the CMS elements
from above with potential fix(es) for the failed cmm

nxt{REC_CMM) - a REC_CMM byte array; when searching for a fix, we find
the element/generation which is currently installed,
and index off this 'nxt’ field of the same record to
find the next potential fix, provided another fix exists.

record formats:
ele gen nxt
-or- (t4, a3, t9, 12, t13, i2)

62

iILAUNCH.DAT:

purpose:
ILAUNCH.DAT files are used when an AT fails and the failure does
not show up as an abend, overwrite, or as disagreement in the
conditions met matrix; a launch error is detected by the assertion
of a .not.constraints_met element and the index to the all_cmm array
being out of bounds.

reference:
iLAUNCH.DAT files are referenced individually with unit number 50

in the following type of open statement
open(unit=>50, file=ILAUNCH.DAT, access=="SEQUENTIAL’, status="OLD")

assumptions:
only one launch error for any ATi

data structures:
ele(1) - a character string of length three. this variable contains the
CMS element with the source code where the launch error occures

gen(1) - a byte variable. the generation of the CMS element with the fix
required to correct the launch error in the given module.

record format:
ele(1) gen(1)
-or- (t3, a3, t8, i2)

63

SIM.DAT:

purpose: :
records a history of simulator failures by storing the environmental
parameters, generated inputs, and simulator and application tasks’
outputs. This makes it possible for an operator to determine why the
simulator failed by examining design stages of previous replications.

reference:
SIM.DAT is referenced as unit 1 by all modules in the Autosim, Interface,

and the Simulator. SIM.DAT is an indexed file; so, unit 1 is accessed with
the use of keys. The primary key is the sequence number, i.e. the
sequential number of a record in the file. Modules referencing SIM.DAT
have read and write privledges to the file. The file is expected to exist

in the SIMDISK: directory, and an error message will result if the file

is not found.

data structures:
the common regions of SIM.DAT:

inputs - the generated inputs consist of the following variables:

X,y,el,r,eps2,a,m,q,epsl,nl,n2,m2,n3,m3,n4,
m4,n6,bigl,bigr,bige,bign,lem,pumdia,p,ifout

outputs - the simulator outputs consist of the following variables:
‘emm,fum,launch,pum

allouts - the application task outpts consist of the variables:
all_cmm,all_fum,all_launch,all_pum

all_voterouts - ouput from the voters

all_v_cmm,all_v_fum,all_v_launch,all_v_pum,
all_v_comp_launch

record format:
the simulator writes a SIM.DAT record with the following statement,

the format is implied.

write(unit=1,1lostat=iret)list,inputs,outputs,allouts,all

1.0

l SIM.DAT ’

commons in
cvery record

inputs outputs allouts all_votcrouts v_mitpms
char*1844 char*1024 char*3076 char*3076 char*1024 .
1 l y l 1
1.1 1.2 1.3 14 1.5

r°4

r4
y(100)

x(100)

|

r*4

ol

99

| L]

r*4
cpsl

| |

i*4
nl

INPULS

i
cm(15,15

| &

i*4
imdia(l

§ Lol

i*4
ifout

]

4
bigL

r°4
bigr

[3E]
bige

]

n2

| L

i*2
m2

i*4

i*4

cmm(15)

1.2

outputs

i*4
fum(15)

pum(15,15)

log*1
launch

67

1.3

allouts

i*4
all_pum(15,15,n_ats)

i*4
all_cmm(15,n_ats)

i*4 log*1
all_fum(15,n_ats) all_launch(n_ats)

68

69

1.4

v_outpuls

i*4
v_cmm(15)

i*4
v_fum(15)

log*1
v_launch

i*4
v_pum(15,15)

log*1
v_comp_launch

0L

1.5

all_votcrouts

i*4
all_v_emm(15,n_vatcrs)

i*4
all_v_fum(15,n_votcrs)

log*1
all_v_launch(n_vaters)

i*4
allLv_pum(15,15,n_votcrs)

i*4
all_v_comp_launch(n_votcrs)

ATGEN.DAT

restore_ele
previous generation
of the elements

at_ele super_cle
current generation clements to receive
of elements new generation
3 groups of N_ATS Jccords in each group
10 i*4s 1i*4

first record in
each group is for
ATl

second record in
each group is for
AT2

17 i*4s
third record in
each group is for
AT3

* the three groups of N_ATS records is independent of the N_ATS

71

AUTOERR.DAT

first type
record

char*23
ASCI time

second type
record

char*(*)
error message
1. module 2. file
3. message

iostat

72

EXECUTION.DAT

record one
rem_n_diff

3i*4

record two

15 i*4

record three

all_cmm

15xN_ATS i*4

73

function
char*6

iABEND.DAT

each record

gen(1)

byte

position
char*2

ele(1)
char*3

74

iCLASS.DAT

each record

char*10
ele-gen

75

iCLOBBER.DAT

each record

int*4
clob

char*3
ele(1)

byte
gen(1)

76

iCMM.DAT

each record

which emm

byte
nxt

char*3
ele

byte
gen

77

iLAUNCH.DAT

one and only record

char*3
ele(1)

byte
gen(1)

78

OPEN_FILES

EXECUTION

READ_SIMDATA

ID_FIXES

EXECUTION

READ_ATGEN

PREP_GLO

MAKE_iCLASS

WRITE_ATGEN

CLOSE_FILES

Files referenced by more than one routine.

79

CLOBBER_ERROR

ABEND_ERROR

iCLOBBER.

DAT

READ_TRACEBACK

LAUNCH_ERROR

CMM_ERROR

Files referenced by only one routine.

APPENDIX C: LISTING OF AUTOSIM COMMAND PROCEDURES

81

AUTOSIM.COM

$ assign nla0: sys$input

$ assign out.dat sys$output

$ set default sim_auto_1

$ set rms/extend=3

$ cms set library asim_cms_lib
$ @[sim.probl.auto.tools]bang
$ set process/name=autosim
$ run sim_auto_1l:autosim

$ exit

FORLINREP.COM

$ dtim = {$time()

$open/append chart chart.fil

$ write chart dtim

$ write chart "forlinrep.com”

$ close chart

$ delete vtest.map;*,vtest.lis;*

$ set rms/extend=3

$ fortran/list/continuations=99 probla

$ lib/rep simdisk:probllib.olb probla

$ fortran/list/continuations=99 prob1b

$ lib/rep simdisk:probllib.olb problb

$ fortran/list/continuations=99 problec

$ lib/rep simdisk:probllib.olb proble

$ lin/map simdisk:sim,probllib/l,opt/opt -
/exe=sim_auto_l:sim.exe

$ delete problx.obj;*

$ purge/keep=3 sim.exe,problx.lis

$ exit

SIMBATCH.COM

$ dtim = {$time()

$ open/append chart chart.fil

$ write chart dtim

$ write chart "simbatch.com”

$ write chart 7 ” :

$ close chart

$!

$ open/append log log.dat

$ write log "start simualtor: 7, dtim

$ write log 7 7

$ close log

$ set rms/extend=3

$ delete sim_auto_l:out.dat;*,sim.map;,simbatch.log;,for0*.dat;
$ delete asim_data:*class.dat;x

$ purge simdisk:inputs.dat

$ set process/priority=5

$ assign sim_auto_l:simbatch.log for006
$ set process /name=sim

$ run sim_auto_1l:sim

$ exit

VTEST.COM

$!vtest.com - procedure to test a single version of an AT
$ open/append log log.dat

$ open/append chart chart.fil
$ write log "vtest”

$ dtim = {$time()

$ write chart dtim

$ write chart "vtest”

$ close chart

$ close log

$ set nover

$ set rms/extend=3

$ Sl — ”a;”
$s2 ="b"
$ 53 p— ”c”
$ at = s'pl’
$ set ver

$ for/list/cont=99/check=all/obj=tmp probl’at’.for;

$ lin/map vtest.sub,tmp,simdisk:probl1lib.olb/l,opt/opt,sim_auto_1:auto.olb/1
$ set nover

$ dele tmp.obj;*

$ open/write tmp_dat: tmp.dat

$ write tmp_dat: pl

$ close tmp_dat:

$ assign/user tmp.dat for$accept

$ run vtest

$ dele tmp.dat;*

$ dele vtest.exe;*

$ exit

$

APPENDIX D. LOG OF AUTOSIM VALIDATION TESTS

86

-AT1- -AT2- -AT3-
Fix Fix Fix
Rep. No. | Seq. No. || D.S. | Nos. Il D.S. | Nos. || D.S. Nos. CASE ERROR
1 13 0 0 0 0 0 0 AT1: QM (5)
AT2: launch error
AT3: QMM (7)
114 1 1,2 1 1 1,16 4 AT3: CMM (5,9,10,11,
12,13,14,15)
2,69
115 2 10,11,12, 2 | ATLODM (D)
14,15
116 2 3 75 | ABEND AT3 RADCIR
line 58
117 E 18 90 | AT3:(4,8,13)
118 T 4 5,8,13 100 | AT1: MM (8,13)
119 3 6 | 150 | ABEND AT!
| RAD line 30
120 4 5 | 203 | AT1: MM (10)
121 5 7 | 1475 | ATL: QDM (5)
122 6 l 2641 | AT3 ABEND
123 | 5 17 2985 | ABEND AT1
124 [~7 8 j 10,000 | End of Rep.
_ I AT1: overwrite; VM (5)
2 125 0 0 0 0 0 0 AT2: launch error
E AT3: QDM (7)
126 | 1 1,2 1 | 1 1 9 AT3: O (T)
127 ! | | 2 16 23 | ABEND: AT1
128 | 2 5 32 | ATL: QMM (7)
, AT3: OMM (12)
129 3 3 1 3 12 90 | AT3: QMM (13)
130 4 2 135 | AT3: ODM(5,9,10,11
14,15)
131 5 6,9,10,11 150 | AT3: (4,8,13)
14,15
132 6 5,8,13 160 | AT1: OV (8,13)
133 4 6 | | 176 | AT1: QMM (3)
134 5 7 | 227 | ATL: QDM (S)
135 6 4 | 892 | ABEND: ATl
136 7 8 | 2351 | ABEND: AT3
137 7 18 4201 | ABEND: AT3
138 ! 8 17 10000 | End of Rep.
3 139 0 0 0 0 0 0 AT1: overwrite, QA (5)
140 1 1,2 | ‘ o2 AT2: launch error
| | AT3: VM (7)
141 1 1 1 I 21 | AT3:(5,9,10,11,12
l | 13,14,15)
142 [2 |269,10.11, k 68 | ATL: QMM (7)
| ! 12,14,15
143 2 3 i 77 | ABEND: AT1
144 3 5 | 94 | AT3: OMDM(T)
145 z E 16 141 | AT3: QDM (4,8,13)
146 14 5813 1 279 | ATL: QODM(8,13)
| 147 4 6 ! 1 370 | ATL: QDI (3)
| 148 5 7 ! 1539 | ATL: OMM(5)
149 6 4] | i | 368 | ABEND: AT3
150 j | K 18 i| 2889 | ABEND: AT3
1151 : | 1 6 17 4 4968 | ABEND: ATl ;
L1s2 7 8 | ‘ 1 10000 | End of Rep. f

87

AT1- || -AT2- -AT3-
. Fix j] Fix Fix
Rep. No. | Seq. No. || D.S. | Nos. || D.S. | Nos. || D.S. Nos. CASE ERROR
13 314 0 0 | 0 0 0 0 0 | AT1: overvwrite
AT3: OIM (7)
315 1 1 1 1 1 | AT1: MM (5)
AT2: launch error
316 2 2 1 1 4 | ABEND: AT1
317 3 5 | 20 | ATL: OMM(D)
318 4 3 41 | ATL: QDM (10)
AT3: QDM (12,13)
319 5 7 1 2 2,12 53 | AT3: QM (7)
320 3 16 57 | AT3: CMM (4,5,8,9,10
11,13,14,15)
21 4 | 568910 {| 8 | AT1: CMM (8,13)
11,13,14,15
322 6 6 318 | ATL: MM (5)
323 7 4 | 3970 | ABEND: AT3
324 5 18 4159 | AT1: QM (10)
ABEND: AT3
325 8 11 6 17 4159 | AT3: QDM (10)
326 7 19 6605 | ABEND: ATl
327 | 9 8 10000 | End of Rep.
AT1: overwrite, CMM (3)
14 328 0 0 0 0 0 0 0 AT2: launch error
AT3: QM (D)
329 1 [124 1 1 1 1 2 | ATL QD)
330 2 | 38 | AT3: QMM (12,13)
331 2 2,12 60 | ABEND: AT1
332 3 5 110 | AT1: QMM (8,13)
AT3: QMM (7)
333 4 6 3 16 117 | AT3: VMM (5,9,10,11
- 14,15)
334 4 | 69,10,11, | 133 | AT3: COMM (4,8,13)
14,15
335 l 5 58,13 149 | AT1: QOB (3)
336 5 7 237 | ABEND: AT3
337 3 18 1077 | AT1: MM (5)
338 6 4 1899 | ABEND: AT1
339 7 8 10000 | End of Rep.
AT1: overwrite
15 340 0 0 0 0 0 0 0 AT2: launch error
AT3: OMM (7)
341 1 1 1 1 1 1 1 | ATL: QDM (5)
AT1: QDM (5)
342 2 2 3| AT3: VDM (4,5,8,9,10,
11,12,13,14,15)
5,6,8,9,10
343 3 4 2 11,12,13, 13 | ABEND: AT1
14,15
w4 5 | | | 16 [AT OMM(T)
345 1 5 3] | | 23 | AT1: QDM (8,13)
346 1 6 6 | I 38 [AT: QD (7))
347 | |] 3 16 316 | ATL: QDM (10)
348 || 7 7 1 | 507 | ABEND: AT3
349 i 4 17 | 844 | ABEND: AT3
350 i 5 18 | 5234 | ABEND: ATl
351 1| 8 8 | | | 10000 | End. of Rep.

88

-AT]- -AT2- -AT3-
Fix || . Fix Fix
Rep. No. | Seq. No. || D.S. { Nos. | D.S. { Nos. || D.S. Nos. CASE ERROR
16 352 0 0 0 0 90 0 0 AT1: overwrite
353 1 1 | 1 ATL: QMM (5)
354 2 2| 3 ABEND: AT
355 3 S S AT2: launch error
AT3: MM (7)
356 1 1 1 1 7 AT1: CMM (10)
AT3: CMM (12,13)
AT1: CMM (5)
357 4 7 2 2,12 12 | AT3: OMM (5,9,10,11,
14,15)
358 5 4 3 6,9,10,11, 31 | AT QMM (7)
14,15
359 6 3 116 | AT1: CMM(8,13)
360 7 6 173 | AT3: QMM (7)
361 4 16 182 | AT3: VM (4,8,13)
362 5 5,8,13 183 | ABEND: AT1
363 8 8 1322 | ABEND: AT3
364 6 18 2137 | ABEND: AT3
365 7 17 10000 | End of Rep.
AT1: overwrite, CMM (3)
17 366 0 0 0 0 0 0 0 AT2: launch errar
AT3: QMM (7)
367 1 1,2 1 1 1 1 10 | AT3: QM (13)
368 2 2 19 | ABEND: AT1
369 2 7 29 | ATL: QMM (T)
370 3 3 34 | AT3: QMM (12)
371 3 12 35 | AT3: OMM (4,5,8,9,10,
11,13,14,15)
372 4 | 56,89,10, 49 | AT1: CMM (8,13)
11,13,14,15
373 4 6 78 | AT3: QDM(T)
374 [5 16 372 | ABEND: AT1
375 5 5 453 | ATL: QDM (S)
376 6 4 | 836 | ABEND: AT3
377 6 18 4812 | ABEND: AT1
378 7 8 6634 | ABEND: AT3
379 7 17 10000 | End of Rep.
AT1: overwrite, CMM (5)
18 380 0 0 0 0 0 0 0 AT2: launch error
AT3: MM (7)
381 1 1,2 1 1 1 1 14 | AT3: QDM (12,13)
382 I |2 2,12 15 | ABEND: AT1
383 2 7 i 43 | AT3: M (7)
384 3 16 80 | ABEND: AT
385 3 5 | 112 | AT1: QM (8,13)
386 4 6 | 1 133 | AT3: M (5,9,10,11,
‘) 14,15)
387] | 4 | 69,1011, || 166 | AT1: COMM(7)
| \ 14,15
388 || S 3 | | 323 | AT3: QDM (4,8,13)
89 | j 15 5,8,13 979 | ATL: QMM (5)
390 1 6 4 | : 1142 | ABEND: AT3
9] | | 16 18 4401 | ABEND: AT3
392 | [7 17 i1 10000 | End of Rep.

89

i -AT1- -AT2- -AT3-

| Fix Fix Fix
| Rep. No. | Seq. No. || D.S. | Nos. i D.S. | Nos. i| D.S. Nos. CASE ERROR
25 628 0 0 0 0 0 0 0 AT1: Overwrite
AT3: OMM(12,13) =)
629 1 1 1 2,12 2 ABEND: AT1
RAD line 31
ATL: QMM (5)
630 2 5 2 AT2: launch error
AT: QMM () =0
631 3 2 1 1 2 1 7 ATLOMM () =1

632 3 3 20 AT3: CMM (4,5,8,9,
10,11,13,14,15) = 1

633 3 | 5689
101,13 | 36 | ATI: OM(8,13) =1
14,15
634 4 6 103 | AT3: QMM (7) = 0
635 4 16 110 | ATL: OMM(5) = 1
636 5 4 688 | ATL: MM (3) = 0
637 6 7 978 | ABEND: AT1
RADCIR line 58
638 4474 | ABEND: AT1
ANGLEA line 27
639 7 8 5553 | ABEND: AT3
AGLCOS line 26
640 6 17 8358 | AT1: QMM (1) = 0

641 Il 8 | 9

1. Aeport No. 2. Government Accestion No. 3. Reipment's Catatog MNo.
NASA CR-177930

4 Title and Subtitie _ S. Report Oate
AUTOSIM: An Automated Repetitive Software . September 1985
Testing Tool : 8. Performing Orgenization Code
7. Author(s} 8. Performing Orgenization Report Na.

J. R. Dunham
S. E. McBride

10. Work Unit No.

9. Performing Orgenization Name and Addrem

Regsearch Triangle Institute 11, Contract or Grant No.
Research Triangle Park, NC 27709 NAS1-16489

1. Type of Report and Pwriod Covered
Contractor Report
National Aeronautics and Space Administration 4 S iy A o
4
Washington, DC 20546 505-34-13-32

12. Spomsoring Agency Neme and Address

15. Supplementary Notes
Langley Technical Monitor: Gerard E. Migneault

16. Abstract

AUTOSIM is a software tool which automates the repetitive run testing of software,
This tool executes programming tasks previously performed by a programmer with one
year of programming experience. Use of the AUTOSIM tool requires a knowledge base
containing information about known faults, code fixes, and the fault diagnosis-

correction process. AUTOSIM can be consideréd as an "expert" system which replaces]
a low level of programming expertise.

The report contains reference information about the design and {mplementation of

the AUTOSIM software test tool, provides flowcharts to assist in maintaining the
software code, and documents how to use the tool.

17. Key Words (Suggested by Author{s}) 18. Distribution Statement
Software reliability Unclassified - Unlimited

Software error rates Subject Category 61

19. Security Clamif. (of this report) 20. Security Clasuf (of this pege) 21. No. of Pagm 22, Price
Unclassified Unclassified 97

05 For sale by the National Technical Information Service, Springfield. Virginia 22161

End of Document

