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INTRODUCTION 

Pressure fluctuations of turbulent flow are known to be the source of driving force for structural 
vibrations and radiation of acoustic energy. Theoretically, exact solution of the pressure fluctuations can 
be obtained by directly integrating the Poisson’s equation for pressure. The spectral properties of the 
pressure fluctuations can then be computed by Fourier transforming the two point correlation of the 
pressure fluctuations. The transformed equation involves terms with up to  fourth-order velocity correla- 
tions. Approximate assumptions are employed to solve the higher-order correlation terms. 

Application of this approach to a constant-mean-shear homogeneous turbulent flow is described 
in detail by William K. George, et al. [ l ] .  For wall pressure fluctuations on the surface of a flat plate, 
R. H. Kraichnan [2] estimated that the ratio of the root-mean-square (rms) wall pressure fluctuations to 
the wall shear stress is 6.  Experimental measurements, reviewed by W. W. Willmarth [3] , and computa- 
tions done by Panton and Linebarger [41 show that this ratio is lower than Kraichnan’s estimation. 
Experimental data of wall pressure fluctuations including compressibility effect have been collected and 
correlated by Langanelli, Martellucci, and Shaw [ 5 ] .  They conclude that a value between 1.7 and 3 for 
the ratio of the rms pressure fluctuations to the wall shear stress may be appropriate for the subsonic 
turbulent boundary layer. Results of a direct numerical simulation of R. A. Handler, et al. 161 for a 2-D 
channel flow show a value around 3.32 for this ratio. 

The main drawback of the approach using the direct solution to the Poisson’s equation for 
pressure is that the geometry of the boundary has to be simple so that the Green’s function for integra- 
tion can be handled easily. Generally, the Green’s function for integrating the Poisson’s equation must 
satisfy the following two conditions [ 7,8] : 

V2G = i5(Ar) in the flow field . 

aG -- - 0 on the solid boundary an . 

where s(Ar) denotes the Dirac delta function based on a displacement in space Ar, and n is in the direc- 
tion normal to the solid boundary. To find such a function for a complicated boundary geometry, such 
as that of the interior of the piping installations of the space shuttle main engine, would be practically 
impossible. 

In this paper, however, a completely different approach is taken. This new approach stems from 
the momentum equation for incompressible flow. The Reynolds decomposition concept is employed to 
derive a transport equation for the root-mean-square pressure fluctuations. This transport equation is then 
closed by approximately modeling the higher order terms which results in three empirical constants to be 
determined from experimental measurements. 



A sensitivity study on the empirical constants is included for the case of an incompressible high 
Reynolds number 2-D channel flow from which one of the predictions is compared with experimental 
measurements and other predictions. Results of an annulus flow prediction are also included. 

Major advantages of the present approach are that the concern on the geometric complexity is 
eliminated and the model can be solved using any CFD code along with the equations governing the 
flow field. 

DERIVATION OF THE TRANSPORT EQUATION FOR THE ROOT-MEAN-SQUARE 
PRESSURE FLUCTUATIONS 

Basic equations involved in deriving the transport equation for the root-mean-square fluctuations 
are the continuity and momentum equations of incompressible flow. They are 

aui 
axi Continuity: - - 0  - 

where Ui represents velocity components, p is the fluid density, and P denotes the fluid pressure force. 

Using Renolds’ decomposition technique, the velocity components and pressure can be decom- 
posed into a mean quantity and a time-dependent component. They are written in the following form: 

u. = u. + ui 
1 1  

Where the variables with over bar denote time-averaged mean values. Substituting these relations into 
equation (2), a time-dependent momentum equation can be obtained. The result is 

Multiplying equation (3) by p, taking time-averaging, and taking the sum for i = 1,2,3, the follow- 
ing equation is obtained: 
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2 - 
aui - sui - a i i  a ui 

a t  2p axi J axj J axj J axj axiaxj 
+ u. p - + u. p - + u. p - - vp-- - 0  p-+--  . aui 1 ap2 

(4) 

Using the time-dependent continuity equation, the following transport equation for the rms pressure 
fluctuations is obtained: 

The terms in equation (5) have been labeled with Roman numerals which permit us to state the relation 
in words: The rate of change of pressure fluctuations through pressure strain redistribution (I) is equal 
to (11) the convective diffusion and viscous diffusion of mean-square pressure fluctuations, plus (111) 
the production of pressure fluctuation, plus (IV) the turbulent viscous dissipation. 

Closure modeling is required to solve this equation. This is described in the next section where 
three empirical constants are introduced. 

MODELING THE TRANSPORT EQUATION 

The terms in equation ( 5 )  cannot be solved analytically. Approximate closure modeling to these 
terms is necessary to make equation (5) solvable. 

First, the terms on the left hand side of equation ( 5 )  can be written as: 

Assuming that the first two terms on the right hand side of equation (6) are small and negligible, equa- 
tion (6) is approximately modeled as 

where C1 is called the coherence function in statistics and K is the turbulent kinetic energy. 

The diffusion terms (11) in equation (5) are modeled by dimensional analysis which takes the 
following form: 
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where C2 is an empirical constant used to adjust the coefficient of diffusivity and Q represents a length 
scale which is related to the turbulent kinetic energy, K, and its dissipation rate, E, through the following 
equation: 

314 K3I2 
Q = CP 

E 

where the empirical constant CP = 0.09. 

The production term (111) in equation (5) is expressed in terms of the mean quantities of turbu- 
lent flow using dimensional analysis. This gives 

where C3 is an empirical constant and pt represents the turbulent viscosity. pt can be calculated from 
the following equation: 

K* 
Pt = P ccc - 

E 

The dissipation term (IV) in equation (5) is also approximated using dimensional analysis. The 
result is 

where Cq is another empirical constant. 

Finally, by letting P’ f i  the model of equation (5) can be written as: 

ap’ 1 a (QP’ ZIP’) - C , - - - P ’  6 , 
+‘b Pt Q 

- + G . - - - -  aP’ - -- 
at J axj f i  axj pap axj 
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where up = ClC2/2, c b  = C$1 and Ca = c4 /c1  are the three empirical constants of the present model. 

Boundary conditions for solving equation (1 1) are: 

a) Production term z dissipation term near the wall. 

b) Gradient of P’ across the line of symmetry is zero. 

Two of the empirical constants, Ca and cb ,  can be estimated from data of homogeneous turbu- 
lence and wall pressure fluctuations measurements. 

For nearly isotropic homogeneous turbulence, equation (1 1) can be written as: 

dp’ 

Integrating the above equation once, 

ca = - 

0 ($)dt 

Also, the K-E model [91 can be written as: 

dK 
dt 
- - -  - E  

2 E - de 
d t  
- - - C , q  . 

Integrating equation (13b) once, the following relation is obtained. 

From numerical and experimental investigations [ 10,11] , the decay of isotropic turbulent kinetic energy 
can be represented by: 
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K = Ko(t-to)-n 

or 

where the decay constant n z 1.087 for very high Reynolds number flow. 

By letting eo = nKo in equation (15), the following expression can be obtained: 

Substituting equations (14) and (1 6 )  into equation (12), the result is: 

It is-also known [ 10, l l  J that the pressure fluctuations in isotropic turbulence has approximately 
the same decay constant as the turbulent kinetic energy. Therefore, 

and 

= CP3l4 = 0.1643 
c,* ~ , 3 / 4  n ca % 

where CE2 = 1.92 in standard K-E model. 

The constant c b  can also be estimated by applying the wall boundary condition to the present 
model. That is, 
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where duidy = C p ' / 4 f l / ~ y  by using the logarithmic law of wall with the von Karman constant K = 0.4. 

It has been concluded from experimental measurements of wall pressure fluctuations in boundary 
layer flows [3,5] that the range of rms pressure fluctuations, normalized by wall shear stress, is between 
1.7 and 3.0. 

This is equivalent to conclude that the ratio of wall pressure fluctuations to pK just outside the 
viscous sublayer is roughly between 0.5 and 0.85. If the higher value of this ratio is accepted, then 

c b  z ca [ c, P' ]near the wall z 0.85 . 
3i4 pK 

Therefore, only one empirical constant, up, remained to be determined by matching the predic- 
tion to other sources of data in the flow field. To the author's knowledge, no pressure fluctuations 
measurements have been made away from boundaries in any confined flow region. However, results of 
higher level numerical simulations, e.g., large eddy simulations for channel and annulus flows done by 
Schumann [ 123, can be used to estimate the constant up. 

SENSITIVITY STUDY ON up AND DATA COMPARISONS 

Effects of u on te predictions of rms pressure fluctuations are investigated numerically for an P 
incompressible fully developed 2-D channel flow. Equations for solving this problem are: 

Momentum equation: 

2 1 d  dP 
yj dy dx 
- -( yj pt $) = - =  - 2pu, . 

K - e. model: 

Pressure fluctuations model: 
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where OK = 1.0, o, = 1.3, Ce2 = 1.92, C,1 = 1.43, Ca = 0.1643 and Cb = 0.85. The parameter j = 0 is 
for 2-D channel flow problems and j = 1 is for axisymmetric pipe flow problems. 

A finite difference routine is used to solve the above equations. Equations (18a), (18b) and 
(18c) are solved first until a converged solution is obtained. Equation (18d) is then used to solve for the 
rms pressure fluctuations. 

Experimental measured [ 13 J and numerically computed results of the mean velocity profile, 
turbulent kinetic energy and its dissipation rate for the fully developed 2-D channel flow are illustrated in 
Figure 1. Reynolds number based on the maximum mean velocity and the channel half width is 62,000 
which is about the same as the experiment. 

Effects of u on the predictions of rms pressure fluctuations are shown in Figure 2. Notice that 
the variation of up does not affect the predictions near the wall where zero diffusion conditions are 
applied. The near-wall rms pressure fluctuations are fixed by the ratio of Ca and cb.  The levels of 
predicted p‘ increase slightly in the vicinity of the wall with increasing value of up while the levels of p’ 
decrease strongly with increasing op elsewhere. 

P 

One of the cases studied above is selected (up = 6.0) and compared with experimental measure- 
ments and other predictions. This is shown in Figure 3 where the wall pressure fluctuations measured by 
Ball [ 141 and Elliott [ 151 and predicted by Handler [6] are used for comparisons. Pressure fluctuations 
data comparisons away from the wall are provided by Schumann [ 121 and estimated by a constant- 
mean-shear isotropic turbulence formula given by George [ 11. This formula is 

2 2  3 where u2 1/3 (u + v + w2) = 2/3 K, 2 E u / e  and du/dy stands for the mean shear (i.e., an average 
slope of the mean velocity profile). In the present data comparisons, the local mean velocity gradient is 
used for du/dy to estimate p’ across the channel. 

It is shown in Figure 3 that the predictions of the present model with up = 6.0 compare well 
wlLl l  ~ A p ~ l l , l l b l , L a !  I I I ~ . Q o u I ~ . I I I u I I ~ o  and ether predictinns. Especially, the shape of the p’ profile is very 
similar to the predictions of Schumann using large eddy simulation for high Reynolds number flow. This 
suggests that up = 6.0 is a good approximation for the present model. 

.-.:+I. -.r---*-m...t” mnn”..*nmontf 

This set of empirical constants @e., up = 6.0, Ca = 0.1643 and c b  = 0.85) of the present model 
are used to predict pressure fluctuations in a fully-developed annulus flow and compared with 
Schumann’s prediction. This is shown in Figure 4. Ratio of the larger pipe radius to the smaller pipe 
radius of the annulus is 5.0. It is shown in Figure 4 that agreement between the present predictions and 
the Schumann’s predictions is generally good except the discrepancies near the wall. 
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SUMMARY 

The transport equation for the root-mean-square pressure fluctuations has been derived from the 
time-dependent momentum equation. Approximate closure modeling for this transport equation has 
been proposed with three empirical constants. 

Two of the empirical constants have been estimated from data of homogeneous turbulence and 
wall pressure fluctuations measurements. The third constant for the diffusion coefficient of the present 
model has been estimated by comparing the results of a large eddy simulation for 2-9 channel flow. 

Data comparisons between the current predictions and other sources of data have been included 
for a 2-D channel flow and an annulus flow. Results of the comparisons show that the predictions of 
the present model are at least qualitatively good. More tests of the present model are required to fine- 
tune the constants of the present model before it can be confidently used in engineering design analysis. 
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