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ABSTRACT

The longitudinal structure of air shower disc has been

studied by measuring the arrival time distributions of

air shower particles for showers with electron size in

the range 3.2 x 10g_to 3.2 x i0%5in the Akeno air-shower

array (930gcm-2atmospheric depth).The average FWHM as

a parameter of thickness of air shower disc is increas-

ing with core distances at less than 50m.At present

stage,it cannot be seen the dependence on electron

size,zenith angle and air shower age.The average thick-
ness of air shower disc within core distance of 50m

is almost determined by electromagnetic cascade start-

ing from lower altitude.

i. Introduction

The experiment to search for long-lived massive particles in ex-

tensive air showers has been carried out in the Akeno air-shower array,

using twelve fast scintillation detectors at intervals of 5m,will be

discussed in a separate paper (HE 6,2-10).The time profile of the

signal from photomultiplier (PMT) reflects the arrival time distribu-

tion of air shower particles,namely the longitudinal structure of air

shower disc.Hitherto,the lateral structure of air shower particles is

rather well known through basically measurement of lateral density of

air shower particles and also nuclear cascade theory.However,informa-

tions on the longitudinal structure near the core (_50m) are not abund-

ant in spite of recent improvement of recording apparatus and additive

parts for nano second measurement.Only,C P Woidneck et al (1975)

measured the longitudinal particle distribution from the time delay mea-

surement,so far. It is interested in studying the thickness,the curvature
of air shower disc and also their fluctuations in order to discuss the

longitudinal development of air shower and primary compositions. The

preliminary results on average thickness of air shower disc and its

dependence on zenith angle and air shower age are presented in this

paper.

2. Experimental
Twelve scintillation detectors were located at the $2 area in the

Akeno air-shower array at intervals of 5m as discribed in separate

paper (HE 6,2-10).The group A consisted of two 0.25m 2 scintillation
detectors with 2" fast PMTs and _ Im 2 scintillation detector with 5"
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fast PMT.Signals fed to an adding circuit through co-axial cables

(IIC4AF) with different length of 50m,63m and 75m,and then added signals

were recorded by a 100MHz storage oscilloscope.The group B and C were

also same systems as mentioned above.The time response of the whole 0.25

m2 scintillation detector system for single relativistic particle was

4.9ns in rise time (tr :time from 10% to 90% of the maximum signal) and
10.6ns in Full Width at Half Maximum (_.That of the whole im2 scinti-

llation detector system was also 6.2ns and 15.2ns in tr and tw_respec-

tively.

The work was performed in conjunction with the air-shower array.

Signals from each groups were stored in three storage oscilloscopes if

the heights of three signals from the triggering detectors (A-I,B-I and

C-l) were higher than a given level and coincided in time with one ano-

ther.The stored signals were read out to a floppy disk by simultaneous

master pulse from the air-shower array.

3. Analysis and Result

Observation was made from May to October of 1984.Total running time

was 88days and the total number of events triggered was about 6300.The

analysis was made on 2142events recorded by B-2 detector.The arrival di-

rection (6 and_),the electron size (Ne),the core location and the age

parameter (s) of an ai_ shower were determined according to the proced-

ure adopted by the air-shower group of Institute for Cosmic Ray Reserch

of the University of Tokyo.We excluded the signals whose peaks of some

showers were out of the storage oscilloscope frame and also whose peaks

were smaller than given level corresponding to four relativistic parti-

cles.ln this paper,the arrival time distributions of air shower parti-
cles with Ne in the range 3.2 x

' I I I I i05o5to 3.2 x 10_5and sec _ in

the range 1.0 to 1.3 are report-
2G- ed.

I tw The average values of tr

and tW plotted against core dis-

_ tances are shown in figure i.

15- _ As is seen in this figure,both

_ " values increase with increase in
X

c core distances.On the other hand

10 - * - ,dependence of these values on

E tr Ne cannot be seen from this fig-
_ _ ure.As often pointed out,average

twS have some biases at core
5 - x xo

distances larger than those pre-

sented here in each Ne bins.They
are caused by small number of

O I I I I incident particles (less than
20 40 60 80 about ten particles) ,and conse-

Core distance (m) quently,average twS are esti-

" Figure i. Average trs and twS against mated to be rather small values.
core distance for showers with sec _ We have been confirmed carefully

of 1.0-1.2 and Neof 3.2 x i05"_ 1.0 unbiased regions of core distan-

x 106"_X),l.0 x i_ "_ 3.2 x I_'_Q), ces in regard to each Ne bins.
3.2 x i_ .$ 1.0 x i0_O) and 1.0 x Figure 2(a) shows the

i0Z_ 3.2 x 10Z_). average values of twfor showers

with Ne in the range 3.2 x i_ "5
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to 1.0 x lO%0,core distances in the

range 20m to 50m and sec _ in the

range 1.0 to i.i,i.i to 1.2 and 1.2

to 1.3.Figure 2(b) shows dependence _
of average twon s for showers with 15-

sec _ in the range 1.0 to 1.2,and

same Ne and core distance bins as

figure 2(a).Average number of inci- _ 10- (a) _
dent particles to the detector in

I I I
these three core distance bins is

E
about 50,25 and 12 for sec _ in the

range 1.0 to 1.2 and for s in the 15- _ -
range 0.75 to 1.25.Average particle

number adopted in figure 2(a),(b)

is the same values within errors (b)
regardless of different s and sec _. 1C-

These quantities (tr and tw) I I I
derived from recorded signal shape 20 40 60

are distorted due to the decay time Core distance (m)

of plastic scintillator,the transit

time spread in PMT and the response Figure 2. Average tws against
in storage oscilloscope.Accordingly core distance for showers with

,the average signal shapes have to Ne of 3.2 x i06"_ 1.0 x i0_

be reduced to a system with zero (a) shows the dependence of

time response in order to discuss average twon sec @;i.0-i.i (O),

the true thickness of air shower 1.1-1.2 (O) and 1.2-1.3 (B).

disc.We assume the function Ve for (b) shows the dependence of

the arrival time distribution of average twon age parameter (s);
air shower particles as 0.75-1.0 (O) and 1.0-1.25 (O).

Ve(t)=exp(-a(t)) x (l-exp(-b(t)))

The average signal shape derived from the recorded signals,Vo,can expr-

ess as the convolution of the two functions Ve and VS which is average
shape co_responding to single relativistic particle.

V_(t)=J_s(t-_) x Ve(_) at' Here,V_ is an expected signal shape.
Calculation was made by two parameter (a and b) fit,and then determined

these parameters giving the minimum value of_ (Vo(t)-Vo(t))2.Figure
3 shows the corrected arrival time distributions of air shower parti-

cles for showers with sec _ in the range 1.0 to 1.2,and different Ne o
and core distance bins as showed in figure caption.These distributions

presented here are normalized their areas to be same value,namely to
same number of incident particles.The distribution at core distance of

10m to 20m have a large ambiguity when correct to zero time response,

because the average signal shape is as narrow as the average shape of

single particle. In figure 4,corrected average tws are presented against

core distances derived from the procedure mentioned above.

4. Discussion

The average thickness of air shower disc presented as the value of

twis increasing with core distances.Apparently,the effects of multiple

Coulomb scattering and transvers momenta of the particles contribute to

broaden the thickness with increase in core distances.On the other hand,

the contribution of high energy interaction and primary compositions

through the longitudinal development of air shower particles to the

value of twis not obvious as is seen in figure 2(a) and (b).It seems
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Figure 3. Corrected arrival time distributions of air

shower particles for showers with sec _ of 1.0-1.2 and

(a) Ne of 3.2 x l0S.S- 1.0 x 106"0for core distances 10m-20m

(b) Ne of 1.0 x i08.0- 3.2 x 108.Sfor core distances 20m-30m

(c) Ne of 3.2 x i08.5- 1.0 x 10%0for core distances 30m-40m

(d) Ne of 1.0 x 10%0- 3.2 x lO%Sfor core distances 40m-50m

that the thickness at core distance 10
less than 50m is almost determined I I I I "

by electromagnetic cascade starting

at lower atmosphere.However,the

detailed discussions should be done _ 5- +
after a comparison of the whole _ I I -
shape of arrival time distribution,

especially on the part of tail and
I

also those at larger core distances 0 ' I I I I

,which are seemed to include the 20 40 60 80
information of upper atmosphere. Core distance (m)

Furthermore,it is necessary to com-

pare with an elaborate three-dimen- Figure 4. Corrected" average tW s
sional shower simulation, against core distance derived from

We are going to process the the arrival time distributions

" data obtained simultaneously in shown in figure 3.

an air shower by twelve detectors

in order to expect higher accuracy and also to study the uniformity of
thickness.

w
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