@ https://ntrs.nasa.gov/search.jsp?R=19860001672 2020-03-20T16:05:08+00:00Z

N\$6-11139

Naow - 3949 ! Unit /10

A Modeling Analysis Program for the JPL Table Mountain Io Sodium Cloud Data

William H. Smyth

Atmospheric and Environmental Research, Inc. 840 Memorial Drive Cambridge, MA 02139

and

Bruce A. Goldberg

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103

October 1985

Interim Report for Period June 1, 1985 to August 31, 1985

> Prepared for NASA Headquarters by AER

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle A Modeling Anal	lysis Program for the	3. Report Date October 1985
JPL Table Mount	6. Performing Organization Code	
7. Author(s) William H. Smyt	8. Performing Organization Report No.	
9. Performing Organization	10. Work Unit No.	
Atmospheric and 840 Memorial Dr Cambridge, MA	 11. Contract or Grant No. NASW-3949 13. Type of Report and Period Covered 	
12. Sponsoring Agency Name NASA Headquarte	Interim Report 6/1/85 - 8/31/85	
Washington, DC	14. Sponsoring Agency Code	
15. Supplementary Notes		

16. Abstract

A data quality review for the entire set of the 1981 Region B/C images has been completed and is presented. The review indicates that almost all images are of sufficent quality to be valuable in our analysis of this data set. Five data-correlation studies for the same data set have also been completed and are useful in classifying and studying the sodium cloud morphology and its interactions with solar radiation pressure and the plasma torus. Additional progress in developing new image processing techniques and in improving the Io sodium cloud model is also discussed.

17. Key Words (Selected by Author(s)) satellite atmospheres	18.	Distribution St	otement	
planetary magnetosphe	res			
19. Security Clossif. (of this report) Unclassified	20. Security Clossif. (of Unclassified	this page)	21. No. of Pages 21	22. Pric+*

*For sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

I. Summary of Research Performed in the First Quarter

Research activities in the first quarter have successfully included (1) completion of a data quality review for the entire set of the 1981 Region B/C images, (2) completion of five data-correlation studies for the entire set of 1981 Region B/C images useful in studying the sodium cloud morphology and its interactions with solar radiation pressure and the plasma torus, and (3) continuation of data processing and model preparation to support image analysis to be undertaken in the second quarter.

1. Data Quality Review of the 1981 Region B/C Images

Observational parameters for the 263 Region B/C images of the 1981 JPL data acquired over 14 nights are summarized in numerical form in Table 1 and in graphical form in Figure 1. Most of these images have been processed only preliminarily to remove background signals. Images on May 4, 5, 12, 13 and June 4 had undergone further processing to remove the instrumental response function and to normalize the image intensity. Because of this, the 110 images (42% of the data set) acquired on May 4, 5, 12 and 13 were chosen and thoroughly reviewed during the first project year. As a result of this review, further refinements in the image processing of these data frames were identified and the development of an improved image processing procedure is now nearing completion. The quality of the remaining 153 images is reviewed here as a prerequisite for selection of images in our model-data studies.

The results of this data quality review are summarized in Table 2 and were compiled by manual inspection of photographical products for each image produced prior to this project by the Image Processing Laboratory of JPL. Most images are composed by adding three data frames, where each data frame generally represents an exposure time of approximately ten minutes. Some images are, however, composed of only one or two data frames. The quality of the images is rated in the right hand column of Table 2 and qualifying comments are also indicated. As can be seen, almost all of the images are of sufficient quality to be valuable in our analysis of this data set. Those images selected for more detailed studies will, as noted earlier, undergo further image processing.

2. Data Correlation Studies

Five data correlation studies are defined in Table 3 for the set of 1981 Region B/C images. Each study provides a different classification for these images based upon their Io geocentric phase angle, ϕ , and their Io System III magnetic longitude angle, ψ . The five classifications are useful in identifying and then studying the effects of radiation pressure, the atom source characteristics, and the plasma torus sink characteristics on the morphology of the sodium cloud. Each correlation study lists those images that are appropriate for the defined classification, regardless of the image dataquality summarized in Table 2. Incorporating the results of Table 2 will then aid in selection and prioritization of images to undergo further image processing and then model-data analysis.

The results of the five data correlation studies of Table 3 are summarized in Tables 4-8, respectively. From Table 4, consecutive image studies are possible on all 14 nights, but short exposure times on March 25 and questionable data quality on June 4 might eliminate these two evenings (see Table 2). From Table 5, cloud stability studies are available for three image sequence pairs (also see Figure 1) which all have good to excellent data quality. If comparisons of these image sequence pairs indicate that the sodium cloud and its interaction with the plasma torus are stable over a few month time interval, then the procedure of comparing images of different dates in the correlation studies III, IV and V will represent a valid multi-faceted look at a common (although periodically time dependent) cloud-torus state. From Table 6, east-west image studies of the cloud morphology may be undertaken and used to explore the nature of east-west difference in the plasma torus also identified by optical torus emissions (Morgan and Fertel, 1984; Morgan, 1985) and by UV emission from the Io plasma torus (Sandel and Broadfoot, 1982; Shemansky and Sandel, 1982). From Table 7, System III variations in the electron properties of the plasma torus may be investigated by comparison and analysis of images. From Table 8, the effects of viewing angle on the cloud morphology may be investigated. The effects of system III variation can also be investigated by comparing images for somewhat similar phase angles, and excellent cases exist for ψ in the range from about 160° to 310° (see Table 8 and Figure 1).

3. Data Processing and Model Preparation

Development of image processing techniques to refine the 1981 Region B/C images has proceeded slower than expected at MIPL (Multimission Image Processing Laboratory of JPL) during the first quarter. Completion and verification of these techniques (Task 1b of Table 9) are now expected in the second quarter. Selected images will then be processed (Task 3a of Table 9) and data-model comparisons will then focus on some of the image studies discussed in the previous section. The new lifetime for sodium atoms in the Io plasma torus further improved in the third quarter of the first project year has been fully integrated in the cloud model this quarter in anticipation of these modeling studies in the second quarter.

II. Program for the Second Quarter

Data processing priority 1.b of Table 9 will be completed and selected images will be processed using this new technique (initiating Task 3.a of Table 9). Modeling analysis of these newly processed images will then begin and specific studies outlined in Table 3 will be pursued.

1

•

References

Morgan, J.S. (1985) Models of the Io Torus. Icarus, 63, 243.

•

.

- Morgan, J.S., and Fertel, J.H. (1984) An Imaging Search for Optical East-West Asymmetries in the Io Torus, <u>BAAS</u>, 16, 662.
- Sandel, B.R. and Broadfoot, A.L. (1982) Io's Hot Plasma Torus A Synoptic View from Voyager. J.G.R., 87, 212.
- Shemansky, D.E., and Sandel, B.R. (1982) The Injection of Energy into the Io Plasma Torus. J.G.R., 87, 219.

lo Geocentric Phase Angle

Figure 1. Observing Parameters for 1981 Io Sodium Cloud Images.

The angular coverage for the Io geocentric phase angle and the System III magnetic longitude of Io over which Region B/C images were recorded in the JPL Table Mountain Data Set is indicated for all 14 nights of observations.

Table l

.

1981 Region B/C Images: Observing Chronology

		Start Condi	tions		End Condit1	lons
Date		Io	Magnetic		Io	Magnetic
of	Time	Phase Angle	Longitude of Io ^T	Time	Phase Angle	Longitude of Io ^T
UDSELVALIONS	<u>(U1)</u>	(deg)	(deg)		(deg)	(deg)
25 March	7:03	25.2	275.3	8:23	36.5	312.7
5 April	5:18	89.6	365.0	7:40	109.5	70.9
6 April	4:33	287.3	290.7	5:52	298.5	327.3
6 April	6:38	305.1	348.5	7:44	314.4	19.1
28 April	4:21	84.0	200.2	8:50	121.9	324.9
29 April	3:18	279.2	117.5	7:15	312.9	227.1
4 May	3:10	215.4	209.2	9:43	271.4	30.8
5 May	3:17	60.0	159.4	9:25	111.7	330.2
6 May	3:07	262.5	101.4	8:27	307.9	249.5
12 May	3:15	44.5	147.5	8:56	92.4	305.7
13 May	3:20	248.9	96.6	8:51	296.0	249.6
4 June	3:34	47.2	377.3	5:48	66.0	79.5
5 June	3:38	251.7	325.6	4:07	255.8	. 339.1
5 June	5:27	267.2	16.0	5:55	271.1	29.0
6 June	3:48	95.8	278.0	5:56	113.9	337.3
14 June	3:38	282.7	208.4	5:20	297.1	255.7

[†]System III (1965)

			Table	2		
1981	Region	B/C	Images:	Data	Quality	Review

Date (UT)	UT Start	UT End	Frames	Quality
March 25	-	-	-	_ 1
	5:11	8:15	29	usablel
	-	-	-	_ 1

¹only raw data available; 16 images with most exposures 1 1/2 minutes, since images were so close to Jupiter; must add images for useful results; images were heavily masked in both east and west directions.

April 5	5:18	5:22	18	marginal ²
	5:25	5:32	19	good ²
	5:36	5:46	20	good ²
	5:48	6:03	21	good ²
	6:05	6:20	22	good (some saturation) ²
	6:24	6:44	23	good (some saturation) ²
	6:47	7:02	24	good ²
	7:04	7:14	25	very good ²
	7:17	7:24	26	very good ²
	7:26	7:36	27	very good ²
	7:40	7:50	28	very good ²

²Part of forward cloud truncated by mask.

April 6 (one)	4:33	4:40	11	good ³
	4:42	4:52	12	good ³
	4:54	5:09	13	good ³
	5:11	5:28	14	good ³
	5:30	5:50	15	good ³
	5:52	6:09	16	good ³
(two)	6:38	6:55	22	good ^{3,4}
	6:59	7:09	23	good ^{3,4}
	7:11	7:23	24	good ^{3,4}
	7:25	7:42	25	good ^{3,4}
	7:44	8:01	26	good ^{3,4}

³only raw data available.

⁴probably part of forward cloud truncated.

(continued)

Date (UT)	UT Start	UT End	Frames	Quality
April 28	4:21	5:01	25-27	good
	4:37	5:13	26-28	very good
	4:49	5:24	27-29	very good
	5:03	5:34	28-30	very good
	5:15	5:45	29-31	very good
	5:25	5:56	30-32	very good
	5:36	6: 07	31-33	very good
	5:47	6:18	32-34	very good
	5:58	6:30	33-35	very good
	6:09	6:40	34-36	excellent
	6:31	6:52	36,38 ⁵	very good
	6:43	7:03	38,39 ⁶	very good
	6:54	7:16	39,41 ⁷	very good
	7:07	7:27	41,42 ⁶	excellent
	7:07	7:37	41-43	excellent
	7:18	7:46.5	42-44	very good
	7:28	7:57.5	43-45	very good
	7:39	8:07	44-46	very good
	7:49	8:18	45-47	very good
	7:59	8:28	46-48	good
	8:10	8:38	47-49	good
	8:20	8:48	48-50	good
	8:30	8:58	49-51	good

5 _{two}	frames	only with 9 minute gap in the middle.
6 _{two}	frames	only.
/two	frames	with 1 minute gap in center.

April	29
-------	----

٦

•

,

•

 3:18
 3:43
 1-3

 3:26
 3:57
 2-4

usable

3:26	3:57	2-4	good	
3:35	4:07	3-5	good	
3:48	4:19	4-6	good	
3:58	4:32	5-7	very	good
4:10	4:42	6-8	very	good
4:22	4:53	7-9	very	good
4:32	5:05	8-10	very	good
4:44	5:16	9-11	very	good ⁸
4:55	5:32	10-12	very	good
5:06	5:43	11-13	very	good
5:21	5:55	12-14	very	good ⁹
5:33	6:08	13-15	very	good

Table 2 4) .

(CO	nt	1	n	u	e	d)
---	----	----	---	---	---	---	---	---

Date (UT) UT	Start	UT End	Frames	Quality
April 29 (cont.)	5:45	6:21	14-16	good
	5:57	6:32	15-17	good
	6:10	6:42	16-18	good
	6:23	6:52	17-19	good
	6:33	7:02	18-20	good
	6:43	7:14	19-21	good
	6:53	7:25	20-22	good

⁸background level increasing. ⁹little portion of forward cloud truncated by mask.

May 6	3:07	3:25	5-7	usable (twilight)
	3:12	3:36	6-8	good
	3:18	3:46	7-9	good
	3:27	3:57	8-10	very good
	3:37	4:08	9-11	excellent
	3:47	4:20	10-12	excellent
	3:58	4:32(?)	11-13	excellent
	4:09	4:44	12,13 ¹⁰	good
	4:22	5:01	13,15 ¹⁰	good
	4:50	5:12	15,16 ¹⁰	good
	4:50	5:24	15-17	excellent
	5:03	5:35	16-18	excellent
	5:14	5:47	17-19	excellent
	5:25	5:59	18-20	excellent
	5:36	6:10	19-21	excellent
	5:48	6:20	20-22	excellent
	6:00	6:31	21-23	excellent
	6:11	6:43	22-24	excellent
	6:22	6:54	23-25	excellent
	6:33	7:04	24-26	excellent
	6:44	7:14	25-27	very good
	6:55	7:28	26-28	very good
	7:05	7:40	27-29	very good
	7:18	7:52	28-30	very good
	7:30	8:05	29-31	good
	7:41	8:16	30-32	good
	7 : 54	8:26	31-33	usable ¹¹
		-	32-34	no good

.

¹⁰no signal in frame 14. ¹¹Jupiter close to horizon.

(continued)

Date	(UT)	UT Start	UT End	Frames	Quality
Iuna	4	-	_	-	_ 12
June	4	4:57	5:35	12-14	usable ¹³
		5:09	5:47	13-15	usable ¹³
		5:24	6:00	14-16	usable ¹³
	12 perhaps	more images	, but must e	xamine date o	on tapes.
	¹³ forward	cloud may b	e partially	truncated.	
June	5 (one)	3:38	4:05	5-7	marginal ¹⁴
		3:47	4:18	6-8	good ¹⁵
	(two)	5:27	6:09	11-13	good ¹⁵
		5:40	6:25	12-14	good
		5:56	6:39	13-15	good
		6:12	6:54	14-16	good
		6:26	7:07	15-17	good
	¹⁴ lots of ¹⁵ some ba	background ackground noi	noise. se.		
June	e 6	-	-		_ 16
		4:08	4:41	9-11	very good
		4:19	4:53	10-12	very good
		4:30	5:05	11-13	very good
		4:42	5:23	12-14	very good
		4:54	5:42	13-15	very good
		5:08	5:55	14-16	very good
		5:24	6:07	15-17	very good
	16 _{possibl}	ly more image	≥S •		
June	e 14	3:38	4:04	5-7	usable ^{17,18}
		3:47	4:15	6-8	$good^{18}$
		3:56	4:28	7–9	good
		4:05	4:40	8-10	good
		4:17	4:52	9-11	good
		4:29	5:05	10-12	good
		4:41	5:19	11-13	good
		4:53	5:32	12-14	good
	17 signal	to noise not	: very good		

¹⁸portion of forward cloud truncated by mask

1981 Region B/C Images: Five Correlation Studies†

I. Consecutive Image Study: $\phi(t)$, $\Psi(t)$ Cloud Stability Study: $(\phi_1, \Psi_1) \approx (\phi_2, \Psi_2)$ II. image sequences separated by 32 days III. East/West Image Study: $\phi_W = \phi_E + 180^\circ$ $\Psi_{\rm E} \approx \Psi_{\rm W}$ only one image-sequence pair $\Psi_W \approx \Psi_E + 180^\circ$ no image pairs $\Psi_{\rm E} \neq \Psi_{\rm W}$ many comparison images IV.

System III Variability Study: $\phi_1 = \phi_2, \Psi_1 \neq \Psi_2$

Io Phase Angle Variability Study: $\phi_1 \neq \phi_2$, $\Psi_1 = \Psi_2$ V.

 $t\phi$ = Io Geocentric Phase Angle

 Ψ = Io System III Magnetic Longitude Angle

1981 Region B/C Images: Correlation Study I

Consecutive Image Study: $\phi(t)$, $\psi(t)$

Image data suitable on all 14 nights

1.	March 25	
2.	April 5	
3.	April 6	
4.	April 28	
5.	April 29	
6.	May 4	(June 5)
7.	May 5	(June 6)
8.	May 6	
9.	May 12	
10.	May 13	(June 14)
11.	June 4	

1981 Region B/C Images: Correlation Study II

<u>Cloud Stability Study</u>: $(\phi_1, \psi_1) \approx (\phi_2, \psi_2)$

Three Image Sequence Pairs Suitable

(May	5,	June	6)	Io	east	of	Jupiter
(May	4,	June	5)	Io	west	of	Jupiter
(May	13,	June	14)	Io	west	of	Jupiter

.

1981 Region B/C Images: Correlation Study III

East/West Image Study: $\phi_W = \phi_E + 180^\circ$

1. East Images

^Ф Е	Ф _W
March 25	May 4
May 12	May 4, May 6, May 13, June 5 (one, two)
June 4	May 4
May 5	April 29, May 4, May 6, May 13, June 5 (one, two)
June 6	April 6 (one), April 29, May 4, May 13, June 14
April 28	April 6 (one)*, April 29, May 4, May 6, May 13,
	June 5 (two), June 14

2. West Images

φ_W φ_E May 4 March 25, April 5, April 28, May 5, May 12, June 4 June 5 (one) May 5, May 12 June 5 (two) April 5, April 28, May 5, May 12 May 13 April 5, April 28, May 5, May 12, June 6 May 6 April 5, April 28, May 5, May 12, June 6 April 6 (one) April 5, April 28*, May 5, June 6 April 6 (two) no candidates June 14 April 5, April 28, May 5, June 6 April 29 April 5, April 28, May 5, June 6

 $*\psi_E \approx \psi_W$ in addition

			Table	7		
1981	Region	B/C	Images:	Correlation	Study	IV

	Io Eas	st of	Jupiter	Io W	est of .	Jupiter	
_ ¢	Date	<u>e</u>	Ψ		Date	2	Ψ
50	June	4	26	250	May	13	102
	May	12	167		May	4	323
60	June	4	58	255	May	13	118
	Мау	12	198		May	4	338
<i>.</i> -	_		7.0		June	5	338
65	June	4	72				
	May	5	172	260	May	13	133
	May	12	212		May	4	353
70	May	5	190	270	June	5	25
	May	12	231		May	4	25
					May	6	128
80	May	5	222		May	13	167
	May	12	263				
				280	May	6	157
90	April	5	5		May	13	197
	April	28	219				
	May	5	256	290	April	29	153
	Мау	12	294		May	6	190
					May	13	232
100	April	5	37		June	14	232
	April	28	251		A pri1	6(one)	299
	May	5	288				
	June	6	288	300	Apri1	29	185
					May	6	223
110	April	5	70				
	April	28	283	305	Apri1	29	202
	May	5	322		May	7 G	238
	June	6	322		Apri1	6(two)	350
				310	Apri1	6	4
					Apri1	29	219

System III Variability Study†: $\phi_1 = \phi_2, \Psi_1 \neq \Psi_2$

tangles ϕ and ψ given in degrees

1981 Region B/C Images: Correlation Study V

Io Phase Angle Variability Study[†]: $\phi_1 \neq \phi_2, \psi_1 = \psi_2$

<u>Ψ</u>	Date	<u> </u>	_Ψ	Date	ф
0	May 4	262	140	May 13	262
	April 16(two)	309		May 6	274
10	May 4	265	1	April 29	286
	April 6(two)	312	150	May 12	45
20	June 4	48	1	May 13	265
	April 5	94 [†]		May 6	277
	May 4	268 [‡]		April 29	289
	June 5(two)	268 †	160	May 12	48
30	June 4	51	1	May 5	60
	April 5	97 [‡]		May 13	268
	May 4	271		May 6	280
10		-/ 2 /	l l	April 29	292
40	June 4	54	170	May 12	51
	April 5	100		May 5	63
50	June 4	57		May 13	271
	April 5	103		May 6	283
60	June 4	60		April 29	295
	April 5	106	180	May 12	54
70	June 4	63		May 5	66
	April 5	109		May 13	274
110	May 13	253		May 6	286
	May 6	266		April 29	298
120	May 13	256	190	May 12	57
	May 6	268		May 5	69
	April 29	280		May 13	277
120	- Mar 12	250		May 6	289
130	May 13	259		April 29	301
	may o	2/1			
	APTIL 29	283	1		

Table 8 (continued)

<u>Ψ</u>	Date	_φ	Ψ	Date	<u> </u>
200	May 12	60	250	May 12	75
	May 5	72		May 5	87
	May 13	280		April 28	99
	May 6	293		May 4	228
	April 29	304		June 14	295
210	May 12	63	260	May 12	78
	May 5	75		May 5	9 0
	April 28	87		April 28	102
	May 4	216		May 4	231
	May 13	283	270	May 12	81
	June 14	283		May 5	94
	May 6	296		April 28	105
	April 29	307		May 4	234
220	May 12	66	280	March 25	26
	May 5	78		May 12	84
	April 28	90		June 6	96
	May 4	219		May 5	97
	May 13	286		April 28	108
	June 14	286		May 4	237
	May 6	299			207
	April 29	310	290	March 25	29 97
230	May 12	69		May 12	07
	May 5	81		June 6	99
	April 28	93		May 5	100
	May 4	222		April 28	111
	May 13	289		May 4	240
	June 14	289	300	March 25	32
	May 6	302		May 12	9 0
240	Mar 12	70		June 6	102
240	May 12	72		May 5	103
	May D	84		April 28	114 [‡]
	April 28	96		May 4	243
	May 4	225		April 6(one)	290‡
	May 13	292			
	June 14	292			
	May 6	305			

Table 8 (continued)

<u>Ψ</u>	Date	φ		¥	Date		¢
310	March 25	36		330	June	6	111
	June 6	105			May 4	4	252
	May 5	106			June !	5(one)	252
	April 28	117 [‡]		350	May 4	4	258
	May 4	246			April (6(two)	306
	April 6(one)	294 [‡]					
320	June 6	108					
	May 5	109					
	April 28	120 [‡]					
	May 4	249					
	April 6(one)	297‡					

4

†Angles ϕ and ψ given in degrees †Io phase angles differ by approximately 180°

Data Processing Priorities

- 1. Improve Techniques to Remove Distortion in the Brightness Distribution of Images
 - a. Implement improved background subtraction techniques for images.
 - b. Improve techniques for removal of image distortion near Io produced by continuum light scattered by Io.
- 2. Determine the Absolute Brightness Calibration for the Images
 - a. Analyze 1981 1-D slit data on Io's disk and Region A image data to establish an absolute brightness calibration for the 1981 data.
 - b. Analyze 1976-79 1-D slit data on Io's disk to establish a brightness calibration for the 1976-79 data.
- 3. Prepare Images for Modeling Analysis
 - a. Using improved techniques in 1 above, remove brightness morphology distortions in a selected subset of images.
 - b. Using the information in 2 above, absolutely calibrate this selected subset of images.