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TECHNICAL PAPER

PROBLEMS EXPERIENCED AND ENVISIONED FOR
DYNAMICAL PHYSICAL SYSTEMS

I. INTRODUCTION

The use of high performance systems, which is the trend of future space systems, naturally leads

to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of

dynamic physical systems. To circumvent dynamic problems of these systems, appropriate design,

verification analysis, and tests must be planned and conducted. The basic design goal is to define the

problem before it occurs. The primary approach for meeting this goal is a good understanding and

reviewing of the problems experienced in the past in terms of the system under design.

Dynamic problems have been a continual companion of space systems design. The nature of these

problems has led to very dramatic situations including failures. In general, they have not been predicted,

due to either a lack of understanding or simplistic analyses even when understanding existed, because of

the large number of potential problems and limited resources. In addition, communication or the lack

thereof between various engineering disciplines precludes dynamicists seeing or knowing about potential

problem sources. Once the problem has occurred, dynamicists have a good batting average in recon-

structing the cause. As stated previously, the basic design goal is to define the problem before it occurs

and therefore preclude its occurrence by good design practices. This report reviews many of the dynamic

problems experienced in space systems design and operation, categorizes them as to causes, and envisions

future program implications, developing recommendations for analysis and test approaches.

II. GENERAL

Dynamic problems take many forms and can be classified into several categories. These are

determined by the basic phenomena or problem source that occur in each case. Misconceptions arise

from the idea that dynamic problems are only associated with structures and are in a forced response
mode. Dynamics are not only associated with structures. Dynamic oscillations are inherent in fluids,

thermal, gas, and electrical systems, all with modal characteristics of comparable form to structure.

These dynamical systems are amenable to analysis and test characterization. In space systems, most

dynamic problems do not occur in one isolated discipline but are an interaction between several

disciplines or subsystems required to meet mission objectives. Design analysis and test must simulate

the interactions of all aspects of the phenomenon or problem areas, such as control, propulsion,

structures, dynamics, natural environments, induced environments, and mechanical environments. Figure

1 illustrates to some degree the various interacting disciplines involved in stability and lifetime of a

typical rocket engine. Obviously, each area should also be analyzed and understood separately as well as

in system interaction. Essential in each area is a thorough understanding of the environments, physical
model, and material characteristics as well as their interactions with the various design functions being

supported by detailed engineering in each discipline area and the interactions in system analysis tech-

niques. Figure 1 shows that after each discipline area is well defined, feedback or interaction changes

occur in the discipline due to the multidiscipline interaction. First class space system design is a very

intricate balancing act between these interactions where a breakdown in any part (discipline, tasks)

unbalances and topples the system producing poor design with problem areas.
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Figure 2 is a schematic depicting this balancing act, showing all the components that support a

design with acceptable dynamic characteristics. Properly balancing discipline and systems oriented tasks

results in a quality, high performance product. A weakness in any leg causes problems and failures,

which is the subject of this report.

The most dramatic of all dynamic phenomena occurs when two or more of these areas interact
in a manner to create an instability (unbounded response). Instability, because of potential catastrophic

consequences and lack of general understanding, is dicsussed in more detail in the next section. Following
this discussion is a review of the various categories of dynamic problems to be discussed in this paper.

RESPONSE & I

/? ii \\
Figure 2. The balancing act of design and verification.
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A. Instability

Forced response of a structural system is a well understood and extensively documented area.

Textbooks on the subject abound. The response is always limited by the level of structural damping, the

forcing function, and the frequency ratio between force and response medium. The classical response of

a damped, single degree-of-freedom system under sinusoidal excitation is shown on Figure 3, plotted with

damping as a parameter. When the oscillatory force is removed, the amplitude always decays to static

amplitude. Forced response problems usually occur as fatigue problems, although in some cases the force

is large enough to cause nearly instantaneous failure.

3

/2 2

SINGLE-D. F. SYSTEMS WITH VISCOUS DAMPING

0

_"= 0.1,

/,

o, l :0,

I j, ------

0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3. Forced response of single-degree-of-freedom system.

In an unstable or a marginally stable system, this is not the case. The response is caused by a

motion in one part, such as structural element (example, aircraft wing) that creates a force (example,

aerodynamic) which further increases the motion. The increased motion, therefore, creates larger forces.
This closed loop continues until failure occurs or some limit is reached. Figure 4 shows the response of

such an interaction as a function of the product of frequency and damping (a) showing the response

amplitude increasing as -o decreases in magnitude until zero is reached. At zero, the amplitude
is unbounded and remains unbounded for positive values of o. The only significance of very small

negative values of a and the positive values of a is the rate at which a response value is obtained.

Analysis of this response characterization leads to several generalizations.

1) Marginally stable systems are very sensitive to parameter variations and can easily move into

unstable areas.

2) Systems near the instability point act like a limited forced response system, but can be easily

driven into the instability range.

3
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Figure 4. Marginally stable and unstable system response as function of

real part of root o.

3) Accurate definition of all forces, manufacturing, control, and the system models are required

if the system must operate near the stability boundary, implying more stringent analyses, test, verifica-

tion, and quality control.

The next section treats the categories, in addition to instabilities and forced response, used in this

report as an outline for discussing dynamic problems.
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B. Additional Categories of Dynamic Problems

The other areas important to the discussion of dynamic problems experienced are environments,

modeling, dynamic tuning, acoustical tuning, and manufacturing and quality.

Key to all dynamic problems is an understanding of environments. This involves the physics of

the problem and the ability to characterize it within the defined limits. Natural and induced environ-

ments are included here. Typical environments are aerodynamics, propulsion, acoustics, atmosphere,

solar, thermal, etc. The inability to accurately predict environments in both areas has been a key factor

in many of the dynamic problems encountered and is selected as one category for problem discussion.

Dynamic modeling of the structure, fluid, etc., is fundamental and has been one source of mis-

predicting dynamic problems. The advent of finite element techniques in conjunction with high speed,

large capacity computers is reducing these prediction problems; however, models are just that, models

which are based on judgment and assumptions. In other words, you only model well what you under-

stand well. System response can only predict what the model contains. Obviously, these same comments

apply to the total model, environments, structures, fluids, etc., and are the key part of the response and

stability analysis and becomes the next category for discussing problems.

Structural and fluid systems which are composed of more than one element of near equal size

tune up dynamically, drastically changing overall characteristics of the system leading to very complex

response characteristics. Because these system characteristics are very sensitive to small changes in the

elements and result in dynamic tuning, this is a fundamental category for studying dynamic problems.

Acoustical tuning falls into this same dynamic tuning area but is split out separately for emphasis.

Finally, the last category chosen for discussing problems is manufacturing and quality. This area is very

critical for high performance systems since small errors in manufacturing or quality control produce

large effects, including catastrophic failures in dynamic systems.

Fatigue and other areas are discussed in the response category as well as under modeling.

In summary, several categories have been selected for discussing dynamic problems.

1) Forced response

a) Environment

b) Response

2) Instabilities

3) Modeling

4) Acoustical tuning

5) Modal tuning

6) Manufacturing and quality

7) Dynamic testing (discussed under Modeling).



The choice is the author's and is certainly debatable. In somecases,a givenproblemwill show
up in more than one area,sincemore than one causewaspresent. For example,dynamictuning could
changethe system, again leading to an instability. The problem will be discussedonly under one
categorybut listed in both areas.

Table 1 is a matrix of problemsexperiencedlisted by the abovecategoriesand is provided asa
quick reference. All individual problemslistedwill bediscussedto someextent. Certainprojectsdo not
show problemsin all categories.This doesnot meanproblemswerenot experienced,but that the author
wasnot involved and did not haveknowledgeof the problems. The specificproblemsexperiencedwill
bediscussedin the next section.

III. DYNAMIC PROBLEMS EXPERIENCED

This section covers the problems by categories and by projects. Some areas contain more

information than others, not necessarily because of importance but because of abundance or lack of
documented data. As discussed previously, instabilities occur when some response generates a force

which amplifies the response, thus increasing the forces continuing until failure or some limit occurs.

Instabilities axe the most dramatic of all dynamic problems. Not only are they exciting to observe

but are both challenging and exciting to analyze. Predicting and explaining instabilities requires the

best of engineering, mathematics, and simulation. Instabilities of one type or another are part of the
history of space exploration development. The following is a thumbnail sketch of these experiences,

followed by a brief discussion of the experiences in the other categories.

A. Instabilities

1. Redstone Potentiometer Feedback

The first dynamic problem experienced occurred early in the Redstone rocket program. A
Redstone vehicle was in checkout and verification in a horizontal position in its transportation cradle.

These early vehicles were manufactured at Redstone, checked out, then transported to Florida for launch.

In this case, the control system was activated for checkout. The control sensors had a potentiometer

pick up, due to some fight shock, the wiper arm and moved it from one wire to another, which resulted
in a control signal. As a result, the jet vanes moved, exciting a structural mode. The structural mode in

turn caused the wiper arm to move back, creating a new signal. The result was a closed loop limit cycle

instability between the sensor (pickup), jet vane (inertia), and structural mode, ringing out at the first

mode frequency. The noise of this closed loop resonance was very loud, demonstrating vividly closed

loop instabilities. The fix was simple in that a filter was incorporated in the loop which filtered out the

frequencies associated with the modes and sensor pickup, breaking the loop and stabilizing the system.

A later design also changed the pickup to a continuous magnetic type adding margin to the problem

solution.

2. Jimspheres (Atmosphere Sounding Balloons Errativ Response)

Atmospheric environments are key to predicting space vehicle response during the ascent phase.

Atmospheric winds are the key parameter to loads, flight mechanics, and control predictions. As a

means of developing a statistical quantification of these winds, a balloon radar tracking system was

developed by MSFC's atmospheric group under the leadership of Dr. William Vaughan. The goal was to
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not only measure large scale or mean environments but to get an accurate quantification of the wind gust
down to 25 m wavelengths [ 1 ]. The attempt to measure these small gust effects met with frustration.

The smooth skin balloons were unstable (type of flutter or vortex shedding). In a controlled, no disturb-

ance environment, a rising sphere would oscillate (Fig. 5). A classical problem most would say. Dr. Jim

Scoggins found the solution by observing the golf ball, then instead of small dimples, he added many

conical spikes to the sphere's skin. The problem was solved. The sphere was stable (Fig. 6). The result-

ing data base used throughout NASA is evidence [2]. As a result, this modified sphere was named

Jimsphere (after Jim Scoggins) as well as the data base (Fig. 7). Many have a small tie clasp with a

miniature Jimsphere as a reminder of the agony one sometimes must go through the innovation required

for solution to unexpected problems.

7

Figure 5. Time 1.apse trace of rose .balloon released

at 11_25 p.m., August 2, 1963, during stable

atmospheric conditions and light winds.

Figure 6. Time lapse trace of Jimsphere balloon

released at 11:54 p.m., August 2, 1963,

during stable atmospheric conditions

and light winds.

3. Pogo

The most dramatic instabilities one experiences fall into the categories of aerodynamic flutter

[3,4] and propulsion system structural coupling (pogo). Pogo occurs when a longitudinal structural
oscillation is excited from some source such as combustion noise. This structural response sets up a

pressure wave in the propellant system usually at the tank bulkhead. This pressure wave is amplified by

propellant line modes including acoustics which are transferred through the engine system resulting in a

fluctuating pressure in the propellant flow which results in a thrust oscillation. This thrust oscillation
further amplifies the longitudinal structural mode creating the feedback or instability. The title "pogo"

was coined from the children's pogo stick which bounces up and down on a spring and generally depicts
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Figure7. The Jimsphereballoonwind sensor.

what the spacevehicleappearsto do. Key parametersand modelsin predicting pogoare (1) structural
dynamicsmodel, (2)propellant line structural dynamicandacousticalmodel, (3) complianceof liquid at
pumps, etc., (4) pump cavitation characteristics,(5) enginepower head gains. Figure 8 showsthese
basicareasand the pogo loop. Spacevehicleshavebeenplaguedwith pogo problems. Four havebeen
chosenfor discussion. Theseare the onesexperiencedon MSFC developedlaunchvehiclesor LeRC
managedlaunchvehicles(Air Force developed)that MSFChasbeeninvolved in the solution approach.
Other vehicleshavehad pogobut the authorhasno dataassociatedwith these.

STRUCTURA

.NG,N \1 ""

OSCILLATING THRUST

'
, oi.,os,)
I ENG..../

Figure 8. Schematic of pogo.
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a. S-IC Pogo (AS-502 First Stage)

The Saturn V second launch experienced pogo during the first burn. The oscillation was near

5 Hz and produced both lateral and longitudinal accelerations of 0.3 g's and 0.5 g's, respectively, at the

base of the LEM (Fig. 9). The primary structural mode was the first longitudinal free-free mode. The

LEM was an unsymmetrical structure which also had a cross-coupled mode near 5 Hz. Thus, the reason

for the lateral response [5,6]. The pogo instability acted as a forcing function driving the coupled LEM

response. Conversely, the lateral LEM response was uncoupled from the pogo instability. An unrelated

incident occurred during the pogo event. The SLA panel ruptured due to a flaw in the laminated honey-

comb structure tearing apart from trapped sea level pressure (Fig. 10). This SLA failure caused some

pain in that it focused investigation away from pogo, when in actuality, the two should have been

pursued independently.
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Figure 10. AS-502 SLA panel failure.

The response of the vehicle to pogo is shown on Figure 11, compared to an analytical model

after the fact prediction of the response. Prediction of instability prior to flight was varied, most pre-

dicted a stable system while a few predicted slight instability. The early pogo models were, in fact, not

accurate enough to handle the subtle changes that lead to problems. In fact, the first Saturn launch,

AS-501, had no sign of pogo, while AS-502 had severe pogo. Why the difference? The only difference
in the two vehicles was a 1,000-1b total weight change with a weight distribution change in the LEM

area. Figure 11 shows the effect of this small weight change on the modal gain promiment in the pogo-

coupled loop. This dramatically shows the effect of small changes creating large effects when a system

is operating near a stability boundary and has a large energy source to feed the instability (engine thrust).

The problem was solved by incorporation of an accumulator in the fuel system (Fig. 12), detuning

and desensitizing it. S-IC pogo did not reoccur during the Saturn program.

b. S-II Pogo (Second Stage AS-503-508)

The S-II stage of Saturn had a very intriguing and baffling series of pogo or so-called forced

oscillation response culminating in the near disastrous AS-508 flight. The oscillation occurred early in
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the S-II stageburn and reachedlargeaccelerationamplitudes(thrust frame crossbeam)of 33 g's at 16
Hz, and the resulting largepressureoscillationsshut the enginedown at 160secof S-II burn. Figure 13
showsa short portion of the pressurein psig and the accelerationin g's. Notice the nonlinearityof the
pressureandthe linearity of the structuraloscillations.
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Figure 13. AS-504 flight data.

Looking into the details of each flight up to and including AS-508, one discovers quickly the
intricacies and so-called anomalies of pogo. Pogo was not apparent for the S-II stage (probably because

of poor instrumentation) until AS-503. AS-503 had a self-limiting, local pogo-type oscillation near
480 sec flight time. Concern was raised in the Pogo Working Group over this oscillation and potential

vehicle problems. After much discussion and analysis, it was generally agreed that the next vehicle could

be made pogo safe by increasing the ullage pressure which would raise the lox line frequency and

decrease the pump gain [5,7].

AS-504 did not follow predictions. In fact, it did the opposite. Between 500 and 540 sec, a

17 Hz oscillation occurred locally in the thrust frame region and reached a peak amplitude of +12 g's

(Fig. 14). Again, the oscillation was self-limiting. A more detailed look at pump and engine test data
revealed that indeed the increase in ullage pressure would bring into play nonlinearities which would

increase the gain and thus the instability.

By now, it was becoming clear that many things were missing; more data must be acquired.
Instrumentation of flight vehicles had to be improved in order to acquire better flight data. The ability

to model the bulkhead hydroeleastic characteristics was very poor and limited to the first mode. Elimina-

tion of this shortcoming required updated analysis and a comprehensive hydroelastic test program for

data and verification. Additional line and engine tests were required to better define these characteris-

tics, particularly since no analytical approach was available. In the interim, in order to maintain launch

schedules, it was decided to shut down the S-II center engine 60 sec early and avoid the pogo problem.
This certainly appeared to be a winner, since no real performance loss was incurred. Several members of

the Pogo Working Group, while agreeing with the approach, felt the problems were not licked. Others
became complacent, attempting to reduce the effort being expended. The lack of real concern for the

S-II pogo is exemplified by the coined identification of the S-II pogo characteristics as "mini pogo,"
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because of its localized and self-limiting characteristics. The AS-505 and AS-506 flights added to this

attitude, since no pogo was observed using the center engine early cutoff. Improved instrumentation was

still not on the flights and was planned for AS-507.

AS-507 was the next flight to experience significant pogo oscillations. Several bursts of pogo

oscillations, termed "footballs," occurred in the vehicle response showing that the pogo loop was mar-

ginally stable at best. Figure 15 is an amplitude comparison of several S-II flights. The appearance of

the footballs on the AS-507 flight caused much soul searching, analysis, etc. Nonlinear analysis was

showing stable limit cycles. This led to the stable fimit cycle theory. Many experts were disagreeing.

Better line, engine, and hydroelastic data were becoming available, and the MSFC linear stability analysis

was showing marginal to unstable conditions for AS-508. In spite of the variety of viewpoints, the

stable limit cycle position was recommended to management and AS-508 was safe to fly.

AS-508 was the biggest surprise yet. Between 120 and 160 sec, oscillations started at 16 Hz

producing an amplitude of 32 g's or greater. The poor prediction was due to inadequate nonlinear
characterization of the system. After the fact, modal analyses were conducted using three flights and

test-determined nonlinearities (Fig. 16), pump inlet compliance, nonlinear damping, and nonlinear pump

gain, and showed that by using these nonlinearities, a reasonable duplication of all S-II pogo flights

could be obtained without simulation adjustments other than known vehicle flight-to-flight differences.

Figure 17 shows a comparison of the AS-508 delta PC trace and the simulation of the AS-508 delta

PC using the nonlinear response analysis showing good agreement. This approach becomes important
for verification of the fix since the accumulator had to be filled after S-II engine start.

The violent pogo oscillation occurs because the pump operating pressure head rise drops below
the knee of the curve at Pcr, hence deep cavitation and large nonlinearities. Why did AS-508 go berserk

and AS-507 did not? It is believed that small differences kept the oscillation below Pcr and, therefore,

the nonlinear damping produced a stable limit cycle, while AS-508 reached an amplitude where the

nonlinear damping was overridden by the nonlinear pump gain characteristics (Fig. 18).
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After AS-508, there were no doubters. The S-II pogo problem had to be fixed. This was not

to be easily accomplished. Several different techniques were pursued as fixes. Helium injection into

the propellant line would lower the lox line frequency and decouple the system. Because of potential

system impacts, this was ruled out. The J-2 engines could not be started with helium being injected into
the line. It was finally decided to put a wrap around accumulator on the line near the pump and fill it

after starting the engine. This meant that the line frequency would sweep the bulkhead and cross beam

modes/frequencies introducing momentary resonance and instabilities. It was feared that these oscilla-

tions might trigger nonlinearities and become catastrophic. Also, failure modes could cause partial filling
of the accumulator and worse stability problems. Much analysis and detailed design considerations were

required to eliminate problems and verify they would not occur. Future flights, pogo free, were icing

on the cake.

c. Titan-Centaur/Viking

The Titan-Centaur was used as the launch vehicle for the Viking probes. Two very interest-

ing and enlightening incidents occurred during this program. The first was a development launch using
a Viking simulator. Two things occurred that led to a pogo oscillation (self-contained) that Viking

could not sustain (structural loads limitations). (1) The Viking simulator dynamic mode (only mass

simulate Viking, not dynamically) tuned with the overall vehicle mode greatly reducing damping and

increasing the modal gain important to pogo. (2) The vehicle stood in a very cool wind changing the

propulsion system gain. These two apparently minor changes show the sensitivity of systems that have

a propensity of closed loop unstable oscillations with large energy sources.

The next launch using this vehicle was the German Helios spacecraft. A spacecraft somewhat

comparable to the Viking in mass and dynamic characteristics. Since the Helios was not as load sensitive
as the Viking, it was decided to take the pogo risks and launch without fixes. Again, surprises came.
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This vehicle had a pogo oscillation larger than the Viking simulator launch and other previousTitan-
Centaur launches. Again, two things were significant in the pogo oscillation. (1) The coupling of the

payload with the launch vehicle (smallest factor). (2)The vehicle sat two days on the pad fueled. The

propellant became effervescent (bubbles formed) changing the line/cavitation bubble frequency, thereby

increasing the closed loop gain.

The message was clear: Titan must have pogo suppressors installed before Viking could fly.

History shows that the fix was successful as was Viking. The message was don't flirt with pogo, design

it out.

Other launch vehicles have had small pogo-type oscillations that were not damaging in nature.

Examples are Atlas HEAO, Satum S-IVB stage, and Titans.

This very brief discussion has shown the very interesting and potentially dangerous aspects of

structural propulsion closed-loop coupling, clearly indicating the requirement to design out sensitivities

of the system to this type coupling. Illustrated dramatically were the large effects of very small and

apparently insignificant changes.

4. Ground Winds (Vortex Shedding), Panel Flutter, Separated and Oscillating Shocks, Control

Feedback Flutter

Aeroelastic instabilities are classical in nature and are well documented. Reference 8 provides an

excellent history and summary. Several excellent textbooks are also available. These type instabilities
result from a structural oscillation setting up an aerodynamic (or flow) force phased such that the struc-

tural oscillation is reinforced. They take many forms, such as classical flutter, vortex shedding, diver-

gence, buffet, stall, etc. Readers desiring more information should go to the numerous textbooks,

articles, etc.

a. Ground Winds Vortex Shedding

The Saturn V Apollo was analyzed early for classical vortex shedding using both analytical

and scale model testing. Being essentially a cylinder, the vehicle showed clear vortex shedding problems,

particularly since it must spend up to 30 days on the pad exposed to ground winds. As a result, a

system was designed which damped the vehicle against the test stand. In addition, a wind velocity
criterion was used which required installation of the damper when above critical wind levels were being

predicted. Also, dampers were used during any free standing time on the pad. Figure 19 is a picture of
Saturn V with dampers installed. Figure 20 shows the maximum ground winds (speed) versus bending

moment capability. Figure 21 translates these critical wind velocities by critical axis.

Space Shuttle was not a configuration susceptible to classical vortex shedding; however, it falls
into the arena of the classical stop sign flutter, named from road signs fluttering at certain wind speeds.

Scale model wind tunnel tests verified the stop sign flutter potential. The flutter limit was determined

relative to the pad Shuttle interface stiffness. The final design showed no stop sign flutter problem due

to the naturally large torsional stiffness arising from the vehicle configuration and the four holddown/

supports on each SRB.
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b. Panel Flutter

Panel flutter has been a concern on all space vehicles. Most were analyzed, tested, and shown

not to be a problem. The Saturn Apollo S-IVB Stage in early analysis and wind tunnel tests showed a

potential panel flutter problem. Initially, a flutter suppression kit was installed and flown. After the

flight using flight instrumentation, it was shown that the delta P, buckling, threshold durations, etc., was

such that no flutter instability existed, and the kit was not flown on subsequent flights.

c. Oscillating Shocks Waves

Separated and oscillation shocks have been a major concern in design of space vehicles, in

particular the cylindrical ones with various diameters with transition zones (cones) between stages.

Experiences bear out the validity of these concerns. The S-IC Stage of the Saturn V Apollo had an
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oscillating, separate shock at the rear that coupled with the plume causing an overall oscillation of the

shock and plume. Detailed movies of this area during ascent clearly showed the oscillation. This oscilla-

tion did not couple with or drive the structure; therefore, nothing was done to eliminate it. The S-II

Stage did have an oscillating separation shock which drove the panel, creating loads problems. Longi-

tudinal stringers were installed as stiffeners for stabilization, solving the problem. Figure 22 shows a

typical shock obtained from wind tunnel (Apollo S-IVB fairings). The shortness of this discussion does

not imply corresponding lack of concern or effort. The opposite was true. Much analysis and wind

tunnel testing was used to clear the design.

d. Control Feedback Instabilities

1) Jupiter Sloshing Instabilities. A closed loop control instability occurred on the early

Jupiter firings. The Jupiter was a liquid propelled military vehicle. Sloshing propellant coupled through

the control system and became unstable. This instability saturated the control system, the vehicle went
out of control during maximum dynamic pressure regime of launch, and broke up. The results were

dynamic with beautiful fireworks high in the sky, but very costly to the program. The instability was

aggravated by the trajectory tilt program. The tilt program was a series of discrete steps instead of a
continuous functional change which started the oscillation and reinforced the amplitudes of the wave

through a forced oscillation [9,10]. At this early phase in the rockets and space age, models did not
exist for analyzing problems of this type. As a result, several things happened. Propellant sloshing data

had to be obtained quickly. No analytical solutions were readily available. A test program was started
that included both scale model and full scale testing. A slosh suppressor had to be found before the

next launch. In order to meet this goal, a full size propellant tank filled with water was placed on a

railroad car. The railroad car was bumped against the track end stop as an excitation source. The first

test was without suppression devices. Water was used to simulate propellant to establish frequencies,
etc. Various devices were tried next as suppressors. The one chosen was called beer cans, which con-

sisted of long perforated cylinders with flotation spheres at the top. The entire surface of the propellant
was covered with these devices (Fig. 23). The test showed more than adequate suppression was achieved,

and the next launch was slosh free. In the meantime, other solutions were pursued including develop-

ment of analytical characterization of the sloshing propellant. This resulted in the development of slosh

baffles [rings inside the tank that became part of the structural stiffness (Fig. 24)], as the most effective

analytical means of suppressing slosh, and parametric test data were acquired for oscillating propellants
in both zero and high g fields. All space vehicles today are analyzed and designed with this phenomenon

in focus as a potential problem. The lack of analytical and experimental data prior to launching as well

as lack of experience in these type problems led to the failure of the Jupiter missile due to propellant

sloshing control system coupling. The fix was fairly easy and did not impact flight schedules drastically.
This is not always the case and repeats of this type instability should be avoided if possible. The inno-

vative way special tests were conceived and conducted to meet launch schedules should be a lesson in

this age of precise testing, etc. [ 10,11 ].

2) S-IVB/IU Shell Mode Coupling. Another example of control instability was the shell
modes of the S-IVB/IU coupling with the control system (rate gyros and reaction jet control system).

The amplitude was limited by the maximum pulse level of the jets. This was a classical structural control

interaction instability. The occurrence did not cause any real problem to the flight; however, due to

concerns of gyro saturation, etc., the problem was fixed by filtering the shell modes signals out of the

control loop.

3) S-IV Guidance and Propellant Utilization System Coupling. A very interesting and unusual

instability occurred on the S-IV stage of the Saturn I vehicle due to a coupling between the guidance

system and the propulsion system. A propellant utilization system was used which measured the

propellant levels in each tank changing the mixture ratio so that better efficiency could be obtained
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Figure 23. Floating can slosh suppression device.
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through simultaneous propellant depletion. This information was fed into the guidance system. When

a guidance command was given, the vehicle rotated causing propellant sloshing, which created changing

propellant levels, hence more guidance commands. As the guidance gains increased towards the end of

flight, the system became unstable. Simulations that had trajectory, control, guidance, propellant utiliza-

tion system, and sloshing were required to understand the problem and design filters to solve the problem

(Fig. 25). Digital and analog simulations were the main ones. Luckily, this problem was uncovered and
solved just prior to the 201 flight circumventing an unstable situation and possible loss of mission [12].
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4) Clustered Engine Cross Talk. One control problem with clustered engines stands out.

During static firing of the cluster and engine gimballing, the engines started cross talking due to the
flexible thrust frame. Additional stiffness was added after simulations verified the fix. The problem

illustrates clearly the need for hot firing control system checkout through gimballing, etc. Dynamic

test did not uncover this problem.

e. Classical Flutter

An unusual flutter problem occurred on the Space Shuttle SRB aft thermal shield (heat

shield) (Fig. 26). This heat shield was installed to protect the APU system during ascent flight and to

augment protection during SRB reentry. During water impact, the shield had to rip out at fairly low
load levels; otherwise, it would introduce substantial damage to aft skirt and nozzle hardware. This

limited the stiffness that could be designed into the shield. During reentry, the SRB comes in nozzle

first and at an angle of attack in the neighborhood of 100 deg creating cross flow on the shield. As a

result of the q (reentry maximum dynamic pressure), the shield flutters and destroys itself. This

phenomenon was observed during reentry acoustics environment wind tunnel testing. A major effort

was expended trying to characterize this flutter and develop suppression devices (ones that would be
very stiff during max q and then fail at water impact). It was decided to fly the first Shuttle flights

without fixes and see what happened (not a manned flight safety issue). The shield did flutter and

destruct; however, the thermal environments were not adverse. The end result has been to accept the
flutter and lose the heat shield during reentry. In fact, a lighter shield has been designed based on

eliminating reentry design requirements and which meets all ascent design requirements.

f. Flow Instabilities of Convoluted Bellows

The last area which falls into the flutter category is flow instabilities of convoluted bellows.

The instability is one of vortex or turbulence being set up on the down side of the convolute reinforc-

ing the natural modes of the fine. High pressure fines on the Saturn engines failed due to this instability,
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creating many problems early in the program. After much work (analytical and test) at Southwest
Research Institute, criteria and corresponding monograms for predicting problems were generated. In

addition, it is the current practice to put smooth liners inside all bellows that have potential problems.

5. Rotary Dynamic Instabilities

Fluid elastic vibrations are characterized by a critical flow velocity, below which the vibration

amplitudes are small, and above which the amplitudes increase very rapidly. The more familiar examples
of fluid elastic vibration are seen in flutter and transmission line galloping, involving single bodies essen-

tially isolated in a uniform flow field. The excitation mechanism is mainly due to the variations that
occur in the lift force as the angle of attack changes. Since the change in angle of attack is a direct

result of the vibrational motion, the oscillations are self excited. Under certain conditions, isolated

circular cylinders can develop plunging oscillations (galloping), and this phenomenon is associated with

changing angle of attack. Fluid elastic or motion interaction in turbomachinery fit to some extent these

simple examples; however, the mechanism is much more complex.

Various types of instabilities have been experienced in the world of turbomachinery, all of which

are classically treated in literature; however, specific problems and solutions associated with space vehicles

have only recently appeared in publications. Due to the high performance of these systems and

extremely high energy concentration, these problems are very complex and difficult to analyze.
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a. Bistable Pumps

One classical problem which becomes more critical on high performance, throttleable engines

is the bistable pump. This is a condition that exists on pumps optimized at the high output side and

occurs at some point off optimum, say 65 percent power level. At this point, a hysteresis loop exists

in the performance indicator, lift versus angle of attack (Fig. 27). This hysteresis loop at low angles of

attack (low speeds) create the bistable oscillation.

LI FT
FORCE
(LBS)

_._.I_-ANGLEOFATTACK

Figure 27. Bistable pump characteristics.

The pump starts a limit cycle oscillation producing fluctuating flow resulting in a fluctuating

thrust. In general, no damage occurs on the pumps; however, the engine thrust can cause vehicle loads

problems. For the Shuttle system, there is a potential loads problem if the bistable condition occurs.

Due to the high performance requirements of the Space Shuttle Main Engines, some pump to pump
fluctuation in the stability point occurs, due to small variations in geometry arising from manufacturing

tolerances. As a resuR, some pumps are bistable while most are not. Since the engine must operate

anywhere between 65 percent and 109 percent of rated power level and bistable induced thrust fluctua-

tions create loads and pogo problems, all pumps must be verified to be free of the bistable condition

before flying. Pumps are acceptance tested at 65 percent to show they are clear of instabilities.

b. Subsynchronous Whirl

Subsynchronous whirl, a problem plaguing rotary machinery, has been a major problem on

the Space Shuttle Main Engine. This motion takes the form of whirling or whipping of the flexed rotor

(i.e.; lateral vibration) at one of the rotor's natural frequencies below the running speed. This subsyn-
chronous vibration motion appears suddenly at some "speed or power-level of onset" with very large

amplitudes and sustains or blooms at higher speeds so that either additional increases in running speed

or power are impossible. This class of vibration is particularly destructive since the rotor is whirling
at a speed different from that of its rotational speed. Instabilities impose a continuing restraint on the

performance capabilities of turbomachinery and continue to cause difficulties in the design and operation

of high-performance turbomachinery, particularly because the underlying causes are aggravated by design
trends to higher loadings, lighter weight, higher speeds, and closer clearances between static and rotating

parts. The difference between a stable and unstable machine may be very small in magnitude and subtle
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in nature, so that the occurrence will vary from unit to unit of the same design and even from time to

time on the same unit. Variations in assembly tolerances within specifications can be the difference.

In self-excited vibration or rotating machinery, the excitation mechanism is a steady tangential force

induced by some fluid or friction mechanism and is proportional to or increases with the shaft's
deflection from its rotational centerline. This is referred to as the "cross coupled" stiffness coefficient,

which is often a function of the rotational speed of the shaft or of other environmental variables that

vary with shaft speed. At a rotor speed above a limiting value, the destabilizing tangential force exceeds

the stabilizing external damping. The shaft will whirl at its critical speed, independent of the rotational

speed. The destabilizing force for most whirling mechanisms is in the same direction as the shaft

rotation, giving rise to forward whirl. Occasionally, the destabilizing force, and hence the whirling

motion, are opposite to shaft rotation, producing backward whirl. Reference 13 is an excellent paper

on the various aspects of whirl delineating all key parameters and the various characteristics of the

responses. In summary, according to Childs and Ehrich, the following lesson can be drawn.

1) Rotors are destabilized by cross-coupled stiffness coefficients that yield tangential reaction

forces that are normal to future radial displacement and in the direction of shaft rotation or, less fre-

quently, opposite to shaft rotation. Rotors are stabilized by decreasing the cross-coupling coefficient

or, more desirably, eliminating the mechanism altogether.

2) Rotors become more sensitive to instability problems as the ratio of running speed to critical

speed (natural frequency) increases. Increasing a shaft's critical speed by increasing its stiffness or

decreasing its mass enhances stability, as does reduction of operating speed.

3) Rotor stability is enhanced by increasing external damping, which tends to delay onset of

instability to higher speed (ideally, above the operating range).

They summarized the two classes of vibration of rotating machinery in tabular form (Table 2).

The Shuttle Main Engine development program has been plagued with whirl problems. Early in

the Shuttle development program, the fuel pump had a 50 percent subsynchronous whirl problem which

was solved by a design change of the seals. The lox pump has had a 90 percent subsynchronous whirl,

the solution being more illusive than the fuel pump. Figure 28 shows a lox pump external acceleration

measurement (isoplot) for a 500-sec run at various power levels. Notice that whirl is only present during

the 109 percent power portion. A special seal (Fig. 29) has been designed which provides this increased

stiffness and damping and is now being tested for verification. Figure 30 is the whirl history of the full

power level (FPL) SSME lox pump design. Notice that some pump builds do not whirl, while others

grow into whirl. Also, notice how fast the response amplitude grows with the next firing once whirl is

present. Obviously, the higher performance requirements of these pumps has resulted in a marginal whirl
situation. Small differences in manufacturing (within specification) produce some pumps which whirl.

Additional damping and other solutions are being pursued to solve this problem.

Whirl is a very interesting and complex phenomenon. It is very destructive to the bearings,

limiting life and can lead to pump failures which could be catastrophic in nature. Although a classic

problem and treated extensively in literature, most of this work has been on systems that are not of

very high energy density and performance. The rotary dynamic elements of the Shuttle are the first of

this new breed [13-16]. The high pressure fuel pump, for example, develops a maximum of 75,000 h.p.

in a space volume of a 1-ft-diameter and 2-ft-length and weighs approximately 250 lb. As a result,

sensitivities, accuracies, and analysis techniques are pushing the state-of-the-art. Future systems must

extend these tools dramatically and are currently a very large technology effort.
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TABLE 2. SUMMARY OF TWO CLASSES OF VIBRATION OF ROTATING MACHINERY

VIBRATION
FREQUENCY/SPEED
RELATIONSHIP

VIBRATION
AMPLITUDE/SPEED
RELATIONSHIP

WHIRL DIRECTION

ROTOR FIBER
STRESS

AVOIDANCE OR
ELIMINATION

INFLUENCE OF
DAMPING

INFLUENCE OF
SYSTEM GEOMETRY

FREQUENCY IS EQUAL TO (i.e.,

SYNCHRONOUS WITH) RPM OR A

WHOLE NUMBER OR RATIONAL

FRACTION OF RPM.

AMPLITUDE WILL PEAK IN A
NARROW BAND OF RPM WHEREIN

THE ROTOR'S CRITICAL FREQUENCY

IS EQUAL TO THE ROTOR SPEED OR

TO A WHOLE NUMBER MULTIPLE OR
A RATIONAL FRACTION OF THE

SPEED OR AN EXTERNAL STIMULUS.

WHIRLING IS ALWAYS FORWARD, i.e.,

IN DIRECTION OF SHAFT ROTATION

FOR SYNCHRONOUS VIBRATION THE

ROTOR VIBRATES IN FROZEN, DE-

FLECTED STATE, WITHOUT OSCI LLA-

TORY FIBER--STRESS.

1) INTRODUCE DAMPING TO LIMIT
PEAK AMPLITUDES AT CRITICAL

SPEEDS THAT MUST BE TRAVERSED.

2) TUNE THE SYSTEM'S CRITICAL
FREQUENCIES TO BE OUT OF THE
RPM OPERATING RANGE.

3) ELIMINATE ALL DEVIATIONS FROM
AXIAL SYMMETRY IN THE SYSTEM

AS BUILT OR AS INDUCED DURING
OPERATION (e.g., BALANCING).

ADDITION OF DAMPING MAY REDUCE

PEAK AMPLITUDE, BUT NOT MATERI-

ALLY AFFECT RPM AT WHICH PEAK

AMPLITUDE OCCURS.

EXCITATION LEVEL AND HENCE

AMPLITUDE ARE DEPENDENT ON

SOME LACK OF AXIAL SYMMETRY

IN THE ROTOR MASS DISTRIBUTION

OR GEOMETRY, OR EXTERNAL
FORCES APPLIED TO THE ROTOR.

AMPLITUDES MAY BE REDUCED BY

REFINING THE SYSTEM TO MAKE IT

MORE PERFECTLY AXl--SYMMETRIC,

(e.g., BALANCING).

FREQUENCY IS NEARLY CONSTANT AND

ESSENTIALLY INDEPENDENT OF ROTOR

ROTATIONAL SPEED, OR ANY EXTERNAL
STIMULUS AND IS AT OR NEAR ONE OF THE

SHAFT CRITICAL OR NATURAL FREQUENCIES.

AMPLITUDE Wl LL SUDDENLY INCREASE AT

AN "ONSET" SPEED ON POWER LEVEL AND

CONTINUE AT HIGH OR INCREASING LEVELS

AS SPEED IS INCREASED.

WHIRLING IS GENERALLY FORWARD,

BUT MAY BE BACKWARD IN CERTAIN

INSTANCES.

ROTOR FIBERS ARE SUBJECT TO

OSCI LLATORY STRESS AT A FREQUENCY
EQUAL TO THE DIFFERENCE BETWEEN

ROTOR SPEED AND WHIRLING SPEED.

1) INTRODUCE DAMPING TO RAISE THE
INSTABI LITY ONSET SPEED TO ABOVE

THE OPERATING SPEED RANGE.

2) RAISE THE NATURAL FREQUENCY OF
THE ROTOR AS HIGH AS FEASIBLE.

3) DEFEAT OR ELIMINATE THE INSTABILITY

MECHANISM.

ADDITION OF DAMPING MAY DEFER

ONSET TO A HIGHER SPEED, BUT NOT

MATERIALLY AFFECT AMPLITUDE

AFTER ONSET.

AMPLITUDES ARE INDEPENDENT OF

SYSTEM AXIAL SYMMETRY. GIVEN

AN INFINITESIMAL DEFLECTION TO
AN OTHERWIDE AXI--SYMMETRIC

SYSTEM, THE AMPLITUDE WILL
SELF--PROPAGATE FOR WHIPPING

SPEEDS ABOVE THE INSTABILITY

ONSET SPEED.
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6. Creak, Jitter, and Other Special Problems

High performance, orbiting space systems such as special satellites and Space Telescopes have

considerations that are variations of the old classical problems in structures and dynamics. The Space

Telescope has very stringent pointing accuracy requirements which drive many aspects of the design,

analysis, and operations tasks. As a result, coupling between thermal environments, structural dynamics,

and deflection results in dynamic disturbances to the line-of-sight accuracy when pointing at stars, etc.

Although the problems are not necessarily instabilities, the basic problem can be put in this category.

Figure 31 shows the Space Telescope with the various components. The line of sight for a radial SI

is shown on Figure 32.

a. Creak

One problem occurs when thermal expansion is retarded by some type of friction restricting

the motion (normally at a joint) until the load increases enough to break friction setting up dynamic

excitation disturbing the line of sight. Most of the work today has been analytical and is of some con-

cern operationally for Space Telescope. This is obvious when one sees the thermal cycle per orbit. The

basic phenomenon is shown on Figure 33. Typical responses are shown on Figures 34 and 35. Experi-
mental results have shown that with the force levels experienced on ST no creak problem will result.

b. Jitte._..._r

Jitter, a structural response caused when the momentum wheel speed passes through a struc-

tural mode frequency, in the Space Telescope clouds the images causing loss of goodness for the sighting.

The main source of jitter is the momentum reaction wheels used for pointing control. Control actuation

is accomplished by changing the speed of the various wheels. As the wheel speed sweeps through, high

gain bending mode frequency structural response are excited causing jitter. Figures 36, 37, and 38 are

typical responses in terms of fight of sight for a particular experiment. The problem is compounded by

the fact that modes through 100 Hz must be included for jitter analysis. This means a larger number of

modes must be developed. High order modes are very difficult to predict. Key also is the value of the

structural damping for each mode which again is not easily predicted or obtained. Assuming a minimum

value for damping, the predicted jitter was excessive. This meant that some means of reaction wheel

isolation should be developed as a backup fix.

Isolation was actively pursued going to all known vendors. Isolators were available; however,

problems existed in characterizing their response at the low force levels expected in the Space Telescope

applications. The force level to be isolated was around 500 millipounds. Insuring that an isolator would
work at such low force amplitudes and determining the nonlinear response was a major problem. A small

shaker was used on the isolator in conjunction with spectrum analyzers to determine the response charac-

teristics. Figure 39 shows the responses for various input forces versus frequency. Notice the

nonlinearity in frequency and in damping. Damping values are written for each force frequency

spectrum. The great task was developing the test approach and data analysis system previously described

to verify isolator.

This concludes the discussion of experiences associated with instabilities. It is believed that these

should be representative, but not all encompassing, and will serve as a good guide in what to expect.

As a general rule, every effort should be expended to anticipate and design out instabilities and not

depend on response limiting.
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CHARACTERISTICS OF ST MATH MODEL AND RESPONSE PREDICTIONS

• 280 MODES BELOW 70 HZ. HIGHER FREQUENCY MODES MAY BE DRIVERS

• ASSUME 0.3% CRITICAL DAMPING (BASED ON ENGINEERING SIMULATOR TESTS)

IN ALL MODES, EXCEPT I% CRITICAL DAMPING ON THE AXIAL ROTOR MODE (BASED

ON MEASUREMENT AT SPERRY)

• MAJOR HARMONIC COMPONENTS FORCE MODEL AS STEADY STATE SINE WAVE

• SPEEDS AND PHASE OF WHEELS NOT CORRELATED, HENCE TOTAL RESPONSE IN RSS
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B. Forced Response

The area of forced response is the one engineers are most familiar with, yet it is where a high

percentage of problems have occurred. In general, the response area is separated in terms of environ-

ments and the system response to these environments. Accurate models with inadequate environments

produce poor response results and vice versa. Therefore, the engineer must have both accurate environ-

ments and response models. For convenience, environment and response will be treated simultaneously

under the general heading of forced response. Early space vehicles/missiles had very few forced response

problems due to very conservative design approaches. As designs become more optimum (weight critical),

response problems have occurred. The following are the major problems experienced in the forced

response area.
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1. Saturn IB Zero G Sloshing

The Saturn IB, since it was to go into orbit and restart as a forerunner verification test for

Saturn/Apollo, had problems in describing and controlling propellant behavior in zero g. The problem
existed in two distinct areas. The first occurred when the energy of any residual sloshing from high "q"

at engine shutdown going into orbit was transferred into very large liquid motions in zero "g." In many

cases, the motion could be very violent (uncontrolled). The propellant had to be controlled and seated

for engine restart. The second occurs during the orbit coast period where control impulses can excite

the propellant dynamically. The basic fluid phenomenon is one of capillary action, surface tension, etc.,

instead of strong inertia forces requiring new analysis and testing techniques. Very complex analytical
models were derived to handle these different conditions. Testing was accomplished using free falling

containers inside a free falling vacuum chamber in order to get zero-g simulations. Exotic excitation and

data acquisition systems, including motion picture coverage of the internal test container, were required.

As a result of detailed testing and analysis, a nylon net baffle was designed to be placed at the liquid

system to contain the fluid and suppress the slosh. A very good characterization of fluid motion in zero

g was experimentally determined for fluid motion amplitude as a function of initial conditions at orbit

insertion and as a function of control impulses. Limited success was achieved analytically to describe

the motion. The philosophy used was not to attempt to control the zero-g sloshing using control. Simu-

lations were developed, both digital and analog as well as the drop test program, to verify that the philo-

sophy had been met [ 17,18].

2. Saturn V Load Relief Wind Gust Response Coupling

Early in the Apollo design, it was decided to incorporate rigid body load relief (angle-of-attack

reduction) using accelerometers in the control loop. Rigid body loads resulting from the average or

mean wind was reduced significantly using this approach; however, the accelerometer loop increased the

elastic body response to wind gust on the forward third of the vehicle. This increase was more than

enough to offset the decrease on this section of the vehicle achieved with load relief. A real problem
existed. Load relief reduced the rigid body quasi-steady state loads and, therefore, saved weight on the

first stage; however, loads on the most weight sensitive portion of the vehicle was increased or stayed the

same with the loads becoming transient elastic body loads instead of rigid body trim loads. Figures 40
and 41 show the effect of the load relief control system gain on bending moment for two vehicle

stations, station 25 in the S-IC lox tank and station 90 in the command module. Clearly, the addition of
load relief increases the transient dynamic response while decreasing the overall moment at the forward

vehicle station (Sta. 90). Figure 42 is a schematic of Saturn V showing materials and what event

designed each section of the vehicle. As a result of this sensitivity of the vehicle to wind gust, two
distinct efforts were made in the design phases of the Saturn program: (1) Wind environments con-

taining 25 m gusts lengths and greater were obtained and a data bank built. A sample of 150 wind

profiles for each month of the year was compiled [19,20]. (2) A Monte Carlo simulation of vehicle

response to these measured wind ensembles was developed using a high speed repetitive analog computer

[ 19,21-29]. This allowed the simultaneous assessment of wind speed, wind shear, and wind gust in a true
statistical sense. In the past, all analyses had used the synthetic wind profile approach which had an

assumed phasing between shear and gust superimposed on the 95 percent wind speed.
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Figure 40. Bending moment at station 25 versus probability of not exceeding
for total wind ensemble and filtered ensemble.
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Figure 41. Bending moment at station 90 versus probability of not exceeding
for total wind ensemble and filtered ensemble.
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In addition to the deletion of the planned load relief system due to the increased bending mode

response, the control system added damping to both the first and second bending modes. This was done
to further reduce modal response to these wind gusts, since there was tuning between gusts and the

modes. Also, wind biasing was used in the operational phase to produce much needed load margins to

meet ever increasing performance requirements. In addition, a very elaborate day of launch wind moni-
toring and launch constraint approach was developed which consisted of wind measurements periodically

before launch (24, 12, 8, 4, 2, and 1 hr). These wind measurements were used as inputs to a control

and loads simulation which was used to clear the vehicle for flight. In fact, if potential problems existed,

the wind balloon could directly feed the simulation and control response program and loads generated

up until a few minutes before launch. No constraints were ever imposed on Apollo launches. Shuttle is

using the same basic approach with the addition of load indicators (strength capability as a function of

trajectory parameters) for all critical vehicle stations.
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There is no way this short paragraphcan capture the effort in manpower,dollars,and mental
anguishrequired to uncoverand solvethis problem. Theseefforts had to be focusedand coordinated
into a systemapproach. Thesewere (1) obtaining proper wind environments(seediscussionon Jim-
spheres),(2) appropriatevehiclemodelsincluding elasticbody effects, (3) simulation techniques(Monte
Carlo trajectorywith elasticbody vehicleandmeasuredwinds).

Many other aeroelasticeffectswerestudiedin detail to insurethat they did not compoundthis
problem. Gustpenetrationand lift growth [30,31] were the two majorefforts. As a result of all these
activities,the vehicleflew without problemsor majorredesigneffort.

3. Skylab Launch Probability

The Satum V derivative used to launch the Skylab further exemplifies the wind gust elastic body

response coupling problem. The Skylab was placed forward of the S-II stage with a nose cone on the
front instead of the command module. This change in external configuration changed the aerodynamic

distribution, thus the response to winds. Figures 43 and 44 compare the two. This apparently small

configuration change had a substantial effect on the resulting loads.

The Saturn V without wind biasing had approximately a 95 percent launch probability and greater

than 99 percent with wind biasing. Saturn V flew with wind biasing for added margin. This assessment

was made using synthetic wind profiles. Using the Monte Carlo approach and the measured wind

ensembles, the unbiased case was greater than 99 percent. Skylab had less than 50 percent launch

probability without wind biasing and 80 percent with wind biasing using the synthetic profile. Verifica-

tion and operational analysis for Skylab was accomplished using the Monte Carlo approach. The results
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Figure 44. Normal force distribution for Saturn V Skylab.

are shown on Figure 45 for one flight time, both with and without wind biasing giving 65 percent and

98 percent probability, respectively. As a result, the problem was solved using wind biasing and verified

using Monte Carlo response analysis. Figure 46 shows the structural limit and bending moment versus

flight time. Probability levels with and without wind biasing are used as parameters [32], Skylab flew

with a very good launch probability as a result of the wind bias profile and the change to a more realistic

verification analysis approach.

The lesson is clear, small changes can easily eat up large margins. Analysis must be refined to

match the problem requirements.

4. Skylab Solar Wing

Skylab, the first orbiting space station, came close to being a total failure. Only through hard

work, innovative engineering, and thorough management was the mission salvaged to become a great

success. The problem occurred during the ascent phase of the flight when one solar wing was lost due

to improper venting. The other wing stayed attached to Skylab, but was inoperable since it was held

undeployed by a strap. In addition, insulation required for maintaining proper environments for man

was lost. When the crew got to the Skylab, the first task was deployment of a thermal shield through

an access door. This shield was overlayed later with a much bigger shield using the crew in an extra-
vehicular mode. This second thermal shield was added by the crew on the second mission. Much

analysis and testing were required to verify that the control system jet plumes would not force the
thermal shields to oscillate and break. The other task facing the first crew was to unblock the solar

wing. The crew was sent outside with a bolt cutter, cutting the strap and letting the wing deploy. Great

success out of apparent failure was a result. Forced response takes many forms, many times in the least
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expected manner. Skylab's initial failure refocused engineering towards a systems' viewpoint with the

warning to not neglect anything. Skylab's salvation was very costly, but demonstrates how teamwork

and good systems engineering can solve problems. Many times one is not so fortunate and the mission

is lost. Figure 47 shows the orbiting Skylab with only one solar wing and the man-deployed sun shield.
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5. Shuttle Response Problems

The Space Shuttle had several forced response problems, none of which were disastrous; however,

each required design or operational fixes. These are delineated by system and element, External Tank

(ET), Main Engine (SSME), and Solid Rocket Booster (SRB). The discussion will not necessarily be in

chronological order.

a. Systems

1) Acoustics and Ignition Overpressure. Several problems occurred in the Shuttle systems.

Early in the Shuttle Program, it was predicted that the acoustical environment would greatly exceed

desired levels. The problem was aggravated by the close proximity of the payload to the energy source.

Using a 6.4 percent propulsion model of the Shuttle and Shuttle launch pad (MLP), MSFC analyzed

this problem (Fig. 48). Extensive testing was done to define the environments, then to design an

acoustical suppressor. This was accomplished using a water injection and spray system. Figure 49 is a

picture of this water system operating (scale model). Figures 50 and 51 show a comparison between no

suppressor and final selected suppressor. Full scale operational data showed the levels to be lower than

scale model predictions adding margins to solving the problem. The same approach has been taken for
the Western Test Range (WTR) launch facility. Finding the problem early in the design phase allowed for

an integrated design with small, if any, impacts.

The small 6.4 percent scale model was used to predict ignition overpressure waves. Although

some predicted from these data that the levels would be high, most did not [33-35]. Scaling of over-

pressure was not totally understood, hence the differences in predictions. STS-1 was launched without

any major concern for overpressure. Luck prevailed. The SRB ignition overpressure was there in full

force creating large vehicle responses but no failures. Launch film analysis showed large elevon
deflections and accelerometers showed big responses in the payload bay, some very near the design values.

The overpressure wave is caused by the high momentum exhaust displacing the air within the flame

bucket (Fig. 52). It is a function of thrust rise rate, thrust magnitude, thermal conditions, and density.

Clearly, it was too risky to launch the next Shuttle without a fix. The MSFC 6.4 percent model was
reactivated along with the other special tests. A special intercenter working group was formed to direct

the activities. Two basic approaches, wave blockage and plume injection with water, were pursued.

Specialists were called upon and testing started. Adding water directly to SRM plumes greatly reduced

the overpressure, in fact, sufficiently to eliminate the response problem. Several people raised concerns
over the ability to scale the data to full scale. These concerns resulted in the use of larger water troughs

(in conjunction with the water injection) in each SRB primary and drift (secondary) exhaust hole,

creating a shield or blockage. The troughs were quickly destroyed when the SRB thrust impinged on
them after liftoff. Permanent steel blockage could not be effectively used. The plates would have to be

in place during the time of the overpressure wave, then moved out of plume impingement. The water

troughs met these requirements. Since Eastern Test Range (ETR) was using water for acoustic suppres-

sion, additional lines were run and the system finalized. Figure 53 shows the water system and water

troughs in place for STS-2. STS-2 was launched on time. The overpressure suppression system worked

better than predicted. Figure 54 shows the overpressure magnitude for STS-1 (before fix) and STS-2

(after fix) [27-29]. Nine more launches have further proven the success of this concept. Space Shuttle

slipped through the overpressure problem; however, the message is clear. When a potential problem exists

that can cause such large responses, analytical and testing work should totally ring out the details. This
was not done on Shuttle and, in retrospect, we were lucky. When a dissenter exists, understand his

point before proceeding. The high pressure of getting the Shuttle launched in conjunction with a low

budget is probably the main reason the problem was missed.
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One additional problem occurred in the overpressurearea. The SSME'sstart sequencehasa
hydrogenlead which allows free hydrogento collect in pocketsaroundthe engineor launchstand.When
the enginestarts, this collected free hydrogenignites (pops) creatingoverpressurewavesin the neigh-
borhood of 3.5 psi. This pressurewavelevel createdload problemson the Orbiter heat shieldandhad
to be eliminated.Severalapproaches,gearedtoward buming the free hydrogenasit collects,weretried.
In general,they were some type of burner. Hydrogen flamejets werenot effectivedue to the small
areaof the flames.The final solution wassolid burning ROFI's which had a wide flamespanincluding
the spewinghot particles. This solvedthe problem, cutting the overpressurelevelsto around0.5 psi.
The systemwasverified on MPT(MainPropulsionTest). All Shuttlelauncheshaveusedthe systemwith
no adverseproblems. Figure 55 showsthe launchconfiguration.

2) Liftoff TransientLoads. The SpaceShuttle and its payloadexperiencea very largetransient
load at liftoff due to a largeasymmetricalcoupling (static and dynamic). As the SSME'sthrust comes
up to full power, the vehicle is bent overand stretchedstoring energyelastically. At a predetermined
time (timing to minimize twang loads)(Fig. 56), the SRB'slight up with a veryhigh thrust andinternal
pressurestretchingthe solids,addingmore energyto the twang. SRBignition time is very critical to the
maximum load experienced. A time of 2.5 sec after SSMEstart givesminimum storedelasticenergy
and hasbeen used on all Shuttle launches. Other factors or parametersthat aggravatethis response
problem are thrust imbalancebetweensolids,ground winds, thrust misalignment,and structural uncer-
tainties. Sincethe Shuttle and its payloadsare a multibody, unsymmetricalstructural and structural
dynamic configuration, the responseis very sensitiveto parameterchanges.Analysisof this eventhas
required the developmentof a very complex simulation programusing up to 300 elasticbody modes
[36]. Withoutmoderndaycomputers,thisproblem could not be analyzed [2]. Figure 57 showsthe
resultsof a Shuttle launch responsein the cargobay indicating that the model hasaccuratelypredicted
theselow frequencyresponses.Table 3 showsthe load changesfrom one ST configurationto another.

An exampleof the sensitivityand complexity of the liftoff twangresponse(loads) is the Space
Telescopein the Shuttle cargobay. Analyzingthe ST loadsduring liftoff led to a very interestingcon-
clusion. In an attempt to reducethe numberof computercasesto run, the thrust differencesbetween
the two solids had a 15 millisecondlag put into the thrust trace to accountfor certain electroniclags
in the control/computersystem. ST loadswith this SRBthrust lag wasa factor of 5 higherthan without
it [32]. Sensitivitiesof this magnitude meant that the environmentshad to be very accurate or
erroneousresults would occur. Also, it meant that environmentalchangeshad to be evaluatedand
reevaluatedin order not to createa problem.

Another problem that occurredduring liftoff was the SRB holddown bolt designloads. Each
SRB is held to the pad by four holddownbolts through footpads(Fig. 58). Thesebolts are designed
to take the load from the SSMEbuildup and then to be fractured (pyrotechnics)at SRMignition. In
addition, the bolts must be capturedso that they do not becomea debrissource.Predictingand measur-
ing this load wasa major problemdue to the complex load paths from the load origin to a load in the
bolt. Early attemptsto back the bolt load out of flight data showedloadsslightly in excessof design
(safety factor lessthan 1.4), not a desirablesituation. Using laboratorytestsandfinally a straingauged
bolt, it was shown that bolt loadswere within designand no problemexisted. Holddown bolts also
showedthe potential of not extruding when the pyros fired. In fact, the flight films haveshownthree
exampleswherebolts did not extrude. Nonextrusionis not a problem,sincethe vehicleliftoff motion
would pull the footpads off the bolt with no adverseeffects. It was found that timing differences
betweenfiring of the redundant chargeon each bolt could causebolt hangupby setting up coupled
dynamicmotion of the bolt which causedthe bolt to hangup. Additional analysisshowedthat as long
asthe pyros fire (nut fractured), Shuttlewould lift off successfully,pulling the bolts out asa result of
liftoff.
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TABLE 3. PAYLOAD LOAD CHANGES SENSITIVITIES

COMPONENT

PRIMARY

MIRROR

SECONDARY
MIRROR

DIR.

X

Y

Z

X

Y
Z

MAXIMUM ACCELERATIONS (G'S)
LIFTOFF LOADS

DESIGN
VALUE P.

3.7

2.4

3.7

3.8
3.5

6.7

E.G.

3.1

1.1

2.6

3.1
2.3

5.0

I. L. C.

3.5

1.2

2.0

3.4

2.6
3.3

C.D.R.

4.5

0.9

3.2

4.5

2.3

12.9

P. L. C. =
I. L.C. =

C. D. R. =

PRELIMINARY LOAD CYCLE, USED 5.4 SHUTTLE DATA

INTERMEDIATE LOAD CYCLE, USED 5.7 SHUTTLE DATA

CRITICAL DESIGN REVIEW LOAD CYCLE, USED 5.8
SHUTTLE DATA

One further example of the riftoff load sensitivity occurred when the WTR configuration was

analyzed. The much stiffer pad/holddown post was the culprit changing dynamic tuning significantly.

This led to designing softness on the holddown post at WTR to keep loads within the Shuttle design

envelope.

3) High "g" (Maximum Dynamic Pressure) Inflight Loads. A very interesting problem
occurred on the Orbiter wing during ascent flight. The inflight measured loads were very different and

much higher for certain wing locations than prelaunch predictions. The major reason this occurred was
a shift in the shock wave on the wing changing the aerodynamic distribution, probably due to the engine

and SRB plumes. This change was not large; however, the integrated effect was significant. In fact, for

a nominal trajectory, the predicted load was approximately 70 percent of the measured flight loads (wing

root area). Figure 59 shows this effect in graphic form, showing the shift in loads. The chart makes the

point that the vehicle is very strongly coupled between performance, loads, and launch probability,

requiring that the trajectory be shaped to fly at an optimum balance between these three areas which
occurred at an c_ of-2 deg for the original wind tunnel derived aero distribution. In addition, the

shifting distribution changed the critical areas on the wing and also the leading edge becomes critical

flying design type trajectories. There are several fixes to this problem: (1) beef up leading edge, wing

root, etc., (2) fix leading edge and fly more negative q_'s and take either performance or launch

probability hit (balance them), (3) get an aerodynamic fix changing aerodynamic distribution to approxi-

mately the original prediction, and (4) fix leading edge, do minor fixes to wing span to fly moderately

more negative q_'s, increase q boundary (819 psf) and rebalance system between launch probability and

performance. The key technical parameters in this total system trade are "q" (maximum dynamic

pressure and _ vehicle (vehicle angle of attack). Figure 60 shows how these parameters were traded

during design and how the Shuttle Orbiting Fright Test (OFT) results changed in order to balance per-
formance, loads, and launch probability. Figure 61 shows the change where the vehicle must fly to keep

wing loads below design. This results in some performance hits. Beefing up the wing span and adding

leading edge moment ties solves the problem. Final trade studies have shown that by allowing a

maximum dispersed q of 819 psf, very little performance hit is taken at q_ of -3000. This in conjunc-
tion with minor modifications to the Orbiter wing structure raised the launch probability to desirable

levels. This was the solution chosen by NASA/JSC to the wing problem.
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This problem illustrates the system interactions and the problems encountered when the state-of-
the-art is being extended as was the case of the Shuttle. Simulating plumes in scale model testing was the

major hurdle that only flight data could resolve. This is also an example of flying developmental missions.

This approach was chosen for Shuttle. The wing load problem illustrates the wisdom of the approach.

The Orbiter wing was not an MSFC responsibility (JSC responsibility); however, the systems

impacts on MSFC elements meant heavy involvement by MSFC in all aspects of the problem through the

Ascent Flight Systems Integration Group (AFSIG) and the various technical panels. Data presented were
obtained working with JSC in these groups. Approximately two years effort was required to understand

and solve the problem.

b. External Tank (ET)

Two different response problems occurred on the ET, one associated with internal flow and

the other with external aerodynamic flow. The first was a failure of the diffuser. The second was the

response of tank external protuberances. Although no failure was experienced with the protuberances,

redesign and verification testing had to be accomplished to insure a safe flight.

1) Propellant Diffuser. The ET diffuser was a baffling problem in that during ground testing,

including the systems main propulsion test, cracks occurred and pieces broke out (Fig. 62). Existing
accelerometers on the extemal tank skin provides no clues. A series of mechanical vibration tests could

not produce a failure. Neither could acoustical analysis. This led to the development of a series of
flow tests that duplicated the inlet pipe geometry, flow rates, and gas density. This test was the clincher.

When the system characteristics were duplicated, the diffuser failed. What was happening is clear in

retrospect, the turbulence of the flow contained a large amount of energy at the natural frequency of the
diffuser shell mode. The forced response of this shell mode, to turbulent flow, failed the diffuser shell.

Redesigning the diffuser to detune it and have more strength resulted in an acceptable solution.
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2) Protuberances, External Aerodynamic Loads. The protuberance problems arise from an

inadequate environment definition early in the program. These early predictions basically assumed no
cross flow around the tank and were based on smooth body flow. As wind tunnel testing proceeded,

this assumption broke down, since substantial cross flow existed for the tank in the ascent configuration

(Figs. 63, 64, and 65). Protuberance model testing showed original drag loads for smooth body flow to
be in error. This led to loads which exceeded design specifications. The end result was some redesign

and, in other cases, verification testing at a higher limit load. With these changes and additional verifica-

tion testing, ET protuberances have shown no problems in Shuttle operations.
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Figure 63. ET protuberance cross flow.
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c. Solid Rocket Booster (SRB)

Several response problems have been observed in SRB during testing and during flight opera-

tions. In general, these problems occurred during recovery and water impact. The Integrated Electronics

Assembly (IEA) was an exception where the vibroacoustics environment was higher than predicted,

leading to the requirement for isolation and requalification. Key problems in other areas have been the

most interesting.

1) Parachute Release G-Switch Failure. A very interesting problem occurred on STS-4.

The parachute G-switch activated early on both SRB's, releasing the chute from the SRB resulting in a
loss of both the SRB's. The G-switch was installed to release one of the two parachute risers at water

impact enhancing SRB recovery. In this case, the switches were activated during the time of frustum
severance before chute deployment during the atmospheric reentry phase. The severance is accomplished

using a linear shaped charge. Figure 66 shows the frustum chute package and linear shaped charge. The
G-switch was mounted to the SRB skirt after of the linear shaped charge on the IEA firewall which was
mounted on the forward skirt reaction ring (Fig. 67). The problem occurred in this manner. The linear

shaped charge caused a shock wave in the SRB skirt which excited the reaction ring in its first canti-
levered mode of 85 HZ. This drove the IEA, hence the G-switch. The G-switch natural frequency was

near 70 Hz and should have been critically damped. The G-switch response triggered the chute attach

bolt, hence the loss of the chute performance and the SRB's. The first three Shuttle flights (six SRB's)

had no problem; however, STS-4 had the same problem on each SRB. Why the difference? It turned

out after much testing (pyro and G-switch response) that all flights were near a problem. These two
SRB's exceeded limits because of two factors relating to G-switch damping. The temperature decreased

the damping and the switches were fabricated on the low damping side but not outside the specs. This,

combined with the expected variation in pyro shock response, led to the problem. The switch had been

qualified to the shock load without the effect of the resonant mode of the support ring and, therefore,
never showed a problem. In the qualification test, no switch came close to an inadvertent closing. The

ring was stiffened substantially prior to the first flight to solve a local effect associated with the SRB

rate gyros. This stiffness moved the ring frequency beyond the G-switch frequency spectrum and was
not a contributor to the problem. No one thought that the G-switch of such a low frequency would

respond to the shock based on above qualification test, hence the problem was missed. Many months

of investigation time were required to find the culprit, although all pieces of the data existed prior to

the failures. The problem was putting the pieces together in the proper manner.

2) Recovery System Loads Problems. The SRB is recoverable and reusable for twenty flights

at a cost savings to Shuttle operations. Several problems have occurred in the recovery system and the

water impact associated with recovery. These problem areas were (1) chute hangup and failure, (2)
water collapse loads on SRB shell, (3) skirt and support rings transient response to impact, and (4) flow

reversal during impact.

The recovery subsystem consists of a 11.5-ft-diameter pilot parachute assembly, a 54-ft-diameter

drogue parachute assembly, and three 115-ft-diameter main parachute assemblies with retention com-

ponents. The subsystem is located within the nose cap and frustum of the nose assemblies of each SRB

and provides the required terminal velocity and attitude for water impact of the SRB and SRB nose

assembly frustum.

An altitude sensing switch activates the recovery subsystem by initiating the ejection of the SRB

nose cap. The jettisoned nose cap pulls away the pilot chute pack and deploys it. Full deployment of

the pilot chute releases the drogue chute retention straps and rotates the drogue chute from its mounting
on the deck of the frustum. The pilot chute then pulls the drogue chute and pack away from the SRB

to deploy the chute into its first reefed position.
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The reefed drogue chute starts the rotation of the SRB into an axial alignment with the relative

airstream. Approximately seven seconds after drogue chute line stretch, reefing line cutters fire to allow
the drogue chute to inflate to its second reefed condition. The final disreef to full open occurs 12 sec

after line stretch.

At a nominal altitude of 6,600 ft, the frustum separates from the SRB. The drogue chute pulls

the frustum away from the SRB. The main chute risers are pulled out from the main chute bags, and

the chutes begin to deploy. At line stretch, the main chute reefing line cutters are initiated. The main
chutes open to a first stage reefed position. The first stage reefing cutters fire about 10 sec after line

stretch, allowing the chutes to expand to the second stage reefed position. About 17 sec after line

stretch, the second stage cutters fire, allowing the chutes to achieve full diameter.

Figure 68 depicts the critical areas during chute deployment. The drogue chute goes through the

second disreefing and fully opens. The critical area for this sequence is chute skirt loading. At this

time, the frustum releases with separation loading and bag stripping the critical areas.

a) Parachute Tear Problem. The problem that has occurred concerns the main chute during

frustum extraction. The chute is burned, ripped, and either does not have correct inflation or does not

inflate at all. Two problems have been uncovered, one is associated with how the chute is packed allow-

ing it to skip out and catch other parts, such as reefing cutters. The other has been associated with the

high speed extraction burning the material reducing its strength or cutting inside the frustum. The first

was solved by repacking. The second by removing all potential sources of contact with foreign objects.

References 37 through 45 give the overall parachute design and verification program including sled testing

and drop testing.

b) Excessive Water Impact Loads. Several events take place during water impact. It was
found that some of these required pressure scaring to properly define the loads. Figure 69 gives the

significant loading events and where pressure scaling was required. To satisfy the pressure scaring require-

ments, Navy Ordnance Laboratory and their pressure scale facility were used. Using these test data,
water collapse load rings were installed for flight. On most of the Shuttle flights, the water collapse

load rings have been damaged indicating the magnitude of these loads. Cavity collapse loads can occur
with either the tail trailing or leading the vehicle. The tail trailing case has low pressures and loads while

the tail leading has high pressure and loads. These are summarized in graphics form in Figures 70 and 71.

In general, SRB impacts the water tail leading. Since the rings are a small refurbishment item and no

other collapse load damage has occurred, no fix is intended. Large chutes under development for the

skirt loads problem will help the water collapse problem.

As stated previously, the other problem area has been the water impact loads of the skirt. These

SRB nozzle loads could not be determined directly in the scale model test due to scaling problems.

The nozzle system is composed of actuators, the nozzle, a series of laminated rings to allow for gimball-

ing the nozzle, and a snubber for response containment. Figure 72 is a schematic of this arrangement.

Scaling these rigid body test loads up to a full scale elastic body response using detailed elastic body

impulse response mispredicted the actual loads experienced in flight. Much damage has been incurred to

skirt, actuators, etc., leading to much higher than predicted refurbishment. This has resulted in many test

programs, both full scale (skirt only) and scale model, in order to better define these loads and arrive

at fixes. Fixes have included clips on the rings, foam to change water flow, etc. Presently, minimum

damage is_occurring; however, large parachutes are scheduled for use that would eliminate the problem.
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One interestingphenomenonoccurred during initial impact in the nozzle area. The nozzle was

first loaded in a positive direction as the nozzle attempted to move into the water. The water subse-

quently filled the aft skirt, then circulated, thereby creating a negative loading on the nozzle, the negative

direction load being the peak load. Figure 73 shows this event and the loads for the nozzle, bulkhead

pressure, internal skirt pressure, and internal and extemal nozzle pressure.

In summary, SRB water recovery loads have been full of surprises in spite of extensive testing

and analysis during the development phase, indicating again the need for a better analysis and test tool.

AXIAL NOZZLE LOAD:

INITIAL SKIRT CONTACT

0.06 SEC _ :-

0.10 SEC ---,,,]_-!
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Figure 73.

• • o

Typical initial impact dynamic events.

3) Excessive Nozzle Erosion. The SRB has experienced a problem associated with the

thermal lining in the nozzle. In the throat area, erosion pockets have occurred on two flights, one of

which was close to a burn through (Fig. 74). The thermal lining is a carbon epoxy composite laid up in

layers with specific fiber orientation• During manufacturing if any contamination or process flow inter-

ruptions occur, then the material properties degrade, making the liner mol?e susceptible to environments•

The liners are several inches thick and are built up (fiber lay up) and machined in sections and fastened

to the inside of the nozzle (Fig. 75). Because of manufacturing (lay up) problems, ring sections 403 and

404 have different fiber angles than the other ring sections (Fig. 76). Herein lies the problem• Manu-

facturing problems (quality) in conjunction with the flow and thermal environment induces tension in

the surface which then turns loose, continuing until equilibrium or burn through occurs. Complete

resolution of this problem has not been completed at this time. All aspects of thermal dynamics flow,

etc., are being pursued to better understand the problem•
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4) IEA Isolation. SRB had a typical problem associated with the IEA during development
vibration testing. Several failures occurred; however, the box was qualified in the laboratory after many

structural modifications and flown successfully on STS-1 through STS-5 flights, but vibration exceedances

were noted during reentry. Therefore, a delta qualification program with isolators designed and incorp-

orated were used to qualify for the new vibration criteria, which were based on the flight exceedances.

Unfortunately, the new design experienced exceedances during ascent portions of the flight, attributed

to the isolators. Therefore, another delta qualification program was conducted to requalify the IEA.
This raises another problem of qualifying protoflight hardware. Extensive qualification testing reduces

life of the flight hardware forcing vibration criteria formulation to be less conservative in order to avert

costly flight hardware failures.

d. Space Shuttle Main Engine (SSME)

The planned missions for the Space Shuttle dictated a unique and technology-extending

rocket engine. The high Isp (performance) requirements in conjunction with a 55-mission lifetime, plus

volume and weight constraints, produced unique structural design, manufacturing, and verification
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requirements. In order to achieve the high performance (Isp), a two-stage pump system is used in con-

junction with preburners which burn the fuel rich gas, furnishing the power for the pumps. This

extremely hot fuel rich gas feeds the main combustion chamber, efficiently developing the engine thrust.

This system results in unprecedented operating regimes of temperatures, pressures, and rotating machinery

speeds. The high rotary speeds and the combustion processes create mechanical, acoustical, and fluctuat-

ing pressure environments. The volumetric and weight constraints drive the design toward a high con-

centration of energy and minimum structure sizing (thickness, etc.). The energy concentration can be

illustrated by observing the size of the high pressure fuel pump, which generates 70,000 h.p. within an

envelope 18 in. in diameter by 30 in. long and rotates at speeds up to approximately 40,000 rpm

[2,4,13,14-16,31,46-58].

These SSME operating conditions generate environments where many parts are operating at or

beyond their endurance limits, producing a limited lifetime. The design point on the SN curve is very

flat, making lifetime very sensitive to small changes in the static and alternating stresses (5 percent alter-

nating stresses change lifetime up to an order of magnitude), manufacturing errors, and material deter-

ioration (Fig. 77).
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As a result of these design requirements, many problem areas have resulted in hot firing failures

with large schedule slippage and hardware loss. Table 4 lists the major failures that have occurred in

SSME hot fire testing. Not all have been related to dynamics and will not be discussed. These failures
have occurred because the environment was not adequately defined, the response wrongly predicted,

the phenomenon not predicted, or quality defects. The following paragraphs discuss most of the key

problems experienced. The more dramatic one, Main Oxidizer Valve (MOV), will be discussed in the

acoustical tuning section, and the weld wire mixup in the manufacturing and quality sections.

1) Lox Po_. The main injector lox posts have been the source of three failures during hot

firing. The main injector is part of the hot gas section, which is the heart of the SSME. It includes a

hot gas manifold, primary and secondary face plates, a lox dome, and 600 lox posts or feed tubes
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TABLE 4. SPACE SHUTTLE MAIN ENGINE, SUMMARY ENGINE FAILURES

ENGINE TEST NO. DATE FAILURE

2002

0006

2004

0010

0009

0204

2108

0110 "

0204

0110F

2013

0107

2208

SF6-03

SF10-01

902-108

901-284

901-307

902-244

901-331

750-148

902-249

11-4-79

7-12-80

7-23-80

7-30-80

1-29-81

7-14-81

7-15-8!

9-2-81

19-21-83

750-160

901-364

750-168

750-175

2-12-82

4-7 -82

5-15-82

8-27-82
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FAILURE

HPFTP - OVER TEMPERA-
TURE

HPFTP - TURBINE BEARING
FAILURE

OPOV SEAL BURNING

HIGH PRESSURE OXIDIZER
DUCT CRACK - SPECIAL
INSTRUMENTATION

KAIZER HAT NUT

HIGH PRESSURE FUEL
PUMP TURNAROUND
DUCT COLLAPSE

CAUSE REASON

i ENVIRONMENT

LOCAL HIGH TEMPERATURE

ENVIRONMENT

IMPROPER INSTALLATION

ENVIRONMENT

ENVIRONMENT

ENVIRONMENT

ENVIRONMENT

NON-UNI FORM - HOT GAS
TEMPERATURE

WATER IN FUEL SYSTEM

HOT GASENTERING
4PFTP COOLANT SYSTEM

HOT GAS BACKFLOW
OPB

ENVIRONMENT

ENVIRONMENT/DESIGN

ENVIRONMENT/DESIGN

IMPROPER WELD WIRE

CONTAMINATION

DESIGN EFFICIENCY

DESIGN DEFICIENCY

DESIGN DEFICIENCY

DESIGN DEFICIENCY

DESIGN DEFICIENCY

DESIGN DEFICIENCY

ENGR MOD TO CORRECT
PRIOR TEST PROBLEM

PROCEDURE DEFICIENCY

DESIGN DEFICIENCY

SEQUENCE DESIGN DEFIC.
MORE SEVERE AT FPL

DESIGN DEFICIENCY
(R&D DESIGN)

BAD LEAK PATH DESIGN

SEAL LEAK

--O



between the lox dome and the primary injector plate. Figure 78 shows a top plane view of the lox post

array with the three transfer tubes from the hydrogen preburner and the two transfer tubes from the lox

preburner.

High velocity gas at a temperature of approximately 1800°F flows through the injector, then

through the gap at the base of each post and around the tip of the injector plate, where it mixes with the

liquid oxygen flowing down the center of the post. This flow environment, coupled with mechanical

vibrations and variable dynamic characteristics, produces severe high cycle fatigue loading on the lox

posts. This is worsened by high static stresses from the thermal and static pressure loads. Flow shields

(Fig. 79) have been added to the outermost row, but the posts are still high cycle fatigue life limited,
and there have since been two related engine failures during demonstration firings.

Metallurgical analysis determined that the failure mechanism was high cycle fatigue, initiating in
the threads of the face plate retainer. Sources of alternating stress at that point are mechanical oscilla-

tions, vortex shedding, and fluctuating pressures (flow and acoustics). Static loads arising from thermal

gradients and internal flow induced pressures are superimposed as a high mean stress to the alternating

loads. Despite the presence of the flow shields, the highest fatigue loads and most frequent occurrence

of fatigue cracks are in the outermost posts, row 13, and the next row, 12.

The approach used to rationalize the hypothesized failure mode was the approach shown on

Figure 80. This is an alternate approach derived for attacking SSME lifetime problems in the absence of

adequate flow data. A component failure is used as an empirical failure reference point, determining the

stress level required for failure from the SN curve (minimum properties, maximum predicted temperature

and pressures). The environments are "backed out" of these empirically derived data using the analytical

dynamic model. The environments thus derived serve as a means of evaluating new designs and higher

engine performance levels, as well as determining life limits.

P1

Figure 78.

P3

High-frequency pressure transducer locations in engine.
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SSME lifetime verification analysis for special problem areas.
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Certainaspectsof the problemcanbe handledanalyticallywith good success.For instance,the
analysishas shown a mechanicaland fluctuating pressureenvironmentin the 1200 Hz regime,which
coupleswith and drivesthe modes(natural frequencies)of the posts;theseanalyticalmodeshavebeen
verified experimentallyand by instrumentedlox posts in hot firings. Cold flow tests of the hot gas
manifold,powerhead,and lox postswereusedasa testbed for flow characteristics.

The lox post high cycle fatigue problemhasbeencostly and time consuming;however,the effort
has resulted in a much more efficient hot gasmanifold designfor applicationto the upgradedSSME
plannedin 3 or 4 years.

2) Turbine Blade. Turbine blade cracking has been a major refurbishment problem for SSME.

In many aspects, it is of comparable nature to the lox posts. Only the fuel pump blades will be

discussed.

The high pressure fuel turbopump (HPFTP) is a three-stage centrifugal pump that is directly

driven by a two-stage hot-gas turbine. The turbine is powered by hydrogen rich steam generated by the

fuel preburner. Hot gas enters the turbine and flows across the shielded support struts, through the first
and Second stage nozzles and blades, and is discharged into the hot gas manifold. Requirements for high

performance within a restricted envelope have led to a complex, cyclic-load-producing configuration of 13
struts, 41 first stage turbine blades at the locations shown in Figure 81. Although none have precipitated

an engine failure, turbine blade life improvement remains a major goal in the SSME program.

SUCTION SIDE PRESSURE SIDE

×

/'

ERVED CRACK LOCATIONS

Figure 81. Areas of high stress and observed crack formation.
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Loads analysisand lifetime prediction for the HPFTP turbine bladeshave presentedproblems
similar to thoseencounteredin the lox posts. Major problemshaveinlcuded environmentdefinition,
dynamicmodeling,and static and alternatingstressdistribution. The environmentdefinition is extremely
complex for both the thermal and fluctuating pressurestandpoints. The bladesarenear the preburner
and use the hot preburnergasasthe sourceof their power (flow forces). Theseenvironmentsarenot
uniform due to baffle posts, struts,etc., and the bladegeometry. Fluctuatingpressurespresentthe same
problem, plus the clear introduction of harmonicsdue to the struts and the multiblade passages.
Dynamicmodelingis complicatedby the basicgeometry,hot surface,boundaryconditionsat the wheel,
and specialdampersfor reducingbladeresponse. Stressis composedof static centrifugalforce, power
bending, steady-statethermal, cyclic thermal (start and shutdown transients),and fluctuatingpressure
components. Significant factors in the alternating stress are (1) tuning of strut wakes with blade lower
modes, (2) multiblade relative motion of adjacent blades, (3) variable damping coefficients and lockup,

(4) changes through engine operating range, and (5) startup and shutdown thermal and pressure cycles.

Each instance of blade cracking has been addressed using an analytical/empirical approach similar

to that described for the lox posts; loads and stresses are calculated by analysis, and tile models are

adjusted as required to be compatible with observed phenomena. A detailed finite element model has

been generated for the blades. Detailed definition of the forcing functions has been accomplished by

accurate modeling of the strut/nozzle/blade configuration, and the output has been matched to results

obtained from special air rig and "whirlygig" tests. Basic material strength and fatigue data have been

obtained over a range of operating stresses and temperatures. Figure 82 shows the form of the engineer-

ing solution with all of the data taken into consideration, including the observed frequency of the

particular blade cracking incident under investigation. Curve 1 is for rated engine power level (RPL)

assuming 5,000 sec of life. Curve 2 is full or maximum engine power level (FPL) and 5,000 sec of

fife, while curve 3 is the same power level assuming 2,500 sec of fife. The mean stress for RPL is 46 Ksi,

and for FPL, it is 55 Ksi. The blade operating temperature is in the 1,600 to 1,700 ° range, resulting in

a low allowable alternating stress.
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At the presenttime, there areno seriousbladecrackingproblems,althoughcrackingstill exists.
Each instanceof bladecrackinghasbeensolvedby material-relatedimprovementsor environmentmodi-
fications. Periodic inspectionsare required,however,and the averageblade-changeoutinterval of 3,000
to 5,000 secis far short of the designgoalof 27,000 sec. Studiesfor long-termimprovementin blade
life are in progress. Improvedmaterialsarebeingconsidered,includingadvancedsuperalloysin the single
crystal for(n, and environmentreduction techniquesareunder study, includingdifferent type dampers.

3) Nozzle and Steerhorn Engine Side Loads. The SSME nozzle has three engine downcomer
coolant liners that take hydrogen from the main fuel valve to the aft nozzle manifold. The aft nozzle

manifold feeds the coolant tubes which, in essence, is the engine nozzle. Two of these coolant lines have

failed during hot engine firings due to high cycle fatigue. Figure 83 gives the basic configuration, show-

ing the downcomer line (steerhorn). A history of cracking nozzle tubes has also plagued the engine.

The loads on the line nozzle system arise from firing of a high-expansion-ratio nozzle at sea level

atmospheric conditions. The plume does not fill the nozzle until the internal pressure is greater than

atmospheric pressure. As the nozzle plume flow velocity increases, it passes through a region where a
Mach disc or cone exits the nozzle (Fig. 84). Two distinct phenomena occur during this thrust buildup

phase. The first occurs around 600 to 700 psia chamber pressure. In this case, the plume is basically

cylindrical in nature and is directionally unstable, moving around radially within the nozzle. The loads
induced by this case drive the actuator design. The second occurs around 1,200 psia where the Mach

cone leaves or enters the nozzle, creating high local shock loads. Figure 85 shows a typical thrust

buildup and shutdown curve and stress response measured on the nozzle steerhorn. Response due to the
side loads is clearly shown in this figure. The large strain amplitude occurs due to the excitation of the

n = 0 (expansion mode) and the n = 6 (shell mode). Notice that the response is very sharp and around

250 Hz (the insert shows a blowup of the response) [2,48,59].

DOWNCOMER LINE

STEERHORN LOCATION OF FAILURE

Figure 83. Description of nozzle system.
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Figure 84. Shock wave oscillations.
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Figure 85. Steerhorn strains in transient operation.
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Figure 86 depicts the n = 6 shell mode on the right-hand side. The le_hand side of the figure

shows the shell mode frequencies as a function of n-number. At the bottom of the figure is a spectrum
of the measured acceleration of the engine nozzle aft manifold showing presence of all n modes but by

far the larger peak occurring for the n = 0 and n = 6 modes.
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Figure 86. Nozzle shell mode defined by modal survey test.

The presence of this large load at the discrete frequency of 250 Hz (near resonance with nozzle

modes) created many engine design and program problems, particularly during the developmental firing

program. Two things had to be accomplished. The underdesigned steerhorn had to be fixed so that

firings could continue, and the steerhorn had to be redesigned for operational flights. Since initially an
internal pressure forcing function was not available, it was decided to take the hot-firing measured accel-

erations at the aft manifold and use these to base drive a dynamic model of the steerhom. The first

major result obtained was that just thickening the tube did not help the problem. The increased mass
offsets the increased stiffness so the frequency stays the same. The nozzle-induced driving force is not

changed; therefore, the increased mass increases the steerhom loads proportionally to the mass increase.

As a result, a sensitivity analysis and redesign matrix was pursued as a means of obtaining a solution.

The conclusion of this study was that this horizontal run of the steerhorn must be fixed to the

nozzle stiffness ring to reduce loads. This meant that a steam loop had to be incorporated above the

hatband to take out thermally induced expansion loads. The other major result was that for the T area

(original design) a nickel-plating would provide adequate life for developmental engine firings and first

Shuttle flights. The redesigned steerhorn was incorporated on the FPL engines.
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Two test programs were instituted to finalize these loads and the redesign: Scale model engine

cold-flow test and full-scale fright nozzle dynamic test (Fig. 87). The dynamic model used in this analysis

was verified in a full-scale dynamic test. Analytical modes had good agreement with test modes. The

cold-flow model test varied the flow rate, etc., and determined the forcing functions. A full set of

pressure gauges was mounted so that the force distribution could be determined. These results were

scaled to full scale.
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Figure 87. Nozzle model pressure pulses.

Using these test-derived forcing functions, a dynamic response analysis was made for both the

original design and the redesigned steerhom configurations (steam loop). Good agreement with hot-

firing data was obtained. The reduction in loads is approximately 40 percent for the redesigned case,

providing infinite life. Based on this analytical work and the statistics of the hot-firing data, a lifetime

prediction of the redesigned steerhorn was accomplished verifying a redesign that would meet the 55-

mission lifetime requirement.

4) Heat Exchanger (HEX). The heat exchanger is a multipath, single-pass, coil pack installed

in the oxidizer side of the hot-gas manifold (HGM). It has an orificed bypass line directly outside. It

converts liquid oxygen to gaseous oxygen pressurant for ET oxygen tank and pogo accumulator pres-

surization. The coil pack consists of a helically wound, small tube approximately 30.6 in. long, in series

with two parallel, larger tubes each approximately 310 in. long. The coil pack is held in place by a

support assembly that is attached to the HGM liner. The cross-flow of hot turbine exhaust gases from

the high-pressure oxidizer turbopump (HPOTP) provides the heat energy needed to convert liquid oxygen

to gas (Fig. 88). A failure occurred during main engine hot firing where a line fractured due to vibration

at a point where the welder struck a bad arc. The prime cause was a defect from welding. In addition,

tube wear has been a concern where the tubes pass through the supports. The wear has not led to a

failure. In fact, under extensive vibration testing (7.5 hr in each axis) the wear did not cause failure.

Wear cannot be predicted analytically. As a result, the special tests have been run (in addition to the

7.5 hr, 5 each axis) in order to verify that manufacturing tolerances would not lead to a problem. Great

care must be expended to insure that no problem occurs since gaseous oxygen is present producing high

potential for fires. The vibration of coils and lines are typical of the kind of dynamic problems engineers

must be continually aware of.
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Figure 88. SSME heat exchanger.

5) Coolie Hat/Nut. The HPFTP is powered by hot-gas (hydrogen-rich steam) generated by
the fuel preburner (FPB). The preburner hot gas flows directly on the coolie hat (flow diverter and

protector) which is held in place with a large nut (Fig. 89). Early in the program, the nut kept loosening

due to thermal cycles and vibration. No major problems resulted; however, it was deemed worthy of a

redesign. The redesign allowed some leak paths, since the cavity behind the coolie hat was a lower

pressure than the hot gas. In addition, the Augmented Spark Igniter (ASI) system created poor mixing

and a direct impingement of oxidizer and fuel on the nut. As a result, the unit was burned in the coolie
hat area, shutting down an engine. Figure 90 shows this impingement and hot gas flow path. Obviously,

the problem had to be solved through a redesign eliminating the leak path. The problem illustrates how

apparently small changes instituted to solve one problem and improper evaluation and design can lead to
a more dramatic problem. It also illustrates the various problems encountered in high performance

systems with stringent environments. Failures of this nature also have large program impacts, since a
failure board was formed with indepth investigation and some schedule slip.

6) Imbalance and Rubbing in SSME Parts. Rotary dynamics is one of the more fascinating

fields in dynamics. It is an area all are familiar with from one standpoint or another. Any automobile

driver has experienced wheel imbalance, brake squeal, etc. Homemakers find it in the motor driven

appliances, etc. For the Shuttle Main Engine, these problem areas are compounded several orders of

magnitude in the high pressure fuel and lox pumps due to the high energy concentration (energy density)

and speed ranges. For example, the high pressure fuel pump has a maximum 70,000 h.p. output

contained within a volume of approximately 20 in. x 20 in. x 40 in. and spins up to 40,000 rpm. That
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is more horsepower than a large diesel locomotive. As a result, supposedly small changes (causes) are

greatly magnified in the responses. Since bearing life of these pumps is limited and is to a large degree a
function of the dynamic response, the health of the pumps is monitored using acceleration data. These

data are obtained from a set of accelerometers mounted on various locations of the pump housing. Also,

maintaining or designing and manufacturing in low responses has been a major problem. Very accurate
tolerances must be met. In addition, due to imbalance problems (high synchronous vibration) early in

the program, special analytical and mechanical balancing procedures had to be developed. In addition,

other problems associated with deteriorating hardware can be detected from the vibration data. Defective

ball bearings show up as accelerations in a frequency which is a fractional part of the rotational speed.
Tables of these various frequencies are available for data evaluation. Rubbing of parts usually show up

at two or three times the rotating speed. Instabilities (discussed previously), such as whirl, show up as a

subsynchronous vibration. Two distinct areas of whirl frequencies have been found in SSME pumps

around 50 percent and 90 percent of rotation speed.

The importance of this information to the SSME and the inability to analytically determine many
effects in this machinery have led to the development of a very comprehensive set of data reduction,

data evaluation tools, and an automated data bank of these data for all hot firings. Over 1,000 engine

firing results are available in this data bank. Problems have been characterized and normal pump charac-
teristics have been statistically formatted. Through the use of this data base system and accelerometer

data from each engine firing and Shuttle flights, pump status is determined and refurbishment scheduled

averting major problems.

Problems that have been experienced cover the entire range possible.

whirl, bearing deterioration, rubbing, impeller cracking, turbine blade, etc.
will illustrate some typical experiences and the corresponding data.

These include imbalance,

The following paragraphs

First, so that the reader has some reference point, the response statistics for three accelerometer

measurements on the lox pump for all 109 percent power level firing (percent of original engine design

thrust level) are shown on Table 5. Two tables are given, one for the composite level (0 to 1,000 Hz

RMS levels) and the other for synchronous (levels taken from spectrum at rotating speed). Information

comparable to thisofor all measurements and power levels are available. Also, data can be compiled by

pumps, engines, builds, etc., as desired.

As mentioned previously, the pump response is very sensitive to small changes. Figure 91 is the

average response of one pump for each of its eight builds (each build is a changeout of bearings, seals,
or turbine blades, etc.; however, all major parts are the same). Notice the large variation in response

even though each met all specifications including rebalancing. Responses range from 1.5 to 9 g's synch-

ronous.

A typical pump response (isoplot) is shown on Figure 92. The predominant response is synch-
ronous with a small 2 N response. Isoplots are a series of spectrum plots every 0.4 sec giving a pictorial

of frequencies versus time. Amplitude is shown but is hard to read due to the overlapping of spectrums.
Individual spectrums are used to get correct amplitudes. Anomalous behavior would show up as addi-

tional frequencies on the isoplot.

Figure 93 is an isoplot for a pump with rubbing. Notice the distinct 3N and 4N frequencies.

Also, notice that distinct frequencies exist slightly above 3N and 4N. These are indicated on the indi-

vidual spectrum placed above the isoplot. Many times, these frequencies are not constant with power
level but move around indicating something like brake squeal going on (Fig. 94).
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TABLE 5. STATISTICALSUMMARYOF SSMEVIBRATION DATA

TEST #
STAND TESTS

A1 52

A2 49

A3 58

COMBINED 159

#
TESTS

A1 52

A2 48

A3 56

COMBINED 156

COMPOSITE @ 109% POWER LEVEL

FUEL PUMP RAD 0 FUEL PUMP RAD 90

MAX
G #

RMS SIG RMS TESTS RMS SI_G_G

6.3 2.8 15.5 49 7.7 3.3

5.8 2.8 17.0 48 6.1 3.2

7.3 4.0 20.0 59 8.2 3.2

6.5 3.3 20.0 156 7.4 3.3

FUEL PUMP RAD 174

MAX MAX
G #

RMS TESTS RMS SI_GG RMS

21.0 4 10.6 2.8 13.8

17.0 1 6.0 0 6.0

21.0 11 6.4 1.0 8.2

21.0 16 7.4 2.4 13.0

SYNCHRONOUS @ 109% POWER LEVEL

FUEL PUMP RAD 174FUEL PUMP RAD 0 FUEL PUMP RAD

MAX

RMS SIG RMS TESTS RMS SIG

4.9 2.8 14.0 _ 3.6 1.7

4.2 2.5 9.5 _ 3.0 1.7

6.1 3.8 18.0 58 4.3 2.1

5.1 3.2 1.8 149 3.7 1.9

TEST # 'S A1291-436, A2195--331, A3047-232

MAX
G #

RMS TESTS RMS SIG

8.0 4 6.9 3.4

7.6 0 0.0 0.0

11.0 11 3.7 1.3

11.0 15 4.6 2.4

MAX
G

RMS

11.4

0.0

5.3

11.4

10
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Figure 91.
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On one occasion, the frequencies indicating rubbing (2, 3, and 4N) came in at the start of the

firing very high, then after approximately 100 sec it went away (Fig. 95). This indicates that either the

rubbing went away or the rubbing became continuous around the shaft.
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Figure 95. three times synchronous response anomaly.

Interpretation of the data sometimes is clouded by the structural response of the pump housing.

In one case, a small level 3N response (typical, on all pumps) drove a case resonance, indicating very

large amplitudes and confusing the issue. In another case, the small change in pump speed (synchronous)
excited a case mode. The tuning was very narrow band, going away with a very small speed shift (20

rpm) and coming back in briefly during throttle ramp. Pump speeds vary from build to build due to

engine balance changes from one engine to another, putting some housing in resonance while the others

are quiet.

Whirl will show up on the isoplots and in the spectrums in the same manner as the other fre-

quencies. Because of the concerns over whirl, the data bank was interrogated for all pumps with whirl.
.The results in terms of whirl rpm, initiation, and levels are shown on Figure 28 (section of instability),

showing the magnitude of the problem and the value of a data bank for assessing the problems.
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Other indicator frequencies,suchas a bearingball pass,arehard to find in the data due to the

inability to get instrumentation at the bearings but must depend on accelerometers mounted on the pump

housing. Shell mode response of the housing also clouds these data. In a few cases, ball pass frequencies

have been observed in the data then chipped bearings found at teardown inspections.

One additional problem area in rotary dynamics which continues to surprise dynamicists is the disk

modes. These modes can be stationary with respect to the structure or move forward or backward. Many
times these modes can tune with either the inlet wakes or outlet wakes of impellers or turbines. If these

pulses generate forcing functions with patterns and frequencies coinciding with the mode shapes, large

amplitude responses and fatigue failure can occur. Also, blade disks tuning occurs for turbines in such a

manner as to increase blade response leading to cracking. In either case, very high frequency, high modal

numbered modes can get involved and are very difficult to determine analytically. This results in major

dynamic test programs of impellers, turbines, etc. Since it is hard to accurately and sufficiently instrument

these type of systems, remote sensing, such as laser holography, is used to produce very good descriptions

of both the modes and frequencies. Two problems have occurred in the main engine in this category, the

high pressure fuel pump impeller cracking (high cycle fatigue) and high pressure pump lox blade cracking.
In the case of the fuel pump impeller, it is a high N number mode which also has harmonics of other modes

that tune with the wakes of the outlet vanes. In this case, it is not the basic mode but the impurities due

to unsymmetry, which is actually driven by the wakes. Blade disk tuning leads to numerous modes with the

gains (modal response increase), particularly at the blades being determined by the differences in the

individual blade frequencies. This type of blade disk coupling has lead the aircraft industry to accurately

characterize each blade, eliminating potentially bad couplers from usage. At the time this paper was written,

both these problems were still being worked. The modal characteristics of very high ordered N modes have

been determined in test using laser holography and the final verification has been accomplished.

This short treatment of dynamic problems in rotating machinery does not begin to give the full

flavor of this area. It is hoped that the reader grasps some idea of the potential problem.

7) General (SSME). The other problems listed in the matrix for SSME, controller isolation,

flowmeter, ASI, and capacitor probe, are typical of response and fatigue problems discussed in other

project areas. The SSME controller was responding to a high level of mechanical engine noise and

required isolation. The lox flowmeter responded to the fluctuating pressures from the lox pump failing
in fatigue. Through a better use of other system data, such as fuel flowmeter output, the lox flowmeter

could be eliminated, solving this problem. The capacitor probe was an attempt at measuring bearing
deflections in a lox pump. Vibration caused rubbing, starting a fire. A different approach has been

developed for getting bearing loads in a few development pumps. The ASI was a structural failure due to

shock that occurred during shutdown when hydrogen was sucked back into the ASI and burned (small

explosion). A change in shutdown flow solved this problem.

6. Space Telescope, HEAO, IPS

a. Space Telescope

Space Telescope, to fly in 1986, has had some minor problems in the dynamics area. Loads

variability, creak, and jitter were discussed in a previous section. The other main problem areas have

been associated with the Scientific Instrument (SI) latches. These are latches installed so that the SI can

be removed on-orbit for maintenance, film retrieval, etc. The SI's and their latches are both axial and

radial (Figs. 96 and 97). The latches and their response characteristics were very important to the
individual instrument pointing accuracy (line-of-sight) and to the overall dynamic response for loads.

Because of the criticality of these, an extensive qualification program on a vibration shake table was

performed. Static and dynamic tests to determine the appropriate stiffnesses of the latches were also

performed.
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Figure 97. Typical axial latch.

The first attempt to vibration qualify the latches was not successful. Latches were damaged

beyond use. (cracking and surface we_ar). T.his was not an acceptable condition. Various coatings have

been tried t6 gone the problem. Tuflgste;n-Carbide-cobalt coatings were added to the retainers of the
axial SI latches A and C. Additionally, the aluminum oxide coating on the 440C ball of the A latch was

eliminated. The modified hardware successfully completed vibration qualification testing without

degradation. Similar modifications were made to the radial SI latches. Subsequent vibration qualification

testing of the modified radial latches generated particulates at the B and C latches. Although the wearing
of the latch surfaces was not significant, the small particles presented a potential contamination problem

for the ST optical elements. Brayco lubricant has been added to the latches to entrap the particulates.

Figure 96 shows the test setup for the axial SI showing the latches A, B, and C. Figure 97 is a detail
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of latch A. Tests and final verificationhavebeencompleted. In complex,high performancesystems,
the designand verification of many apparentlyinsignificant parts becomekey to the successof the
mission.

b. HEAO

HEAO had a unique dynamicproblemthat wasuncoveredduring developmentand verifica-

tion vibration testing. Isolators had been installed to allow for thermal expansion and contraction during

operations on-orbit in order to allow for pointing accuracies. The isolators chosen handled well the

thermal cycles; however, they were highly nonlinear under dynamic situations such as liftoff, maximum

dynamic pressures, stage separation, etc. This resulted in a major program to accurately define the
isolator characteristics. In addition, stringent acceptance criteria were instituted in order to narrow this

range and obtain compatible isolators.

This is a brief coverage of various problems experienced in the forced response area. More infor-

mation dan be obtained from references given throughout the report.

C. Modeling

Problems in modeling the dynamics of systems have continued to plague engineers. In many

cases, it is more of an "art" than it is a "science." With the advent of larger (storage) and faster com-

puters in conjunction with finite element techniques, order of magnitude improvements are being made.
Modeling can be thought of as existing at three levels, subsystems, elements, and systems. The models
must account for all disciplines which interact in the system, such as fluids, structure, control, hydraulic,

electrical, etc. Modeling correctly the interaction of these various disciplines constitutes a major challenge

in many systems.

Several problems have been experienced in the modeling world. Some of them were of a classical

nature; however, most were well within the state-of-the-art modeling techniques. The reason the

problems were encountered was oversight, not modeling in enough detail, or not being aware of certain

system requirements.

1. Apollo

Two modeling problems that were of the classical type occurred in the Apollo Program.

dealt with local deflection, the other with structural fluid interaction (hydroelastic).

One

a. Instrument Unit Local Deflection

The local effect problem occurred in the Instrument Unit (IU) stage at the rate gyro location.

The rate gyro deflection was much larger than classical beam modes predicted. The effect was not found
in scale model testing due to reduced fidelity in this area of the structure. Full scale dynamic testing

uncovered the effect. The IU stage was located on top of the S-IVB stage. On the upper side were the

SLA panels which were the interstage between the IU and the service module. Inside this area was the
Lunar Excursion Module (LEM). Since the service module was a smaller diameter than the IU, the SLA

panel loads were at an angle to the IU creating both a static and dynamic distortion (Fig. 98). Not

anticipating this angular load path caused the modeling error. At the time this error was found, finite

element modeling was less critical. As a result of the modeling error correction, the control system

(filter) was redesigned and all flights experienced no problem in this area. The lesson is clear, know what

is critical to the system, then model that area accurately.
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b. Hydroelastic Coupling in Propellant Tanks

The hydroelastic effect was discussed briefly under the pogo section. Early dynamic models

for pogo treated the bulkhead and tank wall as rigid in terms of the pressure pulse set up in the pro-

pulsion system. Basically, the whole tank was assumed to move dynamically, moving the fluids as a unit
setting up the pressure wave in the tank (Fig. 99). In the case of S-IC pogo, this approach was adequate.

The S-II pogo problem could not be adequately represented with this simplified model.

As shown previously, the S-II pogo problem was caused when the tank/fluid bulkhead mode

was resonating with the longitudinal mode and engine thrust frame crossbeam mode. In this case, the

pressure wave was greatly amplified due to the hydroelastic effect (Fig. 100). Initially, an experimental

program was run to obtain data for analysis. In the final phases of this program, an analytical hydro-

elastic model was developed and verified.

LM attach point

Apollo

spacecraft Instrument unit

unit shell __._

Third stage _Aa/_ --_--- _-_0 _'" \

_- v \ Control gyro

Pitch _ package
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(a) Saturn V instrument unit.

Control gyro "_

Mounting plate

t
LM attach point \

_ F H

- (Instrument
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(b) Schematic of Saturn V control gyro mounting and
local deformations.

Figure 98. Saturn V local deformation.
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Figure 100. Hydroelastic effect.

At this time in the program technology was not ready to meet the needs of the program and

had to be developed. Many times, these needs cannot be envisioned. Hydroelastic problems had been

anticipated and were under development at the time of the S-II pogo problem but not to a state of art

condition. The lesson: Phases A and B of a program or project must uncover critical technologies and

develop approaches and capabilities for their solution.

c. S-IVB Slosh Model/Structural Model

The behavior of liquid propellants in conjunction with structural dynamics and/or control

has led to some surprises. One occurred in the modeling of the S-IVB structural modes. Modelers had

generally assumed that liquids behave as mass loading on equivalent beam type models. This simpli-

fication did not hold up for the S-IVB stage of the Saturn which had an elliptical shaped lox tank. In

this case, the liquid mass did not act as a rigid mass but performed rotary motion during bending oscilla-

tions (somewhat like the rotating egg experiment). Analytical models did not correlate with full scale

dynamic testing until corrections were made in the assumed rigid body liquid propellant rotary inertia

term. Correcting the term to account for liquid rotation gave good correlation of analysis and test.

Equivalent mass-spring slosh models had to have corrections made to include rotation terms.
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d. S-IV Slosh Baffle Damping

Early in the Apollo Program, it was thought that slosh baffles should be perpendicular to
the tank wall under the assumption that the fluid velocity during sloshing would be along the tank wall.

This assumption was wrong since in reality the propellant oscillates about the thrust vector centerline as
the vehicle is essentially in a controlled or propelled free fall, hence the basic fluid flow energy is in this

direction and not along the tank wall. These facts were made very clear when verification slosh baffle

tests were performed with the baffles located perpendicular to the tank wall. The surprise was that no

damping was apparent from baffles installed in this orientation. When the baffle was oriented perpen-
dicular to tank centerline, damping was good and as expected. Obviously, the total physics of the prob-

lem must be understood and test programs are the way to get this understanding.

2. Space Shuttle

a. Systems

Structural dynamic modeling from an overall systems viewpoint missed a couple of significant
characteristics of the Space Shuttle. One of these, the SRB roll made against the interfaces of the

External Tank, was very interesting. The other was a local deflection of the rate gyro mount.

1) SRB Roll Mode. Because of cryogenic effects of the propellant, there is a 7-in. stacking
allowance between the SRB and External Tank. When the cryos (propellants) are loaded, the tank

shrinks to take up this gap. During full scale mated ground test, water was used for propellants so no

shrinkage occurred. This meant that the aft SRB to tank struts were at a small angle and not perpendicu-

lar, thus the load into the aft tank ring had an axial force creating a torque on the tank I-beam. As a
result, the effective stiffness on the tank side was changed leading to an error in prediction of the SRB

gear train mode. Watching the test, one could see the tank skin oil canning as the I-beam rolled when

this mode was excited (Fig. 101).

LIFTOFF 'f __SYMMETRIC _'

MODE 5 _. 21_..

DATE" 10/'31/78 _'_
TIME - 4:38:55

VMAX (ORB) - 0.000152

VMAX (ET)

VMAX .--

Figure 101. Liftoff symmetrical mode shape.
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Essentially,the SRB'sactedasrigid bodieswith the flexibility beingin the strutsand tank. The
accuracyof this mode was very important to liftoff loads predictions, sincethe SSMEignition and
buildup prior to SRB ignition storedenergyinto this mode. This energywas releasedat liftoff ringing
out this mode due to the stored energy. As a result of the MVGVT findings, both axial and radial
stiffnessesof the tank strut attachhad to beput in the tank modelusedfor systemmodes.

2) Local Deflection of Rate G_cro Mount. Local deflection of rate gyro mountings was the

second problenf uncovered on the full scale ground vibration test. This distortion was caused by the
local modes of the instrument ring frame in the front of the SRB forward segment. The ring was not

modeled as a flexible element under the assumption that its frequency would be too high to respond

elastically to the first fundamental bending modes. The assumption turned out to be erroneous and had

to be corrected. Two things had to be accomplished. The finite element model was corrected giving a
good match to test data. This was a simple task, merely putting in the extra elastic elements associated

with the gain or change the control system shaping networks (bending mode filters). It was decided to

stiffen the ring with brackets (Figs. 102 and 103) and test verify. This was accomplished first using the

forward SRB interstage while the liftoff (full SRB) configuration was being unstacked and the SRB

burnout (empty SRB) configuration was restacked for dynamic testing of the condition. The fix was

preliminarily verified using this element test, then finally verified from the system standpoint during the

SRB burnout dynamic test.

In the final analysis, the second problem was not a real modeling problem. It occurred because

of the need to make models as simple as possible to reduce size for system analysis, thus making a

simplifying assumption without adequately checking it out analytically. In this case, a very simple shell

model of the forward section would have shown the error in the assumption.

The last system modeling was not an error in modeling, but the effect on elastic body charac-

teristics in conjunction with extemal forces. The effect of the fast rise of the internal pressure at SRB

ignition (0 to 920 psi in 400 msec) stretches the system, adding greatly to liftoff dynamics (refer to

Section B on forced response systems). The lesson is clear. All interacting effects must be properly

modeled. This obviously means the modeler must understand all system aspects and sensitivities in order

to provide adequate models.

b. External Tank (Hydroelastic Coupling of Unsymmetrical Tank)

Basically, the overall model of the External Tank was very straightforward. The lox tank

hydroelastic model was an exception. The lox tank, in order to save weight, does not have uniform

thicknesses around the tank bulkhead and tank wall. Since the tank is tilted during flight, one side of

the tank can be thinner than the other; therefore, a quarter symmetric model could not be used. Both

sides of the tank had to be modeled independently including a tilted propellant surface. Using finite

element hydroelastic modeling techniques in conjunction with quarter-scale and full-scale, lox tank

dynamic testing produced a very good analytical model. Martin-Marietta Corporation did this modeling.

c. Solid Rocket Booster (SRB)

Three basic modeling or dynamic problems have occurred for the SRB, viscoelastic propellant

effects on system dynamics, internal pressure effects on Shuttle system dynamics, and filament wound

case (FWC) (composite case) dynamic modeling.

1) Viscoelastic Modeling Problems. Viscoelastic effects of solid propellants are very complex.
The elastic properties of the propellant are highly nonlinear, being a strong function of strain rate, tem-

perature, pressure, and age. Elasticity of the propellant was so sensitive that the mean bulk propellant

100



ACCESS
DOOR

523.83

ROTATED 1110°

TUNNEL

_$

+Z

FLT_ +Y

-Z

Figure 102. SRB forward interstage section.

RANGE SAFETY PANEL I RIGHT
DISTRIBUTOR
S&A DEVICE _ NSI (2)
CDF MANIFOLD (2)

'!i

FLT

T

+y

/
CONNECTOR
BRACKET

ACCESS DOOR

__) .....

PSR IEA HOUSING +Z
FDM ASSY

I I I mr B K all- ._=-..=---_---&.=---_--_-----=.---i=--_,_

STA. 424.50

STA. 445.40

SG SC (4)
WB SC (12)

-- DTS. 466.88

__-__ _

RATE GYRO ASSY (3) / \ \ '--Y

/ CONNECTOR P6R

BRACKET FDM ASSYTIME CODE GEN
SG SC (2)
WB SC (12)SEPARATION

INSTRUMENTATION
PACKAGE

Figure 103. SRB forward interstage section.

101



temperaturebetweena winter launch and a summerlaunch led to the requirementfor two different
dynamic models of the SRB's. The propellant elasticity affected two basic vehicle modes, the
longitudinalmode of the propellantmoving dynamicallyrelativeto the SRBskinand the SRBgeartrain
mode of the solidsrolling in a rigid body senseagainstthe rear SRBto External Tank interface,dis-
cussedunder systemresponse. Analytically, it wasvery hard if not impossibleto model the viscoelastic
effects. Irr order to achievean adequatemodel, extensivedynamictest programsin addition to the full
scaleand allup quarter scaletest programswere carriedout. The first wasa coupon test which deter-
mined the material propertiesof the propellantas a function of temperature,pressure,frequency,age,
and amplitude [60]. Using propertiesderived in this manner,the pre-liftoff model wasdetermined.
Figure 104 showshow the geartrain modefrequencyvariesasa function of propellantshearmodulus,
with the SRB/ETstruts fixed to ground. Runningthe quarterscalemodelwithout internal SRBpressure
showedthe model to be good in termsof propellant shearmodulus,with the SRB/ETstruts fixed to
ground. Runningthe quarter scalemodel without internal SRBpressureshowedthe model to begood
in terms of elasticity and shellstiffness. In this case,however,specialmodulustestshad to be run on
the inert propellant usedin the dynamictest, sinceit had different characteristicsthan live propellant.

N

2.0

1.8

1.6

1.4

1.2

1.0

EFFECT OF PROPELLANT MODULUS
ON Z--TRANSLATION/ROLL

/

/

W i

/

/,

/

Figure 104.

I I I
1000 2000 3000

G; Ibf/in 2
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2) Dynamic Effects on Stiffness of Internal Pressure. The next problem occurred when

internal pressure was included. Differential stiffness analytical techniques grossly overpredicted the

stiffening effect of pressure in a dynamic situation. The same technique predicts accurately static effects
for a radial punch load. No reason has been determined for this overprediction. As a result, the stiff-

ening effect of pressure was determined experimentally using the quarter scale SRB element model fixed

to ground. Figure 105 shows the frequency of the translation/roll mode as a function of internal

pressure for an SRB with no propellant and one with the propellant fully loaded. Notice that the mass
and viscoelastic effects of the propellant reduced greatly the pressure effect [60].
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Gear train mode frequency as a function of internal pressure.

Finally, the Shuttle's response during liftoff has verified the models derived in this manner. As

a result of these problems and the various effects predominant in the Shuttle mission, specialized models

had to be generated for the following events and sequences.

I. Pre-Liftoff Models (Unpressurized)
A. Winter Months

B. Summer Months

II. Liftoff (Pressurized)
A. Winter Months

B. Summer Months

III. Max "q" (Pressurized)
A. Winter Months

B. Summer Months

IV. Pre-SRB Separation (Unpressurized, No Propellants)
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The messageis the sameasstatedpreviouslyrelativeto sensitivities,environments,etc. Generate
models for the specificusesif thereis a changein the systemcharacteristics,the modelsmust beupdated
to accountfor the changes.

3) Modeling Concerns and Problems of Composite Solid Rocket Propellant Cases. The final

modeling surprise came when the Filament Wound Case (FWC) SRB was baselined as a performance

enhancement approach (weight savings). Due to the liftoff loads sensitivity (discussed previously), the

longitudinal stiffness (elongation) and the hoop stiffness were specified (design specification) to be the
same as the steel case SRB. Meeting these criteria and verifying these characteristics has been a major

problem. The first sacle model FWC section when tested dynamically did not produce a good match

when compared to values from the steel case or to predictions. As a result, an extensive program was

conducted on proper fiber wrap angles to achieve correct characteristics and to develop techniques for

determining the total set of material properties for use in dynamic modeling and dynamic analysis. This

work has been completed. In addition, the quarter scale element test approach used for the steel case
has been expanded and used for the FWC (pressure and viscoelastic effects). An adequate model resulted.

Analytical models can be no better than the experimental input data, such as material properties.

These data base definition programs cannot be emphasized enough in any program.

d. Modeling Verification Summary

Modeling of structures and the verification through dynamic test has been full of surprises

and interesting. Many of the preceding discussions have covered key areas. Dynamic testing, in general,

has been the mechanism through which these problems have been uncovered. In the Saturn I dynamic

test program, the suspension system (cables) dynamically coupled with the vehicle clouding the test

data. A very simple fix was used. Two by fours were tied between the cable and the test stand uncoup-

ling the cable mode from the vehicle. Suspension system can directly influence test results and must be

correctly designed.

Verification testing is very important in dynamic analysis and ideally should follow a building

block approach, e.g._

- Generic Structures

• Phenomenon Characterization

• Element

• Subsystem

• System

- Scale Model Prototype

• Element

• Subsystem

• System

- Full Scale

• Element

• Subsystem

• System

- Program scope is determined by subsystem and system requirements on model accuracy and

control system complexity risk trade.
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- Programshould make maximum use of other test programsto obtain subsystemdynamic
characteristics.

- Shuttle dynamic test programis an exampleof basic approachalthoughsomedesiredtests
wereeliminated.

All spaceprogramsof the past have used dynamic test programs. A summary of this history is

given in Table 6 and should serve as a handy reference of the experiences discussed in this report. Table

7 gives general guidelines for selecting a test approach. Table 8 lists concerns of dynamic testing with

particular emphasis on orbit space systems such as space station. The Apollo and Space Shuttle program

modeling problems, a few of which have been discussed, delineate the major problem areas structural

dynamic modelers face. The areas which must receive special attention in both modeling and test if

adequate models are achieved are (1) joints, (2) load paths, (3) point loads, (4) nonlinear material charac-

teristics, and (5) special environment effects such as pressure.

D. Acoustical Tuning

One of the most interesting and awe inspiring dynamic problems occurs when local acoustical

modes tune with local structural dynamic modes. The energy extracted from the flow field is trans-

ferred to the acoustical and then into structural response to a degree that cannot be imaged. The exper-

iences have been few in the history of the space program but were very dramatic in nature. Only one of

any significance was_experienced in the Apollo Program. Several have occurred in the Shuttle Program,

mainly due to the higher performance requirements thus greater sensitivity.

1. ApoHo

The main acoustical tuning problem in Apollo was in the F-1 engine main combustion chamber.
This was a circumferential mode which created many problems. The problem was solved with baffles

called the kitchen sink approach.

2. Space Shuttle

The Space Shuttle, due to its high performance requirements leading to more optimized design,

less margins, and higher environments, experienced several acoustical tuning problems. The first occurred
in the main propulsion system test program in the External Tank which was discussed in the forced

response section. The others have occurred in the SRB and SSME.

a. SRB Reentry and Internal Motor Cavity Acoustics

Scale model testing of the SRB to determine acoustical environments produced a major

surprise. The levels were greater than 175 dB, which were a major design problem for components

mounted in the near the aft skirt, in particular the APU actuator propulsion unit, actuators, and rear

IEA. Due to the high levels and lack of understanding of the cause of the high levels, several activities
were carried out to understand the problem. As mentioned previously, the SRB reenters the atmosphere

tail first and basically broad side. This creates a flow across the skirt and nozzle. Due to reentry

dynamics, the angle can vary significantly from flight to flight and flight time to flight time. Initially,

the SRB nozzle was intact with a charge installed to sever it at the skirt end station before water impact

to reduce flex seal loads. Later, in order to reduce acoustics, the aft nozzle section was severed prior to
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TABLE 6. DYNAMIC TESTING EXPERIENCE IN PAST PROGRAMS

TEST

PROGRAM

SATURN V
DTV

MARL

SATURN V
DTV

SATURN V
DTV

SATURN V
DTV

PROBLEMS DISCOVERED

LOCAL ROTATION OF THE FLIGHT GYRO
SUPPORT PLATE. VEHICLE DYNAMIC

SHEARS AND MOMENTS DEFORMED
SUPPORT PLATE. THE MATH MODEL
UNDER PREDICTED THIS DEFORMATION

BY 135 PERCENT.

DESIGN DEFICIENCY IN THE IU
STABLE PLATFORM. COUPLING
BETWEEN THE STABLE PLATFORM AND

THE RING MODES OF THE IU PRO-
VIDED A MECHANISM FOR ACOUS-
TICALLY DRIVING THE PLATFORM
ACCELEROMETER AGAINST THE STOPS.

DESIGN DEFICIENCY IN THE C§M
INTERFACE. THESINGLE TORSIONAL

HARDWARE IMPACTED

THE GYROS WERE RELOCATED TO THE
BOTTOM OF THE SUPPORT PLACE
WHERE THE LOCAL ROTATION WAS

MUCH LESS. THIS REQUIRED WIRE
HARNESSES OF NEW LENGTH. THE
FLIGHT CONTROL FILTER NETWORK
WAS REDESIGNED

SHORT CHANNEL STIFFENERS WERE
ADDED TO AS 501 ON THE PAD.
DAMPING MATERIAL AND A SOFTWARE

"REASONABLENESS" TEST WERE ADDED
LATER IN THE PROGRAM.

ADDITIONAL TORSIONAL SWAY BRACES
WERE INSTALLED ON AS 501 ON THE

CONSEQUENCES IF NOT DISCOVERED

FLIGHT CONTROL INSTABILITY RESULTING

IN LOSS OF VEHICLE.

LARGE GUIDANCE ERRORS THAT COULD
CAUSE LOSS OF LUNAR MISSION.

STRUCTURAL FAILURE OF THE CSM

INTERFACE WITH LOSS OF VEHICLE AND

SWAY BRACE PRODUCED UNPRE-
DICTED HIGH COUPLING BETWEEN
COMMAND MODULE TORSIONAL
MOTION AND S-1C ENGINE
DEFLECTION.

DESIGN DEFICIENCY IN THE SPS
TANK SUPPORTS. UNEXPECTEDLY
HIGH LOCAL RESONANT COUPLING
WAS DETECTED BETWEEN SPS TANK
AND BULKHEAD SUPPORT.

HIGH LOX AND FUEL DYNAMIC TANK
BOTTOM PRESSURES. THESE PRES-
SURESWERE UNDER PREDICTED BY
A FACTOR OF 2. THE SIGNIFICANCE
OF THESE PRESSURES WAS NOT
UNDERSTOOD UNTIL AFTER POGO
OCCURRED ON AS 502.

PAD. SUBSEQUENTLY, THE F 1
ENGINES WERE REORIFICED TO
REDUCE LOADS AT ENGINE CUTOFF.
AN ENGINE PRECANT PROGRAM WAS
IMPLEMENTED TO MAINTAIN STRUC-
TURAL INTEGRITY IN CASE OF ENGINE

OUT.

THE UPPER SUPPORT BRACKET FOR
THE SPS TANKS WAS REDESIGNED TO

ELIMINATE A STRONG TANK CANTI-
LEVER MODE.

THE HIGHER TANK PRESSURES CON-

TRIBUTED TO THE S 1C POGO.

POSSIBLE CREW LOSS.

HARDWARE FAILURE RESULTING IN

LOSS OF MISSION AND POSSIBLE
CREW LOSS.

POTENTIAL LOSS OF VEHICLE AND
CREW DUE TO POGO.



TABLE 6. (Continued)

TEST
PROGRAM

SATURN V
DTV

SATURN V
SHORT
STACK

SATURN V
MINI A/C

SKYLAB
ATM TEST

SKYLAB
MODAL
SURVEY

PROBLEMS DISCOVERED

HIGH 18 HZ S-1C CROSSBEAM MODE
GAINS. DTV DATA SHOWED THAT
AN ACCUMULATOR SHOULD NOT BE
USED ON THE INBOARD ENGINE.

STRONG PITCH/LONGITUDINAL
COUPLING CAUSED BY THE LUNAR
MODULE INCREASED THE S-IC
POGO GAIN FACTOR BY 30 PERCENT.
THIS EFFECT COUPLED WITH THE
TANK PRESSURE UNDERPREDICTION
WAS THE REASON AS-502 POGO

WAS NOT PREDICTED.

THE MECHANISM TRIGGERING S-II

POGO WAS DEFINED. COUPLING
BETWEEN THE FIRST FOUR LOX TANK
HYDROELASTIC MODES WHEN THEY

COALESCED WITH THE 16 HZ
CENTER ENGINE CROSSBEAM MODE
PRODUCED THE POGO INSTABILITIES.

STRONG CROSS COUPLING BETWEEN
LONGITUDINAL AND LATERAL MOTIONS
INDICATED A POSSIBLE STRUCTURAL

FAILURE AT S-1C CUTOFF.

THE STRONG CROSS COUPLING IN THE
ATM PROVED TO BE ATTENUATED
RATHER THAN AMPLIFIED BY THE WAY
ATM CROSS COUPLING REACTED
THRU VEHICLE INTERFACE.

HARDWARE IMPACTED

ELIMINATION OF A PLANNED INBOARD
ENGINE ACCUMULATOR.

DEVELOPMENT AND INSTALLATION OF
THE OUTBOARD LOX ACCUMULATORS.

AN ACCUMULATOR WAS DEVELOPED
FOR THE CENTER ENGINE. A BACK-
UP CUTOFF SYSTEM WAS ALSO

DEVELOPED. THE ACCURATE MATH
MODEL DEVELOPED DURING THIS
TEST SUPPORTED EXTENSIVE THRUST
STRUCTURE DESIGN MODS ON SUB-
SEQUENT VEHICLES WITHOUT FURTHER

TESTING.

A 1-2-2 ENGINE CUTOFF HARDWARE
AND SOFTWARE MOD WAS DEVELOPED

TO REDUCE THE LONGITUDINAL INPUT
TO THE ATM. HARDWARE REDESIGNS
WERE LAID OUT IN EASE THEY WERE
PROVEN NECESSARY BY FURTHER

STUDY.

TEST OF THE TOTAL SKYLAB LAUNCH

CONFIGURATION PROVED THE 1-2-2
FIX WAS ADEQUATE AND THAT NO
HARDWARE CHANGES WERE REQUIRED.

CONSEQUENCES IF NOT DISCOVERED

POTENTIAL LOSS OF VEHICLE AND CREW
DUE TO POGO BETWEEN AN 18 HZ ACCU-
MULATOR MODE AND THE 18 HZ CROSS-

BEAM MODE.

POGO INSTABILITY WITH POTENTIAL LOSS
OF VEHICLE AND CREW.

POGO INSTABILITY WITH POTENTIAL LOSS
OF VEHICLE AND CREW.

HARDWARE FAILURE WITH POTENTIAL

LOSS OF MISSION.

THIS TEST SAVED A POSSIBLE REDESIGN
OF THE ATM BY VERIFYING STRUCTURAL
INTEGRITY UNDER THE 1-2-2 CUTOFF.
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o TABLE 6. (Concluded)

TEST
PROGRAM

SHUTTLE
MVGVT

SHUTTLE
MVGVT

SHUTTLE
MVGVT

SHUTTLE

QUARTER
SCALE

PROBLEMS DISCOVERED

SRB MOUNTED RATE GYROS EXHI-
BITED ABNORMALLY HIGH TRANSFER
FUNCTIONS. THE RATE GYROS

MOUNTED ON THE FORWARD SRB
RING FRAMES RESONATED AT LOCAL

FREQUENCIES AND HIGH GAINS,
WHICH WERE CRITICAL TO FLIGHT
CONTROLS.

AXIAL SSME FREQUENCIES AND
MODE SHAPES DID NOT CORRELATE
WITH PRETEST ANALYSIS. A HALF

SHELL DYNAMIC MATH MODEL USING
SYMMETRY WAS USED IN THE PRE-
TEST ANALYSIS.

TEST RATE GYRO VALUES SHOWED
GREATER RESPONSE VARIATIONS
THAN ANALYSIS. RESPONSE VARIA-
TIONS BETWEEN RGA'S WERE MUCH
LARGER THAN THOSE USED IN THE

ANALYTICAL STUDIES IN DETERMINING
THE REDUNDANCY MANAGEMENT
(RM) TRIP LEVELS.

INTERNAL SRB PRESSURE EFFECTS
ON STIFFNESS OVER PREDICTED.

HARDWARE IMPACTED

STRUCTURAL REDESIGN WAS REQUIRED

TO STIFFEN SRB RING FRAME, WHICH
REVISED THE LOCAL RESONANT FRE-
QUENCIES AND REDUCED THE GAIN.

A NEW THREE DIMENSIONAL ASYM-
METRIC MATH MODEL OF THE SSME
ENGINES AND THRUST STRUCTURE
WAS REQUIRED. NO HARDWARE
CHANGES WERE NECESSARY.

RM SOFTWARE TRIP LEVELS AND
CYCLE COUNTER LEVELS WERE

INCREASED. THE FAULT ISOLATION
ROUTINE WAS MODIFIED TO INHIBIT
KICKING OUT RGA'S AND ACC'S
AFTER FIRST SENSOR FAILURE.

(FOR STS-1 FLIGHT ONLY; OTHER
FLIGHTS WILL BE EVALUATED.)

LOAD IMPACTS WITH MINOR REDESIGN
OF INTERFACE BACKUP STRUCTURE.

CONSEQUENCES IF NOT DISCOVERED

FLIGHT CONTROL INABILITY AND POSSIBLE
LOSS OF VEHICLE.

POGO STABILITY ANALYSES WOULD HAVE
BEEN SUSPECT.

FLIGHT CONTROL INSTABILITY AND
POSSIBLE LOSS OF VEHICLE.

POTENTIAL FAILURE OF INTERFACE
AND LOSS OF VEHICLE.



TABLE 7. GUIDELINES TO SELECTING ANALYSIS AND TEST APPROACHES (GENERAL)

• MISSION REQUIREMENTS

-- LIFETIME
-- RELIABILITY AND SAFETY (MANNED VERSUS UNMANNED, ETC.)

-- VARIABILITY (PAYLOADS, MISSION PHASES, GROWTHS, ETC.)

-- ACCURACY REQUIREMENTS (FLIGHT MECHANICS, POINTING, ETC.)

-- MANEUVERS, ETC.

-- COSTS AND SCHEDULES

-- COMPLEXITY

• CONFIGURATION CHARACTERISTICS

-- JOINTS AND INTERFACES

-- TYPE OF MATERIALS

-- STATIC AND DYNAMIC COUPLING

-- ENVIRONMENTS

• THERMAL

• ACOUSTIC

• PROPULSION

• INERTIAL

• AERODYNAMIC

• PRESSURES

-- DISCIPLINE INTERACTION
• STRUCTURAL/PROPULSION

• STRUCTURAL/CONTROL

• AEROELASTIC

• HYDROELASTIC
• STRUCTURAL/FLIGHT MECHANICS/CONTROL/TH ERMAL

-- SENSITIVITY OF DYNAMIC CHARACTERISTICS TO ELEMENT AND SUBSYSTEM

CHANGES

• TOOLS AVAILABILITY

u ANALYSIS

TESTING

• MODAL

• ELEMENT

• FULL SCALE

• DESIGN REQUIREMENTS

-- DATA SCHEDULE

-- HARDWARE AVAILABILITY

-- ACCURACIES

• ORGANIZATION COMPLEXITY

-- NUMBER OF INDEPENDENT ORGANIZATIONS DESIGNING VARIOUS ELEMENTS

-- ORGANIZATION LOCATION

-- ORGANIZATION PHILOSOPHY
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TABLE 8. CONCERNS

• LIMITED TO SELECTED MODES ONLY (SMALL NUMBER, NOT ALL MODES).

• SIZEAND COST OF FULL SCALE TEST PROGRAMS ARE NEARING THE PROHIBITIVE

STAGE, PARTICULARLY ZERO G EFFECTS IN 1 G ENVIRONMENT.

• ABILITY TO SIMULATE ENVIRONMENT IS WEAK OR NONEXISTENT. TESTING IS VALID

WHERE THE ENVIRONMENT IS NOT INFLUENTIAL TO MODAL CHARACTERIZATION.

• SELECTION OF MODES IN HIGH MODAL DENSITY DURING TESTING.

• QUANTIFYING OF CONSTRAINTS AND BOUNDARY CONDITIONS.

• SCALE MODEL MANUFACTURING TOLERANCE REQUIREMENTS. ZERO G SIMULATION.

• ACCURATE CRITERIA FOR MODAL GOODNESS, PARTICULARLY NONLINEAR SYSTEMS.

• SCALING LAWS BETWEEN DIFFERENT SYSTEMS NOT THE SAME; ELIMINATING COUPLING
EFFECTS IN SCALE MODELING.

• CONTROL OF HARDWARE CONFIGURATION TO INSURE ADEQUACY.

• MEANS OF INSURING UNKNOWNS ARE FOUND.

• DEFINITION OF EXCITATION AND OTHER FORCES REQUIRED.

SRB reentry. The first step towards resolving this problem was to analytically predict results in con-

junction with scale model wind tunnel tests and 2-D water flow tests. Table 9 lists the problem solution

tasks pursued. Figure 106 shows the effects of the large angles of attack produced in the water flow test.

These angles of attack expected during reentry introduce large cross flows which create a

hydraulic jump (shock) and a shear layer. Carrying this information to the three-dimensional SRB during

reentry and conducting analytical analysis, it was found that there existed an oscillating shear layer off

the nozzle lip coupling with the basic acoustical cavity mode of the internal motor cavity. At certain

Mach numbers, these modes are in resonance. Figure 107 depicts the basic phenomenon.

A plot of the longitudinal SRB cavity acoustical modes are plotted as solid lines on Figure 108.
The nozzle shear layer excitation modes (sharp edge created) are illustrated as dotted lines. Notice the

resonance for K = 3 and the M = 1 modes at a local Mach number of approximately 0.6.

These modes were verified in MSFC's 14-in. wind tunnel, the AEDC tunnel, and Ames using a

larger model. At the same time, many means for reducing the environments were investigated. Figure

109 shows the environment as a function of angle of attack with and without the nozzle thermal curtain,

showing that the curtain reduced the environments. This led to the preliminary requirement that the

thermal curtain must survive reentry. Later studies have eliminated this requirement.
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TABLE 9. SRB REENTRY ACOUSTICS-FLUCTUATING PRESSURES

• ANALYTICAL PREDICTIONS BASED ON LOCALIZED FLOW CONDITIONS

• DEVISED & CONDUCTED SCALE MODEL TESTS AT MSFC'S 14 x 14 INCH
WIND TUNNEL WITH OLD BASELINE CONFIGURATION

• PROMPTED REMOVAL OF EXTENDED NOZZLE SECTION

• PROVIDED INPUTS FOR ACOUSTIC RESPONSE DESIGN/TEST CRITERIA

• VERIFIED TRENDS VIA LARGER MODEL & EXPANDED TEST CONDITIONS
AT AEDC

• NOTED SEVERE ACOUSTIC DISCRETES ASSOCIATED WITH MOTOR CAVITY
RESPONSE* USE WATER TABLE TO INVESTIGATE*

• CONSIDERED TRAJECTORY STATISTICS & ENVIRONMENTAL ZONING
FOR RESPONSE CRITERIA UPDATE

• DESIGNED & TESTED VARIOUSAERO--FIX CONFIGURATIONS

• VERIFIED ACOUSTICAL NEED FOR A FLEXIBLE HEAT SHIELD

• ESTABLISHED BLAST SHIELD EFFECT

• PREPARING FOR FLIGHT ENVIRONMENTAL VERIFICATION TEST AT AMES
WITH REVISED BASELINE & A FIX CANDIDATE

TOP VIEW

HYDRAUI, IC JUMP
(SHOCK)

SLUICE GATE

FLOW

LAYER

TWO DIMENSIONAL

MODEL

SLUICE

GATE
TWO DIMENSIONAL

SRBMODEL\

RFk

IIIIIIIIIIIIIIIIIIIIIIIIIII

SIDE VIEW

WATER TABLE

TECHNIQUE FOR SUPERSONIC FLOW

VISUALIZATION USING TWO DIMENSIONAL MODEL

FLOWS VIEWED DURING MODEL ANGLE OF

ATTACK CHANGE

Figure 106. Water table test setup and results.
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In addition to this requirement, it was decided to develop envelopes as a function of probability

of the reentry conditions (angle of attack and q) as a function of Mach number using a Monte Carlo

analysis. Key parameters which varied were the aerodynamic characteristics, SRB separation-induced

initial conditions, and vehicle center of gravity.

Special wind tunnel tests were run for these various orientations of SRB roll angle conditions to

define the aerodynamic data base. The simulation developed for the trajectory response was quite

detailed giving SRB response in pitch, yaw, and roll. Through this systems approach, it was possible to

verify the SRB aft components design without redesign and impacts. This problem illustrates the need

for the results obtained when key disciplines have good communication and work together on a problem.

This same type analysis and working relations were key in developing the parachute (recovery system)

and predicting water impact loads. It also clearly shows the high response levels that can occur from

modal tuning.

Acoustical tuning also occurs internally in the SRB main cavity. This second SRB acoustical
mode tuning has occurred during the later portions of SRB burn (80 to 120 sec). In this case, the

normal longitudinal internal cavity acoustical mode was excited and driven by a gap mode associated with

the gap and thermal protectors between each segment joint (Fig. 110).

The phenomenon varies from flight to flight due to the small changes in the gap. Resulting

vehicle accelerations have not been dangerous but are felt on the total structure including Orbiter. A

large statistic_ base of response from static firings have been used to quantify the phenomenon. Figure

111 shows analytically how gap size and flow conditions. Although it is probably impossible to predict
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Figure 110. SRM motor segment and cavities.

AFT

all possible acoustical tuning conditions, design must be constantly aware of the potential and search out
ones that can lead to problems. The next section gives added emphasis to this conclusion discussing two

cases that happened to the SSME.

b. SSME Acoustical Cavity Tuning

The SSME has experienced acoustical modes tuning with structural modes. One major engine

failure has.occurred as a result of this type tuning. This involved the main oxidizer valve (MOV) which

caught fire due to the high acoustical energy inducing high thermal loads on the valve seal. At the time
of the initial failure, acoustical tuning was not considered as a probable cause. Flutter created by valve

position was the generally accepted cause. Much analysis and extensive ground flow testing of the valve

were required to isolate the cause. This was achieved by systematically closing off each internal cavity

with putty. The fix was simply to "close" the gap with a filler washer. Figure 1 12 shows the (MOV)
location on the engine and where it fits in the flow from the lox pump. Figure 1 13 shows the basic

geometry and two different sleeve configurations showing the gap at the valve to line fitting flange that

was the acoustical cavity which caused the problem.

Figure 1 14 shows how the dynamic pressure at various locations in the lox system responds during

hot firing test. Notice the large amplification of the 16N pump induced pressure due to tuning the MOV
and downstream at the main combustion chamber inlet. The resulting acceleration of the valve was very

large as shown on Figure 1 15. The phenomenon that occurs is illustrated on Figure 1 16, which shows

how the gap mode tunes with the longitudinal standing wave in the valve sleeve areas.

Much analytical work was accomplished to define these modes and their variations due to manu-

facturing tolerances. Figure 1 17 shows these two modes with the potential tuning areas. Shown on the

same graph are the results obtained with a blowdown ground test program verifying the cause. The fix

was simply a washer put in to the seal cavity (Fig. 1 18). This fix solved the problem as shown in Figure

119, which is_a comparison of the response before and after the fix. No further evidence of MOV tuning

has occurred [46,47].
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COUPLING WITH THE CAVITY TANGENTIAL ACOUSTIC MODE

_. OF MOV " FLOW IN
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(b) ACOUSTICAL WAVE INTERACTION MECHANISM

Figure 116. Mechanism relating to anomalous discrete frequency.
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The secondfailure involving dynamic tuning did not involve the total engine, but only the fuel

prebumer oxidizer system ASI line and orifice which failed. Figure 120 shows the flow and where the

failure occurred.

The problem occurs at shutdown when the engine is chugging, sucking hot gas and hydrogen

into the ASI line just above the igniter. This gas explosion creates a pressure wave. This pressure wave

is doubled at the orifice, failing the part and in one case the liner. The pressure wave varies substan-

tially from one shutdown to the other depending on the amount and mixture of the gas sucked up into

the line.

The fix was very simple: Change the shutdown purge to eliminate the gas backflow. As an added

precaution until ground hot firing test verified the changed purge, the ASI line was also wrapped with a

fiber and epoxied. No further incident has occurred in ground testing or on Shuttle flights.

OUTLET

ASI BY--PASS
LINE

OXIDIZER DOME

H2
HOT GAS

H2--_l I '|"H21

ASI FUEL LINE

ASI

1
Pc

CHUG

FROM FPOV

Figure 120. Fuel preburner oxidizer system.

E. Modal Tuning

Modal tuning changes drastically the system response when lightly damped element modes tune
or detune. Previous sections discussed how these tunings change payload and systems loads by several

factors. The same was true for the G-switch early signal on the SRB parachute system and the Viking

payload simulator discussed earlier.
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1. ET Lox Tank Tuning

One very interesting problem of this type occurred during the lox tank hydroelastic dynamic

testing of the ET. The damping of the second LO 2 tank bulge mode varied up to an order of magni-

tude depending on the fill level and tank tilt angle (Fig. 121). The complete explanation of modes
which tuned has not been formulated; however, the results were very clear. Many special tests were

run to determine if something in the test setup was the culprit. Nothing was found. It was finally

decided that the full scale Shuttle system test would be used as a final verification of this effect and

determine the damping to be used for system analysis. The full scale system test verified the full scale
lox tank test values showing the effect was real. Since the Shuttle has an excellent pogo suppression

system, the low damping values were of no consequence. The lesson: One must be ready at all times

for surprises and problems in verification testing that takes time and effort to verify and understand

[611.

2. Saturn I Tank Coupling

The Saturn I and Saturn IB were clustered configurations of Redstone and Jupiter sized tanks,

eight tanks surrounding one. The thrust frame coupled them at the rear and a spider beam coupled
the tanks at the tip. Thisotype configuration presented the structural dynamic modeler and the control

analysts,_many new problems. The clustered tank with the spider beam at the top was a nightmare for
basic beam analysis. Also, basic unsymmetrical pitch modes between the clustered tanks coupled into

roll. Also, the sloshing in the outer tanks coupled into the vehicle roll control. Modeling of the stru'c-

ture required innovative ideas such as calculating pin fixed outer ring tank bending modes, spider beam
modes, and modes of the center tank and upper stages and coupling them together. The technique used
was what is .known today as modal coupling. In order to calculate the spider beam modes, a crude type

of finite element analysis was used. Many modes had to be calculated and used in loads and control

analysis due to the many dynamic possibilities between the nine tank elements, thrust frame, and spider

beam, greatly increasing the computational effort, analysis complexity, and analysis time. Dynamic

tuning between similar elements are very complex and has led to most of the modeling problems

encountered.
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F. Manufacturing and Quality

Manufacturing procedures and quality control are fundamental to good design and acceptable

hardware. Several problems discussed previously have their sensitivity rooted in manufacturing toler-

ances; namely, high pressure engine pump whirl and imbalance, the MOV seal failure and the SRB nozzle

erosion. Two other engine problems have occurred in this area, one leading to an engine failure and the

other a continuous area of engineering assessment. The first was a mixup of weld wire that resulted in

a steerhorn failure, gutting an engine. The other is weld offsets that occur when welding two line

segments.

The weld wire mixup occurred at the vendor, where a small number of a much softer wire out of

a specific lot was mixed in with the specified harder wire. Random sampling of the delivered wire was

not large enough to catch the error. The result was a fatigue failure of the weld joint on the steerhorn.

Rocketdyne had kePt a detailed log of each wire used, where used, etc., which allowed assessment and
verification of each weld that potentially could have been made with wrong weld rods. No additional

damage was experienced; however, laborious activity was required to clear the engines that were affected.

The weld offset problem has resulted in an intensive effort to establish the magnitude of each

weld offset and the degradation in capability of each weld. Figure 122 shows a typical line while Figure
123 shows the type of weld offset experienced. Much effort has been required to analytically and

experimentally determine actual capabilities of all welded lines on the SSME.

21° REF

Figure 122. Main combustion chamber inlet weld offset.
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In summary, the final goodness of the hardware is determined by the manufacturing and quality

procedures.

'IV. DYNAMIC PROBLEMS ENVISIONED

Future launch vehicles, payloads, and satellites are expected to have the same type of problems

discussed in this report. Engineering attention must be given to each of these potential problems as the

system is designed and analyzed.

Orbiting space stations will have many new problems; however, they will still fall into the same

categories discussed. In particular, the large size coupled with lighter structure and unique control

requirements drive toward a more difficult situation [4, 62-67].

The active control of large flexible structures, such as the Space Station, requires the development

and verification of a new technology. At least a major extension of the present separate technologies of

structural dynamics and controls is required. The technology arises from the unique requirements of the
station that leads to a unique structural configuration, which is unsymmetrical, multi-body, connected

_through joints with many, very flexible elements, such as solar arrays, that must be oriented in space with

certain elements requiring fine pointing and/or shape control. The control system is composed of a

myriad of control sensors and actuators located throughout the structure with each, or each subset,

having their own specialized design and operational requirements.
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This is essentiallya unique situationrelativeto standardcontrol systemdesignpracticeswhere,in
general,the basic control systemcould be designedtreating the spacecraftas a rigid body, then com-
pensatingthrough filtering to eliminate elastic body feedback. The assumptionof rigidity is not a
reasonableone for SpaceStation concepts;therefore,the control systemmust take on a different form
and include elastic body effects, the degreedeterminedby the configuration and operationalrequire-
ments.

The result of this unique situation is that both the control engineerand the structuraldynamicist
becomea team and, in essence,createa new discipline,"structural control interaction." Thenew field
canbesplit into the following disciplineareas:

1) Analytic modelingandmodel reduction.

2) Systemidentification.

3) Control-lawdesignmethodology.

4) Integratedstructure/controldesignmethodology.

5) Sensorand actuatordevelopment.

6) Groundtesting.

7) On-orbit testing.

The selectionof technologydriversand the resultingtechnologythat will determineproblemsof
the future dependson severaldesignphilosophiesand structural dynamic assumptions. Three design
philosophiesaregenerallyaccepted,which could strongly drive control/structureinteraction technology.

1) Designstructurein conventionalapproachusingstrengthasdriversand thendesignthe control
systemto control it. This approachcan lead to averycomplexcontrol system,heavierstructure,andin
somecases,performancecompromises. In general,spacesystemshave beendesignedin this manner.

2) Designsystemoptimally using the control systemto augmentthe structureproviding delta
dampingand stiffness over what is afforded by the structure alone. This approachgivesthe lightest
structurewith the highestperformance(approachusedin certainhighperformanceaircraft design). The
major problem is the additional failure modesthat are introduced coupledwith a morecomplexcontrol
systemand designand verificationactivities.

3) Conventionalstructural designwith minor modsof passivedevicesand activecontrol to solve
problems. Control systemis designedto control this basic structural system. This is the least risky
approachfor current systemswhich meetsbasicperformancegoalswithout pushingor extendingtech-
nology limits too far. Planning, discussedlater, will use this least risky approach,even though the
optimized designphilosophy is very appealingto most in the technicalfields of control and structures.

The next considerationhas to do with the assumptionone makesin termsof how well structural
dynamiccharacteristicscanbe predicted. Figure 124 showsthesethree assumptionsand the advantages
and disadvantagesin terms of technology. Exact knowledgeof the structural dynamiccharacteristics
(Case1) is obviously desirablesinceit will leadto a simplecontrol approachanda highly reliablesystem
requiring limited simulation and analysisactivities; however, obtaining accurate knowledgeof the
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Figure 124. Structural control interaction design approaches.

structure would require extreme testing and verification. Dynamic testing technology would have to be

extended in instrumentation, excitation, zero-g simulation test fixtures, and facilities. Even with this

technology extension, it is very doubtful that for a Space Station the dynamic characteristics accuracy

could ever meet this assumption. The opposite side is to assume that it is not possible to have any

knowledge of the structure. In this case (Case II), a learning adaptive control system would be required

leading to reduced flexibility, extensive simulation, and analysis task plus extending extensively the

control system technology world which may be beyond the realm of possible achievement. These two
extremes drive toward the only acceptable approach that appears feasible, which is to define and verify

the structural dynamic characteristics within a defined set of limits (Case III). These limits define addi-

tional parameters that must be considered in the design and verification process of the system. It would

result in a control system with acceptable complexity. The system would have adequate performance
with achievable ground and operational testing and moderate simulation/analysis tasks. Taking this

approach automaticaUy requires that design and verification analysis techniques be extended to handle

large sets of parameter variations. Some extension of control technology and testing technology, includ-

ing operational testing, on-orbit control software update appears achievable. It should be pointed out
that the two extreme assumptions require some analysis to set limits and define evaluation criteria for

the chosen set, Case III.

Having chosen assumption 3 as the approach to take raises one additional question which becomes

technology selection's driver. Here, the question deals with the form of the structural dynamic model.

Figure 125 shows three options. The first option uses a very detailed finite element structural dynamic
model which identifies the structural dynamic characteristics using all the resulting modes for control

system design activities. This would require development of new control system analysis tools and

large amounts of computer time. The question is obviously open as to whether the present tool tech-

nology could be extended this far. The next option utilizes a truncated (reduced) large finite element
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Figure 125. Options for control interactive analysis.

model for the interaction analysis. The truncated model allows use of generally available interaction

analysis tools; however, adequate truncation tools require development. Truncation here is defined in a

very broad sense. Equivalent models of very limited degrees-of-freedom fit in this category as do the
normal modal selection and modal reduction techniques. Option 3 is really a combination of 1 and 2,

where a moderate extension is made of the interaction analysis capability and the truncation tools and

is the preferable way to go. In any case, as discussed previously, a major problem exists, how to vary
modal data inaccuracies (modal parameters) and combine individual modes and other system parameters.

Other questions which influence technology tasks are not as clearly defined as the ones previously

discussed. It is not known, for example, whether the Space Station concepts coupled with various per-

formance requirements will drive dynamic characterization and interaction analysis into the nonlinear

range or not. It is the current belief that it will not; however, if it does, many technology issues and
new problems arise. Figure 126 shows some modeling options that are open for handling this situation.

Other approaches and options can probably be developed. It is clear that using a total nonlinear analysis

approach is not feasible for most situations. The particular performance situation would dictate whether
one would have to drive towards model options 2 or 3. Questions other than nonlinearity will arise as

more analysis and concepts are developed.

Several characteristics, must'be iinherent in a ground test program designed to understand and

validate this_new or expanded area. First and foremost, the program must start with a very simple

system and proceed to more complex structural sets with cross coupling and finally evolve to the

complex system with overall control, pointing control, and shape control. Figure 127 shows these three

general categories of configuration complexity with bubbles indicating the various dynamic and control
characteristics that can be investigated. Secondly, the structural and control system models at each level

of testing must have considerable flexibility. The structural model must have the ability to vary the
modal characteristics; to demonstrate frequency and mode shape uncertainties; and to validate the ability

of the control system to handle these variations. Time-varying modal characteristics are also important
characteristics to simulate. Third, inclusion of various disturbances and environments, such as man

motion, docking, aerodynamics, operation of onboard equipment, etc., is a requirement and can be simu-
lated. The induced response should be characteristic of what is expected on orbit. Fourth, modal

coupling, unsymmetrical systems, and modal density are key characteristics to simulate. The actual

frequencies and/or bandwidth are not necessary to simulate. Fifth, the individual test articles and the
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Figure 126. Non-linear/localized damping.

test plan must be constructed such that the article is tested first without control to validate the struc-

tural dynamic model before environmental excitation and control feedback tests are run. Validation of

basic control loops before closing on the elastic body system is also needed.

The kind of interaction requirements that drive these flexibilities arise from basic operational and

performance specifications. Some general ones are (1) orientation and control of the overall Space
Station, (2) general pointing of elements, such as solar arrays, (3) fine pointing of elements such as tele-

scopes and antennas, (4) shape control, such as antennas, (5) control and stability overall during reboost

and maneuvering, (6) response and load relief control during docking, (7) control of disturbances, such as

man motion, (8) configuration growth and assembly. Others probably exist; however, these appear to be

the drivers.

The generic validation plan should be evolutionary and phased, starting with simple configurations

(Phase I) and building up to the more complex (Phases II and III). Figure 128 is a flow of a Phase I

test plan which includes definition of the structural complexity and where available structures could be
used. Where no available structure is listed, the hardware would have to be designed and built. The flow

starts with a symmetrical constant parameter structure and proceeds through a three-staged tuned struc-

ture to a time-varying system. The same sequence is followed for the asymmetric model and test. Phase

II has increasing complexity over Phase I and rings out more of the problem areas as well as giving more

indepth validation of technology covered in Phase I (Fig. 128). The various characteristics of this article
are listed on the chart and include crew motion, larger scale, many symmetrical and antisymmetrical

modes, variable frequency, variable damping, etc. Phase III would follow from Phase II adding elements

with pointing control requirements. Obviously, in each of these phases, structural model verification

would proceed closed loop verification as discussed earlier.
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In summary,the sameproblemareasareenvisionedfor future systems;however,they take new
forms. In particular, the areaof structural control interaction will bring out a different look to these
old friends. Thermal effects in this coupling can be large. References2 and 68 list the technology
implicationsof the Shuttleand other experiences.This list is still valid.

V. SUMMARY AND LESSONS LEARNED

Summary

The analysis, and the experiencing of dynamic problems are exciting and inspiring work. The
frustration of failures not expected are par for the course. Murphy's law seems to reach its pinnacle

when dynamics are present. Even though one must learn to live with the unexpected, careful attention

to problems of the past allows the purchase of good insurance against problems in the future. This
report is a very brief survey of dynamic problems experienced on various space programs "carried out by

NASA and in particular at MSFC. The references provide additional information; however, much of the

data are in the minds of engineers and in their files. Preservation of the information is a major problem.

The matrix summarizing the problems by project and discipline provides a quick reference. It is the
desire of the authors that somehow this report will eliminate some problems in the future. As a final

attempt to accomplish this goal, the summary concludes with a list of lessons learned.

.

modeling

problems.

Lessons Learned

1. Problems anticipated and worked on usually do not happen in operations.

2. Problems anticipated and worked without adequate technology tools cause false security and

lead to major operational problems (example, S-IC and S-II pogo).

3. Always do a complete systems analysis, or a change that fixes one problem can lead to

another which has greater consequences.

4. Design with as_much margin as feasible using the best technical solution in order to reduce

the sensitivity to small environmental changes and manufacturing and quality slips.

Understand all the system sensitivities, system interactions, and sequences for a sound

foundation; otherwise, key problems will be missed leading to major failures or operational

6. Analytical models are only as good as the experimental input data, such as material properties.

7. The goodness of the hardware is determined by the manufacturing and quality procedures.

Tolerance criteria should be based on sensitivity analysis.

8. Marginally stable systems are very sensitive to parameter variations and can easily move into

unstable regimes.

9. Marginally stable systems near the instability point act like a response limited forced response

system.
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10.Very accuratedefinition of all forces,manufacturing,control, andsystemmodelsarerequired
if the systemmust operatenearthe stability boundary.

11.Adequateinstrumentation on developmentflights is mandatoryfor understandingproblems
that develop. This instrumentationmust be engineeredearly in the designphasesand coverall discip-
lines.

12.Know what is critical to the system,then modelandanalyzethat areaaccurately.

13.Checkout all assumptionsto seeif they arevalid for the casebeinganalyzed.

14.Simple models can and should be derived from complex modelsfor usein systemanalysis
oncethe critical characteristicshavebeendetermined.

15.Analytical modelscan be no better than the assumptionmadeand the accuracyof the experi-
mentalinput data,suchasmaterialproperties.

16.When a potential problem exists that hasenergysourcelevelshigh enough to causelarge
responses(loads), analysisand testingmust totally ring out the problem, identifying all key parameters
andsensitivities.

17.Whena technicaldissenterexistsduring designand verification,hear him out. He probably
hasgoodinsightandjust might havethe answer.

18.Speciallyinstrumentedand increasinglycomplex developmentflights aremandatoryfor any
spacesystemwhich is pushingstate-of-the-arttechnology.

19.Multi-body systemswith low dampinghavemanydynamicmodes,which can tune, drastically
affectingresponses,many timescausingfailures.

20.PhasesA and B of a programmust uncovercritical technologiesand developapproachesand
capabilitiesfor their solutions.
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