
'1

NASA Contractor Report 177979

lCASE REPORT NO. 85-39

leASE
NASA-CR-177979
19860002389

TOWARDS DEVELOPING ROBUST ALGORITHMS FOR SOLVING
PARTIAL DIFFERENTIAL EQUATIONS ON MIMD MACHINES

Joel H. Saltz

Vijay K. Naik

NASA Contract No. NAS1-17070

September 1985

~ I n \ I~! 1085
I~v', v

LAI<GLcY RESt:ARCH CE~.rEn

LIBRARY, NASA

'lI\Mf>.TO~, VIRGI~!lf\

INSTITUTE FOR CO~~UTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NI\SI\
NatIOnal Aeronautics and
Space Administration

Langley Research Cent.
Hampton Virginia 23665

1111111111111 1111 1111111111111111111111111111
NFOI008

https://ntrs.nasa.gov/search.jsp?R=19860002389 2020-03-20T16:10:01+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42842923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Report No NASA CR-l 779 79 I 2 Government Accession No 3 ReciPient's Catllog No

lCASE Report No. 85-39
4 Title and Subtitle 5 Report o.t.

TOWARDS DEVELOPING ROBUST ALGORITHMS FOR SOLVING S~nt~mh~r lQR'l

PARTIAL DIFFERENTIAL EQUATIONS ON MIMD MACHINES 6 Performing Or9lnlZItion Code

7 Authorls) 8 Performing Or9lnlzatlon Report No

Joel H. Saltz and Vijay K. Nal.k 85-39

10 Work Unit No

9 Performing Organization Name and Address
In~titute for Computer Applications in SClence

and Engineering 11 Contract or Grant No

Mal.l Stop 132C, NASA Langley Research Center NAS1-17070
Hampton, VA 23665 13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address
Natl.onal Aeronautics and Space Adml.nl.stratl.on ('"nt- ... ""t-" ... Ra"" ... t-

Washlngton, D.C. 20546 14 Sponsoring Agency ~

505-31-83-01
15 Su pplementary Notes Subml.tted to Parallel Computlng

Langley Technical Monitor:
J. C. South Jr.

Final Report
16 Abstract

Methods are proposed for efflcient computatlon of numerlcal algorlthms on a
~lde varl.ety of MIMD machines. The~e technlques reorganlze the data dependency
patterns so that the proces~or utll1zatlon lS 1mproved.

The model problem examined Elnd~ the t1me-accurate solution to a parabolic
partlal differentlal equatlon dlscret1zed in ~pace and 1mplicitly marched
forward in time. The algonthms l.nvestigated are exten~lons of Jacobi and
SORe The extengl.ons conSl.st of iterat1.ng over a ~lndo~ of several timesteps,
allowing efficient overlap of computatlon wlth communicat10n.

The methods suggested here l.ncrea~e the degree to wh1ch work can be
performed while data are communlcated between processors. The effect of the
~l.ndow Sl.ze and of doma1n partl.tl.On1ng on the system performance 1~ examlned
both analytically and experimentally by implementlng the algorithm on a
simulated multiproces~or system.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement

MIMD, multiprocessor, shared memory, 59 - Mathematl.cal & Computer Science~
iterative methods, performance of
parallel processors. Unclrt~sl.Eled - Unll.ml.ted

19 Security Oasslf lof thiS report) 20 Security CIaSSlf lof thiS page) 21 No of Pages 22 ~Ice

Unclass if ied Unclassl.fied 52 A04

N-J05 For sale by the National Technical Information Service. Springfield Virginia 22161

TOWARDS DEVELOPING ROBUST ALGORITHMS FOR SOLVING

PARTIAL DIFFERENTIAL EQUATIONS ON KIMD MACHINES

Joel H. Saltz
Institute for Computer Applications in Science and Engineering

Vijay K. Naik
Institute for Computer Applications in Science and Engineering

Abstract

Methods are proposed for efficient computation of numerical algorithms on

a wide var1ety of MIMD machines. These techn1ques reorganize the data

dependency patterns so that the processor utilization is 1mproved.

The model problem examined finds the time-accurate solut10n to a parabolic

partial d1fferential equat10n d1scret1Zed in space and implicitly marched

forward in t1me. The algorl.thms 1nvest1gated are exten~10ns of Jacobi and

SORe The extension~ consist of iterating over a window of ~everal timesteps,

allowing effic1ent overlap of computation with commun1cat10n.

The methods suggested here 1ncrease the degree to which work can be

performed while data are commun1cated between processors. The effect of the

window .,ize and of domain partitioning on the syc;tem performance i., examined

both analytically and experimentally by implement1ng the algorithm on a

simulated multiprocessor system.

Research was supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NASl-17070 while the authors were in
re.,idence at lCASE, NASA Langley Research Center, Hampton, VA 23665.

The first author was also supported in part by NASA Grant NAGl-466,
Medical Scientist Training Program, NIH Grant HL-11307.

i

1. Introduction

It is widely recogn1zed that parallel computation is essential to overcome

the fundamental phygical lim1ts due to circuit switching and signal

propagat10n delays on the computational speeds of sequential processing.

Recent technolog1.cal advances in the integration of electronic circuits has

made it possible to conceive of large systems of processing elements working

together in parallel on a single problem. In order to achieve high

performance from such systems, the problem is d1.vided 1nto small tasks that

can be solved in parallel. The flow of data between tasks must be matched to

the characterist1cg of the 1nterprocessor communicat10n network so that tasks

running on separate processors can cooperate in an efficient manner during the

computation [HOCK8l], [VOIG85].

In recent yearg most algorithms developed for parallel processing have

been designed for implementation on vector computers or single instruction

multiple data (SIMD) type systems, mainly because of the relat1vely wide

availability of guch machines [ORTE85]. Fewer algorithms have been developed

specihcally for implementation on multiple instruction multiple data (MIMD)

type sygtems [VOIG85]. In guch sygtems individual processors independently

execute their own set of l.nstruct1.ons and may operate asynchronously. In many

MIMD machines that have been either built or proposed, each processor has a

local memory to which it has relat1vely rapid access [HWAN85]. In this paper

we discuss some algorithms and methodologies for efficient numerical

computations on such systems. The processors may communicate by using a

communication network or by passing messages through a shared memory.

The des1.gn of any parallel algor1.thm involves part1t10ning of the problem

into individual tasks which can be executed concurrently on the processors of

-2-

a parallel processing system. If the problem can be subdivided among the

processo1:'s 1n such a way that each processor can proceed at 1tS own rate in

solving 1tS portion of the problem, w1thout requiring 1nformat10n from other

processors, the coord1nat10n 1S s1mpl1f1ed. In the cases where th1s 1S not

so, algorithms and machines must be matched so that the necessary data are

made ava1lable where they are needed when they are requ1red. For numerous

algorithms, the total time required to move data to the appropr1ate process1ng

element 1S larger than or equal to the time requ1red to perform the

computation [GENT78], [ORTE85], [SAAD85].

Complicat ions may arise when processors require data computed in other

processors to cont1nue performing useful work on a problem. A number of

factors can conspire to create a s1tuation 1n wh1ch data are not ava1lable

where and when the data are needed. Two such factors are: 1) 1nterprocessor

commun1cat10n delays may prevent a processor from rece1vLnr, a p1ece of

information ava1lable elsewhere, when required; 2) the computat10nal ab1l1t1es

of the processors performing work on the problem and the port1ons of work

assigned may not be matched. In this paper we concern ourselves w1th the

first problem. The quest10n of load balanc1ng 1S adrlresbed 1n [SALT85].

The degree and properties of 1nterprocessor communicat10n delays are

dependent on the characterist1cs of the computer arch1tecture on wh1ch the

problem is run, the algorithm used to solve the problem concurrently, and the

mapp1ng of the problem onto the arch1tecture. If the scheme employed for

solv1ng the problem in parallel has the property that results are needed for

use in other processors soon after be1ng computed, the scheme w1ll be

sensitive to delays in the transmission of data between the processors, and

the utilization of the system as a whole is apt to be degraded. Here we

-3-

define the util1zation of the system as the average amount of time spent by

the processors in perform1ng useful operat10ns div1ded by the total t1me

required to solve the problem.

In this paper we will demonstrate that it is poss1ble to reorganize

computations in each processor so as to increase the amount of useful work

that can be performed on the problem while each proce~sor waits for data from

other processors. This study will be based on a model problem of obtaining

the time-accurate solution to a linear parabolic part1al differential equation

discretized 1n space and implic1tly marched forward in time. The algorithms

investigated are 1terative methods that are extensions of block Jacob1 and

SORe

In the next ~ection we diSCUSS the general princ1ples involved 1n parallel

implementations of basl.c l.terative methods such as Jacobi, Gauss-Seidel, and

SOR methods. In Section 3 the model problem is lntroduced. After show1ng the

difficulties due to the communication delays encountered 1n applYl.ng the

parallel versions of basic l.terative methods, we present two algor1thms Wh1Ch

are extenSl.ons of Block Jacob1. and Block SOR dnd which allow effic1.ent overlap

of computation with communication. Schemes for 1.mplement1ng these algorithms

on multi-processor systems are discussed 1.n Sect10n 4. In Sect10n 5 we derive

bound~ on processor ut1.lizations for such 1.mplementations. The~e algorithms

are implemented on a slmulated shared memory mach1.ne and the results are given

in Sect1.on 6. Exper1mental result~ on convergence and overhead of the

algorithms developed in Sect1.on 3 are presented 1.n Sect1.on 7, and it 1.S shown

that for the cases cons1.dered, the overhead 1.S moderate compared to the ga1.n

obtained 1.n employing these algorithms.

presented 1n Sect10n 8.

F1nally, conclud1ng remarks are

-4-

2. Parallel Iterative Methods

In this '>ection the pardllel 1mplementat10n of basic 1terative method,>

will be outlined. For spec1ficity, we cons1der the ,>tandard uniform five

point difference approX1mat1on to Laplace's equat1.on g1ven by

o

in a square dOma1'"l ,>ubject to D1r1chlet boundary cond1t1.ons. The d1fference

equation obta1ned when the mesh is n by n 1'>

1
u i - -4 (u'+1 + u'_1 ' + u i +1 + u, -1)· ,J 1,J 1. ,J ,] 1,]

The subscripts 1 and J rdnge from 1 to n; and u 1 n+ l' u1 0' un+ 1 J' and , , ,
are given con'>tants. Notice that the equation for each mesh p01.nt

1.nvolves data at that pcnnt .-1<; well as the p01nt's north, south, east, and

west neighbor'>.

The Jacobi method for the solution of this ,>ystem of d1fference equations

may be written a'>

k+1
u

1,J
1 (k + uk + k + k)
-r u'+l' i 1 U 1 ,j+l u 1 ,J'-1 '+ 1.,] -,]

where the super'>cript denote'> the iteration number. The Jacobi method often

converges very slovlly, but is considered to be a prototype parallel method

[ORTE85] • On multiproce.,s,)r computer'>, .,ingle mesh-points or group,> of mesh

points are dssigned to each processor. All p01nt<; dre updated each iteration,

and since only the values from the last iteration are utilized, each '>tep of

the iteration may proceed to completion without any need for communicat1on of

data values dur1ng the step.

-5-

The Gauss-Sel.del and SOR methods require new values at each point to

replace the old vaLles as soon as the new values are computed. In sequential

computers the points in the domain are generally processed one iteration at a

time, pOl.nt by point and line by line. Eecause of the need for the new values

of the variables at the previously computed points, only one mesh point can be

dealt with at a time; hence, the process is not suited to multiprocessor

machines. To deal with this problem the mesh points are grouped into two

subsets such that no points in a subset are coupled to other points in the

same subset [ERIC72], [HAYE74], [LAMB75], [ADAM82]. The most common way of

obtaining these setg is to use the classical red/black ordering [YOUN71]. For

the model domal.n this is obtained by assigning points to the black subset

when i+j is odd, and to the red subset when i+j is even. Each iteration

can then proceed in two separate phases where each phase has the properties of

a Jacobi sweep in that all mesh-points in a given phase may be adjusted

independently. Other iterative methods such as the chaotic or asynchronous

relaxation involve the updating of mesh points with variable values that need

not come from the previous iteration [CHAZ69], [BAUD78], [DEMI82]. In the

simplest form of chaotic relaxation, each processor uses whatever valueg are

available to compute the next value of the iterate at a given point, without

any restriction on the iteration number of the variable value chosen.

It is possible to implement Jacobi, Gauss Seidel, and SOR iterative

methods so that all new valueg corresponding to a group of variables are

determined at once. Such schemes are referred to as block iterative methods.

The simultaneous determination of the values of groups of variables involves

the solution of subsystems of equations, generally by direct methods. Under

specif1.c conditions the block iterative methods are known to converge at a

-6-

rate faster than the correspondlng pOlnt Iteratlve methods [YOUN71j, [VARG62j.

Various solutions are proposed to 1ntroduce parallellsm 1n the block SOR

methods, including the scheme of partitlon1ng the domaln Into red and black

blocks [ERIC721, [LAMB751, [PARTR01, [PART821, [FABE811.

3. Multistep Iterative Methods

In many algorithms for the solut10n of t1me dependent problems, 1t 1S

necessary to solve a sequence of linear systems of equat10ns Involv1ng the

same matr1x but d1fferent r1ght hand sldes. In these cases, the nght hand

sIdes of the consecutIve systems of equations are dependent on the solutl0ns

of the equations earlIer in the sequence. The 1mpl1cl t solutlon of the

parabolIc partial dlfferential equatlon using the Crank-Nicholson method 1n

tIme glves rise to one such algorlthm. TYPlcally when an Iterat1ve method IS

applied to a time dependent problem, iterations proceed successlvely over the

systems of equations for each timestep [HAGE81j. Slnce the consecutive

systems of equatIons depend on the solutl0ns of the earl1er equat10ns, such

implementatIons limit the extent of possible parallel1sm. In thls sectlon we

present algorithms whIch explolt a new level of parallel1sm In solVIng tIme

dependent problems. We achleve thlS by trave.l~nng more than one t Imes tep

during the course of a single IteratIon. Tn@se schemes allow coarse grained

multIprocessor implementations, WhICh are mlnimalty dependent nn mach1ne

characterIstIcs and have favorable, well-defIned convergence propert1es.

In the followIng, the multlstep parallel itecatl.ve methods wl.ll. hrst be

discussed In a relatively synchronous co"t~ so that the -nature of the

numerIcal algorIthm and the most stralghtforward Implementatlons can be

-7-

understood. Tlus w11l be follolNed by d1Scussions of ways 1n which the

algor1thms described can be implemented so as to allow for le~~ synchronized

implementations and high proces~or utilizations.

3.1 Block Jacobi Iterat10n

We consider the system

Hy b

where t-1 is an n by n matrix and y and b are vector~ of length n. We

a~sume for the remainder of the ~ect10n that the above sy~tem is partitioned

in the form

Ml 1 HI 2 M Y1 bl • • 1, q , ,

M2 1 M2 2 • M Y2 b2
M

, , 2,q
y = b =

•
•

M M M
.

b q,l q,2 q,q Yq q

INhere the M1j"~ are submatrice~ dnd Yi and b1 repre~ent ~ubvectors.

The Block Jacobi method H defined as follows,

- I M . Y
J

v
+ b.

1,] 1
J*l

INhere v represent~ 1teration number. All of the updated values at the

v+lst iterdt10n are obta1ned uS1ng values f rom the vth 1terat10n. The

1mportant speclal case when M1 ,J are 1 by 1 submdtrices glves rise to the

point Jacobl method.

-8-

3.2 Multistep Elock Jacobi Algorithm

Now conslder the following set of systems of equat10ns.

where M and

variables and

p

t
r

My(t)
r

are n x

lS the

Py(t 1) + b(t),
r- r

n matrices, y(t)
r

th r tlmestep.

r = l, ••• ,m (1)

and b(t) are vectors of n
r

Shortly we wl11 show how these

equations ar1se 1n the Solut1on of t1me dependent part1al d1fferent1al

equations as well as the lntegration of f1rst-order ordlnary dlfferent1al

equat10ns.

The solution of these equatlons with standard block or p01nt 1teratlve

methods involves the consecutive Solut10n of each of the m systems of linear

equations correspond1ng to the m timesteps. After 1teratlng over each

timestep until sat1sfactory convergence 1S obta1ned, one moves on to lterate

over the next tlmestep. On a sequential machlne, this 1S, 1n fact, the usual

wayan iterative method 1S applied to a time dependent problem [HAGE81]. In

Figure 1 this algorithm is deplcted schematically and a parallel verSl0n is

outlined below in an algorithmlc form. Here 'q' is the number of partitions

1nto which the domaln is subdiv1ded.

-9-

Jacobi Method Iterated Until Convergence over Each Timestep

For r=1 to number_of_t~mestepo;
{

Pardo i = 1 to q
{

}
Beginning w1th v = 0 increment v until
{

Pardo i = 1 to q
{

Solve:

M v+1 (t)
1,1 Y1 r

}

q
- \ M. yV(t) + \ Pi y.(t 1) + bi(t)

L ~,J J r L ,J J r- r
J*~ j=1

}
Pardo i
{

}

In the above algor1thm as well ao; in the subsequent algor1thms depicted

below, we ao;sume that the mdtrix P 1S decomposed into blocks using a

part1tlon1ng ident1cal to that already used Ear M. The submatrix Pij hence

includes the same rows and columns of P as M1J

b(t r) is decompoo;ed 1nto o;ubvectors bi(t r).

does of M. Each vector

Instead oE iterating untll convergence over each timestep before moving

on to the next, 1.t io; possible to iterate over a [lUmber of timesteps at

once. The o;el of t1mesteps over which these extended iterations occur is

called a w1ndow. After a fixed number of iterat10ns have taken place over the

window, or after convergence has been obtained dt the first timestep, the

w1ndow moves up one t1mestep. When the window sh1fts upward." the value of

-lO-

the solut1on at the t1mestep that was at the top of the old w~ndow u, treated

a., the 1n1t1al approx1mat10n at the new t~lllestep wh1ch ~., now at the top of

the shifted w1ndow. At the beg~nn1ng of the lter.:lt~ons, the ~nlt1al value

spec1f1ed for the problem is used as the 1n1t1al guess at all tlme'>teps in the

1.n1.t1.al w1.ndow. Th1s mult1step general1.zat1.on of Block Jacob~ lterat~on 1.S

called W1ndowed Block Jacob1 algor1thm (WBJ). Th1S 15 schematically deplcted

1n Figure 2.

In WBJ an 1terat10n takes place when poss1.ble over a w1.ndow of w

t1mesteps. The term m1.crostep describes the relat~ve POS1.t10n of a t~mestep

W1.th re.,pect to the begl:1I11ng of a w1ndow. A tlmestep that lS 1 t1.mesteps

above the beg1.nn1ng of a w1ndow w1l1 be designated as the lth m~crostep of the

w1ndow. The number of IR1crosteps advanced from the beg~nnlng of lterat~ons

performed over a w~ndow lS de'Hgnated as the number ()f cumulat1ve mlcrosteps

(cms). In F1.gure 3 the process of measur1.ng cumulative m~cro'>tep., 1.S

1l1ustrrlted by means of an example. The concept of cumulatlve m~crostep ~~ an

essent1al tool for the development and evaluat1.on of techn1.ques descr~bed ln

this paper. Note 1.n the following algor1.thm that 1.terat~on., are never

performed on the tvnesteps beyond "number_of_t1me'>teps" spec~fled for the

problem. Consequently, the w1.ndow S1ze durlng the solut10n of the la'>t few

t1mesteps may correspond~ngly be reduced. The followlng ~s an expllclt

out 11 ne of WBJ. As before q lS the number of part1.t10ns, and W ~s the

maX1mum number of timesteps 1.n a w1ndow.

timesteps used In a window.

"W1ndow" 18 the actual number of

-11-

WBJ - Windowed Block Jacobi Method

Pardo 1 = 1 to q
{

Pardo s=1 to window
{

1
yi(ts) = Y1 (to)

}
}

For r=1 to number_of_timesteps
{

Beginning wtth v=O increaaent v until lIy v+ 1 (t) - y v (t) II < e:
{ r r

}

Pardo i = 1 to q
{

window = lnin(w, number of t1me<;teps - r + 1)
for Ii = r to r + w1ndow --1
{

Solve:
v+1 () M •• y. t 1.,1. 1. c;

}

v
M . Y (t) +

1,J J s

Pardo 1 = 1 to q
{

}

In both the algor1thms discusc;ed above, dur1.ng iterat1.on v+l each part1.t1on

i utilizes variables yV, jtl from other partitions. This procedure allowc;
J

S1.multaneouc; computat1on of all part1.t1ons on a mult1.processor system. It

should be noted that there may be several blocks asc;igned to each processor.

-12-

The pardo statements above simply qerve to denote the existence of a number of

subtasks that can run lndependently.

In [SALT85] lt is shown that the spectral r,dlus of the lteratlon matr1x

of WBJ for dny wlndow w lS identical to that of the corresponding block

Jacobl method; hence, the asymptotlc convergence characterist1cs of the

algorlthms are comparable. In the Jacobi method, lt is necessary to calculate
q
I Pl j YJ(t s - 1) only once for each timestep ts over WhlCh the Solut1on lS

J =1 '
lntegrated. In WBJ thls matrlx vector mult1plicat1on must be performed only

once when a t1mestep 1q at the bottom of a wlndow, but it must be performed

each tlme a t11nestep lS above the lowest part of the wlndow. Therefore one

expects that the overhead 1nvolved 1n the new methods wl11 be moderate when

large blocks are utlllzed but quite h1gh when the matrlx lS decomposed lnto

very small blocks or pOlnts. In the next sectl0n, however, lt wlll be shown

that a minor reorganlzat lon of the computatlons can conslderably reduce the

overhead.

Note that instead of util1zing Solutlon values at earller timeqteps as

initial approximations at the top of a new window, one may utilize exphcit

integration methods. In numerlcal experiments this was shown to a1d

convergence but in some cases to ddversely affect stabtlity.

We now explicitly show how WBJ may be used to solve the set of ordinary

differential equations obtained from the spatial discretization of a parabolic

partial differentlal equation. Note, of course, that thlS method would apply

to a system of differenttal equatlons obtained in other ways as well. This

system may be represented as

.
y Qy + c(t)

-13-

where • y, y and c(t) are vector valued functions and Q is a matrix of

constants. Assume that y(tl) is given as an initial condition.

Applying the Crank Nicholson integration method to discretize in time we

obtain,

(Q/2)(y(t) + yet 1») + c(t)/2 + c(t 1)/2. r r- r r-

To advance from to to tm we solve Eqns. (1) above with the following

definitions of M, P, and b(t r):

M = (I/~t - Q/2), p = (I/~t + Q/2)

and

r = l, ••• ,m.

Let represent the partition of Q that corresponds to the same

rows and columns as doeg the partition of M and of P. Recall

from the earl1er discussion that the equat10ns for at each times tep

ts within the w1ndow are given by,

(2)

This may be rewritten in the case of th1s specific problem as follows:

-14-

(
v+l

I/~t - Q /2)y (t)
1,1 1 s

To real1ze the advantage~ of thlS rearrangement, cons1der the case that

would appear to be the most p~oblematlcal when (2) lS applled, that is, when

the block size 1S one, Wh1Ch cor~~sponds to a pOlnt 1te~atlv~ method.

Cons1der the computational overhead 'lri~ing f~om lte~ations ove~ tlmesteps

that a~e above the lowest pOlnt in a wlndow. By applY1ng (2) an extrd

ffi.-ttr1x vector multipl1cation appe:i~s to be ~equl~ed pe~ lterat10n ove~ each of

these t1mes teps. needs to be computed

only once per 1teratlon. Hence, assumlng that (I/Llt + Q /2)
1,1

has been

p~ecomputed, only one add1.t1on.'l1 multlpllcatlon and two add1.tlone; need be

perfu~med per variable fo~ each lte~atlon ove~ When a numbe~ of

processors requi re the value YV(t) + yV(t) one would expect it to be
J S J s-1'

computed separately in each p~ocessor.

3.3 W1ndowed-Hlock Succec;slv~ Overrelaxatlon Algorlthm

One may refine WBJ with the a1m of improvlng convergence by emploYlng a

multistep version of Block Successive Overrelaxat10n (BSOR). Part1tioning ie;

performed as described in the prevlous sectlons and, d5 before, each partlt10n

is advanced w timesteps during each iteration of the algorithm. In thls case,

however, the blocks are solved consecutively and estlmated values of variables

calculated from other part1tlons are used as soon a" they become available.

The other refinement involve<; the use of overrelaxat lone A weighted average

-15-

of the old and the new variable values for each partition is employed; the old

variable values are assigned a negative weight. ThiS multi~tep generalization

of BSOR is called Windowed-Block Successive Overrelaxation (WBSOR). Following

is a formal presentation of WBSOR. Meanings of q, w, and window are as

before.

WBSOR - Windowed-Block Successive Overrelaxation

Pardo i = 1 to q
{

Pardo s=1 to window
{

1
yi(ts) = Yi(tO)

}
}
for r=l to number __ of __ timesteps
{

Beginning with v=O incre.ent v until
{

for 1 = 1 to q do in parallel when po~slble
{

{

}
}

}

window
for s =

Solve:

mln(w, number of timeqteps - r + 1)
r to t + windo~ ---1

M YV+
1

l(t
s

)
1,1

v+1
P y. (t 1)

1, J J s-

- L
j>i

M Y~(t) +
1,] J S

\ P Y~(t 1) + b (t)
L 1,J J s- 1 s

J>1

Pardo i = 1 to q
{

1 v+1
Yi(tr+windo~ = Yi (tr+window-1)

yi(t r) = y~+l(tr)

}
}

-16-

If the blocks or partitions are chosen properly, 1t is possible to order

them so that one obta1ns two sets of blocks such that all blocks 1n a given

set are uncoupled from one another. By convent10n the blocks 1n one set are

designated as black blocks, and those in the other are des1gnated as red

blocks. For example, 1n the case of a two-dimensional spatial doma1n the gr1d

of p01nts on wh1ch the problem is to be solved may be part1t10ned 1nto str1ps.

The partition1ng should be done in such a way that each strip 1S coupled at

most to the two adjacent str1ps. The stnps are ass1gned to two sets such

that adjacent str1ps dre 1n separate sets.

In [SALT85] the spectral nd1us of the Herat10n matnx of WBSOR 1S shown

to be independent o(the w1udow S1ze used. It should be noted that WBSOR with

window S1ze one 1S s1mply BSOR. The use of WBSOR w1th any w1ndow S1ze yields

convergence that is dsymptot1cally 1dentical to that obta1ned with BSOR.

4. The Laplementation of WBJ and WBSOR on Multiprocessor Systems

In this section we consider the implementation of WBJ and WBSOR on multi-

proces&or machines. Here we assume that each processor of the system has a

substantial local memory. Information in this local memory may be accessed

more easily and inexpensively than information in the local memory of another

processor or in any global memory that might exist. The submatrices required

to carry out the computations of WBJ and WBSOR on part1cular port10ns of the

domain of the partial ddferential equation being solved should be quickly

obtainable from memory. Responsibility for work involving particular blocks

or portions of the domain is consequently assigned to a specific processor.

To reduce interprocessor communication requirements, blocks which share

coupling variables should be assigned to the same processor when possible.

-17-

We first consider a st raightforward multiprocessor implementation of

WBJ. A collection of blocks is assigned to each processor. Each processor is

programmed so that it may advance all blocks when the variable values required

have been obtained from other processors. Upon computing new approx1mations

to the partial differential equat10ns at a given timestep, the processor ~ends

values of the computed variables to other processors that require the

information. The operations performed by the processors and the patterns of

interproce'3sor communicat10n when the blocks are of size one by one (1.e.,

points), are similar to those described in [REED84].

In WBJ, as presented above, synchronization between all processors must

occur whenever the window shifts upwards. This requirement exists in order to

ensure that convergence has occurred at the lowest timestep in the window

before work on that t1me timestep comes to a halt. In order to advance to the

nth iteration mth microstep where n > 1, each processor requ1res coupling

variable values from the n-1st iteration, mth microstep. It is clear that all

processors need not be performing work on the same 1terat10n and the same

microstep simultaneously. Thus, as long as the advancement of individual

processes is based on the availability of appropriate coupling variable

values, no global synchronization is necessary. Furthermore, as the window

size of WBJ 1nCrea'3es, the degree to which the proce'3sors are constrained by

this implicit synchronization requirement decreases. The flow of data in a

two processor system with a window of three is 1llustrated in Figure 4.

We now consider a multiprocessor implementation of WBSOR. Henceforth, it

will be assumed that the points or blocks involved in this algorithm are

ordered using the red-black ordering. A'3 explained before in WBSOR, as in

WBJ, synchronization is performed among all processors whenever the window

-18-

shifts upwards. Blocks may b~ assIgned to processor~ In one of a number of

ways. The nature of the syncltrOluzat lon that must oc eur IS dependent on the

way in which blocks of dlffertlt colors are assIgned _0 processors. ConsIder

fIrst the case In which proc'ssors contaln elther C Illy red block::. or only

black blocks. In order to ad fance to the nth lterat)n, mth mlcrostep where

n > 1, each processor contd nlng black blocks req .lres couplIng vdrlable

values from processors conta] ung red blocks from t Ie n-ist Iteratlon, mth

mlcrostep. Each processor c lOtaInlng red blocks req nre':> couplIng vanahle

values from processors containlng black blocks from the' same IteratIon and the

same microstep.

With a wIndow of SIze one, I.e., the standard red-black BSOR scheme,

processors can only be active half of the tIme given an aSSIgnment of only one

color block in each processor. ThIS dlfflculty dlsappears when a WIndow SIze

of two or more IS utilIzed, and wlth larger wlndo s the tlghtness of the

couplIng between processors contInues to decrease. The asslgnment of multIple

red blocks to some processors and of multIple black blocks to others has a

potentlally serlOUS sIde eff~ct. SInce black block!:> are coupled only to red

blocks and vice-versa, values of all of the couplIng v~rldbles In every block

must be obtaIned from other processors. In the PO] lt lterdtive ver'>lon of

WBSOR, this arrangement would reqUIre the communicatl)n of the value of every

variable for each microstep c'lmputed at each iteratlO'> over every WIndow.

One may assign both red and black blocks to ea(1 processor and may thus

be able to substantIally redu'e the Interprocessor co munlcatlon reqUIrements.

Consider the case in which one wishes to solve a tIme dependent partial

differentlal equatIon dlfferl need WIth a fIve pOInt ~emplate. The domain of

the partial differential equc:ion IS diVIded into reg ons and the varIables in

-19-

each region are as~igned to blocks. All blocks in each reg10n are assigned to

a particular processor. With this arrangement only the value~ of the

variables corresponding to the mesh points at the boundaries of the regions

need to be commun1cated regardless of the size of the blocks.

5. Analysis of Communication Delay Effects

This section demonstrates the usefulness of windowing techniques 1n

ameliorating the effects of communication delays. The delay 1n send1ng a

message from one processor to another may be written in the form Cl + B *

size, where ex and B are some parameter~, and 's1ze' 1S equal to the number

of bytes in the message. The nature of communcatlon delay& depend., both on

the multiprocessor architecture and the demands on the communication network

made by the algor1thm being run on the mult1processor. In this paper,

interprocessor communicat10n delays will be modelled 1n the follow1ng two

ways:

(1) Un1form interprocessor commun1cat10n delays that vary only with the size

of each me~sage, i.e., ex and B are constants, and

(2) detailed simulat10n of a specif1c fam1ly of multiprocessor arch1tectures.

The detailed simulat10ns d1rectly model any queuing effects that occur;

hence, commun1cat10n delay 1ncreases as a funct10n of the number of

messages ,>ent.

An upper bound of ut1lizat10n for WBJ and WBSOR 1S derived below. The

upper bound calculations assume uniform interprocessor delays as described

above. It will be shown that this upper bound decreases with interprocessor

communication delay but increases with window size.

-20-

First a simple lower bound on the t1me required for each PE to advance all

of its blocks m cumulateve m1crosteps w1ll he der1ved. Th18 bound 1S a linear

funct10n of the interprocessor communication lag and is inversely proportional

to the w1ndow S1ze. From th1s lower bound, an upper bound on processor

utl11zat10n 1S obta1ned. It is assumed that commun1cation lags are constant

and unrelated to the amount of lnformatlon sent.

Fix attention on a given PE P, in a multiprocessor system. We consider

the executlon of WBJ and WBSOR with window S1ze w, on a mult1processor system.

Assume that to advance all the blocks in a glven processor P one cumulative

microstep, a total teme T 'Nould be required.

tion with other processor:, requires time cT.

Assume further that commnnlca-

The variable c will be called

the communicat lon delay. Cons1.der a boundary block B ln P wh1.ch requ1.res

coupling variable data [rom some other processor or processors.

Proposi t ion 1 : The boundary block B requ1res at least 2cT tlme to

advance from the end of cms i to cms 1+kw, where k = 2 for WBJ and

k= 1 for WBSOR.

Proof: The boundary block B at cms 1. is, by deflnltlon, coupled to at least

one block S' in another processor. Consider first the case of algorithm

WBJ. In order for 8' to advance to cms l+W it requlres varlable values from

B at cms 1. Time cT 1.S required for this lnformation to get to B'. After

B' has computed 1 ts result., for cms i+w lt must send those results to B.

This takes time cT. B cannot advance to cms i+2w until the results from B'

corresponding to ems l+W arrlve. Thus a lower bound on the time required for B

to advance from cms i to cms i+2w is 2cT. A similar proof in the case of

-21-

WBSOR demonstrates that block B requires at least 2cT to advance from cms i to

cms i+w.

The above proposit~on provides a lower bound on the time that

processor P takes to complete its work. Since P must advance all of its

blocks m cumulat~ve microsteps, ~t cannot complete its work in less than time

2CTL ~w J. Now mT is the computation time required to advance all blocks of

P, m cumulative microstep~. The total time to complete the problem is hence

bounded below as follow~

The ut llization of the processor P deflned as

accord~ngly subject to the following upper bound

u
p

.. 1

(

2c
max 1,

m

computation t~me is
T ' tot

A very simple asymptotic form will be der~ved which bounds the utilization

ach~evable, by a funct~on dependent only on the window size

commun~cation delay c. Note that,

Hence

1 u ..
p

max 1, k~ -(
2 m2C)·

In the limit of large m,

u
p "

1

(
2C)' max 1, kw

w and the

-22-

and 1f < kw then c 2 u (l.
p

Thus, the commun1cat10n delay that can be

tolerated before a bound on ut1l1zat10n occurs increases lInearly with w.

kw
If c > 2' then u (kw

p 2c·
This means that as the wIndow S1ze increases, the

sensitivity of the processor to communicatIon delays is reduced. Note that

for WEJ, k = 2 and for WBSOR, k = 1 and hence for any window S1ze, WBSOR 1S

more sens1t1ve to communIcatIon delays than WEJ.

The upper bounds derIved above do not depend on the amount of t1me

requIred to advance any of the blocks In the system. A refInement of these

upper bounds may be obtained by takIng into account the tIme requl red to

ad vance bound a ry blocks. Refined upper bounds will be computed for WBSOR

below; the same principles could be utIlized to rehne the upper bounds for

WBJ.

Assume that all boundary blocks in all PEs require computatLon time Tcomp

for advancement.

Proposition 2: The bounda ry block B requIres at least

time to advance from the end of cms i to cms l+W.

2cT + 2T
comp

The above propOSitIon is proved exaetly as was proposltlon (1) above,

except that: (1) block B' must now compute for t1me Tcomp before c;end1ng

variable values to Band (2) after receiVIng data from B', B must compute

for time Tcomp before it can make var1able values avallable at

ReasonIng exactly as before and substltut1ng k = 1,

cms l+W.

and hence the utilization bound is

U
P

-23-

1

2Tcomp)

mT

For ldrge m, the asymptotic utilizat10n bound 1S

6. Simulation Results

U
P

1

(0 + TO~MP)l .
(4)

Deta1led s1mulat10ns of a part1cular arch1tecture were performed, and the

algor1thms developed here were 1mplemented on th1~ s1mulated mach1ne to

exam1ne the effectb of w1ndow1ng on the system performance. Result~ obta1ned

from these s1mulat10ns for the algonlhm WBSOR perta1n1ng to the effect of

commun1cation delay and w1ndow S1ze on proce~sor ut1l1zat1on are out11ned in

this ~ection. In all sets of the s1mulat1ons we a~sume that blocks cons1st of

stnp" of the doma1n (Figure 5) and that only the ne1ghbor1ng stnps have

coupled variables. All processors have the same number of blocks assigned to

them, and the block& assigned to a g1ven processor are phys1cally adjacent to

one another.

6.1 A Simulated Shared Memory Mach1ne

A low level simulator called SIMON was employed to simulate a ~hared

memory architecture. SIMON is an event-driven multi-processor simulator

consist1ng of time-sorted queues [FUJI83] , [HELL84] • It is capable of

-24-

providing nano-second preC1S10n and allows the user to control the tim1ng at

the instruct10n level. Ut111ty funct10ns are prov1ded to define multi-

processor architecture, send and rece1ve messages, etc. When a message is

sent between processes, 1tS arr1val time 1S determined from the send t1me and

a delay representing travel through the interprocessor connections and

switches. It allows the user to control the computat10n costs at each

processor as well as the costs involved 1n interprocessor commun1cat1on.

The mult1-processor system simulated here cons1sts of a number of

processing elements and a global shared memory. Each process1ng element (PE)

conta1ns a centrdl process1ng unit and a substant1al local memory. The

instructions and data corresponding to the tasks assigned to a processor

reside in 1.ts local memory and the processor alone has d1rect access to th1s

memory. The global shared memory is made up of a number of modules and these

are accessible to all the processors with equal pr10r1t1es.

are connected to the modules through d crossbar switch.

The processors

The processors

communicate w1.th each other by read1ng and wr1t1ng data 1n the shared memory

modules. The access to these modules is brought about by means of

input/output handlers (1/0-handler) and an input/output processor (i/o-

processor). Attached to each PE is an 1/o-handler which takes care of the

read/wr1te operations assoc1ated with the shared memory and allows its host PE

to continue performing computations. The shared memory and the crossbar of

the system are cont rolled by the i/o-processor. Only one i/o-handler is

allowed to read or write to a particular memory module at a given time,

although a number of i/o-handlers can read or write to distinct memory

modules. The i/o-processor arbitrates the access to the shared memory modules

by different i/o-handlers through the crossbar switch.

-25-

The communication that occurs in this model machine involves either: 1)

messages concerning requests and permisg~ons to read or write, or 2) messages

that include variable values that must be transmitted and received. The

requests and permiss~on me.,sages are small, consist~ng of only a few bytes.

The transmiss~on of v~r~able values requires messages that are generally much

longer, and the~r s~ze depends on the number of variables that are shared.

The operation of the modeled shared memory machine is carried out as

follows. When a processor needs to read or write datd to the shared memory,

it sends a mes~age to ~ts ~/o-handler. This message designates whether a read

or a wr~te ~s requested and also designdtes the memory module requ~red. When

the l/o-handler recelves this message, it forwards the request to the ~/o

processor. The ~/ o-processor collects and queues requests to read and Wrl.te

sent by all of the ~/o-handlers. When a request to read or wr~te is serviced

by the i/o-processor, an ~/o-handler is given exclus1ve per~~sslon to lnteract

w~th a spec~fic memory module. Depending on the request involved, the 1/0-

handler can e1ther wr~te from the PEs' local memory to a particular memory

module, or read from a part~cular memory module and write to its PEs local

memory.

6.2 Effect of Window~ng

The simulated shared memory system, described above, was employed to

examine the performance of WBSOR as the window size was varied. The

simulations were carried out for a system consisting of eight processors and

eight memory modules and also for a system with eight processors and one

memory module. Henceforth the former system is referred to as Machine A and

the latter as Machine B.

-26-

In the simulat10n runs described below, it 1S assumed that a model doma1n

decompos1t10n 1S appl1ed where a un1form grld is d1v1ded 1nto strlps. Each

strip has 1000 mesh p01nts on the boundary. The t1me requ1red to send each

message, sent over a glven l1nk in the shared system, 1S assumed to be

microsecond plus 0.025 times the number of bytes 1n the message. Th1s

corresponds to a bandw1dth of 40 Mbytes per second per 12 b1t w1de

communication channel. As ment10ned earl1er, the s1mulat10ns expl1cnly take

1nto account the commun1cat10n requ1rements of the problem, 1nclud1ng the

queu1ng effects on the commun1cation delays and the chdnges 1n the data

requ1rements that occur when a w1ndow sh1fts upwards at the beg1nn1ng of a new

t1mestep. Thus, although the bandw1dth of the channels 1S f1xed, the problem

parameters affect the commun1cat1on delays 1n the system as a whole, and they

are accounted for in these s1mulat10nc;. In these exper1ments 1t 1S asc;umed

that the block advancement times for all blocks are 1dent1cal 1n all the

processors. A block advancement time is defined as the time 1t takes to

perform computatlons for a slngle t1mec;tep durlog an IteratIon over the

window, once the data for that t1mestep are avallabl~. Results are presented

here for the block advancement t1mec; of 0.5 millisecllnd, 1 m1lltsecond, and 5

milll.seconds. Flnally, in these s1m1l1at1011 experiments, It 1S assumed that an

equal number of iterat1011s are requ1red over edch timestep.

The variation of processor ut1l1zation as a function of window size when

one and two blocks are dssigned to each processor of Machine A 1S dep1cted 1n

Figure 6 and Figure 7, respect1vely. F1gure 8 and F1gure 9 show the same for

Machine B. In the case of Mach1ne A, the ut1lIzat10n 111creases as the window

size is 1ncreased, when either one or two blocks are ass1gned to aPE. Th1s

is true for all the block advancement tlmes cons1dered. These lmprovements in

-27-

processor utilization with window size taper off for larger window SIzes. As

the block advancement time is lncreased, the relative effect of communlcatlon

delays decreases, and the processor utIlization improves.

In FIgure 6, where only one block is dssigned to a PE, the utlllzation for

window size one does not increase above 0.5, regardless of the tIme needed to

advance a block. ThIS is so because here each PE has eIther a black or a red

block. Ignoring the predictions that occur at the begInnIng of each timestep,

black blocks require varlable values from red blocks frOITl the last cumulatlve

microstep, and red blocks requlre variable values from black blocks from the

same cumulatIve microstep. Therefore, a black block and 1tS nelghborlng red

blocks cannot advance simultaneously when the wlndow slze 1'0 one; thus, the

processor must remain ldle approxlmately half of the tlme even if the lnter

processor communlcatlon were Instantaneous. ThlS restrIctIon dlsappears when

the window SIze lS greater than one or when more than one block lS asslgned to

a PEe When each PE is asslgned one block and when the block ddvancement time

is relatively small, a wlndow Slze greater than one helps to some extent, and

the utl1izatl0n goes up, but the queuing effects soon catch up wlth the galn

from higher window size. From Flgure 7 lt can be seen that, 1f the number of

blocks assigned to each PE is Increased from one to two, the effect of queUIng

delays is decreased and much hIgher utlllzatl0ns are observed.

The effect of the underlying hardware, speclflcally that of the number of

memory modules in the shared memory, on the performance of WBSOR IS observed

when the number of modules is reduced to one (Figure 8 and Figure 9). As

before the utli1.zations increase with block advancement time, but much more

gradually. The effect of change in the window size is not felt until the

block advancement time is large enough to include all the queuing delays at

-28-

the module WhlCh acts as a bottleneck. The block advancement tlmes, above

this threshold, show trendb SllTIllar to those observed ln the case of Mach1ne

A. Altering the wlndow size affects the patterns of lnterprocessor

communlcation, but does not change the amount of lnformatl0n that must

eventually be communicated before the problem is completed and hence, under

some clrcumstance'3, wlth a smaller number of memory modules, one may expect

* lower performance ltnprOvements through the use of increaslng w1ndow '>lze.

The average communlcatlon delay between each palr of processors was

lneasured from the slmuiat10ns for machines A and B when two blocks were

asslgned to each PEe The maXlmum of the average lnterprocessor communlcatlon

delays for Machlnes A dnd B lS shown In Flgure 10. The block advancement tlme

1S assumed to be m11li,>econd. Note that the lnterprocessor communlcation

time lncreases qUlte gradually with wlndow slze, when elght modules are

assigned, but lncreases almost llnearly with the wlndow Slze when the mach1ne

cons is ts of only one module. An approximate value for the upper bound of

processor utlllzatlon can be obtalned by substitutlng in (4) the maximuM.

average time needed for the lnterprocessor communicatlon that must take place

between pairs of processors. These upper bounds for utll1.zatlon, glven by

(4), are compared with those observed in the simulation experiments for

Machines A and B in Flgure 11. The upper bound calculated uSlng the maximum

average interprocessor communication delay in (4) approximates rather closely

the results obtained from the simulations. Thus, the usefulness of windows ln

mitigating the effects of communlcatlon delays lS demonstrated In a realistic

simulated machine.

* A detalled analysls of the influence of hardware parameters on the algorithm
performance will be published separately.

-29-

7. Experiaental Results on Convergence and Computational Overhead

Even though the spectral rad~i of the ~teration matrices do not vary with

window size, the computat~on t~me requ~red to complete a problem may increase

with window size for the follow~ng two reasons: i) The number of iterations

requ~red to br~ng two success~ve c1pprox:~mations to w~tll1n tolerance in a

spec1.fic norm, in th~'5 cage the maximum norm, may have a dependence on w~ndow

size; 2) the computdt~onal work requ~red per ~teration ~s expected to ~ncrease

with window size to a ITllnor degree. Here the experimental reF;ults on the

effect of w~ndow S~.le on the number of 1terations requ1red and on the total

computation t~me taken are presented. It will be seen that the COgt increage

is qU1te modest and 1.S often outwe1.ghed by the ~ncrease in the processor

utilization attributable to the application of windows.

The resultg on overhead attr1butable to the use of windows were found to

be similar for both WBJ and WBSOR, and hence the results pertain1ng to WBSOR

are presented. The heat equat1.on was solved uS1ng a 50 by 50 p01nt mesh and a

timestep of 0.001. The 1nitial condition consisted of the first two modes of

the equation. The equation was solved subject to D1r1chlet boundary

conditions. Iterations were continued until the maximum of the difference

between two succeeding approx1mat10ns at the f~rst m1crostep 1n the current

window was less than the g1ven tolerance of IE-So

The doma1n was decomposed into blocks of difterent sizes in different

experiments. The domain was divided into 5 strips that were each SO by iO

points, 10 strips that were each 50 by 5 points, and 25 strips that were each

SO by 2 points. Square blocks that were each 10 points by 10 points were also

considered. The equation was advanced SO timestpps and the average number of

iterations required to achieve the prescribed tolerance of 1E-S was calculated

for each of the types of blocks.

-30-

For window sizes 1, 2, 3, and 4 the average number of lteratl0ns requ1red

to reach tolerance 1E-5 is dlsplayed in F1gure 12 and F1gure 13, when 50 x 2

and 10 x 10 blocks are used respectively. It is clear that the average number

of 1teratlons requ1red lncreases rather gently wlth wlndow S1ze. The number

of lterations required by the first few timesteps of the problems investigated

here grows relat1vely qU1ckly with w1ndow size (F1gure 12 and F1gure 13).

This effect is due to the cost lnvolved ln getting the l'lult1step algonthl'l

started.

Once a mult1step algor1thm is underway, the qual1ty of the apprOX1'llat1on

at a timestep is successively improved as the w1ndow creeps upward. The f1rst

1teratlons over a timestep that occur when the tlmestep 1S dt the top of a

wlndow may be thought of as establishing a rough approximat1on. A~ the w1ndow

moves upward, the relat1ve posit10n of the t1mestep 1n the w1ndow goes down

and the approximation to the solution at that t1mestep 1<., reflned. In tIll:'

f1rst iteratlon over the f1rst window, the in1tial cond1tion of the parabu11c

equation is used as the initial value at the beg1nn1ng of each t1mestep 1n the

window. The grad1ent of rough to flne approX1mat lon as a function of the

position of the timestep in the wlndow develops as the solutlon lS C,HrleO

out.

Figure 14 dep1cts the computat10nal overhead 1nvolved in uS1ng w1nrlows of

size greater than one 1n the solution of the above descr1bed heat equat10n.

The solut1.on time increases \nth the size of the window. Here the overhead

was computed by t1ming the computer runs for a g1ven block doma1.n decompos1-

tlon when windows of S1ze one through four were exam1ned. The rat10 of the

time requ1red to advance the prohlem 50 timesteps wlth window 1, to the tlme

required to complete the problem wlth window greater than one, lS plotted for

-31-

each domain decompos1tion. For windows of size 2 the overhead observed ranged

from 0.02 to 0.07, for windows of size 3 the overhead ranged from 0.07 to

0.13, and for windows of size 4 the overhead ranged from 0.09 to 0.21. The

smallest overheads for each window Slze are seen when the doma1n 1S divlded

into 50 x 10 point blocks.

It is clear that while the uc:;e of w1ndows does not .qffect asymptotlc

convergence, there is some computational overhead involved in the1r use that

increases with window Slze. The experimental results descr1bed here show that

the overhead is quite modest for small windows.

8. Conclusions

Th1S paper explores methods for eff1c1ent ~olutl0n of partlal d1fferent1al

equationc:; on MIMD machines. The general obJect1ve of this 1I1Ork 1S to maXlm1ze

multiprocessor performance by rearrang1ng the order of computations of

standard algorlthms so that the effects of communicat1on delay~ are

amell0rated, but at the '>ame tlme the rec:;ultln~ algonthm'> have favorable,

well defined convergence properties.

USlng Jacobl and SOR pOlnt and block 1teratlve methods as a bas1s, a new

concept of windowing over several time-c:;teps 1S developed. Both analytical

and simulation resultc:; demonstrate the usefulne,>s of windowlng 1n decreas1ng

the effects of communication delay,> on algorlthm performance. The spectral

rad1i of the iteration matrices of both of these new algorlthms are equlvalent

to the spectral radii of the analogous standard methods [SALT85]. The use of

windows entails a small computat1onal overhead WhlCh increase'> gradually with

window size. It was observed that the computat1onal overhead as'>ociated with

-32-

a window S1ze of two was neglLgLble and the benef1ts Ln increased utilLzat10n

were substant1al.

Further 1nvest1gdt1ons are be1ng pursued 1n a number of ways. The concept

of w1ndow1ng can be extended to other iterative methods. The generalizat10n

of WBSUR to multLcolor SORt [ADAM82] or the ordenngs Lntroduced by O'Leary

lULEA84] would appear to be part1cularly .,tra1ghtforward. The concept of

w1ndOlo11ng may also be extended to apply to iterat1ve methods Ln the solut10n

of the equation., ar1s1ng from Newton-like schemes for the solut10n of sy~tem.,

of non11near algebra1c equat1ons. It also may be poss1ble to extend the

w1ndowing concept to the solut10n by funct10nal iterat10n of nonl1near

equat10ns that m1ght he ohta1ned 1n a method of ll.nes solut1on to non11near

parabolic equat10ns.

Acknowledgments

We dre part Lcularly 1ndebted to M. Patr1ck, R. V01gt, and T. Gallte for

stimulat1ng dnd u.,eful d1Scussions and invaluable ass1~tdnce in the edLt1ng of

this paper.

-33-

References

[ADAM82] Adams, L. and Ortega, J. [1982]. "A Multi-Color SOR Method for

Parallel Computation," Proc. 1982 IntI. Conf. Parallel Processing,

pp. 53-56.

[BAUD78] Baudet, G. [1978]. "Asynchronous Iterative Methods for Multi-

processors," J. ACM, Vol. 25, pp. 226-244.

[CHAZ69] Chazan, D. and M1.ranker, W. [1969]. "Chaotic Relaxatl.On," J. L1near

Algebra Appl., Vol. 2, pp. 199-222.

[DEMI82] Dem1net, J. [1982]. "Exper1ence w1th Multlprocessor Algorithms,"

IEEE Trans. Comput., Vol. 31, pp. 278-288.

[ERIC72] Encksen, J. [1972]. "Iterative and D1rect Methods for Solving

Poisson's Equation and Their Adaptability to ILLIA~ IV," Center for

Advanced Computation Document No. 60, University of Illinois at

Urbana - Champaign.

[FABE81] Faber, V. [1981]. "Block Relaxation Strategies," 1n Elliptic

Problem Solvers, M. Schultiz (ed.), Academic Press, New York, NY, pp

271-275.

[FUJI83] Fujimoto, R. M. [1983]. "SIMON: A Simulator of Multicomputer

Networks," Report No. UCB/CSD 83/140, Computer Science Division,

University of California, Berkeley.

-34-

[GENT78] Gentleman, W. [1978]. "Some Complexity Results for Matnx

Computation on Parallel Processor!>," J. ACM, Vol. 25, pp. 112-115.

[HAGE81] Hageman, L. A. and Young, D. M. [1981]. Applied Iterat1ve Methods,

Academic Press, New York.

[HAYE74] Hayes, L. [1974]. "Comparatlve Analysis of Iteratlve Technlques for

Solving Laplace's Equation on the Unit Square on a Parallel

Processor," M.S. Thesis, Department of Mathematics, Unlverslty of

Texa'5 at AU'5tin.

[HELL84] Heller, D. E. [1984]. "Multiprocessor Slmulat1.on Progrrtffi SIMON,"

Internal Report, Physics and Computer SClence Dept. , Shell

Development Company, Houston, Texas.

[HOCK81] Hockney, R. and Jesshope, C. [1981]. "Parallel Computers:

Architecture, Programming and Algorlthms," Adam Hllger, Ltd.,

Bristol.

[HWAN85] Hwang, K. [1985]. "Multiprocessor SnpcrLornllULt-'r for

SCientific/Engineering Applications," Computer, Vol. lh, No. 11, pp.

57-73.

[LAMB75] Lambiotte, J. and Voigt, R. [1975]. "The Solutl0n of Trldlagonal

Linear Systems on the CDC STAR-IOO Computer," ACM Trans. Math.

Softw., Vol. 1, pp. 308-329.

-35-

[OLEA83] O'Leary, D. [1984]. "Ordering Schemes for Parallel Processing of

Certain Mesh Problems," SIAM J. SCI. Stat. Comp., Vol. 5, pp.

620-632.

[ORTE85] Ortega, J. and Voigt, R. [1985] • "SolutIon of Partial

Differential Equations on Vector and Parallel Computers," SIAM

Review, Vol. 27, No.2, June 1985, pp. 149-240.

[PART80] Parter, S. and Steuerwalt, S. [1980] • "On k-line and k x k Block

IteratIve Schemes for a Problem ArISIng In 3-D EllIptIc DIfference

EquatIons," SIAM J. Numer. AnaL, Vol. 17, pp. 823-839.

[PART82] Parter, S. and Steuerwalt, S. [1982]. "Block Iterative Methods for

ElliptIc and ParabolIc DIfference EquatIons," SIAM J. Numer. Anal.,

Vol. 19, pp. 1173-1195.

[REE084] Reed, D. A. and Patnck, M. L. [1984]. "A Model of Asynchronous

Iterative Algorithms for SolvIng Large, Sparse, LInear Systems,"

ProceedIngs of the 1984 InternatIonal Conference on Parallel

Processing, Bellaire, MIchIgan.

[SAAD85] Saad, Y. [1985]. "CommunIcation CompleXIty of GaUSSIan ElImInatIon

Algorithm on Multiprocessors," Research Report, Yale University,

YALEU/UCS/RR-348.

[SALT85] Saltz, J. H., "Parallel and AdaptIve Algorithms for Problems in

Scientific and Medical Computing: Robust Methods for the Solution of

-36-

Partial D~fferential Equations on Hultiprocessor Machines," Ph.D.

Thes~s, Duke Un~ver..,~ty, Apr~l 1985.

[VARG62] Varga, R. S. [1962]. Matrix Iterative Analysis, Prentice-Hall,

Englewood Cl1ffs, N.J.

[VOIG8S] Vo~gt, R. G. [1985]. "Where Are the Parallel Algorithms?", 1985

Nat~onal Computer Conference Proceed~ngs, AFIPS Press, Reston,

V1rg~nia, pp. 329-334.

[YOUN71] Young, O. H. [1971]. Iterat~ve Solut~on of Large Linear Systems,

Academic Press, New York.

-37-

Iteration unti1 convergence over consecutive ti mesteps

Ti me
steps ~----" ~--_\'
~---_\"
~---_\'

Each ti me step is iterated until convergence

Figure 1

I
00
M

I

Time
steps

MuUistep iterative methods

Window = 2

• J (

I terate until convergence at (0).

• ~I-----------------------------

Shift window up one ti mestep.
I terate until convergence at (.).

(N

<1l
~
:l
be
.~

~

-39-

Counting of cumulative microsteps

1st window 2nd window

t4 IT] [I]
t3 [I] IT] [TI W
~ [I] IT] [!] m
t1 OJ IT]

to
1 2 1 2

Iteration

Number of iteration s = 2 Window size = 3

F1gure 3

-40-

6 t4

5 t3

4 ~
3 t4

c.. 2 t t3 Q)

v;
0

lt2
~ 1 u .-
E
Q) Synchronization
.~ - t3 t3 n:s 6 -:::J

t2! l~ E
:::J 5 u

4 tIl r tl
3 t3 t3

2 t) 1~
1 tIl 1 tl

PE 1 PE 2

Figure 4

-41-

Partition o 1 2 ••••• n-3 n-2 n-l

•••••

... -4 __ ----- Domai n ------tl~.

Figure 5

-42-

8 modules, 1 block/PE

l.0
,~

/'~
, 5 milliseconds

0.8 '~BLOCK ADVANCEMENT TIME)
/

c: / 0
0.6 ,-~ -- ,

~ / ,,'-
~~ 1 "II" / ~"" ml Isecond -- / => ,,-,,-

0.4 'J(/
/

/
/

/
0.5 milliseconds /

0.2
..,/

o 1 2 3 4 5

Window size

Figure 6

1.0

0.8

c::
o

:;:; 0.6
~

0.4

0.2

o

-43-

8 modules, 2 blocks/PE

5 milliseconds
v

~ -- ----- --.A - --- -~
/" ",'" 1 millisecond

; '" r ",/
/~

/
'I

1

/

/
/ 0.5 milliseconds

// (BLOCK ADVANCEMENT TIME)

2 3 4

Window size

Figure 7

5

1.0

0.8

c::
~ 0.6
~
.--=>

0.4

0.2

0

,
~/

-44-

1 module, 1 block/PE

,
/

,

-~
~----/" 5 milliseconds

//(BLOCK ADVANCEMENT TIME)

1 millisecond
~----~----~----~
~ ~ ~ o. 5 m~lliseconds
1 2 3 4

Window size

!:"igure 8

5

1.0

0.8

c::
o _ 0.6
~

0.4

0.2

o

-45-

1 module, 2 blocks/PE

/

,..~----4(
.,.,.",."

,,~- 5 milliseconds

~" (BLOCK ADVANCEMENT Tlfv1E)

~----~----*----~ 1 millisecond

x " K
" 0.5 milliseconds

1 2 3 4
Window size

Figure 9

5

-46-

2 blocksfPE

1 millisecond per block advancement
10 -u

Q) 9 V)

--
'E 8 1 module -
Q)

E 7 .-
l-

e:
0 6 .-....,
ctJ
U .-e: 5 :J
E
E 4 0 u
Q)

> 3 <
E
:J 2
E --~ -->< >E------~-- 8 modules ctJ 1 :E

0 1 2 3 4
Window size

F1gure 10

1.0

0.8

c:
~ 0.6
~
0--:::J

0.4

0.2

o

-47-

2 blocks/PE

1 mil Ii second block advancement ti me

1

8 modules

1 module upper bound
-t=---~)f--~ J\

1 module

2

Window size

Figure 11

3 4

12

10

8
~

V)
()q c::
~ 0 P1 :;:::; Cl> co L. 6 N Q) -

4

2

o

Heat equation- Dirichlet boundary conditions.
50 by 50 mesh, ti mestep 0.001, 50 ti mesteps.

10 by 10 meshpoint blocks, lE-5 convergence.

Average over fi rst 5 ti mesteps

10.---_---=0
~ o~--------~~

Average over 50 ti mesteps

1 2 3 4
Window size

I

"'" 00
I

12

10
"Zj
~

8
1"1
!D

I-'
W V)

c:
0 .-....,
co

6 L-
Cl),

4

2

o

Heat equation -Di richlet boundary conditions.
50 by 50 mesh, ti mestep 0.001, 50 ti mesteps.

50 by 2 blocks, 1E-5 convergence.

Average over first 5 timesteps
~

~ __ -~---cr-
()., -0-- Average over 50 timesteps

1 2 3 4
Window Size

1-
\0
I

"Zj
to'-

()Q
c::
1'1
CD

~

~

1.5

1.4

i 1.3

~ I E ;1.2

If ,.

l.i

1.0
"
~

Heat equation - Di richlet boundary conditions.
50 by 50 mesh, ti mestep 0.001, 50 ti mesteps.

Multiple of time required to do window = I, for convergence IE-5.

50 by 2 blocks I
,......

1 2 3 4

Window size

I
VI
0
I

End of Document

