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Abstract

The robustness of detection filters applied to the detection of actuator failures on a
free-free beam is analyzed. This analysis is based on computer simulation tests of
the detection filters in the presence of different types of model mismatch, and on
frequency response functions of the transfers corresponding to the model mismatch.

The robustness of detection filters based on a model of the beam containing a large
number of structural modes varied dramatically with the placement of some of the
filter noles. The dynamics of these filters were very hard to analyze.

The design of detection filters with a number of modes equal to the number of
sensors was trivial. They can be configured to detect any number of actuator
failure events. The dynamics of these filters were very easy to analyze and their
robustness properties were much improved. A change of the output transformation
allowed the filter to perform satisfactorily with realistic levels of model mismatch.
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Chapter 1
Introduction

It is expected, with the advent of the space shuttle, that large space

structures serving a variety of mission requirements will be assembled in space in

the near future. Some of the structures being contemplated include antennas,

reflectors and solar power satellites. They are characterized by their light weight

and very large sizes, which in turn result in low frequency bending properties with

very little structural damping.

The active control of large space structures will include station keeping

control, attitude zontrol, shape control and vibrational damping. The component

unreliability issue is most important in the last of these applications where

hundreds of sensors and actuators will be needed in order to actively damp the

many vibrational modes to assure mission success. The large number of

components in the system result in a high probability of a component failure in a

short period of time, even assuming components having very optimistic mean time

between failures. For example, a system with 200 components, each having a time

between failures of 100,000 hours, is expected to have 17 component failures a

year (7). Even if these control systems are serviced in orbit, it is desired that its

service interval be as long as possible, at least one year. Therefore, it will be

necessary to design control systems that can tolerate the number of component

failures occurring during the service interval. This, in turn, will require systems

that can detect and identify a component failure, and will require control systems

that can be reconfigured to perform without the failed component in some optimal
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fashion.

The failure detection and identification systems (FDI) depend on hardware 	 '

redundancy or analytic redundancy in order to detect and identify a failed

component. An example of hardware redundancy to detect and identify sensor

failures is the one that involves triplication of sensors, where the failure of a

component is detected when there is a discrepancy between the signals of two

sensors and comparison with the third determines which of the two has failed.

Because of the large weight and cost resulting from hardware redundancy, these

systems are not attractive for applications in large space structures. The FDI

systems based on analytic redundancy use knowledge of the plant dynamics to

make the detection and identification of the failure. Some of these systems require

specification of the failure modes ahead of time.

The Failure Detection Filter is a closed loop method, based on analytic

redundancy, to detect and identify actuator and sensor failures, and changes in

plant dynamics. A very attractive property of the detection filter is that it does

not require specificaton of the mode of failure.

The Failure Detection Filter is a linear filter having the some configuration as

an observer but with an additional constraint in the design of the gain matrix

D. The output error, the difference between the system measurements and the

filter estimate of those measurements, is zero when the system is operating

nominally (assuming no model mismatch). When a failure occurs, the output error

becomes nonzero, indicating that a component has failed. Moreover, the additional

constraint on the gain matrix D keeps the output error in a single direction in the

output space. The failed component can then be identified by this direction.

The failure detection filter was first proposed by Beard (11 for deterministic
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systems. Jones 151 explained detection filter theory using a more geometric

approach and expanded it to stochastic and sampled data systems. Detection

Filter Theory was applied by Cariguan 121 in the context of flexible space

structures, where he considered actuator and sensor failure events, and analyzed

the performance of the filter in the presence of unmodeled modes. He developed

the computer software used in this thesis to design detection filters and to simulate

the dynamics of the plant with the filter.

The goal in this thesis, is to improve the performance of detection filters in

detecting and identifying actuator failures in an undamped flexible structure, in the

presence of model mismatch. To achieve this goal, the filter performance will be

Evaluated in the presence of unmodeled modes and different levels of parameter

errors. In addition, the transfer properties of the filter will be analyzed and the

results compared with the simulations.

In Chapter 2, the main results of detection filter theory are introduced along

with analytical procedures for the filter design. Chapter 3 describes the model of

the undamped flexible beam, shows some properties of the detection filter design

for actuator failures, and simulates the filter with no model mismatch.

In Chapter 4, the detection filter performance in the presence of model

mismatch is analyzed using simulations and frequency response functions. Ways of

improving the filter performance derived from this analysis are presented in the

chapter. Chapter 5 contains the conclusions and recommendations for further

research.
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Chapter 2
Failure Detection Filter Theory

The Failure Detection Filter is a linear filter having the same

configuration as a full order observer (Fig. 2-1). It includes a model of the nominal

system and is driven by the same actuator commands as the actual system. The

output error, the difference between the system measurements and the filter

estimate of those measurements, is multiplied by the gain matrix D and fed-back to

the filter.

In a full order observer, the only constraint placed upon the gain matrix D is

that the eigenvalues of the matrix (A - DC) must have negative real parts. When

this is the case, the observer is stable and the state and output errors become zero

(except for noise and other unmodeled effects) during nominal operation. When a

component failure occurs, the output error will become nonzero. Therefore, any

stable observer can detect when the system has failed. What distinguishes a Failure

Detection Filter from such an observer is that the gain matrix D has the additional

constraint of restricting the output error due to a particular failure to a single line

in the output space. The direr. Zion of that line is used to identify which component.

has failed.

Pole placement in Detection Filter design can be used not only to assure the

stability of the filter, but to improve the performance of the filter in the presence

of unmodeled system dynamics. Therefore, complete control of the Detection Filter

poles is required. This requirement together with the output directionality

constraint are the bases of Detection Filter Theory and are present in the definition



-13-

	

^)	 y(t)n^(t)	 u t
Actuators	 System Dynamics	 Sensors

E(t)	 I+
D

I	 + x(t)	 x( t)	 , Y(t)

	

B +	 r It, LI

+	 J	 i
I	 i
I	 I
I	 ^	 1

'	 I	 I
I	 System Model
I	 ^

Figure 2-1: The Failure Detection Filter

of Failure Detectability.

Detection Filter Theory consists mainly of two parts: 1) a set of necessary

and sufficient conditions that must be satisfied for the solution of a particular

detection filter problem to exist, and 2) a set of algorithms to achieve the design.

In this chapter, the state and output error equations are presented for both

nominal and failed system operation. The concept of Failure Detectability will

then be introduced, and important results concerning necessary and sufficient

conditions will be stated. Finally, an algorithm for filter design based on

annhilating minimal polynomials will be presented.
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2.1 The Failure Detection Filter Problem

The model that describes the plant dynamics must be linear, time-invariant

and observable. It is not necessary that the system be observable but only that the

model be observable. An observable model can be obtained by removing the

unobservable dynamics from it. This does not reduce the effectiveness of the FDI

system because failures that affect only the unobservable part of the plant

dynamics cannot be detected.

The unfailed system is represented by the equations:

#(t)=Ax(t) +Bu(t) 	(2.1)

Y( t) = C x(t)

where
x(t) is the n dimensional state vector,

u(t) is the m dimensional control vector,

y(t) is the p dimensional measurement vector.

The structure of the Failure Detection Filter is shown in (2-1). Due to the

similarity between detection filters and observers, the filter state vector x is called

the state estimate and y is called the measurement estimate.

The filter equations are:

X(t)= Ai(t) +Bu,(t)+D[y(t)-Y(t)]

y(t)=C*0

The state error is defined as:
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e(t) _ :(t) - i(t)

The measurement error is defined as:

E( t) = Y( t) - *(t)

The state and measurement equations are obtained by subtracting equations

(2.1) from (2.2). In the normal mode, u(t) = uc(t), and

A(t) = (A - DC) e(t)	 (2.3)

E(t) = C e(t)

If the eigenvalues of the matrix (A - DC) have negative real parts, the state

and measurement errors will become zero in the steady state. This is true,

however, only when the system is operating nominally. When a component failure
M. 

occurs, the state and output error equations (2.3) are no longer valid since

equations (2.1) no longer represent the true system. The new state and output

error equations will depend on the type of component that failed.

Consider the failure of actuator j. The true control u(t) that is being applied

to the plant is

U(t) = uc (!) + emi q(t)

where uc (t) is the desired control, eml is a unit vector in the jth direction of

dimension m, and q(t) is a scalar time function equal to the difference between the

commanded input to actuator j and the actual control being applied by this

actuator.

The new system equations are

F.



where bj is the column of B corresponding to the jth actuator.

The new state and output error equations with actuator j failure are obtained

by combining (2.2) and (2.4)

6(t) = (A - DC) e(t) + b  q(t)
	

(2.5)

e(t) = C e(t)

The goal of Detection Filter design, in this example, is to find a gain matrix

D such that e(t) maintains a fixed direction in the output space when actuator j

fails (and at the same time assign almost arbitrarily the eigenvalues of matrix [A-

DCJ). Since only directionality is important in the identification of the failed

component, the vector b  is the only element in equaticn (2.5) that characterizes

the failure of actuator j. For this reason, the vector b j is called the event vector

associated with actuator ; Failure. The forcing function q(t) depends on the mode

of failure of the actuator, and knowledge of ' this signal (or of the failure mode) is

not needed in the use of a detection filter. This characteristic makes Failure

Detection Filters very attractive for failure detection and identification.

For the rest of the chapter, the detection problem is generalized to the

detection and identification of the component failure associated with the event

vector f, and whose corresponding state and output error equations are

6(t) = (A - DC) e(t) + f q(t)
	

(2.6)

c(t) = e(t)

The discussion in this section, so far, can be summarized by the following
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definition of detectability found in Beard [1].

Definition: The failure event associated with event vector f in (2.6) is

detectable if there exists a matrix D such that

(1) C e,(t) maintains a fixed direction in the output
space (where eb( t) is the settled-out solution
of (2.61 ) and,

(2) at the same time, all eigenvalues of (A - DC) can be
specified almost arbitrarily.

Condition (1) is the distinguishing feature of the failure detection filter and

serves to identify which component has failed. Condition (2) is needed to assure

that the matrix (A - DC) is stable so that during nominal operation, equation (2.3),

the initial state and output errors die out to zero, and in the presence of component

failure, equation (2.6), the output error is unidirectional. Condition (2) also allows

the designer of a failure detection filter to adjust the bandwidth of the filter to

suppress the effects of unmodeled system dynamics, as will be shown in Chapter 5.

Given a failure event, the detection filter problem consists of: determining

whether the event is detectable and, if it is detectable, to find the gain matrix

that makes the output error unidirectional and assigns the desired poles to the

filter.

In the next section, the detection filter prob!em is solved for both fully

measurable systems (rank C = n) and partially measurable systems (rank C < n).



of the matrix W f defined as

-1&

2.2 Fully Measurable Systems

A fully measurable system is a system whose state vector x(t) can be

solved uniquely given the measurement vector y(t), for any time t. Therefore, a

system is fully measurable if and only if

rank C = n

this implies that the number of sensors p > n.

The solution of the detection filter problem for this type of system is very

simple. Choose a gain matrix D such that

(A - DC) = - oI

where I is the identity matrix and o is a positive scalar constant.

eigenvalues of (A - DC) are -o, and the resulting filter is stable.

that satisfies (2.7) is given uniquely by

D = (A + a I) C-1

if rank C = n = p, and non-uniquely by

D = (A + a I) (CTC)-1 CT

(2.7)

Then all the

The matrix D

(2.8)

(2.9)

if rank C =n<p.

To prove that this choice of D satisfies condition (1) of detectability, a result

from linear systems theory will be used. When the failure associated with event

vector f occurs, the state error in (2.6) will be driven by f q(t) within a subspace

of R" called the controllable space of f. This subspace is given by the range space



r
W1 = I f (A - DC)f . . . (A - DC)"-1f I	 (2.10)

Since E = C e, the output error will lie in a subspace of R P given by the range

space of the matrix CWt .

For thin choice of matrix D, the matrix CW f becomes

CW f = I Cf _O-Cf oZCf . . . (-Q) ►~1Cf 
1

and the range space of CW t is simply the one-dimensional space spanned by the

vector Cf. Therefore, when the failure occurs, the output error will remain in a

single direction given by the vector Cf. Hence, the gain matrix D given by (2.8) or

(2.9) also satisfies condition (1) of detectability. Any matrix D which satisfies this

condition is called a detector gain for f.

From the preceding proof, note that this choice of D (2.8) or (2.9) is a

detector gain for any event vector f in R". This implies that a single detection

filter can be used to detect and identify every failure associated with every event

vector f in R" (except that it wouldn't be able to identify two failures that have the

same event vector f).

The solution of the failure detection filter problem in the case of fully

measurable systems is trivial. Choosing (A - DC) = -v I assured the stability of

the filter and also produced unidirectional output errors in the event of component

failures.



In a partially measurable system A C <n and therefore, the state vector

x(t) cannot be solved uniquely given the measurements y(t). In the previous section

it was shown that when a system is fully measurable, a single detection filter can

be designed to detect and identify every event f in R". This property is lost when

the system is partially measurable, and more than one detection filter may be

needed to detect a given set of failure events. Moreover, in such detection filters,

there are subspaces of R" containing event vectors that produce the same

unidirectional output. These subspaces are called Detection Spaces and are very

important in the analysis and design of detection filters, for both single and

multiple detection.

2.3.1 Single Failure Detection

This section explores the detection problem for a single failure event. The

definition of detection space is introduced and is later used to prove the

detection theorem. Algorithms for the design of detection filters, based on the

proof of the detection theorem, are then discussed.

2.3.1.1 The Detection Space

Assuming that (A,C) is an observable pair, Jones defines the detection space

for the event f in the following way:

Definition 2.3-1 Assume that Cf is not zero. The detection space for f is

denoted by R, and is the direct sum:

i)Rf=f(DRf

where Rt C R" is the largest subspace which satisfies the two
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conditions:

ii) Rf C n(C)

iii) A Rf C Rf

This definition is motivated by condition (1) of detestability, and serves to

derive a formula to generate detector gains. By condition ii) and iii) of Definition

2.3-1:

(A- DC) RfCARrCRI

(A - DC) Rf C 9f	 (2.11)

Assuming that Cf 34 0, condition i) and ii) imply that:

CRf=Cf®CRf=Cf®O=Cf

dim (C Rd = dim (Cf) = 1	 (2.12)

Now, assume that D is chosen such that:

(A - DC) f= f e R f	 (2.13)

for some arbitrary f in Rf . From (2.11), (2.13) and i), it follows that Rf is an

invariant space with respect to (A - DC) for this choice of D since:

(A - DC) 11f  = (A - DC) (f (D Rf) C Rr

(A - DC) Rf C Rf	(2.14)

Since R, contains the event vector f, and since R, is invariant with respect to

(A - DC) (for this choice of D), the controllable space of f, spanned by the columns

of the matrix W f defined in (2.10), is a subspace of R,:
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Cf C Rf 	(2.15)

where C, is the controllable space of f.

Then, from (2.12) and (2.15):

CCr = Cf	 (2.16)

dim (CC,) = 1

and the failure associated with f generates unidirectional output errors along Cf.

Therefore, the gain matrix D chosen in (2.13) is a detector gain. Moreover, by

the same argument that led to (2.16) and since (A •. DC,C) is an observable pair,

any event vector in R r produces the same unidirectional output Cf. Jones [51 calls

this property detection equivalence and proved that the detection space R,

contains all the event vectors that are detection equivalent to f.

Since, as it was proved, the gain D satisfying (2.13) is a detector gain, this

equation can be solved for D to obtain an expression for the detector gain of f.

Equation (2.13) can be written as:

DCf=Af - F	 (2.17)

where f E Rt, and its solution is

D=DP+DH

where

DP = (A f - ^) [(Cf)T Cf]-1 (Cf)T	(2.18)

DH = D' I 1. Cf ( (Cf)T Cf]-I (Cf)T 
1

i
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with f E R and D' an arbitrary matrix with the same dimension as D.

The detector gain of f is given by (2.18) with any f E R f and ar

The eigenvalues of (A - DC) will depend on the choice if f E R, and I

question is whether all the eigenvalues of (A - DC) can be arbitrarily s

the proper choice of f e R f and W. This question is addressed in the next section.

Up to this point, it has been assumed that Cf 3P6 0. If Cf = 0, it can be

shown that the definition of detection space and all the results derived so far, can

be extended by replacing If by A' f, where u > 0 is the smallest integer, such that

CA's f 34 0. To simplify the analysis, it will be assumed for the rest of this chapter

that Cf34O.

2.3.1.2 Detection Theorem

In this section, it will be shown that the freedom represented by the choice of

t e Rf and D' in equation (2.18) is enough to assign all the eigenvalues of (A - DC)

arbitrarily.

First, a theorem proved by Beard and Jones is stated.

Theorem 2.3.1 Let dim (R f) = of . There exists a unique vector g ( R.f,

called the detection generator of R f, such that:

i) Ak g(Rf k=0,192....I(vf-2)

ii) C Avf -1 g = Cf

This theorem implies that the vectors g, A g, ... , A vf -1 g are a basis for Rf.

Since f e RP  f can be expressed as

f=o 1 g+a2 Ag+...+arvf-1 Avt -2 g+Avf -1 g	 (2.19)

(



(2.20)
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where o
vt 

= 1 by ii).

Also, since f c Rr, f can be written as

= a1g+a2Ag +... +av t Avt'1g

Write (2.13) as

DCf=Af - f	 (2.21)

and use (2.19) and (2.20) to get

Af - =- a,g +(a1-a2) Ag+(a2-a3)A2g+..

+ (avt 	 r
_ 1 - 

avf 
Avt' 1 g + Avt g	 (2.22)

Define P 1 = -a 1 , P2 = a 1 - a2, .... pvt = avt-1 - avr, and write (2.22) as

Af= =P 1 g+P2 Ag+...+pvr Avr -1 g+Avtg	 (223)

Equation (2.21) can now be written as

DCf=p 1 g+...+pvr 
Avr - 1 g +Avtg 	 (2.24)

It is easy to prove, using Theorem 2.3.1, that

Ak g = (A - DC) k g	 for 0 < k < yr	 (2.25)

Therefore, (2.24) can be expressed as

0=P 1 g+P2 (A- DC) g +...+pvr(A-DC)vr-1g+Avtg-DCf

and, since Cf = C Avt -1 g, using (2.25) we get

0 = P 1 g + p2 (A - DC) g + ... + p vr (A - DC)vt -1 g + (A - DC)vt g (2.20)
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Write (2.26) as

ti(A- DC) g =0

where the polynomial 1G(•) is defined

+L(7)=Pt+P2'Y+...+pv f 
07 -1+ryvr

The polynomial tp(•) is the minimal annihilating polynomial of g with

respect to (A - DC) (5). Therefore, the eigenvalues of (A - DC) associated with the

detection space R f are given by the roots of

ON =0

or

p l +p2 a+...+pv 
t
a"r -1 +Xvr= 0	 (2.27)

For each set of eigenvalues of (A - DC) associated with Rp th-re is a unique

set of coefficients p l' p2'	 . , pv a unique set of coefficients a l , a,,, ... , av and,
r	 -	 r

therefore, there is a unique ^ E R r. Hence, the of detection space eigenvalues of (A -

DC) cau be assigned arbitrarily by the proper choice of ^ E Rr in (2.18). Condition

ii) of detectability will be satisfied only if the remaining n - of eigenvalues can be

assigned arbitrarily by choice of D' in ( 2.18).

By replacing D from (2.18) into (A-DC) get

A-DC=A'-D'C'

where

A' = A - D P C
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and

C' = I I - Cf [(Cf)T Cf ]-1 (Cf)T J C	 (2.28)

Matrix D from (2.18) makes R f invariant with respect to (A - DC) and (A'-

D'C'). Since D' is an arbitrary matrix, R f is also invariant with respect to A':

A' R( C Rf	 (2.29)

Since:

C'R =C'(f ® Rf) =CT @ C'Rr 0

the detection space Rf is in the null space of C':

Rf C 11(C')	 (2.30)

From (2.29) and (2.30), it can be concluded that the detection space R f is a

subspace of the unobservable space of the (A', C') pair:

R f C IAM)

where M is defined as

C'
M = C'A'

Since:

C'17(M)=0

( 2.31)

using equation (2.28) get
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C n(M) = Cf	 (2.32)

But since n(M) is an invariant space with respect to A' and to (A - DC),

equation (2.32) implies that

q(M) C Rr	 ( 2 .33)

Hence, by (2.31) and (2.33):

Rj = n(M)	 (2.34)

Given an unobservable pair (A', C'), the theory of linear systems says that all

of the eigenvalues of (A' - D'C') can be placed arbitrarily by choice of D' except

those eigenvalues associated with the unobservable space of (A', C'), which are

fixed. But since the unobservable space of (A', C') is the detection space of R p the

fixed eigenvalues of (A' - D'C') are the of eigenvalues associated with Rf, and were

assigned by the choice of ^ c R, in (2.18). Therefore, the matrix D' in (2.18))

assigns arbitrarily the remaining n - v t eigenvalues of (A - DC) and condition ii) of

detestability is satisfied.

The results of this section are summarized with the statement of the

Detestability Theorem.

Theorem 2.3.2 Every vector in the state space R" is detectable if and only

if (A,C) is observable.

2.3.1.3 Algorithms

The algorithms presented in this section are based on the proof of the

detestability theorem, and were suggested by Beard (1).

(1) Detection Space Algorithm
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This algorithm is used to obtain the detection space Rr and its dimension yr

of the event f. From (2.34), the detection space R r is in the null space of the

matrix M defined in (2.31). The matrices C' and A' present in this definition were

introduced in (2.28), where C' depends only on f and A' is a function of D P . The

detector gain DP is defined in (2.18) for any C E Rr. Therefore, the detection space

Rr is in the null space of any M that results from any choice of ^ E R r in (2.18).

Since, from definition(2.3-1), the only vectors C known to be in Rr are the ones in

the subspace spanned by f, the vector = 0 e R r is chosen and the A' resulting

from this choice is called Kr:

Kr = A - A f [(Cf) T Cf]-
1
 (Cf)T C	 (2.35)

Hence the algorithm to obtain Rr and yr is

Rr = Or)

v f = n - rank Mr

where

C'
M f = C'li f	 (2.36)

C'Kn-1

with C' given by (2.28) and K f by (2.35).

(2) Detection Gain Algorithms

These algorithms perform the actual detection filter design. They calculate

the gain matrix D that satisfies condition i) of delectability, and assigns the matrix

(A - DC) the desired eigenvalues.
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The gain D given by equation (2.18) is a detector gain, and therefore satisfies

condition i) of detectability. The choice of t E Rr assigns the yr eigenvalues of (A -

DC) associated with R r, and the choice of D' assigns the remaining n - t!r

eigenvalues associated with the completion of the state space R".

(a) DP Algorithm

This algorithm calculates D P in (2.18) given a specified set of yr eigenvalues to

be assigned to (A - DC), and that will be associated with R r. It the yr eigenvalues

are specified as the roots of the polynomial

svr+p
vr 

st'f-'-+..-+p2s+pl=0

then, as it was proved, the matrix (A f - ^) must satisfy equation (2.23). Hence, by

substituting (2.23) into (2.18) get

DP = q [(Cf)T Cf]-1 (Cf)T 	 (2.37)

where

q—plg+p2Ag+...+pvrAvf-1g+Avrg

The detection generator g can be found by first using algorithm 1) to obtain

the detection space R r and then apply the property of g stated in Theorem 2.3.1 to

get g E Rr. A convenient way of executing these two steps is using orthogonal

reduction, as suggested by Beard [1].

Once g is obtained, the matrix D P is simpiy calculated using (2.37) and is

unique for a given set of yr eigenvalues.

(b) DH Algorithm

This algorithm assigns the remaining n - yr eigenvalues of (A - DC) by
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choosing the appropriate D' in (2.18) to calculate D H. These n - of eigenvalues are

associated with the completion of the state space R", and their specifications do

not determine a unique D' (and a unique D H and D). Therefore, given an event f

and a complete set of eigenvalues to be assigned to (A - DC), the solution of the

detection problem will not be unique. For simplicity, the algorithm presented here

is based on the same procedure used to assign the eigenvalues to R f and obtain DP.

For this reason, this algorithm adds certain constraints to the detection problem

and generates a unique DH that together with DP give a unique gain D as the

solution of the detector problem.

The matrix D H is given by (2.18), where D' can be considered as the gain

matrix of the system (A', C'):

A-DC=A'-D'C'

with A' and C' given by (2.28).

Beard showed that there are a set of vectors w i that have the same property

with respect to (A', C') as the detection generator g with respect to (A, C):

C'A' P wj = 0	 for 0 < p < qj -1

C'A'gj 1 wj 34 0

There are (rank C - # of events) of these vectors. They and the

corresponding qj can be obtained as a byproduct, when applying orthogonal

reduction to find the null space of M in (2.31) or M f in (2.36) (Beard showed that M

= M f).

The vectors wj, A'wj, . . . , A'gj -1 wj span a subspace called completion

space Ci . These spaces are the equivalent of R f to (A', C'). It can be shown that
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the spaces R, , C 1 , C2 , .... C l are all nonintersecting and

R"= Rt (D C1 ®C2 ® ... ®C l 	 (2.38)

where	 '

Cinq. o = l

R, f1 Cj = 0

and

I

qj = n - vf

j=1

This algorithm assigns qj eigenvalues to (A' - D'C') by making !^- an

invariant space with respect to (A' - D'C'). Therefore, the same algorithm used to

find Dp is used to get D'. Equation (2.37) is modified by substituting A' for A, wi

for g and C'A'gi -1 w. for -1. Hence, the D' that makes all C j invariant and assigns

the remaining n - v, eigenvalues of (A'-D'C'), is given by

D' = j, 	 W)T C' W] -1 (C , W)T	 (2.39)

where

IP = 	 'P1 , W2, . . . , V)l I
7/Jj = pi wj + ...+p q A' Qj 1 wj + A'qj wj

W = [ A'q l -1 w1 , ... I A'ql-I WI I

Beard showed that W can also be calculated as

W = f Kq 1 -1 w1 , ... , Kql-
1 	 wl J
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where K, is defined in (2.35).

2.3.2 Multiple Failure Detection

This section deals with the problem of designing a single detection filter to

detect a set of failure events If, ... fr}. This set of events is mutually detectable

by a single detection filter, if there exists a D that satisfies the conditions of

detectability for all the f i . For single failure detection, if (A,C) is an observable

pair, any event f E R" is detectable. But for multiple failure detection, complete

observability is not a sufficient condition. The Group Detection Theorem

states a necessary and sufficient condition for a set of output separable vectors,

as defined below, to be mutually detectable.

Definition: The vectors If,...fr ) are output separable if

rkCF=r

where

F = I Au l f1 , ... 7 A ur fr 
1	

(2.40)

with ui > 0 defined as the smallest integer, such that CAN f i 3/- 0.

It can be shown that if the set of events are output separable

Rf.
s	 i
nR, =0 , i34 j	 (2.41)

Before stating the Group Detection Theorem, the following definition is

necessary.

Definition: The group detection order of the set {fl ...fr } is defined as,

the dimension of the null space of M F, (n - rk MF) where M F is defined as M, in
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(2.36) with f replaced by F in C' and Kf.

Group Detection Theorem The output separable vectors f f 1 . . .fr ) are

mutually detectable if and only if the sum of the individual detection orders of the

sat fi is equal to the group detection order.

2.3.2.1 Algorithms

Given a set of event vectors (fl . . .fr), the algorithm must first determine

whether the events are output separable by using (2.40). If they are output

separable, it must then determine whether they are mutually detectable by

applying the group detection theorem.

If the events are output separable and mutually detectable, the

procedure to calculate D is the same as the one described in the previous section for

single failure detection, but with f replaced by F

D=DP+DH

where

DP = Q [ ( CF )T CF] -1 (CF)T 	(2.42)

with

Q= [ ql' ... ^qrJ

qi = pi gi + ... + pv At'i -1 
8i 

Avt 
B{

where gi and vi are the detection generator and detection order of the event f i .

DH = D' f I - CF [(CF ,T CF] -1 (CF)T 
J

where
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D'= IF [(C'FW)T C'FW 1-1 (C'FW)T

with

W = I Kq1 -1 w 1 , . . . , Kql -1 
W 

and

. = pJj wj + ... + Wq A'qj -1 wj+ A'qj wj

where C'F and A' are defined in (2.28), with A' calculated using D P in (2.42) and

C'F calculated using F in place of f.

Beard [1] shows a method to obtain the vectors wj and the corresponding qj,

that consists of applying orthogonal reduction to find the null space of the matrix

MF.
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Chapter 3
Dynamics of Flexible Space Structures

Flexible structures are characterized by very low natural damping and by

infinitely dimensioned plant dynamics. The design of detection filters for flexible

space structures must, therefore, be based on a reduced order model of the system.

Moreover, the parameters of the reduced order model are not exactly known, and

the effect of parameter errors and of unmodeled dynamics can be very serious.

In this thesis, the dynamics of a uniform flexible beam are used to analyze the

performance of detection filters in the presence of model mismatch. The model of

this flexible b.;am corresponds to an experimental beam that was assembled at

NASA Langley Research Center. In this chapter, the model of the experimental

beam will be described along with the design of detection filters for actuator failure

events. The detection filter wiil then be evaluated with no model mismatch.

3.1 The Flexible Beam Model

The beam is made of aluminum (M = 0.502 slugs) and is twelve feet long

with a 6" x 3/16" cross section [4]. It is equipped with four force actuators and

four colocated displacement sensors (Fig. 3-1), that apply forces and measure

displacement along the same direction in the vibration plane.

The partial differential equation that describes the dynamics of the undamped

beam is
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2	 3	 4

-.P-

2.5 --*
6.0

9.5
12

Oirrensions in feet

Mass =0.5031 slugs

Figure 3-1: The Simulated Uniform Beam

a4 	 a=y
EIat4 +mad =f(E,t)	 (3.1)

where	 E = position along the beam

y = displacement

E = modulus

m = mass per unit length

I = cross section inertia

f = distributed force per unit length

The distributed force f(E , t) given by the four point actuators is

4

f(E , t) _ E 6(E - (j) uj{t)	 (3.2)

j=1
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where e  is the position of the jth actuator and u,4t) is the control being applied by

it.

The solution of the partial differential equation is

co

Y(E , t) _	 Os(E) OX I)
	

(3.3)

i=1

where 0,4c) are the mode shapes and ,p,41) are the modal amplitudes. The mode

shapes 0 ,4c) comprise an orthogonal and normalized set of functions over (0, I), and

the modal amplitudes tp ={t) satisfy an uncoupled set of differential equations

d 2 t^ i{t^	 2	 1	 4

dt2	

+ wi ►/i ={t) = M	 1: 0,(fj) uj(t)	 i = 1, 2,	 oc	 (3.4)
j— I

where M = m X 1 is the mass of the beam and w i is the natural frequency of the

A mode.

The orthogonal mode shapes Oi and the natural frequencies w i were obtained

for the first ten modes at Langley, by performing a finite element analysis ( .11. In

Table (3-1) the natural frequencies and mode shape values at positions 0.5 ft.., 2.5

ft., 6.0 ft., and 9 . 5 ft., are given for the first eight modes - two rigid body modes

(translation and rotation) and the first six bending modes.

The kth sensor Yk is located at E k , and from equation (3.3)

00

Yk( t) =	 OPO V40
	

(3.5)

i=1

Equations (3.5) and (3.4) can be put into a state space representation by defining
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Mode #
Modal

frequency
rad/sec x=0.5 ft

Mode shape

x=2.5 ft

values at

x=6.0 ft x=9.5 ft

1 0 1.000 1.000 1.000 1.000
2 0 -1.590 -1.010 0.000 1.010
3 11.418 -1.600 -0.123 1.210 -0.123
4 31.360 1.320 -0.876 0.000 0.876
5 61.258 1.040 -1.300 1.410 - L300
6 100.900 -0.753 1.090 0.000 -1.000
7 150.185 -0.465 0.356 1.400 0.356
8 209.004 -0.181 -0.553 0.000 0.553

Table 3-I: Modal Frequencies and Normalized
Mode Shapes (taken from reference [41)

the control vector

UT = u l u2 u3 u 4 J

the measurement vector

Y  
= l y l y2 y3 y4 l

and the state vector

XT = [ 10 1 IP 1 'P2 'P2 . . . ON 'PN; I

Then, the state space representation of the beam model is

t (t) = A x(t) + B u(t)
	

(3.6)

Y(t) = C x(t)

where



-30-
i

0	 1
i

-wi	 0 .

0 1

	 0
A =1	 -w2 0

0	
0 1

i -wN 0
i

0	 0	 0	 0

1	 1	 1	 .1

	

M ^1(E1)	
M 

01((2)	
I14 

01('3)	
M ^1(E9)

0	 0	 0	 0

1	 1	 1	 1

	

B=1 
M 

^2(E1)	
M 

0n((2)	
M 

02((3 )	
M 

^2(E 9)

0	 0	 0	 0

1	 1	 1	 1

M 
ON( ( I)	

M 
ON((2)	

M 
ON((3)	 M ON((4)



0

0

0

0

01(E1)

01((2)
C=

01((3)

01(E4)

-40-

02(El)

02((2)

02(E3)

02((4)

0	 ON(E1)	 0

0	 ON(E2)	 0

0	 0N(E3)	 0

0	 ON((4)	
0

where E 1 = 0.5 ft., E2 = 2.5 ft., E3 = 6.0 ft. and E4 = 9.5 ft., and N is the number

of modes included in the model.

The block diagonal structure of matrix A results from the zero coupling

between the modes, which in turn, is due to the lack of damping in the beam. The

structure of matrices B and C correspond to having fore actuators and deflection

sensors respectively. It is important to note that any flexible structure with

negligible damping having force actuators and- displacement sensors, will be

describe. by a state model with matrices A, B and C of the same structure as the

ones corresponding to the beam. Therefore, most of the results obtained in this

thesis can be applied to most flexible space structures.

3.2 Filter Design for Actuator Failure Events

The actuator failure model was described in section 2.1 and is given by

equation (2.5). The event vector f associated with the failure of actuator j is equal

to b,, the jth column of matrix B:

f = b^	 j = 1, 2, 3, 4

Let's first consider the design of a failure detection filter to detect and
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identify the four actuator failure events. Applying the definition of output

separability given in section 2.3.2, it was found that uj = 1 and that the events (

fl , f2, f3, f4 ) are output separable if and only if the number of modeled modes N is

equal to or larger than four: N > 4. The detection generator gj corresponding to

these events was found to be equal to f. , and the detection order equal to two for

any N > 1:

gj = fj = bj	j = 1, 2, 3, 4

vj = 2

The number of completion spaces is (rank C - r) . Then, since rank C = 4

and r = 4, there are no completion spaces, and, therefore the group detc-etion order

is equal to 2 X N, the number of filter states. Moreover, since the sum of the

individual detection orders j is 8, it can be concluded from the group detection

theorem that the events t f l , f2, f3, f4 } are mutually detectable if N = 4. If N >

4, the set of four actuator failure events wii; not be mutually detectable, but the

set of any combination of up to three of these events will be.

A failure detection filter was designed to detect the failures of actuators

number 3 and 4. The design was made using the algorithms of Chapter 2 and was

based on a model of the beam containing the first 7 modes, resulting in a 14 state

filter. This design produced a state space partitioned in this way:

R'14=R3®R4ED910C2

where R. and R4 are the two dimensional detection spaces corresponding to

actuators number 3 and 4 respectively, and C l and C2 are six and four dimensional

completion spaces. In this first design, the 14 filter poles were rather arbitrarily

placed at -10 rad/sec. This filter is named Detection Filter #1.

A
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Detection Filter #1:

#of modes =7

failure events = Actuators 3 and 4

Poles:
4 detection space poles at -10 rad/sec

10 completion space poles at -10 rad/sec

3.3 Computer Simulations

In all the computer simulations, the system and filter start with zero initial

conditions at time 0 sec.. The controls applied by the actuators are randomly-

chosen command forces uniformly distributed between -1 and 1 pound, and held

constant during 1/32 seconds. The actuator failure occurs at t = 1 sec. and the

failure mode chosen is complete failure, that is ujt) = 0 or equivalently, q(t)

ujt) in equation (2.4).
j

The dynamics of the system and filter are simulated using a fifth order

Runge-Kutta integration routine. The step size is chosen automatically by this

routine, and is always smaller than 1/192 seconds. Therefore, since the period

the highest frequency mode being simulated is 1/33.2 seconds, the continuity of tl

system and filter dynamics is preserved.

The detection filter #1, described in the previous section, is first tested wit

no model mismatch (the evaluation model of the beam consists of the first.

structural modes.) When the actuators are operating nominally, the output error

zero. When actuator 3 fails, the output error lies in the direction CA" 3 f3 =

CAb3, and when actuator 4 fails, it lies in the direction CAN4 f4 = CAb 4 (since 2
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= u4 = 1.) One way of reading this directionality information from the output, in

order to identify the failed actuator, is by transforming the output space:

E(t) = R E(t)
	

(3.i)

where E(t) is the four dimensional output error vector,

E(t) _ [ E3 E4 IT

is the two dimensional transformed output error vector, and

R = [(CF)T CF]-1 (CF)T

is the pseudoinverse (F is defined in section 2.3.2).

With no model mismatch and before the failure occurs, the output error E(t)

and transformed output error E(t) are both zero. When actuator 3 fails E(t)

CAb3 K(t) , where K(t) is a scalar time function. Therefore,

E(t) = R c(t) = R CAb3 K(t)

1
and since CAb3 = CF	 ,

0

then

1
E(t) _ [(CF)T CF ]-1 (CF)T CF	 K(t)

0

and

91
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Hence, when actuator 3 fails, E3 becomes nonzero and E4 remains zero. In a

similar way, it can be shown, when actuator 4 fails, E4 becomes nonzero and E3

remains zero.

Figure 3-2: Detection Filter #1. No model mismatch.
Actuator 3 failure at T = t sec.

These results were verified with simulations. Figure 3-2 shows the

transformed output error (E3 and E4) resulting from the simulation of the beam

and detection filter #1 with no model mismatch, and with the failure of actuator

number 3 at T = 1 sec.. The transformed output error is zero until T = 1 sec., at
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(3.8)

which point E3 starts growing, clearly indicating the failure of actuator number 3.

Figure 3-3 shows the results of the simulation with no model mismatch and with
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failure of actuator number 4 at T = 1 sec..

Figure 3-3: Uetec'ion Filter #1. No model mismatch.
Actuator 4 failure at T = 1 sec.

With no model mismatch, the detection filter #1 performed as expected,

producing evident signatures at the output indicating the failure of actuator

number 3 or 4. In the next chapter, the performance of this filter in the presence of

model misrr ,.tch will be analyzed.
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Chapter 4
Failure Detection with Model Mismatch

The best way of introducing the problem of failure detection in the presence

of model mismatch, is by showing the results of the simulations of Detection Filter

#1, introduced in the previous chapter, with mismatched evaluation models of the

beam. Model mismatch occurs in two forms: unmodeled dynamics resulting from

the truncation of the system model, and parameter errors in that portion of the

system dynamics that is being modeled.

In the flexible beam, unmodeled dynamics take the form of unmodeled high

frequency structural modes. Since the model of the flexible beam is essentially

infinitely dimensioned, the design of the detection filter is based on a reduced order

model of the beam. Then, those high frequency structural modes that have been

truncated from the model are the unmodeled modes.

To test the performance of the detection filter in the presence of unmodeled

modes, simulations are performed in which the evaluation model of the beam is of

higher o,-der than the model used in the filter design. For example, Detection Filter

#1, based on a 7 mode model, is tested with an 8 mode evaluation model of the

beam. Hence, in this simulation the eighth structural mode, with a frequency of

209.004 rad/sec., is the unmodeled mode. All the system modes, including the

unmodeled one, are given zero initial conditions at T = 0 sec., and since the real

physical beam has some damping, this is not an unrealistic assumption. Also, in

order to highlight the effect of model mismatch, neither sensor noise nor

disturbance is simulated throughout this thesis.

t
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The result of the simulation of Detection Filter #1, with an 8 mode

evaluation model of the system, and with failure of actuator 4 at T = 1 sec.,	 is

shown in Figure 4-1.	 The residual due to the unmodeled dynamics (the eighth

structural mode) completely obscures the signature of the actuator failure (see also

Fig. 3-3). Strikingly, this residual has a low frequency character rather than the

frequency of the unmodeled bending mode.

Figure 4-1: Detection Filter #1. Eighth Mode is Unmodeled.
Actuator 4 Failure at T = 1 sec.

The parameter errors in the model of the flexible beam are the errors in the

calculated values of the frequencies and shapes of the structural modes. That is,

they are the errors in the figures of Table 3-1. Since the model frequencies and

shapes depend on the physical characeristics of the beam, the errors in these

quantities are correlated. However, when testing the performance of detection

filters in the presence of parameter uncertainties percentage errors are introduced

in the parameters of the evaluation model in a random manner with a uniform
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distribution. For example, when considering parameter uncertainties of 5%, the

percentage errors in the natural frequencies and shapes of the modes are uniformly

distributed between -5% and +5%.

The errors in each of the matrices A, B and C, resulting from the errors in

the knowledge of the modal frequencies and shapes, affect the performance of the

detection filter in different ways. Therefore, in order to gain a better

understanding of the problem, the detection filters are tested with parameter

uncertainties in only one of the matrices A, B or C. In all cases, the detection filters

are designed using the values of Table 34, and tested with parameter uncertainties

by introducing errors in the matrices A, B and/or C of the evaluation model of the

beam.

The result of the simulation of r etection Filter #1 with 0.05% parameter

uncertainties in the system matrix A (modal frequencies), and with failure of

actuator 4 at T = 1 sec., is shown in Fig. 4-2. Notice that the noise due to the

parameter errors is larger than the failure signature, even though the level of

parameter uncertainties is extremely low.

Figure 4-3 shows that the result of the simulation of Detection Filter #1 with

0.05% parameter uncertainties in the control matrix B, and with failure of actuator

4 at T = 1 sec.. The result of this simulation is even more surprising than the

preceding ones. The residual due to errors smaller than 0.05% in the control

matrix B, is of the same magnitude as the residual due to the complete failure of

actuator 4 !

Finally, Fig. 4-4 shows the result of the simulation of Detection Filter #1

with 0.05% parameter uncertainties in the measurement matrix C, and with failure

of actuator 4 at T = 1 sec.. It can be seen that the residual due to the parameter
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Figure 42: Detection Filter #1. Parameter Uncertainties in Matrix A = 0.05 %.
Actuator 4 Failure at T = 1 sec.

Figure 43: Detection Filter #1. Parameter Uncertainties in Matrix B = 0.050.
Actuator 4 Failure at T = 1 sec.

errors in matrix C, is two orders of magnitude larger than the failure signatures. In



-so-

addition, notice the very low frequency character of this residual. It seems so far

that the errors in the measurement matrix C are the most critical ones.
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TIME (SEC)

Figure 4-4: Detection Filter #1. Parameter Uncertainties in Matrix C = 0.05°0.
Actuator 4 Failure at T = 1 sec.

Figures 4-1 through 4-4 dramatically illustrate the effects of model mismatch

on the performance of the detection filter. Even with extremely low model

uncertainties and high frequency unmodeled modes, the residual due to model

errors makes the failure signature indistinguishable.

The objective in this chapter is to improve the visibility of the failure

signature in the presence of model errors. To meet this objective, first the different

dynamics associated with this problem are described. A frequency domain analysis

that will lead to a more intelligent choice of the filter pole locations then follows.

Finally, an approach to the design of robust detection filters based on low order

models of the beam and output filtering, is presented.



U 

u2

U3

U4

-51-

4.1 Detection Filter Dynamics

In order to understand the reason for the poor results shown in Fig. 4-1

through 4-4, different aspects of the dynamics o! detection filters are discussed in

this section. Most of these results, however, are only valid when the plant is an

undamped flexible structure, with a state model representation given by the

matrices A, B and C described in Chapter 3.

4.1.1 Structura: Mode Dynamics

The modal amplitude 0 ,4t) of the A mode, is given by equation (4.4) where

the term to the right of the equal sign will be referred to as z 1 The block diagram

corresponding to this equation is shown in Fig. 4-5

W.

Figure 4-5: Structural Mode Dynamics

The transfer function from z i to Oi is

A • a



G

Tt (s) = ` _
z i (s)	 s2+wti

and the Bode plot of the frequency response T,4jw) is given in Fig. 4-6.
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(4.1)

Figure 4-6: Modal Frequency Response

Note in Fig. 4-6, that the frequency response of the mode approaches 1/—,2

the frequency tends to zero.

4.1.2 Detection Space Dynamics

Given a detection filter configured to detect the failure event f, Beard showed

that when event If occurs, the Laplace transform of the output error is:

c(s) = CA" f H(s) i7 (s)	 (4.2)

	

svf
-u-I + av 	 svf'u-2 _}	 + aI

H(s) =	 f	 —
svf + p

vf 
svf' I +	 + pl
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where the zeros of the denominator polynomial are the poles of the det-etion filter

associated with the detection space Rr , and the ad 's were defined in equation

(2.19) .

From equation (4.2), it can be concluded that the transfer from q(s) to c(s)

depends only on the dynamics associated with the detection spare Rr. This result

is not surprising, since R, is an invariant space and If c R,. Also note that while the

designer has complete control over the denominator of H(s), by choosing the

detection space poles, he cannot alter the numerator.

These results can be specialized to the problem of detecting the failure of an

actuator in the flexible beam. It was found, for actuator failure events, that u = 1.

vt = 2 and g = f (equivalently a l = 1). In particular, for Detection Filter #1

(with all detection space poles at -10 rad/sec.) and complete failure of actuator :;

(17(t) = u 4 (t) ) equation (4.2) becomes

c(s) = CAb4 H4(s) u4(s)
	

(4.3)

where

1

H4(s)=s2+20s+100

Moreover, since the tra:.siormed output error is

E(s) = R c(s) = R CAb 4 H4(s) u4 (s)

and

r



0
R CAb4

1

then

E4( S) = H4( S ) u4(S)

The Bode plot of the frequency response H4(jw), corresponding to Detection

Filter #1, is given in Fig. 4-7.

Figure 4-7: Detection Space Transfer

4.1.3 Model Error Dynamics

In this subsection, models for the different types of model mismatch are

developed.	 These models are the basis for the frequency response analysis

-54-

(4.4)

performed in the next section, that will help explain the very large residuals
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produced by " very small" modeling errors.

In all the following cases of model mismatch, the state and output equations
[L
F

of the filter are the same as before, and for convenience are repeated here:

	

X(t)- AX(t)+Bu. (t)+D(y(t)-Y(t)]	 (4.5)

y(t)-CX(t)

where the matrices A, B and C were defined in the previous chapter for N modes.

First, the case in which the system has more than N modes (this will always be the

case for flexible structures) is analyzed. Then, three cases are analyzed in which

only one of the matrices A, B or C contain errors and the other two are exact.

Finally, the real situation in which the three matrices contain errors is considered.

r	 4.1.3.1 Unmodeled Modes

Suppose that N is the number of structural modes that are modeled in the

design of the detection filter. Then, the state and output equations for the beam

can be written as

*	 I A 0x	 B

	

+	 u
i	 0	 Au	 Xu	 Pe..

Y = C Cu x

x u

r

where the matrices A, B and C correspond to the modeled part of the system

ti
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dynamics, and A u, B u and C u correspond to the unmodeled part. The state and

outp;a n;uationsi for the filter are exa(% tly the same as before (Equation (4.5)).

Therefore, the new state and output error equations are:

6(t) = (A - DC) e(t) - DC x,, (t)

E(t)= Ce(t)+C u x u (t)	 (4.6)

where

$ u (t) =A u x u (t) +Euu(t)

The poles of the filter are still given by the eigenvalues of (A - DC), and therefore,

the presence of unmodeled modes does, not affect the stability of the filter. They

do, however, impair the detecton capabilities of the filter, by generating a residual

that obscures the failure signature.

For the sake of clarity, equation (4.6) is written as

00

6(t) = (A - DC) e(t) - D E C i Ot (t)

i=N+ 1

where

^i{E1)

^,{E2)
C^

►̂ j{E3)
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and where tpi ( t) is the amplitude of an unmodeled mode.

Figure 4-8: Unmodeled Modes Error Dynamics

Figure 4-8 shows a block diagram representation of equation (4.7). The actuators

drive the unmodeled modes in the same way shown in the block diagram of Fig.

4-5. The unmodeled modes amplitudes tpN+1 , ON+2' ,then generate an output

residual through two different paths: a direct path through the vectors ci, and an

indirect path by driving the state error equations through the "control vector" Dci.

Note that while the designer has no control over the direct path , he has "some"

control on the indirect path by adjusting the filter pole locations with the gain

matrix D. However, since D must be a detector gain, and is in both the feedback

loop (A - DC) and the control vector Dc i , this is not a trivial problem.

4.1.3.2 Parameter Errors in A

The parameters of the system matrix A are the modal natural frequencies.

The true modal frequencies are called wi, and the true system matrix is called A*.
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Hence, if w i and A are the modal frequencies and the system matrix used in the

filter design, define:

^
Gw2 = wi 

*2_ 
w	 (4.81

AA=A^-A

and, therefore,

AA =1

0	 0	 0	 0	 0	 0

Awi

0	 0

Owl

0

0

0 0 0 0	 0 AW2 0

Hence, the state and output equations for the system are now:

*(t) = (A + Z^A) x(t) + B u(t)

Y(t) = C x(t)	 (4.9)

Combining these equations with the equations of the filter (Eq. (4.5)), the new state

and output error equations are:



-59-

6(t) _ (A - DC) e(t) + AA x(t)

E(t) = C e(t)
	

( 4.10)

i

These equations can also be written as:

N
6(t) — (A - DC) e(t) +	 ,tai 'Pi (t)

i=1
F(t) = C e(t) (4.11)

where

0

0
Aai — Aw i 6N(2 x sj	

Awi

0

0

The block diagram representing the equation (4.11) is illustrated in Fig. 4-0.

From Eq. (4.11) or Fig. 4-9, notice that the modal amplitudes ^li drive the

state error through the "control vector" Aa i , thus gencrating a residual at the

output. This error model is similar to the error model for actuator failures, but

with tP i and Lai in place of u i and bi.
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Figure 4-9: Error Dynamics for Model Error in A

4.1.3.3 Parameter Errors in B

The parameters of the control matrix B are the values of the mode shapes at

the actuator locations. The true control matrix is B i , and the control matrix used

in the filter design is B. Define the difference between these two matrices as:

AB =B`-B

where

ilB = [ Ab l Ab2 vb3 Ab4

Therefore, the system state and output equations are now:

X(t) = A x(t) + (B + AB) u(t)	 (4.12)
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y(t) = C x(t)

and, combining them with the filter equations, get the new state and output error

equations-

4

6(t) =(A- DC) e(t) + 	 Abiui

i=1	 (4.13)

E(t) — C e(t)

These equations are represented in a block diagram form in Fig. 4-10.

Figure 410: Error Dynamics for Model Error in B.

From Eq. (4.13) and Fig. 4-10, it can be noted that this error model is the

same as the error model for actuator failures but with Ab i instead of bi
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4.1.3.4 Parameter Errors in C

The parameters of the measurement matrix C are the values of the mode

shapes at the sensor locations. Define C i as the true measurement matrix. The

difference between C ` and C (the measurement matrix used in the filter design), is

defined as:

AC=C+ -C

where

AC = [ AC, AC 2 . . . AC NI

Then, the state and output system equations are:

1(t) == Ax(t) + B u(t)	 (4.14)

y(t)=(C+AC)x(t)

and the new state and output error equations are:

N
6(t) = (A - DC) e(t) - D	 Acitii(t)	 (4.15)

i=1

N

c(t) = C e(t) +	 Aci ip i (t)
i=1

In Fig. 4-11, the block diagram representation of Eq. 4-15 is shown. It is important

to note that this error model is similar to the error model for unmodeled modes

(Fig. 4-8). The main difference is that while the state error -in Eq. (4.15) is driven

by the amplitude of the modeled structural modes, the state error in Eq. (4.7) is
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driven by the amplitude of the unmodeled ones. The other difference is in the

vector multiplying the modal amplitudes: in Eq. (4.15) this vector is Ac t, and in

Eq. (4.7) is C;

Figure 4-11: Error Dynamics for Model Error in C

4.1.3.5 Parameter Errors in A, B and C

In the real problem, all the matrices A, B and C contain errors. This problem

can be analyzed by dividing it into the three cases explained in the three previous

subsections, and then adding the output resid!ials obtained in each case. However,

in order for the superposition principle to apply, a modification must be introduced

when dividing the problem into the three cases illustrated in Figures 4 .9, 4-10 and

4-11: the modal amplitudes V) ; in Fig. 4-9 and 4-11 must be generated by the true

beam model, with the true system matrix A * and the true control matrix B*

instead of the matrices A and B used in the filter design.

The modal amplitudes obtained with A* and B* , however, are not different in
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character than the ones obtained with A and B (for practical values of parameter

errors). Moreover, the reasons for the extremely large residuals when there are

parameter errors in the model, lie on the transfers from the modal amplitudes ?^, to

the output E(t) in Fig. 4-9 and Fig. 4-11, and on the transfers from the control

inputs u  to the output E(t) in Fig. 4-10. Therefore, the problem of parameter

errors in the matrices A, B and C can be analyzed by dividing the problem into

three cases in which only one of the matrices contains errors and the other two are

exact. This is the approach taken in this thesis.

4.2 Frequency Response Analysis

The reasons for the poor performance exhibited by Uetecton Filter #1 in the

presence of model mismatch, can be explained by conducting a frequency response

analysis, based on the error models developed in the previous section.

From Eq. (4.1), it can be concluded that the higher the natural frequency of

the structural mode, the lower the amplitude transfer at low frequencies.

Therefore, since the unmodeled mode (the eight structural mode) is a very high

frequency mode, its amplitude has very small low frequency components, and most

of its energy is at its natural frequency. However, Fig. 4-1 shows, very

surprisingly, that the unmodeled mode produced a residual with a low frequency

character rather than the high frequency of the unmodeled bending mode.

The reason for this residual behavior can be explained in terms of the

frequency response functions for the transfer from the amplitude of the eight mode

g to the residuals E3 and E 4 (see Fig. 4-8). These frequency response functions

are shown in Fig. 4-12, where the extremely high amplitude transfer at low

frequencies can be noted. This very large gain at low frequencies amplifies the
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small low frequency components of the unmodeled mode excitation, giving the

residuals of Fig. 4-1 a low frequency character.

A simple calculation can show that the low frequency gains in Fig. 4-12 result

in an unfavorable signal to noise ratio. This calculation is only an approximation

and is based on the assumption that actuator 4, the one that fails at T = 1 sec., is

the only active actuator. Under this assumption, the low frequency gain for the

transfer from u 4 to tPg can be computed as:

1tP8 1	 b8	 1.102	 5= 2.522 X 10'	 for w 0
1 u4 1

W28

where b8 = 08 ((4) / M (see Fig. 4-5). The low frequency gain for the transfer from

'P8 to E4 can be obtained from Fig. 4-12:

IE41 
= 2070	 for w ^ 0

1'81

Therefore, the ratio 
I E4 1 

/ I u 4 1 is calculated as:

Hp = 1 41 = 2 .522 X 10-5 X 2070 = 0.052	 for w ^ 0
Iu41

This ratio corresponds to the noise present at the residual E 4 , due to the

unmodeled mode. The ratio corresponding to the signature produced by the failure

of actuator 4 is, from equations (4.3) and (4.4):
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E
H = ¢ = 0.01 for w ,^ 0

s	
^u4^

Therefore, the low frequency signal to noise ratio at E4 is Hs/lIn = 1/5.2. This

unfavorable signal to noise ratio explains why low frequency noise obscured

completely the failure signature in Fig. 4-1.

In the real experiment, the four actuators are active. In this case, it is

reasonable to expect the modal amplitude V'8 to be larger than the one resulting

from only one actuator. Consequently, a larger noise at E 4 is also expected. The

failure signature, however, remains the same because it depends only on actuator 1.

Therefore, it is likely in the real experiment, for the signal to noise ratio to be

worse than 1/5.2.

The results Fhown in Fig. 4-12 were very unexpected. A detection filter is a

linear observer whose gain matrix D has the additional constraint, besides making

the filter stable, of restricting the output error due to a particular failure to a

single line in the output space. The typical behavior of a linear observer is: 1) to

follow the measurement noise when its frequency lies inside the bandwidth of the

filter, and 2) not to respond to the measurement noise when its frequency is higher

than the filter bandwidth, thus resulting in large residuals. Translated into the

frequency domain, this means that the frequency response of the transfer from the

measurement noise to the residual is expected to be very small within the

bandwidth of the filter, and then grow to a certain. value at higher frequencies.

Detection Filter #1 behaved as expected at frequencies higher than 10 rad/sec b}

responding moderately to the unmodeled mode noise. However, it behaved quire

differently than expected at low frequencies, by actually amplifying the unmodeled

mode noise, as can be seen in Fig. 4-12. It seems that the directionality constraint.
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Figure 4-12: Detection rilter #1. Unmodeled Mode Transfer
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combined with the dynamics of the flexible beam, resulted in a detection filter that

is a very poor observer when all of its poles are placed at -10 rad/sec.

The results of testing Detection Filter #1 with 0.05% parameter

uncertainties in systfm matrix A, can be seen in Fi- r. 4-2. Note that the residual

that obscures the failure signature has the frequency of the first bending mode.

The error dynamics for the case of parameter errors in A is shown in Fig. 4-9. The

vectors Dal and Aa, are zero because they correspond to the rigid modes, whose

frequencies are known to be exactly zero. Of the bending modes, the first one, with

a frequency of 11 rad/sec, comes the closest to lying within the bandwidth of the

filter. Therefore, since the contributions from the higher bending modes are

filtered out, the residuals have the frequency of the first bending mode. Figure

4-13 shows the frequency response of the transfer from0 3 to the residuals E3 and

E4.

When testing Detection Filter #1 with parameter uncertainties, the most

surprising result was obtained when considering parameter errors in matrix B. The

residuals produced by parameter errors smaller than 0.05 o in the contirol matrix B,

were of the same magnitude as the signature resulting from the complete failure of

actuator 4 (See Fig. 4-3).

As can be seen in Fig. x-10, the reason for these large residuals must lie in the

transfers from the coWru ► imputs u s to the residuals E3 and E4 . The frequency

response functions for the transfer from the control u 4 to the residuals E3 and E4

are shown in Fig. 4-14. The values of these functions at low frequency are O.0065

for E3 and 0.011 for E4 . Therefore, since the low frequency gain corresponding to

failure of actuator 4 is 0.01, the residuals and the failure signature are of the same

magnitude.
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Figure 4-13: Detection Filter #1. .Parameter Errors in A = 0.05 %.
Transfer from y3 to E3 and E4.
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It is interesting to note that even though the elements of the vector Ab 4 are

smaller than 0.050/76 of the respective elements in b 4 , the amplitude transfer from 114

to E4 is actually a little larger with Ob4 than with b4 as the control vector in h ig.

4-10. However, this would not be the case if Ob4 lay in the same direction in the

state space as b4. For example, if the error in each element of b 4 were +0.05"—,-,

then Ab4 = 0.0005 X b4 and the gain corresponding to Ab4 would be 0.05 0 of

the gain corresponding to b 4 (i.e., 0.0005 X 0.01 = 5 X 10-6 ).

Since the dynamics of both detection spaces are the same, then the large low.

frequency gains that result when Ab 4 does not lie in the same direction as b 4 must

be due to the dynamics of the completion spaces.

The test of Detection Filter #1 with 0.05% parameter uncertainties in the

measurement matrix C, produced the results shown in Fig. 4-4. The residuals have

a very low frequency character and appear to be unbounded.

The error model for the case of parameter errors in C, is shown in Fig. 4-11.

As mentioned earlier, it is similar to the error model for unmodeled triodes. Figure

4-15 shows the frequency response functions for the transfer from the modal

amplitude V1 to the residuals E3 and E4 . The low frequency gains are almost three

orders of magnitude smaller than those corresponding to the transfer from the

unmodeled mode 1P8 to the residuals E3 and E.t . The reason for this is that the

vector Oc l is much smaller than the vector c$.

The beam is being driven by the actuators in an open loop manner.

Therefore, the amplitude of the rigid modes 0, and ^ since their poles are at, the

origin, start to increase and become unbounded. That is, the beam moves away

from the reference and starts to rotate. Therefore, even though the low frequency

transfer from 01 and 'VZ to E is relatively small, since the modal amplitudes ^,, and
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0, are growing with no bounds, eventually ip i and 02 become large enough to

generate residuals that obscure the failure signature. This explains the very low

frequency and the unbounded nature of the residuals in Fig. 4-4.

To summarize, the reasons for the poor performance of Detection Filter #1 in

the presence of model mismatch were explained in terms of frequency response

functions (Fig. 4-12 through 4-15). It was found that these frequency responses had

features that were very unexpected, like very large low frequency gains.

It is believed that the "strange" transfer properties of Detection Filter #1 are

the result of applying the directionality constraints to the dynamics of flexible

structures. The question now is whether a different choice of filter pole locations

would improve these transfer properties and the performance of the filter.

It is reasonable to expect that by increasing the bandwidth of the filter. by

moving the filter poles further to the left in the s - plane, the filter's ability to

track the measurement vector y(t) will improve, thus resulting in smaller erro,

residuals. This would be true for both detection space and completion space poles.

However, since moving the detection space poles to the left also reduces the size of

the failure signature (Eq. (4.2)), it is not clear whether this would result in a better

signal to noise ratio. Conversely, since the failure signature does not depend on the

completion space poles, moving these poles to the left cou'd result in a better signal

to noise ratio.

To test this hypothesis, a detection filter was designed with the same

detection space poles, but with the completion space poles moved to -100 rad/sec.

Detection Filter #2:

#of modes =7

failure events = Actuators 3 and 4
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Poles:
4 detection space poles at -10 rad/sec

10 completion space poles at -100 rad/sec

Since the location of the detection space poles was not changed, the

signatures for the failure of actuators 3 and 4 remained the same as before, and are

shown in Fig. 3-2 and 3-3.

For the remainder of this section, Detection Filter #2 will be subject to the

same frequency response analysis and will be simulated under the same conditions

as Detection Filter #1.

Figure 4-16 shows the frequency response functions for the transfer from the

unmodeled mode 08 to the residuals E3 and E4, for Detection Filter #2. Note the

dramatic decrease in the low frequency gain.

The improved transfer properties of Detection Filter #2 suggest that it

should perform much better than Filter #1 in the presence of unmodeled dynamics.

This is shown to be the case in Fig. 4-17, where Detection Filter #2 is tested in the

presence of the unmodeled eight mode. The residuals no longer have a low

frequency character, and the frequency of the bending mode is evident. More

importantly, the signature of the failure of actuator 4 at 1 sec. is clearly visible.

Figure 4-18 shows that there has also been a dramatic improvement in the

transfer corresponding to the case of parameter errors in

The results of the simulation of Detection Filter #2 with 0.05 o parameter

uncertainties in A, are shown in Fig. 4-19. The large improvements in the transfer

properties are reflected in these results, where the failure signature now is clearly

visible. The bias in the residuals has vanished and the frequency of the first
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bending mode is barely noticeable. Now, the frequency of the second bending mode

becomes evident.

Notice that the errors in the modal frequencies of the third, fourth and fifth

bending modes do not produce any noticeable effects in the residuals. The reason

for this desirable result is that the frequencies of these bending modes fie outside

the bandwidth of the filter, and therefore, they are filtered out. Since the

uncertainty in the knowledge of the modal frequencies increases the higher these

frequencies are, this result is very important.

Figure 4-20 shows the residuals produced by the simulation of Detection

Filter #2 with 1% parameter uncertainty in matrix A. The failure signature is

completely obscured by the residuals, and therefore, it can be concluded that the

improved filter cannot perform adequately with uncertainties equal or larger than

1% in the knowledge of the modal frequencies.
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Figure 4-20: Detection Filter #2. Parameter Errors in Matrix A = loo.
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Detection Filter #2 also showed a remarkable improvement in performance:

I ' when tested in the presence of parameter uncertainties in B. The frequency

response functions related to this case are shown in Fig. 421. The low frequency

gains are two orders of magnitude smaller than Oe gain corresponding to Detection

Filter #1.

The results of the simulation of Detection Filter #2 with 0.05% parameter

uncertainties in B, can be seen in Fig. 422. The improvement is remarkable. The

residuals due to model mismatch are barely noticeable. However, the improved

filter is still not good enough to detect failures in the presence of more realistic

levels of parameter uncertainties. The filter was tested with 5% parameter

uncertainties in B, and the signature was completely obscured by the residual (Fig.

423).

Finally, Detection Filter #2 was tested with parameter uncertainties in the

measurement matrix C. Its transfer properties are shown in Fig. 4-24, where a large

improvement can also be noted. The simulation. shown in Fig. 4-25 gave much

better results as well. However, the improvements were not large enough to make

the failure signature clearly visible.

To summarize, dramatic improvements have been accomplished by moving

the completion space poles further to the left in the s - plane. The largest

improvements were obtained in the performance of the filter in the presence of

unmodeled modes and parameter errors in B. The improved filter is able to detect

failures with almost 5%  parameter uncertainties in B.

Even though the improvements in the performance of the filter with model

I '	 errors in A and C were also remarkable, the filter would not tolerate par:uneter

errors in A of up to 1%, and in the case of system matrix C, the improvements
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were not enough to allow successful detection with 0.05%" parameter uncertainties.

However, the reasons for this disappointing performance may lie in part on

the somewhat unrealistic conditions under which the filter was tested. In the case

of parameter errors in A, the state error was driven mainly by the very large

components of the modal amplitudes at their natural frequencies resulting from the

lack of damping in the beam. The real beam, however, has some damping and

therefore these components would be considerably smaller. In addition, all the

modal amplitudes are kept small by the action of i,he control system during its

nominal operation. In the case of parameter errors in C, the state error was driven

by the unbounded amplitudes of the rigid modes corresponding to the drifting and

rotation of the beam. In the real problem, however, the control system would

prevent the beam from drifting and rotating.

It is also worth noting that the performance of the detection filter with

I
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parameter errors in A could be improved by filtering the output. Figure 4-20 shows

that the error residuals have a very large component at the frequency of the second

bending mode (31.36 rad/sec.). Therefore, since the bandwidth of the failure

signature is 10 rad/sec., the performance of Detection Filter #2 could be improved

by filtering E3 and E4 with a bandwidth of 10 rad/sec. .

Finally, something should be said about the placement of the detectors space

poles. unlike the case of the completion space poles, the choice of the locations of

the detection space poles strongly depends on the frequency content of the control

signals. It is clear that moving these poles to the left in the s - plane reduces the

residuals due to model mismatch and reduces the failure signature as well.

However, whether the signal to noise ratio improves or not will depend, among

other things, on the frequency content of the control inputs. The same is true

when considering the damping associated with these poles. Therefore, the choice of

the location of the detection space poles should be made on the basis of more

realistic simulations which include the control system along with the disturbances

of the beam. Moreover, a consideration to be taken into account when choosing

these poles is the response time of the detection filter.

4.3 Reduced Order Detection i ilters

In Chapter 3, it was shown that detection filters based on a model of the

beam with more than 4 structural modes (the number of sensors) could not be

configured to detect mole than three actuator failure events. Moreover, the design

of these filters was made very difficult by the presence of completion spaces, and

the specification of the filter poles did not result in a unique gain matrix

D. Another disadvantage of these filters, as shown by Detecton Filters #1 and #2,
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was their very complex dynamics. Their robust properties varied dramatically with

the location of the completion space poles, and even the improved filter ( Detection

Filter #2) could not tolerate realistic levels of parameter uncertainties.

This section analyzes the design and performance of detection filters based on

a model of the beam containing as many structural modes as the number of

displacement sensors p, and with all of its poles placed in the same location. it will

be shown that these filters do not have the disadvantages mentioned above. Also,

ways of coping with the larger number of unmodeled modes will be discussed, along

with the effects of using a reduced order model upon the detection and

identification capabilities of the filter.

4.3.1 Detection Filters with N = p

Let's consider the design of a detection filter based on a model of the beam

with p structural modes, where p is the number of independent displacement

measurements. That is,

N = p = # of sensors = rank C

Define the p X p matrix M as:

M—^c l Cl) . . . cp1

where c i is the column of matrix C corresponding to the amplitude of the ith

structural mode. It will be assumed that rank M = p, and therefore, M is

nonsingular. If this is not the case, the number of sensors used in the detection

filter should be reduced until rank M = P.



-86-

In order to simplify both the filter design and the analysis that will follow, a

transformation is performed on the measurement vector y:

y+ = M-1 y

then,

y+=M-1Cx

and

y+=C+x

where

C+ =M-1 C -

1 0 0 0 0 0

0 0 1 0 0

0 0	 . .	 . 0

• 0 0

0 0 0 0 0 1 0

From the structure of C + , it is easy to verify that
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'P2

Y+ 	 (4.16)

'PN

Figure 4-26 shows the new block diagram of the failure detection filter which

i
	 incorporates the measurement transformation M" 1 . Notice that the detection filter

now uses the transformed measurement matrix C + . Also, it is easy to show that:

D=D+M-i

(=ME +

S

The state and output error equations corresponding to the failure of the jth

actuator are:

6(t) = ( A - D + C+ ) e(t) + bi q(t)	 (4.17)

E+ (t) = C+ e(t)

where the vector b^ has the structure:

bjT = I 0 bJl 0 bj-2 ... 0 bjN 1	 (4.18)

Theorem 4.1 :

The gain matrix D+ that is a detector gain for all actuator failure events bj

and that assigns the filter poles as given by the roots of the equation

0=(sue+2^wFs+j

Y
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Figure 4-26: The Failure Detection Filter with Output
Vector Transformation

is unique and given by:

n+ = I

di 0 0

0 d+ 0

' 0

0

0 0 0 d+

(4.19)

where
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dt=
	 2^wF

s

(wF - w? )

Proof:

First, calculate the matrix (A - D+ C+ ) as:

P

P
A - D+C+

0

0

P

(4.620)

where the 2 X 2 matrix P is:

-2^wF	1
P=

-caF	 0

The poles of the filter are given by the roots of the characteristic equation of the

matrix (A - D+ C+ ). That is, the roots of the equation

0 = det(s I - A + D+ C+ )

Since the matrix (A - D + C+ ) is block diagonal, using a result from linear algebra

get:
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det(sI-A+D+ C+ 	det(sI-P))N=(s2+ 2£wFs+w2)N

Therefore, the poles of the filter are given by the roots of the equation

0= (s2 +2CwFs +wF^N

as stated in the theorem.

To prove that the gain matrix D+ given in (4.19) is a detector gain for all

actuator failure events, the transfer function vector T ; (s) defined as

E+ ( s ) = T; ( s) rj(s)

T
i
(s) =C+(sI-A+D+C+)-11i

is calculated. It is eas y to show that

Q

1 Q O

(sI-A+D+ C +I —	 ,
11	 0	 .

Q

where

s	 1

1

Q=(sI-P)-1= 2	 X
S +2^WFs+wF

-wF	 s + 2 SwF

Then, by premultiplying by C + and postmultiplying by b  obtain:

(4.21)

I -.A
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bjl

b j2
X

b1N

Tj (s) =
1

s2 + 2^WF s + WF

where bjl , bj2 , . . . , b,,,,are the elements of the event vector bj in (4.18). Finally,

by defining the vector b1 as:

bjl

b+— 
bj2	

(4.22)

bJN

equation (4.21) can be written

(+ (s) = bl 2
	

Os)	
(4.23)

s A- 2^WF s + WF

Then, it can be concluded that when the jth actuator fails, the output error c+

remains in the single direction given by the vector b+ Therefore, since the event.

vector b  represents any actuator failure, the matrix D+ in (4.19) is a detector gain

for all actuator failure events, and the proof is complete. 	 v
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As it was shown in Theorem 4.1, the design of the detection filters being considered

in this section is trivial. The gain matrix D, in the filter implementation without

the transformation, (Fig. 2-1), can be obtained as D = D + M-1 . This gain matrix D

is a detector gain for all actuator failure events as well, and the output error (

remains in the direction CAb^ when the jth actuator fails.

5o far, two important advantages of detection filters with N = p over higher

order filters have been shown: 1) these filters can be configured to detect all

actuator failure events, and 2) the filter design is trivial. Now, their performance

in the presence of model mismatch will be analyzed.

A detection filter with N = p = 4 was designed using Theorem 4.1 with all

of its poles placed at -10 rad/sec (i.e., w F = 10 rad/sec and ^ = 1). This detection

filter was named Detection Filter #3.

Detection Filter #3-.

# of modes = # of sensors = 4

failure events: all actuator failures

Poles: 8 detection space poles at -10 rad/sec

To be able to compare the performance of this filter with the performance of

Detection Filters # 1 and #2, the output E is transformed with the pseudo inverse

matrix R to detect only failures of actuators 3 and 4, as was done with the previous

filters. That is, the matrix R in Fig. 4-26 is the pseudo inverse of the matrix CF:

R = [(CF) T CF 1-1 (CF )T	 (4.24)

where

CF = [CAb3 CAb4 1
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Since the detection space poles of Detection Filter #3 are the same as in

Filters # 1 and #2, and since the transfer function from u 4 to E4 (for complete

failure of actuator 4) is still given by Eq. (4.4), the failure signature produced by the

complete failure of actuator 4 is exactly the same as in Fig. 3-3.

It is easy to see that Detection Filter #3 is going to perform much better in

the presence of parameter errors in control matrix B than Filters #2 and #1. The

vectors Abp in Fig. 4-10 have the same structure as the actuator failure events b^

in (4.18).	 Therefore, the vectors Abp generate unidirectional error residuals

governed by Eq. ( 4.3) with Abp and u  in place of b4 and u4 . This means that the

error residual generated by Obi , when compared with the signature produced by

bi , is of the same order as the percentage errors in b^ . In other words, there is no

direction-dependent amplification of Abp as in Filters #1 and #2.

Figure 4-27 shows the frequency response functions for the transfer from 11 4 to

the residuals E3 and E4 , corresponding to 0.05% parameter errors in B. The low

frequency gains are two c. iers of magnitude smaller than the gains for Detection

Filter #2 shown in Fig. 4-14. Therefore, Detection Filter #3 will perform much

better in the presence of parameter errors in B than Filters #1 and #2.

It is also reasonable to expect Detection Filter #3 to perform better in the

presence of parameter errors in system matrix A, for the same reasons it performed

better with parameter errors in B. The vector Da d in Fig, 4-9 also have the same

structure as the actuator failure events b^, and therefore also generate

unidirectional output through the dynamics of the detection spaces.

Figure 4-28 shows the response function of the transfer from the unmodeled

eighth mode to the residuals E3 and E4 . The low frequency gains are one order of

magnitude smaller than for Detection Filter #2 in Fig. 4-16. Therefore-, Detection
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Filter #3 will perform better in the presence of the unmodeled eighth mode than

Filter #2. But, on the other hand, the fifth, sixth and seventh structural modes

are unmodeled in Detection Filter #3, while they are modeled in Filter #2. In

addition, these unmodeled modes have smaller natural frequencies than the eighth

mode, and therefore, they are more excited. Hence, the problem of unmodeled

modes is more serious in Detection Filter #3 than in Detection Filter #`l.

Part of the problem of unmodeled dynamics in Detection Filter #3 can he

solved by output filtering. Since the natural frequencies of the unmodeled modes

are higher than the bandwidth of the filter (i.e., 10 rad/sec), by filtering the output

error E with a bandwidth of 10 rad/sec, the large components of the error residuals,

due to the natural frequencies of the unmodeled modes passing through the direct

path in Fig. 4-8, can be eliminated without affecting the failure sign:tture.

Therefore, the elements of the output error vector E were filtered by second order

filters with bandwidths of 10 rad/sec. .

Figure 4-29 shows the results of the simulation of Detection Filter #3 wita no

model mismatch, with failure of actuator 4 at T = I sec. and with output filtering.

Note that the failure signature is smaller than the failure signature produced with

no output filtering in Fig. 3-3. This difference could have been avoided by choosing

a slightly wider bandwidth for the output filters.

Detectiop Filter #3 was then tested in the presence of unmodeled dynamics.

Figure 4-30 shows the results of the simulation of Detection Filter #3 with an 8

mode evaluation model of the beam, with failure of actuator 4 at. T = 1 sec. and

with output filtering. The error residuals due to the f ::r unmodeled modes (the

fifth, sixth seventh and eighth structural modes) completely obscure the failure

signature. From the low frequency character of these error residuals, it can be

concluded that the output filter was successful in eliminating the high frequency

.A
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components corresponding to the modal frequencies passing through the direct

path. Then, the large error residuals are due to the low frequency components of

the unmodeled mode amplitudes that lie within the bandwidth of the filter, and

therefore, cannot be filtered out without affecting the failure signature.

In the next two sections, ways of improving the performance of Detection

Filter #3 in the presence of unmodeled modes will be introduced.

4.3.2 Improved Output Transformation

An impressive improvement in the performance of Detection Filter #3 in the

presence of model mismatch can be obtained by simply using a different output

transformation R. But before introducing the new transformation, an analysis of

the dynamics of the detection filter described in Theorem 4.1 is in order.

To simplify the analysis, only one unmodeled mode will be considered: the

eighth structural mode. Then, the state and output error equations are

6(t) _ ( A - D+ C+ ) e(t) - D+ cs 08 ( t)

E + (t) = C+ e(t) + cg V)8 ( t)	 (4.'25)

E(t) = M E + (t)

where

C 8 = M-1 c8

and c8 is the column of the measurement matrix C corresponding to the amplitude

of the eighth structural mode. Due to the structure of matrices A, D + and C+,

Eq.((4.25)) can be written as:

a
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i=1,2,...N

(4.26)

where

e. —
s —

A(Ip
i' 0i)

cT =[1 0]

0	 1

A.—
^ — _0

and where di was defined in (4.19), csi is the A element of the vector c8 and c + is

the A element of the output error vector c + . The two elements of the vector ei

are the errors in the estimate of the amplitude of the A structural mode and the

error in the estimate of its rate of change. The block diagram corresponding to Eq.

(4.26) is shown in Fig. 4.31.

From Eq. (4.26) and Fig. 4-31, it can be concluded that the error dynamics of

the detection filter described in Theorem 4.1 are decoupled. That is, the detection

filter estimates the modal amplitude ip and its rate of change tP for each structural

mode separately. This decoupling is achieved in the following way. First, since the

number of modes is equal to the number of independent displacement

measurements, it is possible to calculate the modal amplitudes by transforming the

measurement vector y to yi as can be seen in (4.16). Second, the structure of the
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Figure 431: Decoupled Dynamics of Detection Filters with N = p.

gain matrix D+ in (4 . 19) applies the residual ip i - V) i to the corresponding A mode

(see Figure 4-26).

The decoupled dynamics of the detection filter described in Theorem 4.1 are

very easy to analyze. As can be seen in Fig. 4-31, the unmodeled modes can be

treated as disturbances in the decoupled loops corresponding to each of the

modeled modes. Then, the transfer from+ 8 to Ei can be easily obtained as:

( (s)	 s2 + w?

cgs 08(s)	 s2 + 2^ wF s + w22.
(4.27)

This transfer function is called the Disturbance Transfer. Figure 4-32 shows th,

Bode plots of the disturbance transfer for two modal frequencies ; one larger than

the bandwidth of the filter w F and the other smaller. Note that for wi > wF there

i,
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is actually an amplification of the unmodeled mode noise within the bandwidth of

the filter, while for ws < wF there is an attenuation.

Figure 4-32: Frequency Response of the Disturbance Transfer.

There are four structural modes modeled into Detection Filter #3, two rigid

modes and two bending modes. The rigid modes, with modal frequencies of 0

rad/sec., totally reject the unmodeled mode disturbance at low frequencies, because

the low frequency gain of the disturbance transfer is zero. On the other hand, the

bending modes with modal frequencies of 11.4 and 31.4 rad/sec. have disturbance

transfers with low frequency gains of 1.3 and 9.8 respectively. Therefore, the large

error residuals in Fig. 4-30 are due to the bending modes. Specifically, the presence

of the unmodeled modes generates neglectable low frequency errors in the residuals

Ei and E2 corresponding to the rigid modes, significant low frequency errors in the

residual E3 corresponding to the first bending mode and very large low frequency

,W

a	 .
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errors in the residual E4 corresponding to the second bending mede.

The output error vector E is calculated from e+ as E = M e + . Therefore, the

large residuals E3 and E4 produced by the unmodeled modes generate large

unidirectional errors in the directions of c3 and c4 , respectively, in the output space

of c. Hence, by choosing a different output transformation R, the errors in the

directions c 3 and c4 can be separated in such a way that they no longer affect the

failure signature. The improved output transformation that achieves this

separation is:

R = [ CAb3 CAb4 c3 c4 
1-1
	

(4.28)

and the new transformed output error vector E is:

E3

E4
E =RE— 

Ebl

Eb2

where E3 and E4 contain the failure signatures of actuators 3 and 4 respectively,

and Eb1 and Eb2 only contain the error residuals due to the unmodeled modes, and

correspond to the first and second bending mode respectively (actually Eb1	 E3

and Eb2 — E 4 )

Figure 4-33 shows the frequency response functions for the transfer from the

unmodeled eighth mode ip8 to the residuals E3 and E4 obtained using the improved

transformation R in (4.28), for Detection Filter #3 with no output filtering. These
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response functions show a remarkable improvement when compared with the

response functions in Fig. 4-28 obtained using the pseudo inverse as the output

transformation. Note that the low frequency gains are actually zero. It is

important to stress that these gains are zero because the low frequency gains of the

disturbance transfers of the rigid modes are zero. That is, the zero low frequency

gains in Fig. 4-33 are not particular to the unmodeled eighth mode, but they will

occur in the transfers of all the unmodeled modes.

The use of the improved output transformation solves the problem of the

unmodeled modes only at low frequencies within the bandwidth of the filter.

Output filtering is still needed to eliminate the high frequency components of the

residuals that lie outside the bandwidth of the filter. Detection Filter#3 with

output filtering and with the improved transformation was then tested in the

presence of four unmodeled modes and failure of actuator 4 at T = 1 sec.. Figure

4-34 shows the result of this simulation which was done under exactly the same

conditions as the simulation in Fig. 4-30, but with a different output

transformation. The improvement is remarkable. The low frequency components of

the residuals have been totally eiiminated and the failure signature is now clearly

visible. The small error residuals consist mainly of a high frequency component at

the frequency of the first unmodeled mode (i.e., 61.25 rad/sec.), that was not

filtered out completely by the output filter. This high frequency component can be

reduced further by increasing the order of the output filter.

As mentioned earlier in this chapter, the : tate and output error equations

with parameter errors in matrix C have the same structure as the error equations

with unmodeled modes (see Fig. 4-11). Then, it is easy to see that the use of the

improved output transformation produces transfers from 10 ; to the residuals E 3 and

E4 with zero low frequency gains. Therefore, the use of the improved output

.,
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Figure 4-33: Detection Filter #3. Unmodeled Eighth Mode Transfer.
R = Improved Transformation.
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transformation also produces remarkable improvements in the performance of the

filter in the presence of parameter errors in C.

The parameter errors in the system matrix A consist only of the errors in the

frequencies of the two bending modes. From Fig. 4-9 and Fig. 4-21, it can be seen

that these errors affect only the loops corresponding to the bending modes, and

therefore, only generate errors in the residuals E3 and E4 Then, for the same

reasons explained before, the improved transformation totally separates these errors

from the failure signature. That is, the transfers from Oi to E3 and E4 are zero at

all frequencies, and therefore, the errors in the frequency of the two bending modes

generate absolutely no errors in the residuals E3 and E4.

In the previous section, it was shown that Detection Filter #3 represented a

large improvement in the performance in the presence of parameter errors in

B. The new output transformation, however, only introduces a minor improvement.

i

2



-10&

With this transformation, only the errors in B corresponding to the modal shapes of

the rigid modes generate errors in the residuals E 3 and F4. It is important to note

that the shapes of the rigid modes are usually very well known. Therefore, the

results shown in Figures 4-35 and 4-36 with 5% and 10% parameter errors in B are

too pessimistiz.

Detectioc Filter #3, with output filtering and with the improved output

transformation, was then tested in the presence of all types of model mismatch and

with actuator 4 failure time at T = 1 sec.. Figure 4-35 shows the results of the

simulation with four unmodeled modes and with 5% parameter uncertainties in all

the matrices A, B and C. Figure 4-36 shows the results of the same simulation but,

with 100'o parameter uncertainties in A, B and C. In both cases the failure

signature is clearly visible, and therefore, for the first time in this thesis it is

possible to detect and identify the failure of actuator 3 and 4 under realistic

conditions.

The use of the new output transformation results in very large improvements

in the performance of the filter in the presence of model mismatch. For this

reason, in the rest of this section, the new output transformation will be analyzed a

little further, and a new way of reading the detection information from the output

error will be introduced.

During nominal operation the error residuals due to model mismatch lie

mainly in a plane spanned by the vectors c 3 and c4 , as was shown earlier in this

section. Then, when failure of actuator 3 or 4 occurs, the error residuals lie in the

space spanned by the vectors CAb 31 c3 and c4 or CAb4 , c3 and c4 respectively. So,

there are actually three output error spaces associated with this detection problem,

one space corresponding to the nominal operation and two spaces corresponding to

i	 the failure of actuators 3 and 4. The improved output transformation produces
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R = Improved Transformation. Output Filtering.

excellent results because it is able to distinguish between these three spaces.

During nominal operation, it generates large error residuals in Eb 
t 

and Eby . and

when actuator 3 or 4 fails, it generates large error residuals in E 3, Eb and Eb, or

E4 , Eb and Eb respectively. Therefore, the residuals E 3 and E4 can detect and
1	 r

identify the failure of actuator 3 and 4 in the presence of model mismatch.

Detection	 Filter #3,	 as mentioned	 earlier	 in this	 section, produces

unidirectional output with any actuator failure event. However, the improved

transformation in (4.28) cannot be configured to detect more than two actuator

failure events since two directions of the transformation have to be dedicated t,o

suppress the effects of model mismatch. Therefore, Detection Filter #3 requires

•	 two improved output transformations in order to detect and identify the four

actuator failure events. For example, one transformation can be configured to

w •

= .
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detect failure of actuators 1 and 2, and the other transformation can be configured

to detect failure of actuators 3 and 4. Then, when actuator 1 fails, the residual E1

will grow while E2 will remain zero in the r gist transformation, and the residuals F3

and E 4 in the second transformation will both grow. Thus, the growth of three

residuals are needed to identify the failed actuator. This is a very undesirable

result because it complicates the decision algorithms and also increases the

possibilities of incorrect identifications.

A new way of reading the output error information that can identify the

failure of any number of actuators, will now be explained. Even though this new

way has some interesting advantages when compared with the output

transformation, the main reason it is introduced here is to help gain more insight

into the detection filter problem.



-109-

The new approach, used in conjunction with output filtering, is illustrated in

Fig. 4-37. Note that the output error E+ is used instead of E, the reasons for this

becoming clear later. Each component of the vector E+ is filtered with a bandwidth

of 10 rad/sec. to eliminate the high frequency components produced by model

mismatch (the output filters have to be identical to preserve the unidirectionality

of E+ when a failure occurs). The filtered output error will be called v. When the

jth actuator fails, the output error v remains in the single direction given by the

vector b^ in (4.22).

Output
Filters

II v. b +̂
cos- 1

IL

Figure 437: New Output Error Processing

he new approach, unlike the transformations used so far, treats the

>n and identification problems separately. Detection is based on ,the norm of

put error vector Y. During nominal operation, the detection residual JJvJJ is

. there is no model mismatch, and when a failure occurs, it becomes

intly nonzero. Therefore, by looking at the detection residual JJvJJ, the

of any actuator (actually any component) can be detected. To identify

IMI

0

v1 ...+vN
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which component has failed, p directionalit y residuals are generated that represent

the angles from Q to 90 degress between the output error vector v and the output

directions b^ for j = 1, 2 . p, corresponding to each actuator failure. During

nominal operation, these residuals have no significance, and therefore, are not

computed. When the jth actuator fails, the output error v remains in the direction

of vector bt, and therefore the directionality residual O j is zero while the other

directionality residuals have a nonzero value between 0 and 90 degrees. Hence, the

actuator that failed is the one corresponding to the directionality residual that was

zero (or closest to zero in the presence of model mismatch).

In an operational system, the directionality residuals should be computed only

when the detection residual becomes larger than a certain tolerance indicating that

a component has failed. In this thesis, however, since the interest is to analvze the

character of the residuals without actually making any decisions, the directionality

residuals will be computed starting at T = 1 sec., which is the time? at which the

failure occurs.

As mentioned earlier in this section, the presence of unmodeled modes

generates large low frequency errors in the residuals E 3 and c corresponding to the

bending modes while generating negligible errors in the residuals E1 and c E3 and

E4 can be eliminated by only using Ei and c and the components of bJ

corresponding to the rigid modes, b^ and b^ , in the computation of the detection

and directionality residuals. But, since c and c+ are no longer needed in the

residual generation, there is no need for the detection filter to estimate the

amplitudes and amplitude rates of the bending modes and therefore, the states of

the detection filter corr--sponding to the bending modes can be eliminated. Hence,

the detection filter in the configuration shown in Fig. 426 will have only the four

states corresponding to the rigid modes. However, the measurement transformation
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matrix M must remain the same (4 X 4 nonsingular matrix) and therefore, the

mode shapes of the first two beading modes are still needed in the design of this

filter.

A Detection Filter designed in this way is characterized as having 4 modeled

modes and 2 detection and identification modes. Such a filter, then, has 4 states:

the number of detection and identification modes times two. A detection filter

with these characteristics was designed and was named Detection Filter #4.

Detection Filter

# of modeled modes = 4

#	 4etection and identification modes = 2 (4 states)

Poles: 4 detectioi: mace poles at -10rad/sec.

Detection Filter #4 uses the errors in the estimates of the rigid modes

a:nplitudes produced by the failure of an actuator to detect and identify the failed

actuator.

All the detection filters will ;>e tested with output filtering, as shown in Fig.

4-37, even in the case of no model mismatch, for the rest of this section.

EFigures 4-38 and 4-39 show the results of the simulations of Detection Filter
k

#4 with no model mismatch and with failure of actuators 1 and 4, respectively, at
	 ,s

T = 1 sec..

In both cases, the actuator failures create clearly evident signatures in the
9

detection residuals. Also, in both cases, the directionality residuals corresponding

to the failed actuators remain at zero while the other directionality residuals

become clearly greater than zero.

However, these simulations show a big difference in the "ability" of Detection
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Figure 4-38: Detection Filter #4. No Model Mismatch.
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Filter #4 to ideutify correctly the actuator that failed in the presence of model

mismatch. It is intuitively clear that the ability of the detection filter to identify

correctly the failure of the jth actuator in the presence of model mismatch is

related to the smallest of the angular distances between the output direction

corresponding to actuator j failure and the output directions corresponding to the

other actuator failures. If this angle is large, it will take a large error residual due

to model mismatch to "rotate" the output error in order to result in an incorrect or

undetermined identification. If this angle is small, the opposite happens. From now

on, this angle will be referred to as the "phase margin far actuator j." The phase

margin for actuator 1 is 12 degrees while for actuator 4 is 44 degrees. Therefore,

the ability of Detection Filter #4 to identify correctly the failure of actuator 1 in

the presence of model mismatch, is much smaller than its ability to identify

correctly the failure of actuator 4.

The physical interpretation of the phase margin is very clear. The phase

margin for actuator 1 corresponds to the angular distance between the failure

direction of actuator 1 and the failure direction of actuator 2, as can be seen in Fig.

4-38. These two actuators are placed next to each other, with a separation of 2

feet, at the end of the beam (Fig. 3-1). The control effects of each of the actuators

upon the rigid mode corresponding to the displacement of the beam, are identical.

Therefore, what differentiates the failure of actuator 1 from the failure of actuator

2, is the difference in the control of these actuators upon the rigid mode

corresponding to rotation. Since they are placed close together at the end of the

beam, they both have very similar influence on the rotation of the beam.

Therefore, since the effect upon the rotation and displacement of the beam due to a

control being applied to actuator 1 is very similar to the effect due to the same

control being applied t.:) actuator 2, it is very difficult to distinguish between the
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failures of those two actuators from the amplitudes of the rigid modes.

On the other hand, since actuator 4 is 3.5 feet away from the closest

actuator, actuator 3, and since this actuator is at the center of the beam, the

difference in the control of these actuators upon the rotation and translation of the

beam, is much larger. This accounts for the large phase margin for actuator 4.

Detection Filter #4 was then tested in the presence of four unmodeled modes.

Figure 4-40 shows the results corresponding to the failure of actuator 1 and Fig.

4-41 shows the results corresponding to the failure of actuator 4. In both cases, the

failure signatures in the detection residuals were much larger than the noise due to

model mismatch. The dominant component in the noise has the frequency of the

first unmodeled mode that was not completely eliminated by the output, filter, as

was the case for Detection Filter #3 in Fig. 4-34. The analysis of the directionality

residuals is a little more involved. Whenever the failure signature is smaller than

the noise due to model mismatch, the output error is dominated by the noise, and

therefore, it is no longer unidirectional thus producing the large rapid vertical

oscillations. Hence, the directionality residuals are significant only when the failure

signature, in the detection residual, is larger than the background noise, and even

in this case it is not guaranteed that the directionality residuals will identify

correctly the failed actuator. For example, in the case of failure of actuator 1, the

failure can be correctly, but marginally, identified for a very short period of time,

even though the failure signature is much larger than the noise during most of the

failure interval. On the other hand, the failure of actuator 4 can be clearly

identified whenever the failure signature becomes a little larger than the noise.

The poor performance of Detection Filter #4 when trying to identify the

failure of actuator 1, was not due to large model mismatch Poise, but rather d.ue to

the small phase margin for actuator 1. In fact, the noise was much smaller than
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the failure signature, allowing a very clear detection of the failure. One way of

solving this problem is to increase the orders of the output filters in order to reduce

the noise even further. Another solution, is to increase the phase margin for

actuator 1 by augmenting the number of detection and identification modes.

However,- keep in mind that the estimation of the higher frequency modes are more

affected by noise, and that was the reason for eliminating them in the design of

Detection Filter #4. Therefore, this approach will be successful only if the

improvement resulting from the larger phase margin is greater than the increase in

noise due to model mismatch. To test this solution, Detection Filter #5 was

designed with 4 modeled modes and 3 detection and identification modes.

Detection Filter #5:.

# of modeled modes = 4

# of detection and identification modes = 3 (6 states)

#Poles: 6 detection space poles at -10rad/sec..

Detection Filter #5 uses the two rigid modes and the first bending mode in

the process of detecting and identifying an actuator failure. Figure 4-42 shows the

results of testing Detection Filter #5 with no model mismatch and with failure of

actuator 1 at T = 1 sec.. Note that by incorporating the bending mode, the phase

margin for actuator 1 increased from 12 to 37 degrees.

Detection Filter #5 was then tested with four unmodeled modes and failure

of actuator 1 at T = 1 sec.. The results of this simulation are shown in Fig. 4-43.

The failure signature is still clearly evident in the detection residual and the result

of adding a bending mode to the filter only produced a very small increase in the

low frequency components of the noise. The larger phase margin ; combined with a

very low increase in noise, resulted in directionality residuals that clearly identify
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the failure of actuator 1. Therefore, it can be concluded that the addition of the

bending mode to the filter was sucessful in improving the identification capabiliti:-s

of the filter.

To clarify what has been explained so far, the second bending mode will be

added to the filter. Then, the resulting filter is Detectioe Filter #3 and the only

difference is in the processing of the output error. Figure 4-44 shows the results of

the simulation of Detection Filter #3 with no model mismatch and actuator 1

failure at T = 1 sec.. The phase margin increased to 70 degrees, twice the phase

margin of Detection Filter #5. Figure 4-45 shows the same simulation but with

four unmodeled modes. The detection capabilities of the filter have been greatly

impaired by the presence of large low frequency error residuals due to model

mismatch. As explained earlier in this section, the large low frequency residuals are

due to the large low frequency gain of the disturbance transfer corresponding to the

second bending mode. However, note that the detection residual can still be

generated from the rigid modes only, as was done in Detection Filter #4, while

using the four modes in the calculation of the directionality residuals. In such a

case, the advantage of the very low noise of the rigid modes in the detection of the

failures, is combined with the advantage of the larger phase margin of the higher

order filter in the identification of the failure. The results of the directionality

residuals may be a little misleading. These residuals correctly indicate the failure

of actuator 1. However, since the noise due to model mismatch is very slowly

varying, it is not clear whether the residuals would continue to indicate correctly

the failure of actuator 1 if the simulation was continued beyond 2 seconds.
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4.3.3 Detection Filter With Observer

In the previous subsection, the problem of the large numbers of unmodeled.

modes in the detection filter with N == p was solved by introducing a new output

transformation. The large improvement that resulted from this was due to the

rigid modes that rejected the low frequency noise, and therefore, provided clear

detection and identifio ition information. In some cases, however, the model of the

flexible structure might contain only one rigid mode or no rigid modes at all. In

such a case, the noise rejection properties of the low frequency modes (see Eq.

(4.27)) might n ,-', be good enough to reject the low frequency noise due to the

unmodeled modes (the high frequency noise can always be eliminated with output

filtering). The Detection Filter with Observer introduced is this subsection is

a possible solution when this problem arises. However, it should be made clear that

due to a lack of time the properties of such a configuration have not been analyzed

is detail, and mainly the motivation for this approach is presented in this thesis.

The problem of model mismatch in detection filters is that the requirement of

having small error residuals seems to be incompatible with the requirement of

having large failure signatures. The reduction in the error residuals due to model

mismatch is achieved by improving the ability of the filter to track the output

vector y, but in so doing, the ability of the filter to track the output vector y in

the presence of an actuator failure will also improve, resuAing in a smaller failure

signature. For example, the error residuals can be reduced by moving the detection

space poles to the left in the s plane, but this also results in a smaller failure

signature. The Detection Filter with Observer in Fig. 4-46 eliminates the error

residuals due to those modes whose shapes and frequencies are known but are not 	 .

modeled in the reduced order detection filter with N = p, without reducing the

i
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Figure 4-46: The Detection Filter with Observer

failure signature.

The model of the observer contains all the structural modes of the beam that

are known, while the model of the detection filter contains as many modes as the

number of independent displacement measurements. The equations of the observer

are

ico=A0io+Bauc +Do(y-y)

Y = Co Xo

and the equations of the detection filter are
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- observer are defined as the modes that are not

• in the detection filter. The unmodeled modes of

the detection filter are defined as the modes that are modeled in the observer but

not modeled in the filter. The purpose of the observer is to obtain good estimates

of the amplitudes of the unmodeled modes of the filter in the presence of model

mismatch and more important, in the presence of actuator failures. These

estimates are multiplied by their corresponding vectors c i from matrix C u, and the

results are subtracted from y to Obtain yF . The detection filter, then, uses yF as

the measurement vector.

Therefore, when there is no model mismatch between the model of the beam

and the model used in the observer and when there is no actuator failure, the

estimates of the filter unmodeled modes are correct and the vector yF is the one

resulting from those structural modes that are modeled in the filter. Hence. since

the detection filter does not see any unmodeled modes, the residuals E are zero.

When an actuator failure occurs, the result will depend on the ability of the

observer to estimate the amplitudes of the unmodeled modes of the filter in the
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presence of the actuator failure. If this ability is good, then the filter measurement

vector YF will contain very little components resulting from the filter unmodeled

modes, and therefore, the error residuals due to the filter unmodeled modes will be

very small and identification of the failed component will be possible. On the other

hand, if the observer is not good at estimating the amplitudes of the filter

unmodeled modes in the presence of actuator failures, when an actuator failure

occurs, yF will contain large components due to the errors in the estimates of the

filter unmodeled mode amplitudes resulting in large error residuals in E that will

make the identification impossible.

Therefore, while the detection capabilities of the reduced order filter will be

greatly improved by the use of any good observer, the identification capabilities

will be improved only if this observer is good at estimating the amplitudes of the

filter unmodeled modes in the presence of actuator failures. Note that this

requirement is exactly the opposite of the requirement of the detection filter in

which we want an actuator failure to produce large errors in the estimates.

Furthermore, it seems that in this case, there is no contradiction between requiring

the observer to be insensitive to actuator failures and requiring the observer to be

insensitive to model mismatch.

A thorough analysis on whether it is possible to design obervers with such

properties and how to design them has not been done in this thesis. It is

reasonable to expect that observers that rely heavily on the measurements to

produce the state estimates will have little sensitivity to actuator failures. An

observer with this property has large bandwidth and high frequency poles. This is

the case if a detection filter is used as the observer, since the failure signature

caused by an actuator .failure can be arbitrarily reduced by moving the detection

space poles to the left in the s - plane.
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The observer used in this thesis was designed using the continuous Kalman

filter approach and a seven mode model of the beam. The resulting filter had some

high frequency poles very close to the high frequency undamped structural modes,

and therefore, it was necessary to use output filtering in the Detection Filter.

However, it is believed that the output filtering can be avoided by a more careful

design of the observer.

Figure 4-47 shows the result of simulating the filter - observer combination

with no motel mismatch. That is, the evaluation model of the beam has seven

modes, tb-- observer has seven modes ant the reduced order detection filter has

four modes. The reduced order detection filter used is Detection Filter #3 with the

pseudo inverse as the output transformation. The initial conditions of the beam.,

observer and detection fitler are all zero and actuator 4 fails at T = 1 sec..' Figure

4-47 should be compared with Fig. 4-30 (actually in Fig. 4-30 there is one more

unmodeled mode but its contribution to the error residuals is negligible). The

failure signature is now clearly visible. The use of the observer produced a

remarkable improvement in the detection of the failure, as was expected, and also

produced a very large impr-,)vement in the identification of the failure.

The eighth structural mode was added to the evaluation model of the beam

and the simulation repeated. The effect of the filter - observer unmodeled mode 	 41

was so small that the output residuals were almost identical to the ones in Fig.

4-47.

Therefore, it can be concluded that the use of the observer was successful in

improving the performance of Detection Filter #3 in the presence of unmodeled

modes. The performance of the filter - observer configuration was not tested in the

presence of parameter errors.
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Figure 4-47: Detection Filter #3 with Observer.
Failure of Actuator 4 at T = 1 sec.. Output Filtering.



Chapter 5
Conclusions and Recommendations

When the number of modes modeled into the detection filter was larger than

the number of sensors, the detection filter could not be configured to detect more

than three actuator failure events, and the corresponding state space was divided

into detection and completion spaces. Moreover, the specification of the location of

the filter poles did not result in a unique detector gain D. However, the algorithms

used in this thesis, suggested by Beard, produced a unique gain matrix D by

snaking the completion spaces invariant. As a result of all this, the filter design

was complicated and relied heavily on software.

The dynamics of these filters were very difficult to analyze and produced very

unexpected results. The transfer properties of the detection filter that describe its

performance in the presence of model mismatch, showed a surprising sensitivity to

the location of the completion space poles explaining the results obtained in the

simulations. When all of the filter poles were at -10rad/sec., the presence of an

unmodeled mode created large low frequency error residuals that, completely

obscured the failure signature, and the presence of unrealistically low levels of

parameter errors also resulted in unsuccessful detections and identification of the

failure. By moving the completion space poles to -100rad/sec., the performance of

the detection filter in the presence of model mismatch was remarkably improved.

However, the detection filter still could not tolerate realistic levels of parameter

errors.

The detection filters with N = p (number of modeled structural modes equal
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to number of sensors) have several advantages when compared to detection filters

I ' with N > p. Perhaps the most important of them is that detection filters with N

= p can be configured to detect any number of actuator failure events by placing

the filter poles in an appropriate way (e.g., placing all the poles at the same

location.) The design of these filters is trivial and does not need any specialized

software. Also, their dynamics are very simple and easy to analyze, since they do

not involve completion spaces. This in turn allow, the designer to make a thorough

frequency response analysis of the effects of the different types of model mismatch,

and make decisions on how to use the degrees of freedom that he has at his disposal

like the location of the detection filter poles, bandwidth of the output filter, choice

of output transformation, etc. Finally, another important advantage of these filters

is that they perform much better in the presence of parameter errors.

The problem of the detection filters with N = p is their large number of

unmodeled modes. The high frequency components of the error residuals due to

unmodeled modes lying outside the bandwidth of the filter can always be filtered

out without reducing the failure signature. Then, the problem is caused by the

components of the residuals lying within the bandwidth of the filter. This problem

was dealt with in two different ways. First, the performance of the detection filter

in the presence of model mismatch was improved by choosing a different output

transformation. This resulted in a detection filter that was able to perform

satisfactorily in the presence of the unmodeled modes and in the presence of

realistic levels of parameter errors. The second approach was to use an observer to

subtract the components of the unmodeled modes from the measurements y.

From the analysis and simulations done in this thesis, it appears that a

combination of all the techniques explained in subsection 4.3.1 has the best

potential to solve the most severe problems of model mismatch in the detection of
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actuator failures in flexible structures with displacement sensors. Such a

combination refers to a detection filter with N = p, improved output

transformation, output filtering and observer.

The recommended areas of research related to the problem analyzed in this

thesis are:

1)to investigate whether different methods of assigning the n - v F completion

poles, that do not require the invariance of the completion spaces, could not result

in more robust detection filters,

2)to investigate and develop different ways of reading the detection and

identification information from the output error in the presence of model mismatch,

3)to study all the aspects . related to the detection filter with observer. For

example, to study the design and properties of the observer that best fit this

application, and to study the robustness properties of the filter - observer

combination,

4)to study the robustness properties of detection filters designed to detect

actuator failures in flexible structures with both displacement and rate

measurements,

5)to study the performance of the detection filter in a more realistic

environment that includes a control system and disturbances.
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