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i
THE INTERACTION OF SMALL METAL PARTICLES WITH

.	 REFRACTORY OXIDE SUPPORTS

Islands and continuous layers of Pd were grown in ultra-high vacuum

on molybdenum oxide and clean molybdenum substrates. The oxide layer

was prepared by heating a Mo(liO) crystal at 1230 K in 3xiO(-B) mbar
f

of oxygen for 7 minutes aid was characterized by LEED to have a

stabile c(14x7) structure. The Au ger peak to peak ratio of 0/Mo was

0.25, The clean Mo substrates were (IM-oriented, The Pd depositions

were performed from a wire sublimation source at rates of

approximatel y 0,1 monclayers per minute while the background pressure

remained below 3x!0(-10) mbar. Research-grade CO was &6sorbed at

saturation dosages of 6L. It was found that as-deposited Pd islands 	 y

and layers exhibited bulk Pd adsorp tion properties for CO when the

palladium had been de posited at RT at thicknesses in excess of about

3ML. CO adsorp tion was, however, drastically reduced u pon annealing.

For islands, annealing temperatures of as low as 400K led to some

reduction in CO adsorption, whereas more severe reductions were found

to occur at 600K for islands and at BOOK for continuous multilayers,

The deactivation de pended on the Pd thickness, the substrate species,

and the extent of thermal treatments. Auger electron spectroscopy

(AES), thermal programmed desorption (TPO), and work function

measurements were combined to interprete the deactivation behavior in 	 a

terms of substrate/su pport interactions involving the diffusion of

substrate species towards the Pd surface. A full report of this work

(1) is included as Appendix 1,



The growth and annealing behavior of Pd on Mo(110) was studisd in

more detail for the deposit thicknesses up to 12 monolayers and

substrate temperatures up to 1800K, using AES, XPS, LEED, and work

function chan ge measurements. Similar to earlier work done on

Pd/W(ii0) by W. Schlenk and E. Bauer (Surf. Sci, 93, 1980, 9), Pd was

found to form a monolayer without alloying, but the LEED structure in

the submonolayer range is different from Pd/W(ii0) after heating to

700K, In thick layers (12 ML) annealed above 700K, clear evidence of

Mo diffusion into the Pd layer and alloyin g have been seen. Such

layers remained continuous u p to 1100K, Thinner Pd layers were found

less stabile and start coalescing into 8-dimensional crystallites

upon annealing between 550 and 650 Kt above 770 K they form Pd/Mo

alloy islands covered by a Pd monolayer and surrounded by a Pd

monolayer-covered alloy monolayer. Significant changes in Pd Auger

peak shape, as well as shifts of Pd core levels, are observed during

layer growth and annealing. A detailed report on this work (2) is

included as Appendix 2.

Other work performed in part under su pport of NASA-Grant NCC2-248

includes:

(i) CO Desorption from Supported Flu Particles (3),

The low-p ressure interaction of CO with small Ru particles supported

on UNV-cleaved muscovite mica has been studied, using flash thermal

desorp tion, AES, transmission electron microsco py (TEM) and

transmission electron diffraction (TED) techni ques, Average particle

a



sites ranged from 1.2 to 6 mm, No evidence of CO decomposition on Ru
[.

was found over p ressure and temperature ranges from i0( -11) to i0( -6)

I .	 mbar and 670 - 800 K, res pectively. Gas and temperature treatments

did, however, cause significant particle size dependent changes in

the morphology and dispersion of the Ru particles, which in turn

affected the CO desorption.

(ii) Surface Segregation of Minor Constituents in NiCrAl usin g AES

and XPS (4),

After heating to ii00K in UHV, the surface segregation of minor

constituents in undo ped and Zr and Y-doped NiCrAl alloys shows

considerable differences. In the undoped alloy, the surface becomes

rich in sul phur, whereas in Zr and Y doped alloys the segregation of

S to the surface is su ppressed. Comparison of AES and XPS results

suggests that Zr is more effective than Y in the su pp ression of S

surface segregation. Preliminar y results from in-situ oxidation of

the alloys strongly su pports the view that Zr not only inhibits the

segregation of S, a possible cause of oxide s palling, but also

modifies the rate of formation of an Al203 layer,

(iii) The Role of some Minor Constituents in NiCrAl Superalloysc The

Effect of a Surface Layer of Zr on the Segregation of Sulphur (5),

In order to separate bulk and surface effects of the inhibition by Zr

dop ing of S surface segregation upon heating of NiCrAl allo ys in UHV,

several monolayers of Zr were eva porated onto undoped Ni r rAI and

annealed up to 1000 K. Sul phur still r+eadil'r segregated, showin g that

the apparent competition for se g regation to the surface is not a
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free-surface effect, but a conse quence of the NiCrA1Zr bulk matrix.

The following papers, referenced in the proceeding summary report and

resulting from work su pported under NASA-Grant NCC2-248, were

p repared for publication in scientific journals:

(11 "Metal Support Interactions (MSI) During the Adsorption of CO on

Thin Layers and Islands of Ep itaxial Pd," b y Ch. Park, F. Soria, and

H. Popp&, submitted for publication, (Preprint included as Appendix

i),

(2) "Growth and Allo y ing pf Pd Films on Mo(110) Surfaces," by Ch,

Park, E, Bauer, and H. Popp&, submitted for publication, (Preprint

included as Appendix 2; this paper was p resented at the Annual

Meeting of the American Vacuum Society in Reno, December 1984).

(3) "CO Desor p tion from Supported Ru Particles," by Ch. Park, W.G.

Durrer, H, Poppa, and J.T, Dickinson, j, Catalysis, to be published.

(4) "Surface Segregation of Minor Constituents in NiCrAl Using AES

and XPS," by F.A, Marks, Ch, Park, R. Browning, and J.L. Smialek, to

be submitted for publication,

9

(3) "The Role os Some Minor Constituents in NiCrAl Su peralloys: Tf,e
j



Effect of a Surface Layer of Zirconium on the Segregation of

Sul phur," by R Browning, Ch, Park, F.A. Marks, and Ch.

Papageorgopoulas, to be submitted for publication,

3
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METAL SUPPORT INTERACTIONS (MSI) DURING THE ADSORPTION OF CO ON

THIN LAYERS AND ISLANDS OF EPITAXIAL PD

BY

Chan Park, Federico Soria and Helmut Poppa

Stanford/NASA'Joint Institue for Surface and Microstructure Research

NASA Ames Research Center

Moffett Field, CA 9403

Summary

Islands and continuous layers of Pd were grown in UHV on substrates

of Mo (110) c (14x7)-0, designated as MoOx , and on clean Mo(110),

respectively. It was found that as-deposited islands and layers

exhibited bulk Pd adsorption properties for CO when deposited at RT and

for Pd thicknesses in excess of about 3ML. CO adsorption was

drastically reduced, however, upon annealing. For islands, annealing

temperatures of as low as 400k led to some reduction in CO adsorption

whereas more severe reductions were found to occur at 600k for islands

and at 800k for continuous multilayers. The deactivation depended upon

Pd thickness, substrate species, and on the extent of thermal treat-

ments. AES, TPD, and Af Measurements were combined to interpret the
deactivation behavior in terms of substrate/support interactions

involving the diffusion of substrate species towardsthe Pd surface.

Introduction

It has long been recognised that the physical and chemical

properties of the material used as support for small metal particles and

clusters can influence the catalytic properties of such a metal/support

system to a significant degree. The first deliberate attempts to modify

and direct the catalytic behavior of metal/support systems through

E



systematic control of metal/support interactions (MSI) date back to the

work of Schwab (1) and Solymosil . Recently strong metal support

Interactions (SMSI) have received particular attention through the work

of Tauster et.al: s . Vannice and coworkers (4) . and through a symposiums

focusing on this area of intensive current research. in which G. C.

Bond  point:d out the principal difficulty that is often encountered:

distinguishing between intrinsic particle sits effects, electronic

interactions between metal and support, and other interactions such as

poisoning of the metal by support contaminants and alloying.

Furthermore, depending on the support material, interactions were

classified into weak (e.g. Al 203 , S102 ), medium (zeolitts), and strong

(e.g. TO2) interactions, the latter ones featuring particularly drastic

effects of high reductiog temperatures during catalyst preparation upon

CO and h2 adsorption and upon catalytic reaction selectivities.

At first glance a very different kind of metal-support interaction

has recently been discovered in thin metal overlayere on single crystal

metal substrates. Overlayers of Pd in the monolayer thickness range on

Nb(110) have been found? not to adsorb H2 and on W(110) 8 not to adsorb

CO. and we have previously published preliminary results  on the drastic

reduction of the adsorption of CO and H 2 on multilayer thick Pd films on

Nx(110). It seam that here also the situation is comparable to the

standard oxide support case in that genuine electronic 
10 

vs. alloying or

contamination effects have to be gistinguished with great care.

Thick Pd films evaporated in UHV (often onto mica or Al203

substrates) and characterized by various surface analytical techniques

have been used for model Chemisorption studies in a number of cases 11-13
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because of tha relative ease of deposition of Pd by sublimation and

because of the catalytic importance of this metal. Because of the

different method of preparing continuous epitaxial Pd surfaces of

varying orientation and differing degrees of cleanliness and micro-

structural morphology, results of gas adsorptions on deposited Pd films

have sometimes been found to be very different 
13,9 

from the respective

results on bulk Pd surfaces prepared by repetitive heating and

sputtering cycles 
14-19. 

However, more unambiguous experimental evidence

needs to be accumulated before the influence of surface contaminants,

micromorphology, and defect structure upon the adsorption of various

active gases is clearly established 
20-22; 

carbon contamination being a

particularly difficult experimental problem for Pd because of the

overlap of the respective Auger peaks.

Very thin and well-defined particulate Pd deposits on mica and such

refractory oxide substrates as Al 203 and MgO have been used in UHV for

catalytic model studies in this laboratory for a number of years23-26.

Temperature programmed desorption of chemisorbed gases, ex- and in-situ

transmission electron microscopy (TEM), and steady state low pressure

gas reaction studies were combined in different variations of an

integrated experimental approach 27 , where the size of Pd part'. 	 was

•
reproducibly varied between several hundred to less than l0A .

The growth of evaporated Pd layers on clean  and oxidized Mo(110)

substrates 
28-29 

provides an opportunity to perform controlled gas

adsorptions and desorptions simultaneously on both continuous Pd layers

and on discontinuous flat islands and with increased precision for

temperature, AES, and Pd flux control. In addition LEER and work
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function measurements become possible and can be used to help interpret

some of the unexpected previous results which concerned mainly a drastic

reduction of CO and H 2 adsorption upon relatively mild annealing of

island 
28,29 

and continuous film  deposits of larger than monolayer

thickness. The present study was initiated after some experimental

inconsistencies became apparent with further work. This has led to a

reassessment of the originally used CO dosages and provided such

additional information on the nature of the Pd surface deactivation

process for CO adsorption by making intensive use of improved work

function change (A#) measurements. We will show that the high energy
adsorption sites for CO on both islands and continuous multilayers of Pd

can be preferentially deactivated by a thermally activated process

probably involving substrate species. We also present evidence that

strong electronic support interactions that affect CO adsorption are

only important for Pd overlayers thinner than approximately 3 monolayers

for this substrate support syaten. In a future report the present

speculations about the specific nature of this substrate/overgrowth

intercction process will be examined further.

Experimental

As described previously 9,29 , the experiments were carried out in a

standard UHV surface analysis chamber with facilities for LEED, for line

of sight temperature programmed desorption (TPD,	 4k/s) into a

quadrupole mass spectrometer or by [o-lvin probe work function

measurements, for derivative AES, and for high temperature resistive

heating of a single crystal Ho ribbon of (110) orientation. When needej

a thermally stable 2—dimensional oxide layer characterised by a c(14x7)
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LEED structure 30 was prepared by heating the Mo(110) crystal at 1250k in

5x10 8 Torr of 02 for 7 min. resulting in an Auger peak to peak ratio of

0/Mo-.25 (Mo crystals with this stable oxide layer are in the following

referred to as MoOx substrates). Pd was deposited from a well outgassed

wire sublimation source with a deposition rate of approximately .1

ML/min which was calibrated by monitoring the Pd and Mo Auger amplitudes

(AA) during RT layer by layer growth of Pd on clean Mo(100) 31 (see Fig.

1). The background pressure during the deposition of a few monolayers

of Pd remained below I x 10-
10 Torr and never exceeded 2x10 ^ O Torr

during the long time deposition of thick layers. The C (272 eV) t Pd

(279 eV) : Pd (330 eV) Auger ratio was always smaller than 0 .18

(for a modulation voltage of 2 Vp-p);it was used as a measure of carbon

cleanliness and is 10 to 502 lower than previously reported handbook

values for bulk Pd.

All CO dosages used in this study were 	 saturation dosages of

6L, based upon nude ionization gauge pressure measurements in the main

vacuum chamber. Research-grade CO was introduced via a standard leak

valve from a higher pressure gas manifold line which was regularly

checked with respect to gas purity.
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Results and Discussion

(1) Pd islands on MoOx

Depending on the substrate temperature T s during Pd deposition and
deposition time"t (or amount Q of Pd measured in "equivalent monolayers"

EJ1 grown on clean Mo(110)), islands of varying average thickness and

r	 with an increasing substrate coverage epd can be grown on MoOg c (14x7)
substrates29 . As also shown previously, Auger measurements of AAPd,Mo

as a function of t or Q can determine the average island thickness (in

number of sonolayers, n) and 8 Pd. Islands thicker than approximately
3ML and as thick as 8-10ML can be prepared in the as-deposited state at

room temperature.

What is not obtainable from Auger measurements is the average

lateral extension of individual islands, for which a true Pd surface

area measurement is needed. The area A TPD under the first temperature
programmed desorption spectrum, TPD(1), of a saturation dose of CO

adsorbed at RT (see	 Fi -1. 2a as an example) can provide such

a measurement. Table 1 list the a Pd and ArPD surface areas nomalized
to the case of Q-10 E.ML when practically total substrate surface

coverage by Pd is obtained. As can be seen from Table 1, the ATPD

values do not differ significantly from OPd , an indication that the
total surface areas of the islands are not such larger thau their

projected surface areas; or that the ratio (1/d) of lateral to 	 f
E
}

"vertical" island dimension is quite large - even for the thin deposits

where large surface area contributions from non-horizontal island

surfaces could have been expected. (The 1/9 and 1 values also giver, Jr.

table 1 are based on the simplest possible 	 4el geometry of the

islands, namely square boxes of "size" 1 and thicknesE d). It is clear,
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therefore, that thin but rather large flat islands are growing at RT on

this substrate, which is not too surprising since rather good "wetting"

is expected in view of the only modestly reduced deposit/substrate

interaction on this semi-oxide type substrate32.

If the shape rather than just the area of saturated ( 6L) CO

thermal desorption curves from as-deposited Pd islands is considered

(see all (1) curves in Fig. 2 for a selection of Pd coverages), it is

obvious that different contributions from high and low-energy adsorption

sites are present. The thinner deposits have a slightly higher

proportion of low energy 19 , or 2-fold 
15 

sites (peak temperature Tp^

380k) when compared to the higher energy 219 or 3-fold 
15 

sites (Tpto

425k). This is the same trend that was noticed quite unambiguously in

our previous work with CO adsorption on small Pd particles grown on 2

different orientations of sapphire substrates
25,21,33 . Since the high

energy sites were more preferred on both large and better (111) oriented

particles, and the contribution from low energy sites definitely

a
increased with decreasing particle size (down to about 15 A diameter),

we tentatively correlated the high energy sites with adsorption on (111)

facet planes of the particles and the low energy sites with lower

coordination corner and and edge sited-

If this argument holds also in the present situation we would

have to assign the Tp 425k peak to desorption from the (111) oriented

flat island tops. LEED results on high Pd coverage island fits also

showed good (111) perfection (1x1 pattern) so that a good epitaxial

2-degree orientation probably could also be inferred for the smaller

island size deposits.
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Annealing, however, changes the adsorption behavior of CO on these

Pd island films drastically. One form of annealing is simply the

heating that the deposit experiences during the first thermal

desorption: TPD(1). As demonstrated in Fig. 2, the second :BPD in all

four cases leads to a desorption spectrum with sharply decreased peak

areas and with the preferred elimination of high energy adsorption

sites. (If TPD (2) is repeated only minor changes result). The search

for what can cause such drastic changes with respect to the normal

adsorption behavior of CO on bulk 
Pd14-19 

will be the subject of mucL of

the remaining discussions in the paper.

First of all a reduction of active metal area can occur during

massive coalescence and concomittant 3—dimensional island growth. But

for this to be happening the respective Pd Auger amplitudes (given in

Fig. 2) and the substrate/overgrowth Auger amplitude ratios (Mo/Pd in

Fig. 2) would have to change much more drastically than shown. These

Auger data can be explained either by small island rearrangements or by

the adsorption of as yet unidentified species migrating towards the

island surfaces, or by a combination of these mechanisms. In both cases

the Pd Auger emission would be reduced slightly and it is conceivable

that surface "poisoning" would be accompanied by a strong reduction in

CO adsorption on preferred sites.

More and better defined annealing studies were conducted to help

elucidate the nature of the thermally activated island deactivation

process. Fig. 3 shows Ist TPD spectra of 2 E.ML thick fresh deposits

that were subjected to 2 min anneals at the indicated substrate
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temperatures T  before the y were dosed with CO (6L at RT) for the sub-

sequent thermal desorptions. The results prove that heat treatments at

as low as 8UK above RT affect the subsequent adsorption of CO in a

clearly noticeable way, and preannealing temperatures above 600k cause a

severe reduction of the adsorption capability of the Pd islands. As

found previously, the high energy adsorption sites were preferentially

eliminated, and the peak temperature for the remaining sites dropped to

about 350k. It seems obvious, therefore, that even very mild heat

treatments caused small rearrangements of Pd islands on MoO x and/or

deactivating substrate species such as 0, Mo, or MoO y easily diffused

onto the originally clean Pd island surfaces.

The temperature regions which caused particularly severe changes in

the surface properties of the Pd islands were indicated best by A

measurements. Fig. 4 shows an example of a 3 E.WL thick film that was

subjected to successive 2 min anneals at increasing substrate

temperatures which were followed by AA and A^ measurements at RT

inbetween anneals. The AO data clearly point out the temperature

regions of 500-700K and 800-1000k that caused particularly strong

changes, a result which is corroborated by TPD measurements after

consecutive high T  anneals (see Fig. 12 which represents a comparative

summary of 
ATPD 

results). It is surprising, however, to see in Fig. 3

how comparatively little the corresponding Auger measurements reflect

the above mentioned surface property changes of the Pd islands; an

indication that only relatively minor rearrangements of island shapes

and dimensions occur up to 650k and that major changes take place only

above 900k. But such changes are very sensitively detected by A O

measurements.
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Pd deposits of much higher substrate coverage,B d , and

correspondingly greater average island thickness - see ref. (27) - were

more useful for Auger measurements which were intended to pinpoint more

clearly the diffusion of surface species during annealing. Fig. 5 shows

the annealing behavior of a much thicker island film (Q6*8 E.ML), and

when compared to the 3 E.M. thick film of Fig. 4 it is quite apparent

that major changes in island "dispersion" only occur for T aA 700k

perhaps an indication of diffusion retarded by greater film thickness.

Furthermore, the behavior of the AA for oxygen and Pd from 500-700k

indicates some diffusion of substrate 0 into the Pd islands 34 in this

temperature range. Above 700k either island shrinkage/thickening or

surface precipitation of Mo or some Mo 
T 

species - or a combination of

both - can again be inferred from the Auger annealing data.

Further evidence for the role of thermally activated diffusion

and/or island rearrangement processes in deactivating Pd island deposits

is contributed by the effect of elevated substrate temperatures Ts

maintained during Pd deposition. A T s of only 500k during Pd growth ( t s

50 min. for Q-5 E.M.) leads to well ordered Pd island films with.severtly

reduced adsorption capability for CO. The TPD spectrum consists only of

a small low energy peak with Tp-360k.

(2) Continuous Pd layers on Mo(110)

In the absence of other Auger detectable impurities, 0 and Mo

substrate species were suspected of causing the above mentioned

deactivation of Pd island surfaces, and some preliminary evidence for 0

deactivation was presented previously 29 . However, it is obviously very

difficult to distinguish by Auger between 0 on the substrate and 0 on

the Pd islands. Therefore, CO adsorption studies on continuous Pd

I\
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layers, grown on clean Mo (110), were initiated. The other reason was

the intention of directly correlating the adsorption behavior on thin

films of Pd with adsorption data on bulk Pd single crystals as reported

by many investigators in the past
14-19 . 

TPD measurements were also

needed from thick, continuous Pd deposits to calibrate the mass spectro-

meter sensitivity for desorbing CO.

Auger amplitude measurements for the RT growth of Pd/Mo(llq) were

presented in Fig. 1. They proved the layer by layer growth mechanism

during the early stage of deposition. In view of many previous results

of metal layers growing on metallic substrates (see, for instance, the

review by E. Bauer 35 ), whicb indicate that quasi-two-dimensional layers

reach bulk metallic properties only after several layers have been

deposited (usually n —5) and that in the case of Pd/W(110)16

particularly strong deviations of surface properties ( AO ) were noted

for n( 3, it first had to be established what "critical" thickness

behavior pertained in the case of Pd/Mo(}i0). Furthermore, a report 37

on the anomalous adsorption. of CO and 02 on Pd layers less than 3 ML

thick and our own CO adsorption results for Pd/MoOx indicate that the

"critical Pd layer thickness" to reach bulk adsorption also had to be

established for Pd/Mo(110).

Bare metal work functioc ( Q0) and CO adsorption/thermal
desorption measurements in the critical layer thickness range are

presented in Fig. 6a and 6b, respectively. The A# Pd data are given for

successive RT Pd dosages and for successive depositions at RT followed

each time by a 2 min anneal st T  - 800k. The results are quite similar

to the case of Pd/W(110) 36 although we tend towards interpreting the

800k measurements more in terms of diffusional adsorption of substrate
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species to the Pd surface rather than by massive coalescence and

3-dimensional growth of thick Pd islands on a Pd monolayer base. This

conclusion follows from respective Pd and Mo Auger data which do not

show sufficient change after 800K annealing to corroborate the above

monolayer base interpretation. Peak areas of first CO desorptions

ATPD(1) are plotted in Fig. 6b as normalized to the desorption peak area

of the thickest, bulk-like Pd deposit at RT (Qw 12ML). Both sets of data

for RT deposits clearly establish the fact that bulk surface properties

as determined by work function and CO adsorption measurements are

approached at a thickness of approximately 3?M, the same results as

previously found for Pd/W(110)8.

Although the first thermal desorption measurements employed with

the above as-deposited RT layers of Pd cause a small annealing effect by

short time heating to 550-600k (compare TPD(1) and TPD (2) curves of

Fig. 7), more severe changes of the CO adsorption behavior were expected

as a consequence of either continuing the TPD heating regime to

increasingly higher maximum temperatures for successive desorption

cycles (Fig. 7) or of subjecting the Pd deposit to 2 min anneals at

increasing T  inbetween desorptions (Fig. 8). What effect such

different annealing treatments have on Pd deposits of 4.5, 6 and 12 ML

deposits is demonstrated by TPD or Kelvin probe AJ measurements in Fig.

7 and Fig. 8, respectively. (The main advantage of the highly sensitive

and reproducible Kelvin probe measurements of the I ^ changes caused by

CO adsorption being their direct comparability with adsorption data of

other investigators whereas TPD sensitivities have to be carefully

calibrated). It is obvious from both types of CO adsorption/desorption

measurements that the adsorption behavior changes in a similar way upon
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annealing as was found for the discontinuous island films: preferred

elimination of high energy adsorption sites followed by drastic

reduction of the adsorbed saturation amount of CO which is combined with

a sharp reduction of desorption energy. As expected because of the

greater continuity and thickness, these deposits exhibited a somewhat

retarded deactivation behavior when compared to the Pd island films on

MoOx supports.

The higher information content of dynamic At studies with the help

in Fig. 9 with CO

6ML thick deposit

can be clearly

ailed scheduling of

of a good Kelvin probe arrangement is demonstrated

a
adsorption and desorption on a sever.1y deactivated

of Pd. Regions of chemisorption and physisorption

distinguished and used to check and adjust the det,

adsorption/desorption tests.

in the case of Pd islands on MoOx it had been found (Fig. 4) that

measurements can very sensitively detect small island rearrangements,

but the high work function of the MoO x substrate was dominating. Since

in continuous layers thicker than about 3 ML the bulk Pd work function

dominates for RT deposits, 	 changes brought about by annealing should

be more revealing in terms of Pd surface property changes. This is seen

in Fig. 10 for a 4.5 ML thick deposit where the work function changes of

the clean Pd adsorbent layer compared with the CO induced work function

changes after 2 min annealing treatments at increasing temperatures Ta.

The quasi-simultaneous decrease of AO Pd and d^maxCO is characteristic

for all overlayer thicknesses studied (up to -.,12ML), only the

temperature regions where the steepest declines of At Pd were found

depend somewhat on the as-deposited Pd layer thickness. As in the
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case of Pd islands on MoOx , the thicker deposits exhibit structural and

chemisorption changes at correspondingly higher annealing temperatures.

This is also evident in the behavior of substrate and overlayer Auger

amplitudes as s function of T  in Fig. 11 for 6 and 12 ML Pd deposits.

This figure furthermore indicates the Pd p-p Auger amplitudes expected

from continuous RT deposits of 1 to 4 ML thickness (according.to

calibrations similar to Fig. 1). When comparing with these thicknesses

the Auger results of Fig. 11 - although not as sensitive to annealing

treatments as AfPd - demonstrate that the drastic lowering of the Pd

work function and the CO adsorption cannot be due to massive Pd island

formation on a Pd base layer of appreciably less than 3 ML thickness.

If the Auger data had been compatible with such thin base layers, the

explanation for the drastic lowering of both the work function A f Pd and

the CO adsorption could easily be rationalized by the "thin layer

effects" of Fig. 6a and 6b. However, considering the Auger results of

Fig. 11, which also show stronger than expected Mo amplitude increases

for the most strongly deactivating T  region from 800-1000k, we feel

compelled to interpret the overall results in a different way now. One

possible explanation is the deactivation of the Pd surface by Mo

substrate atoms which react with and diffuse through the Pd overlayers.

This substrate/overlayer interaction is probably accompanied by some Pd

surface roughening through Pd island formation on relatively thick Pd

base layers (with M) 3 ML). The alloying characteristics of the NO/Pd

system 
38 

and the appreciably lower Mo bulk work function ( 4.9 eV) vs.

the work function of bulk Pd ( 5.5 eV) are qualitatively consistent

39with this picture. Although some contribution to the lowering of the

F

r



Page 15

work function of the Pd overlayer might also be expected from the

roughenir3 of the surface during layer break-up and 3-dimensional island

formation upon annealing (Smoluchowski effect 41 ). More speOOic LEED,

AES, XPS evidence in support of the surface alloying bypotbesis will be

presented in a forthcoming study40.

3. Comparison of Pd island deposits and layer deposits

Qualitatively the general deactivation behavior of both types of Pd

deposits with respect to the adsorption of CO is the same: The higher

and the longer the heat treatments the more drastic was the reduction of

the total adsorbed amount during saturation exposures, and this was

combined with the preferred elimination of high energy adsorption sites

and with a lowering of the desorption energy for the remaining sites.

Not surprisingly the details of CO deactivation depended

appreciably upon substrate species available, average deposit thickness,

and the various heating schedules employed. A summary of these effects 	
E

is presented in Fig. 12 in terms of CO desorption peak areas (for

saturation exposures) asnormalized to the peak areas for the 1st

desorption from as-deposited layers. It can be seen that (a) island

4eposits deactivate easiest and therefore, also show the biggest

differences bewteen 1st and 2nd desorptions (curve 1), (b) dynamic TPD-

anneals are shorter and, therefore, less deactivating than 2 min steady-

state anneals, and thinner layers deactivate more easily than thick ones

(curves 2, 3) and (c) a small amount of intentional 0 contamination on

the Mo substrate (AA 0 :AAMo0 .06) enhances the deactivation process under

otherwise identical conditions (curves3, 4). These results are all

compatible with the proposed deactivation mechanism that involves

diffusional mixing of substrate species (Mo or MoO y ) with the Pd over-

layers, a process which is probably accompanied by microstructural
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island rearrangements and overlayer roughening. Whether the substrate

species are located on or below the Pd surface and why they reduce the

activity of the Pd surfaces towards CO remains under investigation40.

Concludins Remarks

In many respects the metal/support system Pd/Mo(110) is a very

attractive model system for catalytic studies. From the point of view

of performing well controlled measurements of surface processes that may

be of basic interest in many catalytic systems in general and in

strongly interacting metal/support systems in particular (the SMSI

system Fe/TiO2 , which was recently studied in detail by Dumesic and

collaborators and showed evidence for Ti deactivation of the Fe particle

surfaces 42 , is a good example), the experimental situation for Pd/Mo

(110) seemed rather ideal, and first results appeared promising. In the

course of our efforts it became evident, however, that (1) the Pd island

sizes which could be grown on MoOx were larger than expected originally,

(2) the MoOx -c(14x7) oxide surfaces were not as non-reactive with Pd

as anticipated, and (3) the clean Mo(110) support surfaces also

interacted - perhaps alloyed - more strongly witAPd than expected. In

summary. therefore, metal support interactions in the Pd/O/Mo(110)

system were more significant than presumed initially.

This result has hae the overall effect of complicating the

experiments and their interpretations. On the other hand, however. this

work should indicate a rather promising combination of powerful

experimental techniques with which to investigate other metal support

systems successfully.

In this way our experimental approach can be expected to make a

contribution to solving the intriguing question of what constitutes
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MSI behavior.
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(E.ML)	 8( )	 ( DM	 ATPD`isPd	 IN	 (nil)

10	 100	 100	 1.00	 -	 -

6 60 74 1.23 17	 36

3 48 55 1.16 25	 36

2 36 45 1.24 32	 -

1.5 - 38 - -	 -

1 23 24 1.04 93	 -

.5 - 14 - -	 -

1	 I

TABLE 1
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Figure Captions

Fig. 1: Room temperature growth of Pd on clean Mo(110) as a function of

deposition time. Derivative peak to peak Auger amplitudes

are plotted for a Pd deposition rate of 0.1 ML/min.

Fig. 2: Temperature programmed desorption of saturated (6L) CO

exposures from Pd layers of varying average thickness Q ( in

equivalent monolayers, E.ML) on a MoO x substrate. Traces (1)

and (2) refer to the first two consecutive desorptions. The

p-p Pd Auger amplitudes are given as determined after the first

and second desorption; Mo/Pd are the respective substrate/

overgrowth Auger ratios.

Fig. 3: Saturated (6L) CO desorptions from 2 E. ML thick Pd layers on

MoOx substrates. Each freshly RT deposited Pd layer was pre-

annealed at Ta for 2 min before the first CO dose and

desorption.

Fig. 4: Change in work function (4 Pd ) and p-p Auger amplitudes of a

3 E. ML thick Pd layer on a MoO x substrate subjected to 2 &in

anneals at increasing temperature Ta.

Fig. S: Change of p-p Auger amplitudes for a thick layer of Pd on a

MoOx substrate following successive anneals (2 min) at

increasing Ta.

Fig. 6: (a) Work function change (AO Pd ) of a ho(110) surface covered

by consecutive and cumulative deposits of Pd at RT, or by

cumulative RT deposits annealed for 2 min at 800K after each

deposit. (b) TPD teak areas of first saturated CO desorptions

from Pd layers of increasing thickness Q deposited at RT on

Mo(110); the peak areas were normalized to the desorption
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Fig.6:	 peak area from a thick (12ML) RT deposit (100X).

Fig. 7:	 TPD spectra of a 6 ML thick RT deposit of Pd subjected to

consecutive 2 min anneals at increasing Ta.

Fig. 8: Kelvin probe work function measurements during the programmed

thermal desorption of 6L of CO from a 12 ML thick and a 4.5 ML

thick RT Pd deposit on Mo(110). After each desorption the Pd

deposit was annealed for 2 min at increasing Ta.

Fig. 9: Example of kinetic work function measurements with a Kelvin

probe; the adsorption and desorption process can be followed

in detail.

Fig. 10: Change of the clean P9 work function (^1C^ Pd ) and of the work

function induced by saturated CO exposures (4f CO max)of a 4.5

ML thick RT deposit of Pd on Mo(110). The AO changes are

monitored as a function of increasing annealing temperature

T .
a

Fig. 11: Influence of increasing annealing temperture T a (consecutive

2 min anneals) on the p-p Auger amplitudes of two continuous

Pd layers of different thickness deposited onto Mo(110).

Fig. 12: Summary of CO deactivation caused by annealing of Pd deposits

of varying thickness on MoOx and Mo(110) substrates; (--- J— —)

kinetic anneals by performing TPD to increasing maximum

temperatures, (- -^ ,) consecutive 2 min steady-state

anneals.

All CO desorption peak areas (A
TPD

) are normalized to the

respective peak areas for the first desorption from as-

deposited RT layers.
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Table 1

Comparison of normalized TPD - measured surface areas of Pd deposits on

MoOx for Pd layers of varying thickness (Q). Some values for average Pd

island lateral extension 1 and thickness d which follow from assuming a
.W-

simplified island morphology are also included.
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The growth and annealing behavior of Pd on Mo(110) is studied in

the thickness range from 0 to 12 monolayers at temperatures up to

1300 K using AES, XPS, LEED and work function change measurements.

Similar to Pd on W(110), different growth modes are found at room

and elevated temperatures. Dissimilar to Pd on W(110), the monolay-

er structure is different. Clear evidence for alloying is seen once

the films are thick enough to remain continuous during annealing at

temperatures up to 1100 K. At lower thicknesses the layers agglomer-

ate during annealing. A model in which Pd-Mo alloy islands are sur-

rounded by a distorted thin layer (1 - 2 ML) of Pd fits the results

very well.
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1. Introduction

Alloying in small particles and in very thin films has recently re-

ceived considerable interest in various fields of science and tech-

nology, for example in heterogeneous catalysis and in microelectro-

nics. In the first field the problem appears in connection with the

surface composition of bimetallic catalyst particles, in microelec-

tronics the interdiffusion of contact materials on semiconductor sub-

strates is of interest. In the past it has been generally assumed

that alloying is insignificant up to temperatures at which volume

diffusion sets in, extremely fine-grained films excepted in which a

certain amount of mixing occurs due to grain boundary diffusion.

Thus many epitaxy experiments of metals on metals with complete mis-

cibility were performed at temperatures between 200 °C and 400 °C

and analysed assuming no alloying. In particular, alloying was not

suspected if the film material was not soluble in the substrate. In

the present paper, which was stimulated by annealing-induced CO ad-

sorption anomalies(1) on thin film surfaces, it will become evident

that low temperature alloying can occur in thin films even if the

substrate is a refractory metal and has very strong interatomic

bonds as evidenced by a high sublimation energy, provided that the

substrate is soluble in the film material. A good example of such

a film-substrate combination is Pd on Mo. The solubility of Pd in

Mo is very small at temperatures below 1000 K but Pd can dissolve

slightly :.:ore than 40 atomic % Mo even at low temperatures (2). This

system is of interest in model catalyst studies(1) and in microe-

lectronics in which Pd and Mo are important contact materials. The

(110) surface of Mo was chosen as substrate because this is the

most densly packed surface which is expected to show the least al-

loying.
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2. Experimental

The experimental setup and procedures have been described previous-

ly(1). The system was equipped with a double-pass cylinderical m'-r-

ror analyser with integral gun, used for AES and XPS, LEED, quadru-

pole mass spectrometer, and a Kelvin probe with gold plated elec-

trode for work function change (AO) measurements. The base pressure

was 6 —7x1011 Torr and never exceeded 2x10 -10 Torr during long time

deposition of thick Pd layers. Pd was deposited by sublimation from

resistively heated Pd wire at a rate of approximately 0.1 ML/min.

The deposit showed no AES-detectable impurities. The (C(272 eV) +

Pd(279 eV)) : Pd(330 eV) Auger peak ratio was used as a measure of

carbon contamination; it was always smaller than 0.18 (for a modu-

lation voltage of 2 Vpp ), which is 10 to 50 % lower'than previously

reported handbook values for 'clean' bulk Pd. The Mo(110) crystal,

oriented to within 0.^5 0 , was cleaned by heating in oxygen which was

followed by repeated flashing to 2000 K until no carbon diffused to

the surface during prolonged anneals at 1300 K. The AES data were

recorded with typical beam parameters of 2 kV, 3.5 µA and modulation

voltages of 0.5 Vpp and 2 Vpp for Pd and Mo respectively. The XPS

data were acquired employing a computerized data acquisition system

with an energy resolution of about 0.5 eV. The temperature of the

crystal was measured with a W-5%W-26%Re thermocouple and correlated

with infrared and optical pyrometer readings.
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3. Results

3.1 Room temperature deposition

3.1.1 AES results

The Auger peak-to-peak amplitudes (AA) of Pd at 330 eV and

179 eV are shown in fig. 1 as a function of the number of P

at room temperature. The Pd AA increases linearly with rather wcli
I

defined breaks at the completion of each layer, which is character-

istic for two-dimensional layer-by-layer growth. The Mo AA decreases

in a similar way. The slope ratio of the first two linear segments

of Pd AA is s 2/s 1 = 0.559 averaged over several experiments. This

ratio is quite similar to the value of 0.59 for the Pd/W(110) sys-

tem(3). However, as shown in fig. 2a for a few selected Pd cover-

ages, the derivative Pd Auger peaks showed considerable peak shape

change, which can be clearly recognized by the changes in the re-

solution of the sub-peak of the 330 eV Pd peak. The peak-to-peak

height of the "S-peak" as shown in the insert of fig. la which is

characteristic for this resolution is plotted as a function of Pd

doses in fig. la. Within the limits of error the S-peak increases

proportional to the main Pd peak up to 1 ML and then decreases to a

minimum at about 2 ML. Thereafter it shows again a slight increase

which is proportional to that of the main Pd peak. As can be seen

in the numerically integrated N(E) curves (fig. 2b), the S-peak

changes are due to changes in the M4s5N 4,5N 4,5 doublet structure.

The low energy peak shows a considerable shift (about 0.85 eV at

3 ML) toward higher energy between 1 ML and 2 ML. Because of this

shape change with coverage, some of the derivative AES data were nu-

merically integrated. Fig. lb shows the area under the integrated
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Pd Auger signal (fig. 2b) as a function of the Pd AA. The data of

fig. lb are normalized at 3 ML to the Pd AA because at this cover-

age no further significant shape changes are seen so that negligi-

ble deviations are expected. It is found that the AA is 11 % larger

than the area under the Auger peak at one monolayer thickness. In

the second monolayer this difference decreases to zero. When the

integrated N(E) Auger peak areas are plotted as a function of Pd

dose (analogous to fig. la) a slope ratio of 0.690 is obtained for

the first two linear segments. Assuming the growth of (111) planes

of Pd layers with bulk spacing of d(111) = 2.25 R, an inelastic

mean free path length of	 8.16 1 is obtained for the 330 eV Pd

Auger electrons. This value agrees well with 8.2 R(4,5) for Ag

(351 eV Auger electrons) and is more reasonable than the value /1 =

5.8 A obtained from the derivative Auger peaks considering the gen-

eral energy dependence of the inelastic mean free path of electrons

in solids(6).

3.1.2 XPS measurements

X-ray photoemission spectra of the Pd and Mo 3d core levels and of

the respective valence bands were recorded. Fig. 3 shows the Pd 3d

core level spectra of Pd layers deposited at room temperature for

several coverages. The Pd 3d peaks for 12 ML are very asymmetric.

The asymmetry decreases gradually as the thickness of Pd decreases

and the peaks shift to higher binding energy from the approximately

bulk Pd binding energy at 12 ML (referenced to the clean Mo 3d core

levels). The shift of 0.4 eV is about the same for 2 ML and 0.7 ML

but the asymmetry is still smaller at 0.7 ML than at 2 ML. The 0.7

ML spectra differs from the 2 ML and 12 ML spectra in still another

respect: the FWHM of the peaks is only about 80 % of that at 2 ML
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and 12 ML. The 3d peak asymmetry is generally related to the densi-

ty of states at the Fermi level(?). The observed valence band spec-

tra are consistent with the above trend: With increasing Pd thick-

ness, a broad band with a sharp Fermi edge gradually develops. In

the 12 ML thick Pd layer distinct satellite structure at about 6 eV

below the Pd 3d 3/2 peak was observed, which was absent in thin lay-

ers. This satellite peak can be attributed to a 4d-valence electron

shake-up process(8). It is also consistent with the evolution of

the valence band in the thick layer. The Mo 3d core levels are ap-

proximately symmetric and the binding energy is independent of the

Pd thickness. The relative intensities of the Mo 3d 5/2 peaks for

various Pd overlayer thicknesses were used to calculate the inela-

stic mean free path of these electrons (1026 eV electron energy). A

value of X = 18 R is obtained which agrees well with literature

values (9).

3.1.3 LEED measurements

i
.-'	 The LEED patterns observed during the growth of Pd layers at room

temperature are quite similar to those of Pd on W(110) (3)• There-

fore, only the important features will be discussed. Up to one mono-

layer the RT deposits show an unsharp (1x1) structure with consider-

able background; the layer is pseudomorphic. With increasing Pd dos-

age, the unannealed Pd deposits show, in addition to the (lxl) pat-

tern, extra spots which can be attributed to a somewhat distorted Pd

(111) plane. At 12 ML the distorted (111) structure has approached a

nearly perfect hexagonal Pd(111) bulk structure. The alignment of

the Pd(111) layer relative to the Mo(110) surface follows the Nishi-

yama-Wassermann (NW) orientation relationship, Pd(110)/W(001).
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3.1.4 Work function measurements

The work function change (A& upon Pd deposition at room tempera-

ture is shown in fig. 4. Similar to Pd on W(110), the work function

decreases initially, passes a minium, increases monotonically with

further two-dimensional layer growth and saturates rapidly at around

3 ML. The minimum of the work function occurs at the coverage at

which the first layer is completed. The saturation work function

change of 4c^ - 600 mV agrees well with the work function difference

between bulk Pd(111) ( 5.55 eV ( 10)) and Mo(110) (4 . 95 eV(11)).

3.2 Deposition at elevated temperatures

The Pd deposits on heated substrates show a different growth mode.

Pd condensed in excess of 1 ML tended to form three-dimensional

crystals at temperatures as low as 550 K. Furthermore, Pd starts to

alloy with the substrate at temperatures above 750 K as will be dis-

cussed in the next section. Fig. 5 shows the Pd AA as a function

of the number of 2 min Pd doses at 700 K. The linear increase of the

Pd AA in the first segment has the same slope as that of room tempe-

rature deposits and indicates two-dimensional growth of the first

layer and no alloying. The slope ratio of s 2/s I = 0.2 is, however,

much smaller than for RT growth (s 2/a 1 = 0.559) which indicates for-

mation of three-dimensional crystallites on top of the first mono-

layer. The S-peak height also behaves quite differently from RT de-

posits after completion of the first layer. Instead of rapidly de-

creasing to small values, the S-peak decreases only slightly to ab-

out 80 % of its maximum value. This is compatible with the formation

of crystallites which contribute only a little to Auger amplitude

and S-peak height.

1
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The LEED patterns obtained during deposition at 300 K and 700 K dif-

fer considerably (fig. 6). At coverages below 1 ML, Pd deposition

at 700 K produced the "complex pattern" shown in fig. 6a. The same

pattern is obtained by annealing of room temperature deposits of si-

milar thickness above 700 K. This structure was not seen in Pd on

W(110) and may be considered as a distorted Pd(1ll) plane (see sec.

4). Purther deposition (at 700 K or at 300 K followed by annealing

above 700 K) leads to additional incorporation of Pd into the first

layer and the "complex pattern" is replaced completely by a (1x1)

pattern when approaching an ideal 1 ML. Above 1 ML, a (3x1) strue-

ture (fig. 6b) develops and improves in quality and intensity with

thickness. This structure was also observed in the Pd/W(110) system

and was interpreted as a distorted Pd(111) plane with the same sa-

turation density as a (lxl) structure(3). In addition to the (3x1)

spots, extra spots close to the Mo spots appeared at the same time

(fig. 6b). They are due to epitaxial Pd(111) crystals in Kurdjumov-

Sachs (KS) orientation(3). The extra spots increase in intensity

with increasing Pd thickness until they are the only spots seen

(fig. 6c, 12 ML). Pd layers annealed at higher temperature (1000 K)

after each dose show similar patterns. However, the (3x1) pattern

is much less developed than in the layer annealed at 700 K and did

not increase in relative intensity after about 20 min doses. In con-

trast to the (3x1) structure spots, the intensity of the epitaxial

Pd spots increased continuously, which indicates lateral growth of

Pd(111) crystals. The coexistence and independent behavior of these

two structures indicates that Pd condenses as three-dimensional cry- 	
)

stale which are surrounded by a thin Pd layer with (3x1) structure.

i
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The work function changes (/_^) upon Pd deposition at elevated tem-

perature ( e.g. at 700 K), or upon Pd deposition at room temperature

whicn was followed by annealing after each dose (at 800 K and 1000

•	 K, fig- 4), also indicate three-dimensional growth. Since the Kel-

vin xrobe measures the average work function, the measured 4 re-

presents an area average over regions covered by the initial two-

di-c.isional layer ( 1 - 2 ML) and regions covered by three -dimen-

sional crystals wit' ,j the bulk work function of Pd(111). In this

simple pl:ture the total area covered by three -dimensional crys-

tale can be estimated:

10- A111 111 
+ 

(1	 A 11 1
)4:p base 2 ML)^

where Aill is the f rartion of the surface covered by the Pd(111)

crystallites with work function 4- 600 mV and (1 - A111) the area

fraction covered by the monolayer tAfl - -250 mV) or by the double

layer %-0 - 300 mV). The measured 4 values of the Pd layer an-

nealed at 800 K might be explained by crystallites on a monolayer

base with total. area coverage of about 25 % after 40 one min doses

(equivalent to 4 ML average thickness). The ,# value of a deposit

annealed at 1000 K would require a surface coverage by crystallites

of less than 10 % on a 1 ML base for 4 equivalent monolayers of Pd

deposition. This disagrees with the LEED observation that the epi-

taxial Pd(111) st*ructure is dominating at this coverage which indi-

cates a high surface coverage by Pd(ill) after annealing at 1000 K.

The saturation of the ( 3x1) structure at a coverage as low as 2 ML

also disagrees with this simple coalescence picture. It is even

more difficult to explain the 4 values by assuming crystallites on

a 2 ML thick base layer. These observations lead to the hypothesis

that alloying occurs upon deposition or annealing at high tempera-

ture (> 800 K). This hypothesis will be examined in more detail in

the next section.
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3.3 A_.nealing

3.3.1 Thick layer (12 ML)

In order to understand more about the film structure and the posel-

bility of alloying, thick (12 ML) Pd layers were grown at room tem-

perature and annealed for 2 min at stepwise increasing temperatures.

The changes of the Pd and Mo Auger amplitudes and of A^ are presen-

ted as a function of annealing temperature in fig. 7. No significant

changes in Pd and Mo Auger signals occur up to 750 K. Above 750 K,

the AL of Pd decreases rapidly to a plateau between 950 K - 1090 K.

This is followed by a rapid decrease above 1100 K with the onset of

Pd desorption. Complementary changes are seen in the AA of Mo.

The work function changes seen at temperatures below 500 K were duc

to the desorption of small amounts of gases ( CO) adsorbed during

t
the waiting period from the residual background vacuum. The slight

increase in work function seen at 600 K may possibly . be associated

with minor annealing of surface defects. The work function decreases

drastically from 750 K to 940 K, which is followed by a minor drop

to 1090 K. Further changes above 1100 K are due to desorption and

are the reverse of the AO changes seen during deposition in the mo-

nolayer range. The first Pd AA drop at 750 K is accompanied by a

drastic decrease of the work function to 60 mV. Zfiis would correspond

to the work function of a very thin layer (less than 2 ML), which

would suggest massive coalescence into three-dimensional crystalli-

tes. However, the LEED and the Auger observations do not allow such

a simple interpretation. The LEED pattern of the Pd(111) layer in NW

orientation seen before annealing showed, surprisingly, no change

upon annealing up to 1090 K. No changes in spot spacing, sharpness,
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and intensity and no noticeable changes in the background intensity

could be observed. Only above 1100 K does the LEED pattern change

(fig. 9a): Mo(lxl) spots start to become visible in addition to the

Pd(111, structure, which indicates Vie onset of agglomeration and

possible desorption. This is followed by the disappearance of the

Pd(111) spots and the transition to the "complex pattern" at a cover-

age of less than one monolayer (1200 K). Because LEEP and AES show

no evidence of massive agglomeration upon annealing up to 1090 K

(and no detectable impurities are found on the surface), the dras-

tic change of 4 and of the Auger amplitude can only be explained
by alloying causing considerable diffusion of Mo into the Pd layer.

This picture is compatible with the bulk Pd-Mo phase diagram: the

solubility of Pd in Mo is very small at temperatures below 1000 K

but Pd dissolves more than 40 atomic percent of Mo at low tempera-

tures(2). XPS measurements were performed before and after the dras-

tic work function drop of fig. 7. Fig. 8a shows Pd 3d core level	 j

spectra of a 12 ML thick Pd deposit before and after annealing at

1000 K. Annealing up to 700 K did not change the Pd 3d peak. How-

ever, after a 1000 K anneal ; the 3d peaks shift significantly to

nigher binding energy by about 0.7 eV. Simultaneously, the large

asymmetry of the line shapes of the unannealed film is considerably

reduced. The satellite peak on the high energy side of the 3d3/2

line (E = 6 eV) also has disappeared after annealing at 1000 K. The

valence band spectra also show a significant change upon annealing

(fig. 8b). The sharp Fermi edge of the unannealed film, which is

similar to that reported for valence spectra of bulk Pd(6), recedes

to higher energy. Changes similar to our XPS observations were re-

ported for a number of bulk Pd alloys (Pd-A-(12), Pd-Cu(13,14)).

Although Mo 3d core levels did not show a change in binding energy

or line shape, they showed a significant intensity increase jy a
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factor of 2.2. These XPS results and the fact that the Pd layer is

still continuous at this annealing temperature, strongly support

the hypothesis of Mo diffusing into and alloying with Pd.

3.3.2 Thin layer' (1 ML)

In order to understand the alloying process during annealing, Pd

layers of various thicknesses were studied. First one extrem of

"thickness, i.e. the monolayer (1.06 ML) was examined. Fig. 10 shows

the Auger amplitude of Pd and Mo as a function of annealing temper-

ature. The Pd (Mo) Auger, AA shows only a slight increase (decrease)

upon annealing up to 950 K. This small change might be attributed

to the smoothening and incorporation of small amounts of Pd in ex-

cess of 1 ML into the first layer as mentioned in sec. 2. Beyond

950 K, a slight decrease of the Pd AA was noted which was followed

by a rapid decrease of the Pd AA and increase of the Mo AA due to

Pd desorption. A slow increase of the Pd "S-peak" can also be seen,

saturating at about 750 K, which is compatible with smoothing and

further incorporation of small amounts of Pd into the first layer.

These results indicate that in the case of a monolayer no evidence

of Mo diffusing into the top Pd layer was found so tnet the possi-

bility of forming a two-dimensional surface alloy by place exchange

with substrate atoms can be excluded. This is consistent with the

surface free energy consideration; the Mo surface w^ t ; high surface

free energy (2.28 J/m2) (15) tends to remain covered by low surface

free energy Pd (1.63 J/m2) (15).
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3.3.3 Layer of intermediate thickness (3.5 ML)

In contrast to the two extreme thickness cases (12 ML and 1 ML), Pd

layers in the intermediate thickness range deposited at RT undergo

severe changes in layer structure upon annealing. At 3.5 ML thick-

ness, the major changes in the Auger amplitudes and in A4 can be di-

vided into three stages as shown in fig. 11. The first stage starts

at 600 K. Pd AA and Mo AA change rapidly to plateaus and the work

function drops drastically (by about 500 mV). A slight increase of

the S-peak can be also seen in this stage. A second stage of trans- 	 T

formation begins at about 780 K: the Pd AA and.4 decrease and the

Mo AA increases. A further pronounced change of e+ sets in at 930 K

(3rd stage), at which temperature the desorption of Pd starts.

The LEED patterns of 3.5 ML thick Pd layere during annealing are

quite similar to those of a 5 ML Pd layer (see sec. 3.3.4). In ad-

dition to the Pd "(111)" spots, the (3x1) structure spots develop

right after the first work function drop is nearly completed (at

about 710 K). The intensity of the (3xl) structure spots then in-

creases with annealing temperature, is strongest at 850 K (fig. 9c),

and is visible up to 980 K, i.e. up to temperatures when

some Pd has already been descrbed. Upon annealing beyond 980 K. the

(3x1) structure disappears (fig. 9d) and transforms to (1x1) and

finally the "complex pattern" (fig. 9e) Is obtained in the submono-

layer range. For a Pd coverage range of less than 3.5 ML but greater

than 1 ML, for example 1.65 ML which was studied in detail, the gen-

eral annealing behavior was quite similar. However, the first and

second stage were not well separated so that the drastic 4 and Pd
AA decreases and the development of the (3x1) strucL-.ure were observed
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earlier (650 K). The first transformation stage can be easily attri-

buted to the simple coalescence and breaking up of a continuous lay-

er. This is in agreement with observation that the Mo LEED intensi-

ties increase significantly relative to the Pd intensities in the

first transformation stage. The second transformation stage may be

associated with Mo diffusion and alloy formation. The strong increase

of the Mo AA and the gradual development of the (3x1) structure,

which is assumed to be an alloy structure, favor this interpretation.

3.3.4 Layer of intermediate thickness (5 ML)

With further increasing thickness, the changes in the first annealing

stage become weaker and those in the second stage more pronounced.

Fig. 12 shows the annealing behavior of a 5 ML thick Pd layer. The

first stage begins here at 550 K. The Pd AA drops only slightly and

the 60 changes are relatively small compared to the 3.5 ML case. The

slight decrease of # below 500 K was again due to small amounts of

CO desorption. In the second stage, which starts at about 770 K, the

work function and the Pd AA decreases and the Mo AA increases dras-

tically towards a plateau region. The LEED patterns (fig. 9) were

already described above. The (3x1) structure with superimposed Pd

"(111)" spots appeared right after the first transformation stage

was completed and gradually saturated around 850 K (fig. 9c). The	
1

next drastic change at 980 K is due to the onset of Pd desorption.



- 15 -

4. Discussion

4.1 Low coverages 9 < 1 ML

The first Pd layer on Mo(110) grows two-dimensionally quite similar

to Pd on W(110)..However, unlike Pd/W(110), less than a monolayer

of Pd on Mo(110) showed a different LEED structure after annealing

("complex structure",see fig. 13a). This structure was observed at

various coverages 8 !, 1 ML and was independent of the way this cov-

erage was established. This indicates island formation of a struc-

ture which may be considered a distorted Pd(111) plane %'the reci-

procal lattice unit mesh is shown in fig. 13a). The Pd-Pd distance

in the Mo [UOij direction is increased to fit the Mo periodicity

and the Pd atom rows are parallel to the most densly packed Mo

011] atom rows. The angle between the unit mesh vectors differs

only by 2.80 from the substrate unit mesh angle and is, therefore,

still far from 120 0 . This structure was present in two equivalent

azimutal orientations: Pd (111)//Mo (110), Pd [110] //Mo jll l] , fill]
(Kurdjumov-Sachs orientation relationship) with an ideal saturation

density of 1.40x1015 atoms/cm2 which corresponds to a coverage 8 =

0.98 with respect to the Mo(110) plane.

Unlike the thicker Pd layers, there is no evidence of Mo diffusion

or surface alloying at a thickness of one monolayer or less. This

is understandable considering the appreciable differnce in surface

free energies of the two metals(15). The absence of alloy or com-

pound formation up to a monolayer is reported for a number of alloy-

ing metal systems provided that the substrate material has a high-

er surface free energy than the adsorbate material, such as Pb on

Au(16,17) and Au on Si(18). The AES line shape changes in the mono-

layer range are an immediate consequence of the reduced coordination
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of the Pd atoms. Up to 1 ML each Pd atom has at most 6 Pd neighbours.

During the formation of the second layer the percentage of Pd atoms

which have only 6 Pd neighbours decreases and attains 9 nelghbours

at 2 ML. This increase in coordination and the accompanying transi-

tion in electronlc structure from the (4d) 10 configuration of the

free Pd atom to that of bulk Pd produces a broadening of the Pd 4d

levels similar to, but larger than the broadening for the Pd 3d core

levels seen in XPS spectra (fig. 3). Due to increasing broadening of

the 4d(N4,5 ) levels of Pd above 1 ML, the M5N4,5N4,5 and M4N4,5N4,5

Auger transitions become broader so that the M4,5N4.5N4,5 doublet be-

comes less resolved (decrease cf the "S-peak"). In the submonolayer

range, the resolution is constant because Pd forms islands already

at low coverages and consequently the coordination does not change

significantly with coverage. In addition to their different Pd-Pd

coordination, Pd atoms in the submonolayer range differ from those

in the bulk in their electronic structure because of their contact

with Mo atoms. This can be seen in their drastically different ad-

sorption behavior of the Pd monolayer: a Pd monolayer on Mo(110)

does not adsorb CO(1).

4.2 Thick films

The LEED structure of 12 ML thick film shows the bulk Pd spacing

within the limits of experimental error. Similar to Pd on W(110), the

alignment of the Pd(111) plane relative to Mo(110) is Pd [1101//

MO[001] (Nishiyama-Wassermann relationship) when deposited at 300 K,

and Pd 1101 //Mo [111] , fill] (Kurdjumov-Sachs relationship) when de-
posited at 700 K. It is interesting that the thick layer is stable

upon annealing up to 1090 K whereas thinner layers agglomerate at

low temperature (stage 1). This may be so because too much material
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Is present in the thick layer so that coalescence is kinetically li-

mited at the low temperature of stage 1. During the growth of thick

epitaxial layers the strain energy may also be released by structur-

al rearrangements toward the ideal Pd(111) layer. The thick layer

remains continuous up to the onset of desorption. This may be ex-

plained by Mo diffusion into the layer, which stabilizes the struc-

ture against coalescence. The experimental results clearly show that

Mo diffusion into thick layer commences upon annealing beyond 770 K.

The composition of this layer which depends on annealing temperature

and time can be estimated from the Auger amplitudes of Pd and Mo.

The XPS intensities of Pd and Mo core levels provide another possi-

bility for composition calculation. The Auger amplitudes of Pd and

Mo on the well definedplateau at 1000 K (see fig. 7) are used to

calculate the composition. When considering only some idealized and

physically reasonable situations, a model structure (fig. 14) of the

composition Pd 2Mo with a monolayer of Pd on top fits the measured

Auger amplitudes and XPS intensities well. The Pd 2Mo phase has been

reported for bulk Pd-Mo alloys(2,19). The actual layer composition

may again be kinetically limited so that the Pd layer starts to ag-

glomerate and desorb above 1090 K before Mo saturates the Pd film to

the maximum solubility limit of 40 - 47 % Pd(2). The presence of a

monolayer of Pd on top of this alloy structure is also compatible

with surface free energy considerations.

4.3 Intermediate thickness region

Room temperature deposits of intermediate thickness are unstable

and can only exist due to kinetic limitations. This is clear from

LEED observations which definitely show two separate phases devel-

oping with increasing annealing temperature ((3x1) and Pd(111)).
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The heterogeneity of the layer structure leads to a picture for the

alloying process in which the layer first agglomerates (stage I),

and then forms three-dimensional alloy crystals (stage II). The on-

set temperature of stage I depends on the thickness of the layer.

Agglomeration starts earlier for thicker films: 650 K at 1.65 ML,

600 K at 3.5 ML, 550 K at 5 ML, and this may be due to increasing

strain energy in thicker films. Towards the end of the first stage,

the (3x1) structure starts developing and is strongest at about the

middle of the second stage. The gradual evolution, saturation, and

subsequent weakening of the (3x1) structure with increasing anneal-

ing temperature and with increasing Mo Auger amplitudes suggest that

this structure is coupled with alloy formation. The lattice constant

of the Pd-Mo alloys are independent of composition so close to Pd

(e.g. a = 3.89 A for Pd 2Mo(19) vs. a = 3.8898 A for bulk Pd) that

it is not possible to distinguish the alloy from pure Pd by LEED.

The driving force for alloying in the (3x1) structure is not only

the heat of mixing but also the reduction of strain energy in the

Pd layer by incorporation of Mo. Fig. 13b shows the reciprocal lat-

tice unit mesh of the (3x1) structure which was also chosen for Pd

on W(110) (3). Detailed examination of the intensity of the (3x1)

spots during growth suggests that the (3x1) layer may be as thin as

2 ML. The aliJy layer model for intermediate thickness is shown

schematically in fig. 14b. The Auger intensity calculation at the

temperature at which the (3x1) structure is best developed shows

reasonable agreement with this model. An idealized composition of

Pd 3Mo for the alloy island covered by a Pd monolayer and a surround-

ing (3x1) layer consisting of a monolayer of Pd 2Mo which is also

covered by a Pd monolayer fits the Auger intensities well. A rela-

tive area coverage of alloy island of 30 to 70 % can be estimated

for various thicknesses.
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5. Summary

The growth and annealing behavior of Pd layers on a Mo(110) sub-

strate is studied. The results can be summarize! as follows: 1). Si-

milar to Pd on W.(110), Pd forms a monolayer without alloying but the

LEED structure in the submonolayer range is different from Pd /W(110)

after heating to 700 K. 2.) In thick layers (12 ML) which were an-

nealed above 770 K, clear evidence for Mo diffusion into the Pd lay-

er and alloying has been seen. Such layers remained continuous up to

1100 K. 3.) Thinner Pd layers are less stable and start coalescing

Into crystallites upon annealing between 550 - 650 K ( depending on

thickness) and form above 770 K Pd-Mo alloy island covered by a Pd

monolayer and surrounded by a Pd monolayer -covered alloy monolayer.

4.) Significant changes in Pd Auger peak shape as well as shifts of
c
f

Pd core levels are observed during layer growth and annealing.
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Figure Caption

Fig. 1 a) Pd and Mo amplitude and "S-peak" height (see insert) as

a function of Pd doses (1 dose - 1 min). b) Peak-to-peak

Auger amplitude versus integrated Pd Auger peak area under

N(E) in fig. 2b.

Fig. 2 a) Derivative MNN Auger spectra for Pd coverage ranging from

zero to 3 ML illustrating siZnificant variation of peak sha-

pe with coverage. E - 2 kV, I - 3.5 A, Vmod -	 0.5 Vpp . b)

Integrated Pd MNN spectra after subtraction of a linear

background correction. Each curve corresponds to an increase

of 2 min doses of Pd, Pd coverage range: zero to 3 ML.

Fig. 3 XPS spectra fcr Pd 3d core levels Vor various thicknesses.

a) 0.7 ML, b) 2 ML, c) 12 ML, deposited at room tempera-

ture.

Fig. 4 Change of the work function of a Mo(110) surface versus Pd

doses (min) a) RT deposition, b), c) RT deposition and an-

nealed after each dose at 800 K and 1000 K,respectively.

Fig. 5 Change of Pd Auger amplitudes and S-peak heights as a func-

tion of Pd doses, deposition temperature: 700 K.

Fig. 6 LEED patterns from Pd on Mo(110) annealed at 700 K, 60 eV,

Pd coverages are approximately a) 1 ML, b) 3 ML, c) 12 ML.
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Fig. 7 Change of the work function AO and of the Pd and Mo Auger

amplitudes of a 12 ML thick Pd layer as a function of an-

pealing temperature. l min anneals.

Fig. 8 a) XPS spectra of Pd 3d core levels before and after 1000 K

annealing, initial thickness 12 ML. b) XPS spectra of Pd

valence band before and after annealing at 1000 K, RT depo-

siton, 12 ML initial thickness.

Fig. 9 LEE,D patterns from Pd deposits on Mo(110), a) e - 12 ML,

annealed at 1150 K, 60 eV. b) - e) 8 - 5 ML, annealed at

480 K (b), 815 K (c), 1040 K (d), 1165 K (e), 85 eV.

Fig. 10 Pd and Mo Auger amplitudes: and S-peak heights as a function

of annealing temperature, 8 - 1.06 Mir.

Fig. 11 Work function change and Pd and Mo Auger amplitudes as a

function of annealing temperature, initial Pd thickness

3.5 ML.

Fig. 12 Work function change, Pd and Mo Auger amplitudes as a func-

tion of Annealing temperature, initial Pd thickness 5 ML.

Fig. 13 Reciprocal lattice unit meshes a) of the "complex LEED pat-

tern", b) of (3xl) pattern (solid lines). Dashed lines: Mo

unit mesh.

Fig. 14 Models for Pd-Mo alloy layer structures a) thick layer (12

ML), b) intermediate thickness.
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