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I

1. Introduction

The existing user interfaces to TEMPUS, Plaid, and other systems in the OSDS are

fundamentally based on only two modes of communi cation: alphanumeric commands or

data input and graphical interaction. The latter are especially suited to the types of

interaction necessary for creating workstation objects with BUILD and with performing

body positioning in TEMPUS. Looking toward the future application of TEMPUS,

however, we see that the long-term goals of OSDS will include the analysis of extensive

tasks in space involving one or more individuals working in concert over a period of

time. In this context, the TEMPUS body positioning capability, though extremely useful

in creating and validating a small number of particular body positions, will become

somewhat tedious to use. The macro facility helps somewhat, since frequently used

positions may be easily applied by executing a stored macro. The difference between

body positioning and task execution, though subtle, is important. In the case of task

execution, the important information at the user's level is what actions are to be

performed rather than how the actions are performed. Mewed slightly differently, the

what is constant over a set of individuals though the how may vary.

To meet these future expected needs of OSDS we began a study of more language-

oriented interfaces to TEMPUS. Language can describe how to perform an action, but it

is much more efficient and effective in describing what is to be accomplished. Human

intelligence, innate movemint patterns, learned actions, and general experience make

possible human task performance. TEMPUS attempts to simulate at least some of these,

such as reach. A language-oriented interface would permit the TEMPUS user to

describe the steps and goals of a task in a form much like, or even identical to, the form

interpretable by another human being. There is no doubt that this is a modern area of

extensive research covered even more broadly by the field of Artificial Intelligence. Thus

our purpose will not be to attempt the analysis of arbitrary human communication;

rather, we shall concentrate on those areas of physical task execution that are

fundamental to the NASA environment.

We begin by describing some of the characteristics of a language-oriented user

interface, examine some of the representational probiems that arise, and consider how

they might be solved. Then two common NASA task ss ecification techniques,

operational callouts and commands, are reviewed, analyzed, and represented. Examples

are used extensively to illustr a both kinds of task instruction and how they may be

parser and understood by computer. Finally we show how the structures representing
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these language inputs are provided to TEMPUS and its associated movement simulation

system.

2. A Language-Oriented User IPA-erface

A problem with many systems is the manner in which the input must be formatted.

Often, a user would like to communicate with a system in his or her own language, for

example English. In practice, commmunication with a computer through arbitrary (but

humanly understandable) English is not possible. Thus we frequently resort to more

limited syntactic, semantic, and lexical domains. Such an interface appears to

understand a restricted form of English utterances that nonetheless transmits most of the

required information to the computer.

In the case of TEMPUS the interface must allow the user to command the

(simulated) agents to perform a number of tasks. If the interface is treated as a

participant in a conversation (so to speak), then everything entered should be understood

by the interface and conveyed to the system. In TEMPUS, however, 'the interface must

do more. The simulated agents have no action intelligence and require a specific type of

statement to allow them to perform in the manner that was implied. By allowing the

interface to be omniscient, at least in the context of a specific environment, the message

sent can be conveyed, with all the information needed by the simulator. Thus the

interface is an intermediary between the TEMPUS user and available simulation

capabilities, with (relatively) complete insulation of the user from the details of the

required simulation structure.

The interface between the user and the simulation system accepts statements

presented either in isolation by the operator or from stored files of task descriptions. In

either case, all statements pertinent to this discussion are entered in a command form,

since that is exactly what we would want to do: command agents to perform some

actions. The interface then tries to comprehend the command and determines what, if

any, additional information may be needed from the user. The information available to

it, some from prior information, some from the command, some from the user (if

needed), and much from its knowledge about the objects in the environment, is then

changed into a format compatible with the simulator and then sent to it. To allow such a

system to work, what is first needed is an understanding of the underlying meaning of

the command.

2	 i-
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There are two types of commands we will examine which are stereotypical of a

wide class of action instructions found in NASA checklist procedure documents (e.g. (5]).

The first class of commands consist of tersely abbreviated operational callouts; the

second of more language-like commands. We will examine these two classes in this

order as the problems in maintaining a computer-understandable representation of the

task information embodied in them is easier to study in the more standardized

operational callouts. The more general commands lead into deeper natural language

parsing and comprehension issues.

3. Processing NASA Checklists for TEMPUS Input
To improve the user interface to the TEMPUS body positioning system, the use of

existing NASA checklist procedures was investigated. This section begins by discussing a

computer-oriented representation for the kind of information contained in NASA

checklist procedures. We present a structure, based on a representational frame, that

will accurately represent these procedures. The task representation will consist of action

verb case frames acting on a database of object frames. Many examples are given to aid

in describing how the checklist procedures can be parsed into the chosen task

representation. The parser will interpret as much information as possible from the

checklist procedures, and will relay this information in detail to a simv l . ;.on system 131

which drives the TEMPUS body motion primitives. Finally, areas of k, Jwn or potential

difficulty are noted.

3.1. Task Representation Requirements

NASA checklist procedures are a complicated system of abbreviations and artificial

syntax which is nonetheless intended to be human-readable. They represent all actions

to be carried out by the crewmembers (called, in general, agents) from the time the

shuttle is entered until it is exited. Our goal is to attempt to interface between the

NASA checklist procedures (what is to be done) and the TEMPUS graphic simulation

(what will it look like). This is done through an intermediate structure called a task

representation. The task representation must be capable of specifying parallel sequences

of actions. It must not be too detailed so that it must be changed for a different (size)

agent, changed location of an agent, or different physical arrangement of the

workstation. The task representation must be able to make explicit which agent or

agents carry out which task, with which of their resources, and under what conditions.

3
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The task specification will be compiled Cost by translating the NASA checklist

procedures into a task representation. The checklist procedures are in the form of terse

NASA documents called the Flight Data File (FDF). The FDF describes the tasks to be

carried out by the crewmembers of the Space Shuttle. The task representation is passed

to a simulation which decides how each action will be carried out.

Several problems are involved with designing the task representation. Of major

concern is the representation of temporal relationships between actions. It is essential

that each action be done at exactly the time and order designated. NASA documents

spend a large amount of effort describing and representing the temporal relationships of

the actions to be performed. Allen (I) discusses various temporal relationships of actions

and how to represent them. He addresses three problems that he feels occur in nearly all

existing (computationally-based) models of action.

1. Actions that involve non-activity.

2. Actions that are not easily decomposed into sub-actions.

3. Actions that occur simultaneously and may interact with each other.

The third point is of particular interest because of the importance of accurately

representing sequences of actions, parallel actions, and their interactions. Allen

concludes that simultaneous actions can be described directly if the temporal aspects are

separated from the causal aspects of a plan and from that it enables us to describe the

interactions as well. He feels that problems still remain in building a system that can

reason about such interactions while problem solving, but the representation appears

suitable for our simulation needs. Allen describes thirteen possible relationships,

summarized in Figure 3-1.

More generally, we must address the problem of representing the entire procedure

or event. Schank (9) proposed a Conceptual Dependency grammar (CD) for representing

events using several basic primitives for action verbs. His theory says that all actions

can be reduced to a sequence of these primitives and he bases his theory on the idea of a

case grammar. He chooses relevant slots to represent the events. His work has several

weaknesses but the ideas of a case Drama, relevant slots and primitive verbs will be the

backbone of the task representation, which will be described in Section 3.3. For our

purposes, it is sufficient to understand that a case frame is a list of attributes (cases or

slots) of a verb into which varying types of information (values) may be placed.
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Table 3-1a Allen's Temporal Primitives
Symbol Towral Primitive Example

< X before T M YYY

> X after T TTY XXX

X equal	 T M
TTY

s X seers	 T XXXTYT

Ii X is not by T YYYXXX

o X overlaps	 T XXX
YYY

of X is overlapped by T TYT
XXX

d X during Y XXX
TTYYYT

di X includes T MMM
TTY

s X starts T XXX
YYTYYY

si X is started by T XM=
YYY

f X finisbes T XXX
TYYYY

fi X is finished by Y XXXXX
YYY

Case grammar argues that a set of cases dependent on the verb can be used to

define the deep structure (• meaning, • as opposed to the superficial sentence structure) of

English sentences. Schank's CD representation system is based on the conceptual

relationships between objects and actions. As in all case grammar structures, the

meaning of a sentence is not dependent on the form of the sentence. The sentences
Jeff turned the valve

and
The valve was turned by Jeff.

both have the same deep structure. Schank's CD extends the case grammar concept one

step forward and reduces all verbs into a member of a set of limited primitive verbs

(Table 3-2). As a result, both of the above sentences would be reduced into the case

frame:
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EVENT
actor: Jeff
action: PROPEL
object: the valve.

Case frames contsin a set of roles and the constituents that fill them. The roles in the

above example, ACTOR, ACTION, and OBJECT are filled with their constituents,

Jeff, PROPEL, and the halve.

Table 3-3s Schank's Primitive Action Verbs
Primitive
Verb Mean'ng Sentence
------------------------------------------------------------------------------

CD Example

PTRANS physical transfer Jobs moves to Hawaii. John PTRANS Hawaii

ATRANS abstract transfer John buys a book from John ATRANS book
thi store. Store ATRANS money

NTRANS mental transfer John reads a book. John NTRANS book

PROPEL apply physical force John throws a ball. John PROPEL ball

MBUILD mental operation John understands the John NBUILD formula
(old info to new info) formula.

ATTEND focus attention John hears a new song. John MBUILD new song
John ATTEND new song

GRASP gain physical control John holds a pencil. John GRASP pencil
(with your hands)

MOVE bodily movement John drinks coffee. John MOVE coffee

Only recently have efforts been made to construct a representation combining the

conceptual and the temporal. Besides the efforts cited in a companion report (3), relevant

work in this area was done by Waltz 1101. Waltz addresses some of the shirtcomings of

Schank's Conceptual Dependency representation system, one of which is capturing the

similarity of meaning of various verbs rather than representing the nuances .a meaning.

In a Space Shuttle environment each meaning must be interpreted exactly right or the

wrong action may be performed. Waltz also feels that there are no primitives in

Schank's representation for many actions. Waltz's Event Shape Diagrams deal with

action combinations and result in a temporal framework. Although his paper is short

and just scratches the surface of this concept, it offers useful ideas in setting up the task

representation. The event shape diagrams can be used to represent concurrent processes,

causation and other temporal relations by aligning two or more diagrams l (see Figure

Ilte similarity to the TEMPUS track-oriemted animation system is wrortb noting 141.
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3-1).

Flgwm 3-1: Event Shape Diagrams for •Est•

YkM^wt/^a7.

Another major problem in translating the checklist procedures into the task

representation is understanding the • parsing• NASA did when initially preparing the

Flight Data File documents. Much time and effort went into making the FDF quick and

easy for the crewmembers to read, but without the proper training and supplementary
documents containing abbreviations and standards, they are almost impossible to

decipher. In fact, the checklists are often considered cue cards rather than being true

instructional devices. In order to design the task representation accurately, a complete

understanding of the Flight Data File is essential. (See Figure 3-2 for a sample cue card).

This report will go into as much detail as necessary so that the conventions used by

NASA can be understood.

7



User Interface Enhancement

Figure 3-2: OMS/RCS Post Burn Configuration

	

P 01	 AFT L,R RCS
Mlle PRESS (four - OP t"P
M ISOL (six -_VC
AFEEO	 (four - GPC tb-CL

	

03	 RCS/OMS PRESS !el 	 - RCS as regd
PRPLT (.TY se 1 - RCS as reqd

	

08	 L,R OMS
He PRESS/VAP ISOL (four) - CL

AX ISOL (four) - OP (tb-0P)

• If ONC PRPLT FAIL.
• Affected TK ISOL (two) - CL

3.2. Checklist Procedures

There are two basic types of operations in the NASA checklist procedures: the

comman^s and the operational callouts. Figure 3-3 shows how each type is broken

down into (or formed from) its components. From our point of view, however, the

checklist procedures will only be broken down or translated, never formed. Commands

are basically in the imperative form &Ld the operational callouts follow the strict format

specified in Space Shuttle Flight Data File Preparation Standards [5]. In both cases the

articles 'a,° •an,' and • the • have been onritted for brevity.

The first method of expressing an operation is the operational callout. It is used to

describe functions that are associated with displays and controls. The operational

callouts that define crew operations are comprised of steps, crewmember designation,

location identification, procedure, and notes. Only the procedure is required at all times

and it consists of specifying the object to be operated on and the action, the two

separated by a dash. The other components are only included as required.

Consider the following examples:

8
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Figure 3-3: Switch Operation Sequence Structure

QtE I DESIGNATION

+

OPERATIONAL	 LOCATION IDENTIFICATION

CALLOUT

+

I
OBJECT

\ /PROCEDURE	 +

CALLOUT	 -
+

ACTION

OPERATION

SIMPLE ` +

NOUN PHRASE

COMMAND

SUBORDINATE

-CONJUNCTION/

CONDITIONAL ; 	 ,

	

+	 VERB

SIMPLE	 +

NOUN PHRASE

P	 R1	 1 HYD MA' ?UMP PRESS 1 - NORM

S - LO

C	 CS	 Z MAIN ENO LIMIT SHUT DN - AUTO

P	 RZ	 3 HYD MAIN PUMP PRESS 3 - NORN.

The far left column contains the crewmember designation. There are two types, reneral

and speck. General crew designations are associated with procedures in wh

crewmembers have received equal training and each is capable of performing th,

Some examples of general designations are:

9
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CHI - first crows=
	 3

CM2 - second crewsan

SUB - subject

CBS - observer.

Specific crew designations are used in cases where certain crewmembers receive

specialized training in a given task. The possible designations are:

C - Commander

P - Pilot

EVI- EVA crevsan 1 (extra-vehicular activity)

MS - Mission Specialist

PS - Payload Specialist.

The first two lines are to be performed by the pilot in the above example even though it

is only specified in the first line. Only when a new crewmember is to perform an

operation is his designation specified.

Location identification is used to specify the location of a particular operation.

Identification may be specific, such as a panel or stowage locker number, or general, such

as flight deck, middeck, or airlock. A location is usually specified for each step, but in

some cases this is unnecessary because there is no need to perform the operation in a

particular location. The location is specified in a column to the left of the step number.

One or more spaces are always left between tie location designation and the step

number or the first character of the procedure (when step number is not indicated). In

the above example the second line contains no location identification. In such cases the

convention is that the location (crewmember and object) remain the same from the

previous operation. However, the information must be included for step 3 because of the

intervening step 2 that has a different location (crewmember and object).

Panel locations are often combined to save space and to consolidate operations into

single steps. For example,

F6 ADI ATT - INTRL

F8 ADI ATT - INM

has been combined as follows

F8/F8 ADI ATT - IRRL.

Both statements must be present in the task representation and must be expressed as

10
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separate callouts. This will be discussed in greater detail later when the actual

representation is being described. Alternate panel locations may be indicated by using

parentheses to indicate that the step is performed at either one location or the other:

F6(FS) ADI ATT - INTRL.

The final portion of the operational callout is the procedural callout, which consists

of an object, then a dash, and an action. Most procedural statements refer to switches,

valves and frequently used loose equipment. In order to understand these statements the

use of upper and lower case letters, spacing, symbols, and special identifiers must be

studied. This style of writing was adopted to aid the crewmembers in quickly identifying

and accomplishing tasks. Some examples of switch operations are shown in Figure 3-4.

It should be noted that the type of switch, quantity, and clarifying comment are not

always required. Valve operations appear the same as switch operations except type of

switch is replaced by • vlv • standing for valve. There are similar forms for other

devices.

Figure 3-4: Switch Operations

POSITION
PANEL SWITCH type of or ACTION	 (clarifying
NUMBER	 TITLE switch (quantity) dash DESIRED	 convent)

F6 HSI SEL MODE
-----------------------------------------------------------------------

-	 EIM
C3 AIR DATA PROBE (two) -	 ST0W

SRB SEP pD -	 SEP
C2 TIMER SET tv (four) -	 ON

To accurately represent the operations as described on the cue cards, the

conventions used to conserve space and simplify them must be accounted for. One such

method is combining switch callouts. Special attention must be given to properly

identifying the number of switches being positioned and the particular switches desired

from a given group. Any series of callouts such as

BOILER CNTLR 1 - ON

BOILER CNTLR 2 - ON

BOILER CNTLR 3 - ON

will be condensed into

BOILER CNTLR (three) - ON.

11
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To turn on only two of the three selected controllers, the choices are separated by

commas:
BOILER CIM 1.3 - ON.

To identify alternatives, the choices are enclosed in parentheses:

BOILER C" 1(2.3) - ON.

The task representation must interpret these combined operations as multiple tasks and

return the condensed version back into its original expanded form.

Another simplifying convention for operational callouts that must be expanded is

recreating the deleted leading redundant words, panel numbers, and row numbers. For

example,
08 LTG PNL R OM - OFF

R INST - OFF

must be represented as representation, as:

08 LTC PNL R OW - OFF

08 LTG PNL R INSr - OFF.

The checklist operations often require clarification or identification of special

conditions. Three different forms of information may appear in a procedure: general

notes, cautions, and warnings. All three are written in narrative form and precede the

operations to which they apply. The text of each is indented at least two spaces from

the margin in order to set the information off more readily from the body of the

procedure. Cautions are • boxed • once; warnings, twice (double line box). Although

valuable information to the crewmembers appears in the procedural notes it will not be

used in the task representation. More likely they will be passed as text to appear as

captions in the graphical simulation.

The checklist command is used primarily for operations not associated with

displays or controls and may be of two types: simple and conditional (see Figure 3.3).

The simple command has normal imperative structure beginning with a verb. For

example, a procedural operation telling a crewmember to install film into a camera is

expressed as
Insert fila into canera.

The conditional command also reflects basic imperative sentence structure except that

12



User Interface Enhancement

the command is preceded by a conditional clause introduced by a subordinating

conjunction such as w ife or • when. • For example, a procedural operation telling a

crewmember to advance film after finishing some exposures would be stated:
rben exposures complete, advance film.

In the case of the conditional commands, Allen's temporals would play an important role

in translating the command into the task representation.

Figure 8-6: Sample NASA Checklist with Commands and Operational Callouts

ACES

1 Setup

MR16N	 Unstow M-GAMS, CDTR, and CDTR Cable

OC	 Attach M-GAMS and CUR to bracket

M013Q	 AC UTIL PWR MNB - OFF

M052J	 /DC UTIL PWR MNA - OFF

CAUTION
I AEM and MICR share M052J

M013Q	 Attach OC Pwr Cable to
DC UTIL PWR MNB outlet

M052J	 Attach EC Pwr Cable to DC UTIL
PWR MNA outlet adapter box

2 Activation

CDTR	 EnVage Capstan - push button,
slide Capstan fwd

M-GAMS	 ACCEL PWR - EXT

COTR	 Visually check tape motion

Rcd times - CDTR
MET —' •—

Various FDF documents contain the checklist procedures for on-board experiments.

13
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These describe the type of actions to be performed is the environments that are relevant

to the TEMPUS project simulations (see Figure 3-5 for an example). Most of the

statements are the command type but both types are frequently mixed. The parser for

the task representation will have to be able to determine which type of operation it is

line by line and parse into identical representations, irrespective of its original form

(operational callout or command). When a operation is in the command form it
sometimes appears similar to the callout. For example,

HATCH	 EQUALIZATION vlvs (two) - NOR[

Close and Latch Hatch

	

RIP	 Remove and stow Inner Hatch.

Examples have been found, however, that do not follow the protocol of the procedural
callout (see Figure "). These will require more general parsing strategies discussed in

Section 4.

Flgwm 3-6: Sunshield Manual Opening

	

EV: 1 1. Restrain inboard aft sunshield cable	 I
w/tethered vise grips on stbd side 	 I

	I 	 I

	

Z. Cut inboard aft cable w/ENU scissors 	 I
	I 	 I

3. After cutting, restrain cable w/tape 	 I
	I 	 I

4. Restrain outboard fwd sunshield cable 	 I
w/tethered vise grips on stbd side 	 I

	I 	 1
I 6. Cut outboard fwd cable w/EYU scissors

	I 	 I
I 6. After cutting, restrain cable w/tape

	I 	 I
1 7. To open sunshield, pull between uncut

cables using stbd handrail for restraint I
	I 	 I

I S. Restrain sunshield using adjustable wrist I
tethers	 I

	

I	 I

3.3. Task Reprewntatlon

The parser translates the checklist procedures into a target structure called the

task representation. This structure is in turn passed to the simulation system and

TEMPUS (see Section 5). The proposed representation is taken from Schank's case

frames and primitive verbs. The task frame needs at least six relevant slots:

i	 14
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1. NUMBER: an ordered number for each command frame — the number will
provide an ordering of the command and will be used in describing the
temporal relationships between the events. This number will most likely be
different from the step number in the operational callout.

2. AGENT this is the actor in the command (crewmember designation), and
may not have been specified in the callout. In the case thatthere is no crew
designation (and one cannot be arrived at) a blank will be passed. The
simulation will assign a crewmember (depending on who is available, who can
get there quickest and easiest, and what type of action it is (for example, may
be restricted to pilot).

3. OBJECT a specific object or list of objects with OR connectors. Switches,
valves, latches, and loose equipment are some examples of possible objects.

4. ACTION: the action or position desired as specified by the callout. Some
examples are ON, OFF, OPEN, Stow and Rotate.

5. TEMPORAlS: following Allen's 13 temporal relationships. The objects of
the temporals will be the NUMBER's of the other pertinent command frames
or the word TIME refering to the contents of the TIME slot.

6. TIME: the amount of time to carry out a particular action, for example push
and hold for 2 seconds. Can also be used for • after 5 minutes` in
combination with the temporal AFTER.

In order to fill the ACTION slot from an operation in the form of an operational callout

(not a command), the position desired for that particular switch or valve will be placed

in the ACTION slot as it appears in the callout (the word following the dasb'. To fill

the ACTION slot from a command, a primitive verb or list of primitive verbs will be

used (Section 4).

A list of verbs that might possibly appear in a callout has been compiled from the

samples of documents sent by NASA (Table 3-3). From this list of verbs a list of

primitive verbs can be derived. The action verb will be passed in the slot and the

primitive verb or list of primitives will replace it later.

The reasons for using the primitive verbs to represent the actions of the command

type and not the operational callout type are as follows. First, the list of possible verbs

for the commands is very long and each verb may require a series of simple actions.

Second, the possible positions for a switch or valve is limited and that type of

information will be kept in an attribute table for each switch or valve. The importance

of an attribute table is to help understand the verb and determine the physical action

required for the simulation. In Section 4.4.2 we discuss the form of the object attribute

table frames.

15



User InterfA,ce Enhancement

Table 3-3s A List of Action Verbs

activate dispose hook prep slide
adjust doff iacroue press snap
align don initialize pull stain
aseeable draw inject push step
assist drop insert raise stow
attach egress install reconfigure swab
backout engage insure record swap
balance ensure lace reengage switch
become enter latch release take
bite evaluate lift rusts tape
calibrate exchange load remove tense
centrifuge execute locate repeat tighten
check extend lock replace tract
clamp extract log report transfer
close fill loosen reposition turn
collect find lower restow turnoff
complete fix mark restrain twist
config focus match retorque unfold
connect fold mount return unhook
consult gel move rotate unlatch
contact generate note run unscrew
copy get notify screw unsnap
cough give observe scrub unstow
cut goto open secure unwind
decrease grab operate select verify
descend grasp peelback not zoos out
detach handloosen perform setup
disconnect handtighten place shake
disengage hold position show

The primitives will be words like GRASP, ROTATE, and MOVE. The verb as it

appears will be put into the ACTION slot, and will be translated into a primitive verb or

list of primitive verbs later on. This will simplify the process and keep the ACTION slot

relatively small. The idea is that there will be attributes for different objects so that

ROTATE could mean wind, screw, turn, twist, loosen, etc. depending on the object.

The differences would be in manner, degree of difficulty, and scale. Verbs like unscrew,

unwind, and retorque differ only in the direction of the rotation from their positive

counterparts. A verb like lift could be described as GRASP and MOVE. Some more

complicated verbs like stow, secure, locate, and setup will require a longer list of

primitive verbs than push, pull, press, latch, and hook.

To further illustrate the parsing technique to translate the operation into the task

representation, Figure 3-7 shows an example cue card from an FDF Orbit Pocket

Checklist. Missing from this cue card are the crew: designation and step numbers. The

step numbers are relatively unimportant since a number will be assigned to each •event'
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Figure 3-7: Example of Checklist Prior to Parsing
BUS LOSS ACTION
DC ALC3

R2 BLR CNTRL M/HTR 2 - B (1 - B on 102)
3-A

L1 FLASH EVAP CNTRL PRI A - OFF
PRI B - as

TOP EVAP HTR NOZ R	 - A AUTO
Al2 APU HTR GAS GEN/FUEL M 2 - A AUTO

3 - B AUTO

TK/FU LISE/H20 SYS 2A.3B (two) - AUTO

as it is translated. This example is rather straightforward as far as temporals are

concerned, therefore the operations will be performed in the order that they appear.

The crewmember(s) chosen to perform the operations will depend upon the context in

which this cue card is used. One possibility is that it is called from another operation. In

that case whoever is doing that instruction will carry out all of the operations on this cue

card.

The first column that is indicated in this example is the location identification. It

should be obvious that the lines that do not have a location specified occur at the same

location as the line above. Other redundant information (switch titles and parts of

switch titles) have also been omitted. The task representation must contain as much

information as possible about each operation. Omitted information must be extrapolated

back into the command frame.

In every line, the group of capital letters and all upper case words following the

dash (-) will be put in the ACTION slot. The location and the title of the switch will be

put in the OBJECT slot. No temporals are involved in this example.

Extrapolating all the hidden information in Figure 3 .7 will lead to the expansion of

the callout as shown in Figure 3-8. This expansion can then be parsed into the command

frame suitable for input to the simulation. Figure 3-9 shows the parse in tabular form.

3.4. Variations on a Theme

There are numerous variations encountered in examples of cue cards that are not

as straightforward and involve some additional rules to parse correctly, for example:

P	 07	 TK ISOL (six) - CPC
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F16nre 3-8: Expanded Checklist of Figure 3-7.

R2 BLR CNTRL P9RA R 2 - B (1 - B on 102)
RZ BLR CNTRL PNR/HTR 3 - A
L1 FLASH EVAP CNTRL PRI A - OFF
L1 FLASH EVAP CNTRL PRI B - OM
L1 TOP EVAP HTR NOZ R 	 - A AUTO
Al2 APU HTR GAS GEN/FUEL. PUMP 2 - A AUTO
Al2 APU HTR GAS GEN/FUEL PUMP 3 - B AUTO
Al2 APU HTR TK/FU LINE/H20 SYS 2A,3B (two) - AUTO

The last line can be expanded further to

Al2 APU HTR TK/FU LINE/H20 SYS 2A - AUTO
Al2 APU HTR TK/FU LINE/H40 SYS 3B - AUTO

F4pm 3-9: Representation of Figure 3-7.

NUMBER AGENT	 OBJECT ACTION	 TEMPORAL	 TIME

1
-----------------------------------------------------------------------------

R4 BLR CNTRL PNR/HTR 2 B
2 R2 BLR CNTRL PMR/HTR 3 A
3 L1 FLASH EVAP CNTRL PRI A OFF
4 L1 FLASH EVAP CNTRL PRI B ON
6 L1 TOP EVAP HTR NOZ R A AUTO
a Al2 APU HTR GAS GEN/FUEL PUMP 2 A AUTO
7 Al2 APU HTR GAS GEMMEL PUMP 3 B AUTO
8 Al2 APU HTR TK/FL LINE/H20 SYS 2A AUTO
9 Al2 APU HTR WFL LINE/H20 SYS 38 AUTO

must be extended and represented in the frame:
P	 07 TK ISOL 1 - GPC
P	 07 TK ISOL 2 - CPC

P	 07 TK ISOL 3 - GPC
P	 07 TK ISOL 4 - GPC
P	 07 TK ISOL 6 - GPC
P	 07 TK ISOL 6 - GPC.

It is absolutely necessary that the task representation appears exactly like this, or else

the simulation will not perform the correct sequence of actions.

Sometimes two locations are expressed in the same command using either a

conjunction or a disjunction. The following two examples illustrate this:

YOM FLT CNTRL PRR - OFF

F608) FLT CNTRL PNR - OFF.

For the first example, the conjunction, two sepd. Ae commands must be represented

individually as

18



For the disjunction, Fb(F8), the OBJECT slot will contain the two switch locations and

titles separated by the disjunction 'OR'. This will be parsed further in the simulation

stage. One reason for this is that the simulation will know exactly where the

crewmembers are. If a crewmember is at the optional location (F8), it would much more

efficient to have him perform the action there than to have another member move to the

location mentioned first. That is how it would be done in a human environment.

As mentioned earlier, leading redundant locations, words, or switch titles are

deleted from the checklist for brevity. The parser must backtrack and rill in the omitted

descriptors. If this is not done, or not done correctly there will be inaccuracy and

ambiguity in the task representation.

A check (-/) proceding a procedural callout means verify or check. This indicates

that the operation may not necessarily have to be done but that the talkback (discrete

indicator) must be in the state listed. The simulation will then have to check the

attribute table to find out the present state of the object in question. If it is not in the

correct state then the operation must be performed. For example,

RE	 V COS DUV ISOL VLV - CL

means, • Check that the condensate tank dump ISOL valve is closed; if not close it.•

The OBJECT slot will contain the location identification and the valve title. The

ACTION slot will contain • CHECK CL'.

Bold face titles and enumerated titles need not be translated into the task

representation. They are for the crewmembers' use in locating a particular cue card. If

desired, the bold face titles can be passed as text to be used as captions on the display

screen. An example of enumerated titles appears in Figure 3-10. The enumerated titles

are always underlined descriptions of what operation follows and are not necessary for an

accurate task representation.

A very important consideration when parsing the checklist procedures is the

representation of the temporal relationships between operations. Some simple

relationships are seen in the examples in Figure 3-11 which can be translated quite

literally into one or several of Allen's temporal relationships. 'When pwr restored •
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Figure 3-10: Enumerated Titles

1 CAS Encdr Unstow/Setup

Unstow CAS encoder from locker, connect
cable to SSP (L12U)

2 CAS Relay n_ State Chi  From X to Y

Enter <CLR> or <CLR> <CLR>

Display: A--A or A.-.-.A
Enter two digit relay number <nm>
Enter <0/S>

Display: P na Y

Figure 3-11: Temporal Statements in Checklists

Maintaining unlocking force, rotate lever
cw to NORMAL position

-------------------- -------------------------

Next, thread the tape around the outside of
Capstan Tape Guide Roller

Finally, thread the tape around the inside
of the Capstan. . .

After the tape is threaded, wrap the free
end around the taksup reel. . .

While holding the tape securely, rotate
the reel counterclockwise until the
tape . . .

Continue winding until the tape is taut
-----------------------------------------------

When per restored, cad relay 27 - L to H
------------------------------------------------

Before mounting extensions,

V PWR TOOL - OFF

would use the temporal primitive AFTER. • Maintaining • would call for DURING, the

same for 'while. • This is all straightforward translation. The translation of Figure 3-12

would not as easy to visualize. This example involves parallel sequences of actions in

more than one instance. The interpretation of the Egress Test would be that of Figure

3-13.

There is a question of whether or not AFTER is necessary when the numbered

procedures occur in perfect sequence with no overlap. It should be obvious that 12 is

AFTER 11 and 13 is AFTER 12 in all cases unless specified. It is conceivable that there

could be a different interpretation; however, it is assumed that the most straightforward

one is to be used. It is therefore proposed that the temporal AFTER not appear in the
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Figure 3-13: Egress Test

Crones assuas placm
1131 is AFT flight dock
02 at SAL
PS1 at Rack 12 foot restraints
PS2 at Rack 9 foot restraints

NSi	 Announce start of test

VS2	 During egress,
FOD CAB DEPRESS VLV - op

After last creiaaa egresses,
close and latch hatch

NS1	 Log end of test

After egress test, open hatch per decal
FOD	 CAB DEPRESS VLV - cl

Figure 3-13: Task Representation of Figure 3-12.

NUMBER AGENT OBJECT ACTION
---------------------------------------------------------------

Tt]o'OHAL	 Thor

1 NS1 AFT Flight GOTO EQUAL 2 3 4
dock

2 NS2 SAL GOTO EQUAL 1 3 4
3 PSI Rack 12

foot restraint GOTO EQUAL 1 2 4
4 PS2 Rack 9

foot restraint GOTO EQUAL 1 2 3
b NS1 Start of test Announce AFTER 1 2 3 4
6 NS2 FOD CAB

DEPRESS VLV OPEN DURING 7 B 9 10
7 NSI Egress DURING B 9 10
a NS2 Egress DURING 7 9 10
9 PSI Egress DURING 7 B 10

10 PS2 Egress DURING 7 B 9
11 NS2 Hatch CLOSE AFTER	 7 6 9 10

and LATCH
12 NS1 End of test Log AFTER 11
13 161 Hatch OPEN AFTER 12
14 NS1 FOD CAB CLOSE AFTER 13

DEPRESS VLV

representation of sequential, non-overlapping operations (NUMBER's 12, 13 and 14 in

Figure 3.13).

The final example of expressing temporal relationships coerectly is the case where a

specific amount of time is required.

i
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Haiti 6 Slat.	 or	 After 6 sine.

In either case the correct temporal primitive should be chosen and the word TIME

should be placed next to it in the TEMPORAL slot. The correct required amount of

time will then be placed in the TBIE slot.

XVID TIn	 6 sine.

4. Processing Commands
Commands will be translated into the same case frame as the operational callouts.

The commands are in the imperative form, or a modified imperative form. The

command type operations will require a limited natural language processor. It will have

to be able to recognise the first word of the command as either an action verb or some

conditional or temporal. From there it will translate the command depending on the

first word as either simple or conditional command. This is where the action verb list

becomes extremely useful. A list of possible temporals will also be necessary, and can be

compiled after more examples ace studied. T, the case of the conditional command, the

subordinate clause is followed by a comma and the remainder of the command will be

translated as a simple command. In most cases the articles 'a, • m an,' and 'the m have

been deleted from the operation. If any one of the articles is found, it need not be

translated, and may be discarded.

4.1. A Bottom-Up Parwr

A parser is needed to convert the command or sentence into a standard

computational structure that a program can use. Using a bottom-up parser (BUP) )6)

(adapted from Frans to Common Lisp by Gangel), many of the common command

phrases that may be used in a specific environment can be easily parsed. BUP is a

bottom-up parser for augmented phrase-structured grammars. To explain these concepts,

we start with the notion of bottom-up parser. Bottom-up and trp-down pining,

although often yielding the same result, vary greatly in their strategies.

Top-down parsing begins at the top (the top rule, often labeled with the symbol S)

and tries other rules that may eventually lead to the constituents (grammatical units) of

the sentence. For example, the sentence • Jeff turned the valve' would be top-down

parsed in an order similar to:

t
re
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S -> V VP
NP -> N
N -> Jeff
VP -> V NP

V -> turned
NP -> DET N
DEr -> the
N -> valve.

The result of the parse is:

Is
INP [N Jeff]]

[VP

[V turned]
IMP IDEr the] [N valve]]]].

(In this Lisp-like list notation it may be seen that the pairs of items in braces are

associated as an attribute-value pair: thus IN Jem implies Jett is a N (noun); RM [N
Jefn) implies [N JeM is a NP (noun phrase); etc.)

Bottom-up parsing begins with the words of the sentence and looks for rules whose

right-hand sides match constituents of the sentence. The left-hand side of each rule then

forms new constituents which are again matched, and so on, until it becomes a single

left-hand side (the symbol S). Using the same example, it would be bottom-up parsed in

an order such as:

N -> Jeff
NP -> N
V -> turned
DEr -> the
N -> valve
NP -> DEr N

VP -> V NP

S -> NP VP.

The resulting structure is identical to that of the top-down parse:

[s
[NP [N Jeff]]

IVP
[V turned]

[NP [DEr the] [N valve]]]].

BUP follows an order similar to what appears in the above example. However, we

must still define the notion of augmented phrase-structured grammars. An augmented

phrase-structured grammar allows an augmentation to the rules in the parser w P..,vide

addit onal information useful for parsing. For example, Jeff is an animate object and the

valve is an inanimate object. Without these augmentations, the sentence, •The valve

turned Jeff • could be parsed by the given rules. U the verb turn requires that the

subject must be animate, only • Jeff turned the valve' would be allowed. BUP allows

such augmentations ) be included in the rules.
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BUP also allows various output formats depending on the given rules. The output

currently used is in the form of a case frame. However, it is not a true case frame.

Without delving deeply into the main verb of the sentence, a true case frame cannot be

formed. Although a partial semantic and syntactic analysis is made, there are still certain

syntactical and semantical rules that have not been followed.

It may seem that more of the analysis (especially the syntax) should be done in the

parser. We opted, however, to separate the deeper analysis for a number of reasons, the

main reason being that BUP, although very useful, is not the best parser available. (It

happens to be available to us.) Were the two analyses not separated, we would have to

depend on only one parser, BUP, without an easy change to another. In addition, if the

sentence is at least partially correct, then there is still a chance that the information can

be understood and the true meaning found.

The rest of the analysis is now dependent on a verb database containing the verbs

that may be used and a list of syntactic and semantic rules dependent on each verb. This

analysis forms a true case frame. The output from BUP, using certain rules, is what we

call a partial case frame.

4.2. Partial Case Frames

As we discussed in Section 3.1, case structures are used to represent the meaning of

a sentence independent of its particular surface form. Thus the sentences
Jeff turned the valve

and
The valve was turned by Jeff

both have the same deep structure. In Section 3.1 we saw that Schank's CD (Figure 3-2)

extends the case grammar by reducing all verbs into a set of limited primitive verbs. As

a result, both of the above sentences would be reduced to the same case frame:

EVENT
actor: Jeff
action: PROPEL
object: the valve.

Case frames contain a set of roles and the constituents that fill them. The roles in the

above example, ACTOR, ACTION, and OBJECT are filled with their constituents,

Jeff, PROPEL, and the valve. BUP, although it only produces a partial case frame,

shows the same type of output:

((OBJECT Jeff)
(ACTION burned)
(OBJECT (the valve))).
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The partial case frame has not yet, however, Z reply analyzed the verb turn. As will be

seen later, once the verb is analyzed and the frame's roles are filled, the verb may also

reduced to a primitive.

Continuing with the case frame concept, every case frame contains a list of roles,

each of which is dependent upon the frame's verb. Roles, such as

AGENT:	 the instigator of an action
OBJECT:	 an obligatory case found or implied with

each verb
INSTRUMM: the object used to perform the action
LOCATIVE:	 it specifies the location or direction

(source - destination) of the object
STATE:	 it specifies the state (initial - final)

of the object
TIME:	 the time at which the action took place

allow the concepts within a sentence to be classified into their contextual meanings.

(The roles listed for the operational callout task representation may also be present, but

we shall not need to refer to them further here.)

For example, let the object, VLV, be a rotary valve with six states labeled 1, 2, 3,

4, 5, and 6:
3 4

2--- 6
1 6

'The sentence, •Ask the commander to turn VLV from 2 to 5 e would be parsed by BUT

into the partial case frame,

((ACTION ask)
(ACTOR you)
(OBJECT (the commander))
(INSTRUMENT

(ACTION turn)
(ACTOR (the commander))
(OBJECT (vlv))
(STATE (INITIAL 2))
(STATE (FINAL 6))))

where, according to a transformational grammar rule entitled object-controlled equi

reformats the sentence into two sub-statements, eAsk the commander • and •The

commander to turn VLV from 2 to 5. a They are then changed into a partial case frame

where, according to the syntactic and semantic features of the constituents, certain roles

are filled by the constituents of the sentence.

The sentence •Ask the commander to turn VLV to the right, a although similar to

the previous sentence in that state 5 is e to the right' of its present state, would be

parsed into a different case frame:
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((ACTION ask)
(ACTOR you)
(OBJECT (the ca umder) )
(INSTRUMENT

(ACTION turn)
(ACTOR (the commmder))
(OBJECT (vlv))
(DIRECTION (DESTINATION (the right)))).

The first sentence provided a full account of what action is to be done (in this case by

the simulation). The simulator knows (or eventually will know once the case frame is

reduced to a suitable message format for the simulator) the state change of VLV, and as

long as the action is viable, will be able to perform the event. On the other hand, the

second sentence only provides general locative information. eTo the right
s
 usually does

not provide enough information for a simulation. U VLV is not an endless valve (i.e. it

cannot be rotated from 6 to 1), then s to the right s can account for any of the four

remaining states • to the right
s
 of state 2. If VLV is endless then s to the right

s
 can

account for all of the states2 except the present state 2. Thus, although the partial case

frame contains the information stated in the sentence, there is often a certain amount of

information that is still needed for simulation. Therefore, the second case frame is

incomplete. It is partially structured, but the role values pertaining to the verb are not

complete. Any required roles must be filled and an error analysis must be performed.

This all depends upon the verb.

4.3. Using the Verb to Determine a Can Frame

Every verb has an associated case frame(s). It specifies which roles the verb may

take, their preferred ordering, and whether or not any of the roles are syntactically

obligatory. For example,

GIVE - ( (agent) (bensfactive) object 1
KILL - [ (agent) object (instruaent) 1

where the roles in parentheses are optional and the order listed is the preferred order,

are two motion (or action) verbs. They assert a change of state or an activity instigated

by an agent. As can be seen, the syntactic roles of the two are different. GIVE, as in

the sentence • John gives Mary the book, • has a benefactive, Mary. But KILL does not.

'John kills Mary the book` is obviously incorrect. KILL needs an object, not a

benefaetive. Thus • John kills Mary s is correct (structurally, not morally!).

2I2 many other caeca, s to the right s is specific. If VLV was not endless and it's present state was b,
then s to the right s would imply 'the state 6.' For other objects, such as a toggle switch where only two
states exist and movement can only be done in a left-right direction, s to the right' is both valid and
specific.
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In the TEMPUS environment most of the verbs we see are motion verbs. Since this

is an interface for a simulation, we want to assert a change of state for the object(s) or a

motional activity for the agent(s). Of the lengthy lists of action verbs available (Table

3.3 and see also 18, 21), the verbs we chose to investigate are PUT, TURN, ROTATE,

OPEN, CLOSE, and MOVE, as well as some of their multi-word verb forms, PUT ON,

PUT ASIDE, PUT DOWN, PUT OUT, TURN ON, TURN OFF, TURN UP, TURN

OUT, TURN OVER, OPEN UP, and CLOSE DOWN. Of the numerous definitions of

these verbs, we chose the definitions that are pertinent to the given environment.3

These verbs, besides being motion verbs, also have key case frames which follow the

main (most used) definition of the verb (Table 41).

Table 4-1: Verb Case Frames
PUT	 - [ (agent) object locative ]
TURN	 - [ (agent) object (locative) (state) ]
ROTATE	 - [ (agent) object (locative) (state) ]
OPEN	 - [ (agent) object (locative) (state) ]
CLOSE	 - [ (agent) object (locative) (state) ]
MOVE	 - [ (agent) object (locative) (state) ]
PUT OR	 - [ (agent) object ]
PUT ASIDE - [ (agent) object ]
PUT DOWN - [ (agent) object (locative) ]
PUT OUT	 - [ (agent) object ]
TURN ON	 - [ (agent) object ]
TURN OFF - [ (agent) object ]
TURN UP	 - [ (agent) object (state) ]
TURN DOWN - [ (agent) object (state) ]
TURN OUT - [ (agent) object ]
TURN OVER - [ (agent) object (state) ]
OPEN UP	 - [ (agent) object ]
CLOSE DOWN - [ (agent) object ]

There are, however, often other case frames for the verb. Many motion verbs, as

well as other types of verbs, have instances of polysemy (multiple meanings). Usually, the

semantics of an entire sentence (and often an entire concept) is needed to determine the

true meaning in the given instance. For example, consider the verb TURN. *Turn the

valve on e may imply a rotary movement of the valve to the on position. 'Turn the

switch on e may imply a linear movement of the switch to the on position. *Turn the

light on e may imply that the switch for the light, not the light itself, is *Turned on.* In

3TURN OFF has such defmitions as: A. to stop the flow of (water, gas, etc.), as by closing a faucet or
valve, B. to extinguish (a light), C. to drive a vehicle or walk onto (a side road from the main road, and
D. slang: to cause (someone) to lose interest; to bore or discourage. A and B are definitely pertinent. C
may be pertinent, but not really in such an enclosed environment as the shuttle. D is definitely not
pertinent. Nor is it really valid to use it in a command (eg. 'Tell John to turn on'). Thus only A and B
would be used.
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addition, •Turn out the light • is a valid sentence. But, •Turn out the switch' or •Turn

out the valve • are not valid sentences. The verb TURN OUT is only valid for an

indicator.

As a result, the meaning of a statement can often be found only after the verb and

its roles have been analyzed. BUP changes the sentence into the partial case frame. The

next step is to analyze the partial frame into its true case frame. Both the verb and the

filled case roles plus any default information from former discourse that may be

pertinent to the present statement must now be used to fill or correct the true case

frame.

4.4. Analysis of the Partial Case Frame

In the following sections we try to determine which roles are pertinent to the verb's

meaning. We will examine the verbs themselves, the objects to which they refer,

variations in sentences, and disambiguation by questions directed to the user.

4.4.1. A Verb's Meaning

BUP's output is a partial case frame dependent on an action verb. As seen earlier,

each case frame contains certain syntactical information that is pertinent. For example,

consider the verb PUT. PUT contains a syntactical form:

1 (agent) object locative 1.

The sentence, 'John put the book on the table, • fills all of the case roles, both optional

and obligatory. John is the agent, the book is the object, and the table is the locative.

Since the agent role is optional (has parentheses), the sentence •Put the book on the

table • is also valid. It would be allowed because we have structured the rules in BUP

that way. However, if the user neglected to include an object role, the rules would not

allow the parsing. PU'l is a transitive verb and cannot use the agent as the object4.

The sentence, • John put the number in the log, • again fills all the required roles.

John is the agent, the number is the object, and the log is the locative. However, the

meaning of PUT in this context is different. The number is not a physical object. Instead

of John physically placing the number in the log, John must now write the value of the

number in the log. The same verb and the same case frame are used, but a totally

different underlying meaning exists. The realization that the object is not physical plus

4Turn is both a transitive and intransitive verb. As such, • John turns, • an intransitive form, implies
the fact that John is both the agent and object. The sentence is actually, • John turns John. •

E
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the fact that information can be written into a log can be used to determine its true

definition.

Finally, the sentence • John put out the light" shows another definition for PUT.

PUT OUT is a multi-word verb composed of the verb put and the modifier out. If the

sentence was 'Put out the garbage, • then the physical movement of • the garbage•

would follow PUT's meaning. But in • put out the light, • it must be understood that the

light implies a physical object which emits light. Next, the physical movement of the

light emitter would usually not follow the statement's underlying meaning (unless

tightening a light bulb would allow an electrical connection). In this case, specific

knowledge about the object which controls the light emitter is needed.

A lot of underlying information is needed to determine a sentence's true meaning.

A list of the verb's meanings, the context of the sentence and its surroundings both from

previous statements and the overall environment, and any given or implied information

all help toward determining the meaning of the verb.

4.4.2. The Object's Role

As seen earlier, TURN has the syntactical definition,

[ (agent) object (locative) (state) 1.

The roles, agent, locative, and state are all optional. However, although the user may

omit those roi", the information is still needed. U an agent was previously mentioned,

then that agent is implied. The two other roles are both dependent un the object. To

clarify this problem, we must introduce the system's object frame.

The object frame is a structure with slots and values which describes needed detail

about an object's structure, states, motions, and so on. All the • knowledge • needed to

operate, move, or change an object's state is embedded in the values stored in the object

frame. Presently the object frame has the following structure:

e Name or number of the object

e Texture mapping

o a texture map pointer or a pointer to and from the object's SurfsUP
description

0 object center coordinates

0 object extent box
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e Messaite vasser

c accepts and sends messages that are specific to the object

e Tyve of object
Control, Indicator, Tool, Clothing, Stowage,
Stowage-Restraint, CRT, Agent, etc.

e If Object = CONTROL

o Type of control,
Switch, Circuit-Breaker (CB),
Valve, Latch. etc.

• Sub-type of control,
Switch: push -button, push-button-with-light,

thumbwheel, valve,
display-select-switch, toggle

Cb:	 toggle, push/pull
Valve: lever, rotary
Latch:

etc.

• The panel on which it is mounted

o The possible directions for the control's state-change
Left-to-Right
Up-to-Down
Release-to-Push
Push-to-Pull
Close-to-open
Counterclockwise-to-Clockwise
Joystick

o Ordered labeling of the control's states

o Amount of movement from one state to the next state, or vice versa

e discrete or continuous range

e type of measurement

e an account for each state and the next
including:

the amount of travel
needed to reach the next state

the amount of force
needed to enact the movement

o Current state (variable)

e If Object = INDICATOR

o Type of indicator
meter, discrete-event, tones

o Sub-type of indicator,
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Motor:	 bar, digital, rotary
Discrete-Event: light, off flag,•

talkback-gray, talkback-legend,
talkbsck-barber-pole

Tones:

• The panel on which it is mounted

• Ordered states (to follow the ordering of the linked control)

• Connections to a control
containing a list of the pairs:

an object
the state it aunt be in (or nil)

• Current state (variable)
color, aster-position, or sound

e If Object = TOOL

o For now, consider it as a 'solid • object

o Is it static or dynamic? (i.e., can it be moved?)

o Miscellaneous slots
including:

the tools's use,
the area of the tool to be held,
preferred grasp configuration,

e If Object = CLOTHING

o For now, consider it as a •solid • object

o Miscellaneous slots
including:

the clothing's use,
the clothing's size,

folding transformations,

e If Object = STOWAGE

o With or without restraint?

e If with restraint:

o pointer (in SurfsUP) to the stowage-restraint frame
handle, latches, bungess, etc.

o Pointer (in SurfsUP) to the objects contained in the stowage

e the objects would change as they are removed from or replaced
into the stowage area

tools, clothing, etc.

e If Object = STOWAGE-RESTRAINT
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handle, latches, bungess, etc.

If latch or handle:
it would be part of SurfsUP's object hierarchy

Else:
it would be a separate object with a separate
frame, still accessible frog a pointer to SurfsUP

• If Obiect = CRT

o viewing center

o pointer to SurfsUP geometric description

• output image on the CRT (perhaps only cosmetic)

• U Obiect = AGENT

o Personal Attributes

• name

• nicknames

• pointer to ADB entry and associated anthropometric parameters

• role (Pilot, Commander, Mission Specialist, etc.)

• preferred handedness

• responsibility (geometric area, panel, etc.)

• reach model (workspaces generated from TEMPUS)

• strength model (from specific task or general data)

o A Special Message Passer

• Unlike the other objects, the agent would be intelligent. As -.ueh,
it would pass and receive messages in a more intelligent,
commutative method than the other objects. Besides sending and
receiving messages in a straightforward fashion (as in the other
objects), the agents can also pass messages to one another to
alleviate certain problems that can occur during multi-agent
planning for a common goal.

There exists a database of such frames for each object in the environment. Since

the present area we are working with involves mounted objects (i.e. switches, valves,

meters, indicators, etc.) on particular panels in the environment, we have created a test

panel, aptly called panel-1 (Figure 41) where
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Figure 4-1: Hypothetical Panel
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tbA are talkback indicators that indicate on or off,
vlvB and vlvD are rotary valves,
pbC is a push button,
aeterE is a bar aster,
twF are thumbwheel switches,
push/pullG is a switch that moves in the Z axis,
pb-1tH and pb-1tI are push buttons with an indicator light,
tg1J-1, tglJ-2, tg1J-3, tg1K, tg1L-1, and tg1L-2

are toggle switches, and
tbY-1 and tbI-2 are indicator lights

internally connected to a switch.

Various facts about the objects include:
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MA). (v1vD), and (pbC) are all internally connected.
To change to another value on (vlv8),

1. (YIYB) is rotated to a value (eg. 4),
2. (pbC) is pushed
3. light 4 on (tbA) lights up

(and the previous light is off).

(v1vD) and (neterP) are internally connected.
(v1vD) is not continuous. It only goes from 0 to 6.
(meterE) displays the position on vlvD).

(tvF) has four separate thumbwheels.
Each thumbwheel gas from 0 to 9.

(push/pu110) is a push/pall type of circuit breaker.
Push is ON. Pull is OFF.

(pb-ltH) and (pb-ltI) are push buttons with lights.
When either is pushed, the light changes

from its present condition
to a new condition
(ie. oft to on, or green to red).

(tg1J-1), (tg1J-2), and (tg1J-3) are 3 distinct
toggle switches that move in an down-up direction.

(tg1K) is a toggle switch that moves
in a left-right direction.

(tg1L-1), (tbM-1) and (tg1L-2), (09-2)
are internally connected.
If the left toggle is in the UP position,

the left talkback is ON;
If the right toggle is in the UP position,

the right talkback is ON.

To explain the database, we will use the objects Y1vD and meterE. The structure

of the control vlvD is

(control
:name	 VLVD
:texture-map 0
:message	 (IF (NOT (EQUAL (CONTROL-CURRENT VLVD)

(INDICATOR-CURRENT METERED)
(SEND '(SET WERE TO

.(CONTROL-CURRENT VLVD))))
:type-of	 VALVE
:tub-type	 ROT
:panel	 PANEL-1
:direction (COUPIERCLOCKWISE CLOCKWISE)
:states	 (0 1 2 3 4 6 6)
:movement	 (DISCRETE DEGREE

((0 1) 46 6) ((1 2) 46 6) ((2 3) 46 6)
((3 4) 46 6) ((4 6) 46 6) ((6 4) 46 6))

:current	 1).

Some of the slots are obvious. The name of the object = •hD, the type-o/ = valve,

etc., and the current (state) = 1. What needs to be explained are such roles as

texture-map, message, direction, states, and movement.
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The texture-map is a mapping into the graphical coordinates of the object on a

geometric surface. Typically the surface repressents a panel upon which the object is

mounted. In the present case it has no value.

The message
(ii (not (equal (control-current r1YD)

(indicator-current asterE)))
(send '(set asterE to ,(control-current r1YD))))

is a message within the data structure of vlvD which sends messages to a pattern

matcher within the system. Since vlvD and weterE are electrically connected, there

must be some method of equating the position on vivD with the value displayed on

meterE. Whenever vlvD is used, the if part of the message is checked. If the state of

vlvD is NOT equal to the state of meterE, such as when vlvD is changed to state 3,

the message • set meterE to 9' is enacted. As if it were wired, the meter changes its

value.

The direction slot contains a pair of opposite directions. The states slot (0 1 2 3 4

5 6) is a list of all the states of the object, vlvD. The movement slot

(DISCRETE DEGREE
((0 0 46 6) ((1 2) 46 6) ((2 8) 46 6)
((3 4) 46 6) ((4 6) 46 6) ( (6 6) 46 Q)

contains much information. The first constituent, discrete, indicates that the valve

moves in discrete steps. The opposite would be continuous; the movement would have

no steps. The tr.cond constituent, degree, is just what it looks like, the units of

measurement. The third constituent is a list of cells, each consisting of states and other

information. Look at the second cell, ((1 2) 45 5). The first component, (1 2), shows a

possible state change for vlvD. The position and therefore the state of vlvD can be

changed from state 1 to state 2. The order of the numbers is unimportant; vlvD can also

go from 2 to 1. The second component, 45, shows the number of degrees involved in the

state change. If the object had mm instead as its second constituent, then it would be 45

mm. Finally, the third component, 5, is just an arbitrary number (at this time) indicating

the amount of pressure needed to enact a state change. V1vD can change its state from

1 to 3 by taking the path from state 1 to state 2, in the second cell, and 2 to 3 in the

third cell. State 1 to 2 requires 45 degrees and state 2 to 3 requires another 45 degrees

resulting in a total movement of 90 degrees. When following an increasing path in the

states list the d irection of he 90 degree movement is clockwise. In going from 3 to 1, the

other direction would be A(Y a. In addition, s ice there is no cell containing the states 6

and 0, the valve is not endless. It cannot be moved from state 6 to state 0 without going
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through states S, 4, 3, 2, and 1.

The structure of the indicator meterE is

(indicator
seas	 10r=
Lecture-asp ()

:aessap	 U
type-of 	 NEM

:sub-type	 BAR
:panel	 PAM©.-1
:states	 (0 1 Z s 4 6 6)
:connect	 ( ( (VLVD 0)) ((VLVD 1)) ((VLVD 9)) ((VLVD B))

((VLVD 4)) ((VLVD 6)) ((VLVD 6)) )
:current	 1)

As in the control structure, many of the slots are obvious. Only two things need be

explained. Since a change of state in an indicator is due the change of state in another

inanimate object, movement is not needed, but the connect slot is necessary. To explain

its use, look at the list in the state slot: (0 1 2 3 4 S 6) is a list of the seven states that

exist in meterE, compatible with the number of states within vlvD. The connect slot

also contains seven cells. Look at the fourth cell, ((VLVD 3)). Since it is the fourth cell,

it corresponds to the fourth value, 3, in the states list. If the input to the interface asked

the agent to s turn meterE to 3,' what it really meant is that the state of the control

attached to the meter is to be changed to a state which results in the change of meterE

to 3. In this particular case the state labels are identical, but that is not always the case.

What is important are the positions of the cells within the connect list in correlation with

the object's state list. The cell contains one cell which hu two values, vlvD and 3. The

first says that the object that can change the meter to 3 is AvD. The second says that

vlvD must be changed to state 3 to perform meterE's sta ,1 - change. Each of the seven

cells can contain as many cells (ol sl), (02 sZ),..., (oN sN) of objects and states as are

needed to perform the implied action. This information allows an implied connection to

take the place of a mechanical connection.

For a real person, such information is not usually stated, since the senses allow him

or her to obtain much information, d irectly. Sight allows one to determine the amount of

movement. Touch allows one to determine the amount of pressure needed, whether or

not the object has discrete or continuous positions, and whether or not the object is

endless. Language comprehension substitutes implied connections. A simulated person

cannot do the same, but by creating a database for each object the system can appear to

know the same kind of information.
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By using the object database, the ;ys'cia can now determine both the locatives and

statives pertaining to an object that may be needed in the case frame. Also, the object

database provides insight into the true meaning of the verb.

4.4.3. Varlatlons in a Sentence

Sentences such as

a) •Tura v1vD6
b) *Turn vlvD to the right*
c) 'Turn vlvD froa the left to the right•
d) 'Turn vlvD clockwise•
e) 'Turn vlvD from 1'
f) 'Tun vlvD to 38
g) •Turn vlvD frog 1 to 30
h) •Tun asterE to 3'

all have similar meanings. We know that vlvD is a rotary valve, so our first verb choice

is the most prominent, rotate. If it had been a toggle switch, a less prominent meaning,

change position by moving through an arc, would be correct. If a linear switch, it is

actually an improper verb, but if we bend the rules the implication is change the

position. And, if it had been a push button, the wrong verb was chosen by the user.

Using the rotary valve, vlvii, the first sentence (a) is a general statement without

any modifiers. No statives and no locatives w-re stated, so nothing can be implied. All

that can be determined it that six possibiities exist; 0, 2, 3, 4, 5, and 6 (since it is already

in state 1 and some motion was requested). In (b) • to the right , limits the number of

states available to 2 through 6, but that is not much more restrictive than (a). Sentences

(c) and (d) also present the same problem as states 2 through 6 are all possibilities.

Sentence (e) gives the in'%',ial state, but since that can be found in vlvVs database, the

result is the same as for (a). Sentences (f) and (g) give the final state, so the information

is enough to perform the action. Sentence (h) is the , xample stated before: by delving

into meterE's database, the result is the same as (f).

From some of the earlier examples, some case frames need nothing more than just

the object. •Turn out tbM-1, e where tbM-1 is an indicator light connected to %M-1,

requires no additional information from the user. Likewise, *Turn off tbM-1 8 or •Turn

off tglL-1 • provide the interface with an implied final state. In fact, any object with

only two states can be used alone with any of the verbs, OPEN, CLOSE, TURN ON,

TURN OFF, OPEN UP, and CLOSE DOWN. The two stated objects (they must be

controls) which move in the up-down direction can be used alone with TURN UP or

TURN DOWN, plus the other six verbs. Moi^ of the other objects do require some sort

Mir-
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of instantiation.

4.4.4. User Queries

Once the sentence is parsed to a partial case frame and the verb case is

determined, the optional roles of the re?! case frame that are still needed for the

simulation must be filled. The parser helped to remove some ambiguities in the sentence

(e.g. if John is the commander, then if the sentence states the commander as the agent,

John is returned). It also checked state validities for the given object. Other simple

things, such as using default values for pronouns, were also done in the parser. These

role values were both easily determined and common to most action verbs. The more

difficult checks are done in the analyzer.

Going back to the sentences (a) through (f) we analyzed above, we saw that (a),

(b), (c), (d), and (e) were ambiguous. The most effective method for disambiguation is to

pose a question for the user. Since the general meanings of each sentence have already

been determined, a specific query can usually be constructed. Sentences (a) and (e)

unfortunately limit the system's friendliness, since there is not much more that can be

done other than asking which of all the possible (non-current) states the user wants.

Sentences (b), (c), and (d), though, do allow a sense of friendliness. • To the right • and

• clockwise • present a limit to the available states. As such, the user is asked about only

those after the current one in the states list. Sentences (f), (g), and (h) require no more

information as long as the given states are correct.

If the current state of vlvD were 5, certain things change. Sentences (b), (c), and

(d) no longer need any help from the user. The only state that can follow state 5 is state

6. The analyzer can determine the state role. If the object was tg1K and its current state

was off (facing the left), •Turn tg1K 6 is enough for the system to realize that it should

be moved to the on position.

In any case, the answers to user queries will result in a complete case frame for the

given verb.

4.5. Problems in the Analysis

Up to now, the main type of object we have been discussing were mounted controls

and indicators, all with discrete states. Other type of objects obviously exist. However

there are many problems in deciphering sentences about objects which have no discrete
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states. The most important problem involves the difficulties in determining an exact

movement. For example, the verb TURN, when used with a discrete state object, only

allows a limited ainount of movement to be possible, from state-to-state. With other

objects, there are no set state-i,i.-.tat- movements. The only type of modifiers that can

help are directives, such as around, up, doum, etc., directives with respect to another

object, or graphical texture mapping coordinates. Until the interface system is attached

to the simulator, the most that can be done is to create the case frame fo- the sentence.

Not all freestanding objects have those problems. The sentence, • Put on the space

suit, a needs no directives. The problem lies in the simulator, not the interface. The only

problem the interface may have, and can easily fix, is: which space suit? That can be

obtained from a user query.

4.6. Reduction to a Primitive Verb

As stated earlier, there are a great many action verbs. Miller gave a list of 217

action verbs, Badler [2] upped the count to 228 verbs, but both of them stated that the

list was incomplete. By adding all the multiple word action verbs, the lists become huge.

And counting all the definitions connected to each of the verbs, the lists are

overwhelming.

Miller reduced all motion verbs into three concepts: travels, changes location, or

comes/goes, depending on the type of action verb. Schank reduced them to PTR.ANS,

PROPEL, and MOVE. Likewise, the interface reduces the motion verbs pertinent to the

environment to the primitives

Move
	 - the physical movement of an object

including an agent
Mite - self explanatory
PCrasp - place the agent's hand around as object
Release - open the agent's hand.

Other pertine nt verbs can be classified as a type of-

PLook
	 - look at some object

PNait
	

- pause for a certain unount of time.

The primitives, plus certain elaborations obtained from the original verb's meaning,

specify the true meaning of the desired action in a more simplistic manner. From this,

the simulation can be done.

Given the sentence 'Turn vlvD to 3, e the system determines the meaning of the

verb, analyzes the partial case frame (determining the agent, the initial state, and the
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location of vlvD), and reduces the verb to a ;-r'..aitive. The case frame for this sentence

(assuming the default agent is John and the deNjIt location is panel-1) is

( (ACTION Move)
(ACTOR John)
(OBJECT v1vD)
(LOCATION panel-1)
(STATE (INITIAL 1))
(STATE (FINAL 3)) ).

From here, the case frame is evaluated and reformated into a suitable message to

be sent to the simulator.

4.7. Using the Operational Callouts

As we discussed earlier, the operational callouts such as
C R2 HYD-CIRC-PUMP-1 - ON

have no verb. C is the actor, R2 is the panel, HYD-CIRC-PUMP-1 is the object, and ON

is the final state. The primitive verb, Move, is used for the physical movement of an

object. All control movements end up being reduced to Move. Since no user inquiry

would be needed for an operational callout (it provides all the information that may be

asked), the primitive verb is known immediately. The resulting case frame would be:

( (ACTION	 Move)
(ACTOR	 C)
(OBJECT	 hyd-eirc-punp-1)
(LOCATION r2)
(STATE	 (INITIAL off))
(STATE	 (FINAL on)) ).

(The tabular format of Section 3.3 is equivalent to the list form used here.)

A similar case exists for sentences involving indicators. Since the indicator is not

the object that is moved, the value of its connect slot is used. It provides the control

object and the final state for the control but, as in the operational callouts, no verb.

Originally it seemed as if the verb used for the indicator would be valid for its

control. But in the sentence, 'Turn out tbM-1,' the verb TURN OUT can only be used

with indicators. So the same problem exists as in the operational callouts. The connect

slot values provide a similar amount of information as in the operational callouts, so the

primitive PMove is still used.
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Now that a case frame containing all the required information roles needed for a

simulation has been created, the information should be evaluated. When discussing the

control structure of v1vD, we saw that the total movement needed to go from state 1 to

state 3 was 90 degrees in the clockwise direction. Also, the pressure had the value S. This

information is what we will be sending to the simulator.

A partial case frame involving an agent, John, the object, AvD, and the final

state, 3, would eventually result in the case frame:

((ACTION ask)
(ACTOR you)
(OBJECT John)
(INSTRUMENT

(ACTION PHOTO
(ACTOR	 John)
(OBJECT UIM )
(LOCATION panel-1)
(STATE	 (INITIAL 4))
(STATE	 (FINAL 6)))).

By evaluating the state values of the object, the necessary values can be calculated. To

get this information to the simulator, a •standard, • fully-expanded message is

constructed from the frame.

We are presently evaluating a public-domain message-based simulation system

called ROSS [7]. In ROSS a valid message to the simulator describing what is to be done

would be:

(ask John to Plbre r1rD 90 degrees clockwise
to state 6 with a pressure of 6).

From this message, all of the known and determined information about the

movement is conveyed to the simulator. Were a different sort of simulator available,

such as the hierarchic process abstraction and simulation mechanism proposed in a

companion report [3], only the realization of the message need change.

Until the simulator and the interface are connected, some sort of pseudo-simulator

will take its place. This mock simulator basically has three functions. The first is a

pattern matcher to quickly determine the constituent of the message. The second is the

formal change of the state(s) of the object, as if it was done by the agent. The third is an

acknowledgement to the user that the meaning of the input was conveyed correctly and

the action was completed.
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d. CiOUCIueiOne

One form of input to TEMPUS should be the language that NASA already uses to

describe crewmember tasks. The operational callouts and the commands in their

standardized forms provide such an input. These task instructions offer the user a

highly compressed input form, requiring only interactively typed information or recalled

command lists from a database. The advantage is in the sympathy between the system's

understanding of the command and the ability which an actual crewmember would apply

to performing the task. Consequently, the language interface may help to design and

validate new procedures and enforce the standards for their structure.

Although the operational callouts and commands cover many of the NASA tasks

we have examined, it is clear that there are many task descriptions which lie beyond the

analysis process presented here. In particular, the details of how to move from station to

station, the parsing and understanding of more arbitrarily-structured natural language

statements concerning tasks, and the actions necessary to achieve inherently complex
maneuvers (such a donning a space suit) are not directly addressed by this interface

enhancement alone. Considerable effort will be needed to integrate these more complex

situation specifications with the general (zero-gravity) motion simulation 131. We have
attempted in this report to identify the approximate point where the investment in

processing more general language structures will not return a greater benefit than the

enhancement of the interactive graphical capabilities for planning general zero-gravity
human body motion. Although the computational requirements of both are difficult to

assess and compare, we do not see dramatic changes in natural language processing costs
in the near future, whereas graphical hardware costs continue to decline while real-time

display system capabilities increase.

The major processes needed to accomplish this enhanced user inter face are

reasonably well known: parsing, case frame filling, and simulation message generation.

There will be a significant effort required to actually build the object frame database for

a non-trivial application and develop verb case frames for a large class of task-oriented

motion verbs. Eventually, an interactive system should be added to permit the simple
update of the object and verb database, though improvements in parsing and

determination of verb semantics may be made directly in program code. The major

research effort will lie in determining the semantics of motion verbs and the proper

incorporation of temporal information. In addition, there must be an effective

integration of all the pieces so that the interface actually functions properly. Finally, we
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must be sensitive to computational efficiency: the exerutioD of a command should be no

slower than the manual effort required by TEMPUS to perform the same actions!

The connection of the language interface to the TEMPUS simulation system is a

challenge that that has no close parallel in the history of Artificial Intelligence research.

There is much related work in natural language processing, expert system design, and

knowledge representation that can be borrowed, expanded, or modified to fit this

problem. The application to actual human movement control, however, has never been

adequately demonstrated. The underlying TEMPUS system appears to make this goal

possible.

7. Schedule and Resources
The tasks outlined in the Conclusions could be realized over a four year period if

suitable personnel were directed to its implementation. The schedule would, of course,

differ if other directions were taken. The approximate timetable for the user interface
enhancement effort is given in Table 7-1.

Table 7-1: User Interface Enhancement Schedule

Time Milestone I Task (per staff member)

year 0.6	 1 Parse operational callouts.
I Complete design of verb and object case frames.

----------------+---------------------------------------------------------------
year i	 i Parse standard commands.

Build experimental frame database.
----------------+--------------------------------------------------------------

year 2	 1 Build parser which will complete partial case frames.
I Integrate output from verb frame with simulation system.

----------------+--------------------------------------------------------------
year 3	 1 Expand verb database with semantics of frequently-used

I	 action verbs.
I Incorporate temporal information into parser and task
I	 simulator.

----------------+--------------------------------------------------------------
year 4	 1 Provide interactive interface to maintain object and verb

i	 database.
I Demonstrate control over multiple interacting agents.

----------------+--------------------------------------------------------------

The time milestone is the length of time from project inception (not a duration) to

the completion of the indicated tasks. The tasks are a summary of the work needed to

fulfill the system requirements discussed in the Conclusions. Each task refers to one
graduate research assistant. This is a half time load (20 hours/week). Thus multiple

tasks for one time milestone are assumed to proceed in parallel, and a total of two
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individuals for four years are required.

The resources required are summarized in Table 7-2. The monetary estimates are

based on solely on 1985 University of Pennsylvania rates including employee benefits,

tuition, and overhead as applicable. There is no provision for inflation; that may be

projected by NASA as necessary.

Table 7-9: User Interface Enhancement Resources

2 Graduate Research Assistants for duration of project ........ 60K/year
Faculty supervision time (105 of academic year) ...............1OK/year
Travel, current expense, duplicating, etc .....................94K/year

------------------------------------------------------------------------------

Totals:
Year 1: $94K
Year 2: $94K
Year 8: 194K
Year 4: $94K

------------------------------------------------------------------------------
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