NASA Contractor Report 177985

ADS - A FORTRAN PROGRAM FOR AUTOMATED
 DESIGN SYNTHESIS - VERSION 1.10

```
mASa-Ch-177yE5) adS: a fobtban program
N86-11894
por automaiev desjgn simthesis: version
1. \U Finai Report (Californa Unig.) 46 p
HC Au.S/MP AJI CSCL 09B
G. N. Vanderplaats


UNIVERSITY OF CALIFORNIA Santa Barbara, California

Grant NAG1-567
September 1985

\begin{abstract}
A general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) Version 1.10 is a FORTRAN progran for solution of nonlinear constrained optimization problens. The program is segmented into three levels, being strategy, optimizer, and onedimensional search. At each level, several options are available so that a total of over 100 possible combinations can be created. Examples of available strategies are sequential unconstrained minimization, the Augmented Lagrange Multiplier method and sequential quadratic programing. Available optimizers include variable metric methods and the method of feasible directions as examples. A modified method of feasible directions, similar to the generalized reduced gradient method is included also. Onedimensional search options include the Golden Section method, polynomial interpolation, and combinations of these.

ADS version 1.10 contains several enhencements. These include general program organization, addition of equality constreints to all options in the program, and addition of a new convex linearization strategy.

Emphasis is placed on ease of use of the program. All information is transferred via a single parameter list. Default values are provided for all internal progran parameters such as convergence criteria, and the user is given a simple means to over-ride these, if desired.

The program is demonstrated with a simple structural design example.
\end{abstract}

Acknowledgement: A portion of the program enhancements described herein were funded by the Optimization Users' Group, sponsered by EDO, Inc., Santa Barbara, CA.

\section*{CONTENTS}
Page
1.0 INTRODUCTION ..... 1
1.1 Program Enhancements Since Version 1.00 ..... 2
2.0 PROGRAM OPTIONS ..... 3
2.1 Strategy ..... 3
2.2 Optimizer ..... 3
2.3 One-Dimensional Search ..... 4
2.4 Allowable Combinations of Algorithms ..... 5
3.0 PROGRAM FLOW LOGIC ..... 6
4.0 USER INSTRUCTIONS ..... 9
4.1 Calling Statement ..... 9
4.2 Definitions of Parameters the Calling Statement ..... 9
4.3 Over-Riding ADS Default Parameters ..... 12
4.4 User-Supplied Gradients ..... 16
4.5 Restarting ADS ..... 16
4.6 Choosing an Algorithm ..... 17
5.0 EXAMPLES ..... 19
5.1 All Default Parameters ..... 20
5.2 Initial Parameters are Modified ..... 20
5.3 Gradients are Supplied by the User ..... 20
6.0 MAIN PROGRAM FOR SIMPLIFIED USAGE OF ADS ..... 30
7.0 REFERENCES ..... 31
APPENDIX A: QUICK RBFRRBNCB TO ADS OPTIONS ..... 33
APPBNDIX 8: USBFUL INFORMATION STORRD IN ARRAYS WE AND IME ..... 34
APPENDIX C: SUBROUTINES NEEDED FOR A SPECIFIED COMBINATION OF istrat, IOPT AND IONED ..... 36
APPENDIX D: ADS SYSTEM Sibrĩutinas ..... 38
\(\qquad\) ........union. bal: \(:=\)

\section*{FIGURES}
1 Simpiified Frogran ujsage; Ail Defaul: Parameters and Finite Difference Gradients
2 Progras Fiow Logic; Over-ride Default Parameters, Finite Difference Gradients
3 Program Fiow Logic; Over-ride Default Parameters and Provide Gradients
4 Restarting ADS ..... 17
5 Three-Bar truss ..... 19
6 Example 1; All Default Parameters ..... 21
1 Example l; Output ..... 22
8 Example 2; Modify Default Parameters ..... 23
9 Example 2; Output ..... 24
10 Example 3; Gradients Supplied by the User ..... 25
11 Example 3; Output ..... 27
12 Progran for Simplified Usage of ADS ..... 30
TABLESS
1 STRATEGY OP'CIONS ..... 3
2 OPTIMIZER OPTIONS ..... 4
3 ONE-DIMRNSIONAL SBARCH OPTIONS ..... 4
4 ALLOWABLE COMBINATIONS OF ALGORITHMS ..... 5
5 PARAMBTERS IN THE ADS CALLING STATEMENT ..... 9
6 REAL PARAMETERS STORED IN ARRAY WE ..... 13
7 DEFINITIONS OF REAL PARAMBTERS STORßD IN ARRAY WX ..... 14
8 INTBGER PARAMBTERS STORED IN ARRAY IWE ..... 1/5
9 DEFINITIONS OF INTEGER PARAMETERS STORED IN ARRAY IWE ..... 16

\section*{1. 1 INTRODUCTION}

ADS is a general purpose numerical optimization program containing a wide variety of algorithms. The problem solved is:

Minimize \(\quad \mathbf{F}(\mathbf{X})\)
Subject to;
\[
\begin{array}{rr}
\mathbf{G j}(X) \leq 0 & j=1, m \\
\mathbf{H k}(X)=0 & k=1,1 \\
X L i \leq X i \leq X U i & i=1, n
\end{array}
\]

The solution of this general problem is separated into three basic levels:
1. STRATBGY - iva example, Sequential Unconstrained Minimization or Sequential Linear Programming.
2. ODTIMIZER - For example, Variable Metric methods for unconstrained minimization or the Method of Feasible Directions for constrained minimization.
3. ONB-DIMENSIONAL SEARCII - For example, Golden Section or Polynomial Interpolation.

Additionally, we may consider another component to be problem formulation. It is assumed that the engineer makes every effort to formulate the problems in a form amenable to efficient solution by numerical optimization:. This aspect is perhaps the most important ingredient to the efficient use of the ADS program for solution of problems of practical significance.

By choosing the Strategy, Optimizer and One-Dimensional Search, the user is given considerable flexibility in creating an optimization program which works well for a given class of design problems.

This manual describes the use of the ADS program and the available program options. Section 1.1 describes the enhancements and modifications to the ADS program subsequent to Version 1.00 (ref. 1). Section 2 identifies the available optimization strategies, optimizers and one-dimensional search algorithms. Section 3 defines the program organization, and Section 4 gives user instructions. Section 5 presents several simple examples to aid the user in becoming familiar with the \(C\) DS program. Section 6 gives a simple main program that is useful for general design applications.

\section*{1. 1 Enhancements and Modifications to version 1.00}

Since the release of Version 1.00 in May of 1984, several modifigetione and enhancements have len made io the program. Many of these are minor and are transparent to the casual user. These include various formatting changes, internal logic enhancements to improve program flow, and a few actual bugs in the FORTRAN. Because of the robustness of the basic program, where program bugs exist, their correction often is detected only in special test cases. Examples of this are enhancement of the automatic scaling of unconstrained problems, correction of an error in using the absolute convergence criteria and correction of polynomial one-dimensional search when a constraint is being followed. Other enhancements include checking to insure the initial design does not violate any side constraints, and checking to be sure the combinations of strategy, optimizer and one-dimensionsl search are valid.

Enhancements to the program, beyond the original capability, include addition of equality constraint capability throughout the program and addition of a new strategy.

Equality constraints are now available in all options of the program, whereas in Version 1.00 they were only available whet using penalty function strategies. Specifically, equality constraints have been added to optimizers 4 and 5 . Here, two approaches were investigated. The first was to formally treat them in a mathematical sense. This requires considerable program logic and usually insures rather precise following of the constraints, but at some efficiency cost. The second approach, and that used here, was to treat equality constraints via a linear penalty function and an equivalent inequality constraint. The basic concept is to first change the sign on the constraint, if necessary, so that the scalar product of the gradient of the constraint with the gradient of the objective function is negative. The constraint is then converted to a non-positive inequality constraint and a linear penalty is added to the objective. The penalty, together with the conversion to an inequality constraint have the effect of driving the original equality constraint to zero at the optimum, but without demanding precise accuracy, with its corresponding inefficiency. This is in keeping with the general philosophy o: ADS of finding a near optimum design quickly.

A new strategy (ISTRAT=9), called Sequential Convex Programming, developed by Fleury and Briabant (ref. 2), has been added to ADS. The basic concept of this strategy is that a linear approximation to the objective and constraint functions is first created, just as in sequential linear programing. However, during the approximate optimization sub-problem, either direct or reciprocal variables are used, depending on the sign of the corresponding components of the gradients. This creates a conservative convex approximation to the optimization problem. In reference 2, the method was applied to structural optimization problems in which all design variables were positive. It was shown that move limits were not required during the sub-problea and that the method converged quickly to the optimum. When incorporating the algorithm into ADS, move limits were included, but they are less stringent than for sequential linear programing. This is based on the experience that the design space can become ill-conditioned in some general applications. Also, reciprocal variables are only used if the design variable is positive. It should be emphasized here that
this algorithm well as its implementation into ADS is new and enhancements cen be expected. Initial experience, especially with structural optimization problems, has shown the algorithm to be a powerful one. In Version 1.10 of ADS, this algorithm is used in conjunction with a general optimizer. Reference 2 uses a dual algorithm, for which this method is well suited. It is expected that this strategy will be modified to take advantage of duality as applied to separable problems such as this in the future.

\section*{2.O PROGRAM OPTIONS}

In this section, the options available in the ADS program are identified. At each of the three solution levels, several options are available to the user.

\section*{2. 1 Strategy}

Table lists the strategies available. The parameter ISTRAT will be sent to the ADS progress to identify the strata gl the user wants. The ISTRAT=0 option would indicate that control should transfer directly to the optimizer. This would be the case, for example, when using the Method of Feasible Directions to solve constrained optimization problems because the optimizer works directly with the constrained problem. On the other hand, if the constrained optimization problem is to be solved by creating a sequence of unconstrained minimizations, with penalty functions to deal with constraints, one of the appropriate strategies would be used.

\section*{TABLE 1: STRATEGY OPTIONS}

\section*{ISTRAT STRATEGY TO BE USED}

0 None. Go directly to the optimizer.
1 Sequential unconstrained minimization using the exterior penalty function method (refs. 3, 4).
2 Sequential unconstrained minimization using the linear extended interior penalty function method (refs. 5-7).
3 Sequential unconstrained minimization using the quadratic extended interior penalty function method (refs. 8, 9).
4 Sequential unconstrained minimization using the cubic extended interior penalty function method (ref. 10).
5 Augmented Lagrange Multiplier method (refs. 11-15).
6 Sequential Linear Programming (refs. 16, 17).
7 Method of Centers (method of inscribed hyperspheres) (ref. 18).
8 Sequential Quadratic Programing (refs. 13, 19, 20).
9 Sequential Convex Programing (ref. 2).

\section*{2. 2 Optimizer}

Table 2 lists the optimizers available. IOPT is the parameter used to indicate the optimizer desired.

\section*{TABLE 2: OPTIMIZER OPTIONS}

\section*{IOPT OPTIMIZER TO BE USED}

0 None. Go directly to the one-dxmensional search. This option should be used only for program development.
1 Fletcher-Reeves algorithm for unconstrained minimization (refs. 21).
2 Davidon-Fletcher-Powell (DFP) variable metric method for unconstrained minimization (refs. 22, 23).
3 Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for unconstrained minimization (refs. 24-27).
4 Method of Feasible Directions (MFD) for constrained minimization (refs. 28, 29).
5 Modified Method of Feasible Directions for constrained minimization (ref. 30).

In choosing the optimizer (as well as strategy and one-dimensional search) it is assumed that the user is knowledgeable enough to choose an algorithm consistent with the problem st hand. For example, a variable metric optimizer would not be used to solve constrained problems unless a strategy is used to create the equivalent unconstrained minimization. task via sone form of penalty function.

\subsection*{2.3 One -Dimensional Search}

Table 3 lists the one-dimarsional search options available for unconstrained and constrained problems. Here IONBD identifies the algorithm to be used.

TABLE 3: ONE-DIMENSIONAL SEARCH OPTIONS
IONED ONB-DIMENSIONAL SBARCH OPTION (refs. 3, 31, 32)
1 Find the minimum of an constrained function using the Golden Section method.
2 Find the minimum of an constrained function using the Golden Section method followed by polynomial interpolation.
3 Find the minimum of on unconstrained function by first finding bounds and then using polynomial interpolation.
4 Find the minimum of an constrained function by polynomial interpolation/extrapolation without first finding bounds on the solution.
5 Find the minimum of an constrained function using the Golden Section method.
6 Find the minimum of an constrained function using the Golden Section method followed by polynomial interpolation.
7 Find the minimum of an constrained function by first finding bounds and then using polynomial interpolation.
8 Find the minimus of an constrained function by polynomial interpolation/extrapolation without first finding bounds on the solution.

\section*{2. 4 Alowable Corioinations of Algorithms}

Not all combinations of strategy, optjaizer and one-dimensional scarch are meaningful. For nample, sonotrainad one-dimenaional search is not meaningful when minimiz ing unconstrained functions.

Table 4 identifies the combinations of algorithes which are available in the ADS program. In this table, an \(X\) is used to denote an acceptable combination of strategy, optimizer and one-dimensional search. An example is shown by the heavy line on the table which indicates that constrained optimization is to be performed by the Augmented Lagrange Multiplier Method (ISTRAT=5), ving the BFGS optimizer (IOPT=3) snd polynomial interpolation with bounds for the onedimensional search ( \(10 N E D=3\) ). From the table, it is clear that a large number of possible combinations of algorithms are available.

TABLE 4: PROGRAM OPTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{OPTIMIZER} \\
\hline Stratsgy & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & K & X & X & X & X \\
\hline 1 & X & X & \(X\) & 0 & 0 \\
\hline 2 & X & X & X & 0 & 0 \\
\hline 3 & X & X & \(X\) & 0 & 0 \\
\hline 4 & X & X & X & 0 & 0 \\
\hline (5) & X & X & (X) & 0 & 0 \\
\hline 6 & 0 & 0 & 0 & X & X \\
\hline 7 & 0 & 0 & 0 & X & X \\
\hline 8 & 0 & 0 & 0 & X & X \\
\hline 9 & 0 & 0 & 0 & X & X \\
\hline \multicolumn{6}{|l|}{ONST-D SEARCH} \\
\hline 1 & X & X & X & 0 & 0 \\
\hline 2 & X & X & X & 0 & 0 \\
\hline 3 & X & X & (X) & 0 & 0 \\
\hline 4 & X & X & X & 0 & 0 \\
\hline 5 & 0 & 0 & 0 & X & X \\
\hline 6 & 0 & 0 & 0 & X & X \\
\hline 7 & 0 & 0 & 0 & X & X \\
\hline 8 & 0 & 0 & 0 & X & X \\
\hline
\end{tabular}

Appendix \(A\) contains an annotated version of Tabla 4 for convenient reference once the user is familiar with ADS.

To conserve computer storage, it may Aa desirable to use only those subroutines in the ADS systen needed for a given combination of ISTinAT, IOPT and IONBD. Appendix \(C\) provides the information necessary for this. Appendix D lists the subroutines with a very brief description of each.

\section*{3. 0 PROGRAM FLOW LOGIC}

ADS is called by a user-supplied calling program. ADS does not call any user supplied subroutines. Instead, ADS returns control to the calling program when function or gradient information is needed. The required information is evaluated and ADS is called again. This provides considerable flexibility in program organızation and restart capabilities.

Figure 2 is the prof, flow diagram for the case where the user wishes to over-ride one or more internal parameters, such as convergence criteria or maximum nuber of iterations. Here, after initial: wion of basic parametern ond orroyg, the information parameter, ink .... to -2. ADS is then called to iritialize all internal pa: waterm rd allosate atorage space for internal arrays. Control is ther retv ned so the ustr, at which point these parameters, for example convergence criteria, can be over-ridden if desired. At this point, the information paremeter, INFO, will have a value of -1 ard should not be changer: ADS is then called again and the optimization proceeds. Section 4.3 provides a list of internal parameiers which may be modified, along with their locations in the work arrays WI and IWI.

BEGIN
DIMBNSION ARRAYS

DBFINB BASIC VARIABLES
\(\operatorname{IGRAD} \longleftarrow 0\)
INFO \(\longleftarrow-2\)
CALL ADS (INFO . . . )
IF INFO \(=0\), BXIT. ERROR WAS DETECTRD
BISB
OVER-RIDK DISFAULT PARAMBTERS IN ARRAYS WK AND IWK IF DESIRED


Fisure 2: Program Flow Logic; Over-ride Default Parameters, Finite Difference Gradients

Figure 3 is the flow diagram for the case where the user wishes to provide gradient \(\cdot\) : formation to ADS, rather than having ADS calculate this information us. ig finite difference methods. In Figure 3, i.t is also assumed that i.ie user will over- ide some internal parameters, so the difference between Figures 2 and 3 is that IGRAD is now set to 1 and
the user will :1ow provide gradients during optimization. If the user does not wish to over-ride any dafault parameters, INFO is initialized to zero and the first call to ADS is onitted (as in Figure 1). Now, whou contiol ia raturned to the user, the information parmeter will have a value of 1 or 2 (if INFO=0, the optiaization is complece, as before). If INFO=1, the objective and constraint functions are evaluated and ADS is called again, just as in Figure 2. If INFO=2, the gradient, DF, of the objective function is evalucter as well as the gradients of NGT constraints defined by vector IC.

BEGIN
DIMENSION ARRAYS
DBFINB BASIC VARIABLBS
IGRAD \(\longleftarrow 1\)
INPO \(\leftarrow-2\)
CALL ADS (INFO . . . )
IF INPO \(=0\), BXIT, ERROR WAS DETECTED
ELSE
OVER-RIDE DBFAULT PARAMETERS IN ARRAYS WK AND IWR IF DESIRED


Figure 3: Progran Flow Logic; Over-ride Dvfault
Parreters and Provide Gradients

\subsection*{4.0 USBR INSTRUCTIONS}

In this section, the use of the ADS prosram is outlined. The FORTRAN Call statement to ADS is given first, and ther the parameters in the calling statement are defined. Section 4.3 identifies parumeters that the user may wish to over-ride to make more effective use of ADS. Arrays are designated by boldface print.

\section*{41 Calling Statement}

ADS is invoked by the following FORTRAN calling statement in the user's program:

CALL ADS (INFO, ISTRAT, IOPM, IONED, IPRINT, IGRAD, NDV, NCON, X,
* VLB, VUB , OBJ , O, IDC, NGT, IC, DF, A, NRA , NCOLA, WK, NRWK, IMK, NRIWK)

\subsection*{4.2 Definitions of Parameters in the ADS Calling Statement}

Table 5 lists the parameters in the calling statement to ADS. Where arrays are defined, the required dimension size is given as the array argument.

TABLR 5: PARANBTBRS IN THB ADS ARGUMBNT LIST
PARAMBTBR
DRFINITION
INFO Information parameter. On the first call to ADS, INFO=0 or -2 . INFO \(=0\) is used if the user does not wish to over-ride internal parameters and INFU=-2 is used if internal parameters are to be changed. When control returns form ADS to the calling prcgram, INFO will have a value of 0 , 1 , or 2 . If INFO \(=0\), the optimization is complete. If INFO=l, the user must evaluate the objective, OBJ, and constraint functions, \(G(I), I=1, N C O N\), and call ADS again. If INFO=2, the user must evaluat the gradient of the objective and the NGT constrants identified by the vector IC, and cell ADS again. If the gradient calcula. ion control, IGRAD= \(6,1 N R O=2\) will never be returned from ADS, and all gradient information is calculated by finite difference within ADS.
ISTRAT Optimization strategy to be used. Available options are identified in Tables 1 and 4.
IOPT Optimizer to be used. Available options are identified i.. Tables 2 and 4.
IONED One-dimensional searcin alsorithm to 'e used. Available options are identified ir. Tables 3 and 4.

TABLB 5 CONTINURD: PARAMRTERS IN THB ADS ARGUNENT ITST
PARAMETER
DBFINITION
IPRIN'r A four-digit print control. IPFINT=IJKL where \(I, J, K\) and \(L\) heve the following definitions:
I ADS system print control.
0 - No print.
l - Print initial and final information.
2 - Same as 1 plur parameter values and storage needs.
3 - Same as 2 plus scaling information calculated by ADS.
\(J\) Strategy print control.
0 - No print.
1 - Print initial and final optimization information.
2 - Same as 1 plus OBJ and \(X\) at esch iteration.
3 - Same as 2 plus 0 at each iterat on.
4 - Same as 3 plus intermedicte information.
5 - Same as 4 plus gradients of constrainta.
\(K\) Optimizer print control.
0 - No print.
1 - Print initial and final optimazatior information.
2 - Same as 1 plus OBJ and \(X\) at each iteration.
3 - Same as 2 plus constraints at each i'ceration.
4 - Same as 3 plus intermediate optimization and one-dimensional search infornation.
5 - Same as 4 plus gredients of constraints.
L One-Dimensional search print control, (debug only).
0 - No print.
l - One-dimensional search debug information.
2 - More of the same.
Bxample: IPRINT \(=3120\) corresponds to \(I=3, J=1, K=2\) and \(L=0\).
NOTE: IPRINT can be changed at any tize control is returned to the ueer.
IGRAD Gradient calculation control. If IGRAD \(=0\) is input to ADS, all gradient computations ame done within ADS by first forward finite difference. If IGRAD=1, the user will aupply gradient insormation as indicated by the value of INFO.
NDV Number of design variables contained in vector \(A\). NDV is the same as \(n\) in the mathematical problem statement.
NCON Number of constraint values contained in array G. NCON is the same as \(\mathrm{m}+\) in the mathematical problem statement given in Section 1.0. NCON=0 is allowed.
\(X(N D V+1)\) Vecto containing tre design variables. On the first call to ADS, 1 his is the user's initial estimate to the design. Or returr from ADS, this is the design for whicn function or gradient values are required. On the final return from ADS (INFO=) is returned), the vector \(X\) contains the optimum design.
VLB(NDV+1) Arras containing lower bounds on the design variables, \(X\). If no lower bounds are imposed or one or more of the design variables, the corresponding component(s) of VLB must be set to a large negative number, sqy \(-1.0 \mathrm{~B}+15\).
VUB(NDV=1) Array containing upper bounds on the design variables, \(X\). If no uppel bounds are amposed on one or more of the design variables, the corresporiding component (s) of vJB must be set to a large positive nunber, say \(1.0 \mathrm{~B}+15\).

TABLB 5 CONTINUBD: PARAMBTBRS IN THB ADS ARGGMENT LIST

\section*{rAGMESTEH}

\section*{DRFINITION}

OBJ Value of the objective function correaponding to the current values of the design variables contalned in \(X\). On the first call to ADS, OBJ need not be defined. ADS will return a value of INFO=l to indicate that the user must evaluate \(O B J\) and call ADS again. Subsequently, any time a value of INFO=1 is returned from ADS, the objective, OBJ, must be evaluated for the current design and ADS must be called again. OBJ has the same meaning as \(F(X)\) in the mathematical problem statement given in Section l. 0 .
G(NCON) Array containing NCON constraint values corresponding to the current design contained in \(X\). On the first call to ADS, the constraint values need not, be defined. On return from \(A D S\), if INFO \(=1\), the constraints must be evaluated for the current \(X\) and ADS called again. If \(N C O N=0\), array \(G\) should be dimensioned to unity, but no constraint values need to be provided.
IDG(NCON) Array containing identifiers indicating the type of the constraints contained in array \(G\).
IDG(I) \(=-2\) for linear eruality constraint.
IDG(I) \(=-1\) for nonlinear equality constraint.
IDG(I) \(=0\) or 1 for nonlinear inequality constraint.
IDG(I) \(=2\) for linear inequality constraint.
NGT Number of constraints for which gradients must be supplied. NGT is defined by ADS as the minimum of \(K C O L A\) and NCON and is returned to the user.
IC(NGT) Array identifying constraints for which gradients are required. IC is defined by \(A D S\) and returned to the user. If INFO=2 is returned to the user, the gradient of the objective and the NGT constraints must be evaluated and stored in arrays DF and \(A\), respectively, and ADS must be called again.
\(D P(N D V+1)\) Array containing the gradient of the objective corresponding to the current \(X\). Array \(D F\) must be defined by the user when INFO \(=2\) is returned from ADS. This will not occur if IGRAD=0, in which case array DF is evaluaced by ADS.
A(NRA, NCOLA) Array containing the gradients of the NGT constraints identified by array IC. That is, column \(J\) of array A contains the gradient of constraint number \(K\), where \(K=I C(J)\). Array \(A\) must be defined by the user when INFC=2 is returned from ADS and when NGT.GT.0. This will not occur if IGRAD \(=0\), in which case, array A is evaluated by ADS. NRA is the dimensioned rows of array A. NCOLA is the dimen ioned columns of array A.
NRA Dimensioned rows of ar ray \(A\). NRA must be at least NDV +1 .
NCOLA Dimensioned columns of array A. NCOLA should be at least the minimum of NCON and \(2 * N D V\). If enough storage is available, and if gradients are easily provided or are calculated by finite difference, then NCOLA=NCON+NDV is ideal.
Wh(NRWK) User provided work array for real variables. Array Wis used to store internal scalar variables and arrays used by ADS. WK must be dimensioned at least 100 , but usually much larger. If the use has not provided enough storage, ADS will print the appropr:ste message and terminate the optimization.
\(\qquad\)

TABLS 5 CONCLUDED: PARAMETEPS IN TEB ADS ABGUMBNT LIST
PARAMETER
DEFINITION
```

NRWK Dimensioned size of work array W. A good estimate is
NRWK $=500+10 *(N D V+N C O N)+N C O L A *(N C O L A+3)+N *(N / 2+1)$, where
$N=\operatorname{MAX}(N D V$, NCOLA $)$.
IWE(NXIWK) User provided work array for integer variables. Array IWI is
used to store internal scalar variables and arrays used by ADS.
IN. must be dimensioned at least 200, but usually much larger.
If the user has not provided enough storage, ADS will print the
appropriate measage and terminate the optimization.
NRIWK Dimensioned size of work array IM. A good estimate is
NRIWK $=200+N D V+N C O N+N+M A X(N, 2 * N D V)$, where
$N=\operatorname{MAX}(N D V, N C O L A)$.

```

\subsection*{4.3 Over-Riding ADS Default Parozeters}

Various internal parameters are defined on the first call to ADS which work well for the "average" optimization task. However, it is often desirable to change these in order to gain meximum utility of the program. This mode of operation is shown in Figures 2 and 3. After the first call to ADS, various real and integer scalar parameters are stored in arrays WI and IW respectively. Those which the user may wish to change are listed in Tables 6 througn \(S\), together with their ciefault values and definitions. If the user wishes to change any of these, the appropriate component of \(W\) or \(I W\) is simply re-defined after the first call to ADS. For example, if the relative convergence criterion, 'FLOBJ, is to be changed to 0.002 , this is done with the FORTRAN statement;
\[
\operatorname{WI}(12)=0.002
\]
because W(12) contains the value of DELOBJ.
table 6: real paramisters stored in array
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARNMETER} & \multirow[b]{2}{*}{LOCATION} & \multirow[b]{2}{*}{N DEFAULT} & \multicolumn{3}{|l|}{MODULES WHRRE USED} \\
\hline & & & ISTRAT & 10PT & IONBD \\
\hline ALAMDZ & 1 & 0.0 & 5 & - & - \\
\hline 88TNAC & 2 & 0.0 & 7 & - & - \\
\hline CT(1) & 3 & -0.03 & - & 4,5 & - \\
\hline CTL & 4 & -0.005 & - & 4,5 & - \\
\hline CTIMIN & 5 & 0.001 & - & 4,5 & - \\
\hline CTMIN & 6 & 0.01 & - & 4,5 & - \\
\hline DABALP (2) & ) 7 & 0.0001 & - & ALL & - \\
\hline DABOBJ & 8 & ABS ( \(\mathrm{F}^{\prime}\) ) / 1000 & ALL & - & - \\
\hline DABOBM & 9 & ABS (F0)/500 & ALL & - & - \\
\hline DABSTR & 10 & ABS (F0)/1000 & ALL & - & \\
\hline DELALF (3) & 11 & 0.005 & - & - & 1,2,5,6 \\
\hline DELOBJ & 12 & 0.001 & - & ALL & - \\
\hline DRLOBM & 13 & 0.01 & ALL & - & - \\
\hline DELSTR & 14 & 0.001 & ALL & - & - \\
\hline DLOBJI & 15 & 0.1 & - & ALL & - \\
\hline DLOBJ2 & 16 & 1000.0 & - & ALL & - \\
\hline DX1 & 17 & 0.01 & - & ALL & - \\
\hline Dx2 & 18 & 0.2 & - & ALL & - \\
\hline EPSPEN & 19 & -0.05 & 2,3,4 & - & - \\
\hline EXTRAP & 20 & 5.0 & , & - & ALL \\
\hline FDCH & 21 & 0.01 & - & ALL & - \\
\hline FDCHM & 22 & 0.001 & - & ALL & - \\
\hline GMULTZ & 23 & 10.0 & 8 & - & - \\
\hline PSAIZ & 24 & 0.95 & 8 & - & - \\
\hline pmult & 25 & 5.0 & 1,5 & - & - \\
\hline frMVIMZ (4) & ) 26 & 0.2 & 6,7,8,9 & - & - \\
\hline RP & 27 & 10.0 & 1,5 & - & - \\
\hline RPMAX & 28 & \(1.0 \mathrm{E}+10\) & 1,5 & - & - \\
\hline RPMULT & 29 & 0.2 & 1,5 & - & - \\
\hline RPPMIN & 30 & 1.0E-10 & 2,3,4 & - & - \\
\hline RPPRIM & 31 & 100.0 & 2,3,4 & - & - \\
\hline SCFO & 32 & 1.0 & ALL & ALL & ALL \\
\hline SCIMIN & 33 & 0.001 & ALL & ALL & ALL \\
\hline STOL & 34 & 0.001 & - & 4,5 & - \\
\hline thetaz & 35 & 0.1 & - & 4,5 & - \\
\hline XMULT & 36 & 2.618034 & - & - & 1,2,3,5,6,7 \\
\hline 2RO & 37 & 0.00001 & ALL & ALL & ALL \\
\hline PMLT & 38 & 10.0 & 6,7,8,9 & 4,5 & - \\
\hline
\end{tabular}

1 If IOPT=4, CT=-0.1
2 If IONED \(=3\) or 8, D.ABALP \(=0.001\)
3 If IONED=3 or 8 , DRLALP \(=0.05\)
4 If ISTRAT=9, RMVLME \(=0.4\)
NOTB: FO is the objective function value for the initial design.

\section*{tabls 7: dEFinitions of real parambters comiainbd in array me}

PARAMTIER

\section*{DBFINITION}

ALAMDZ Initial estimate of the Lagrange Multipliers in the Augaented Lagrange Multiplier Method.
BBTAMC Additional steepest descent fraction in the method of centers. After moving to the center of the hypersphere, a steepest descent move is made equal to BETAMC times the radius of the hypersphere.
CT Consiraint tolerance in the Method of Feasible Directions or the Modified Method of Feasible Directions. A constraint is active if its numerical value is more positive than CT.
CTL Same as CT, but for linear constraints.
CTIMIN Sase as CTMIN, but for linear constraints.
CTMIN Minimus constraint tolerance for nonlinear constraints. If a constraint is more positive than CTMIN, it is considered to be violated.
DABALP Absolute convergence criteria for the one-dimensional search When using the Golden Section method.
DABOBJ Maximum absolute change in the objective between two consecutive iterations to indicate convergence in optimization.
DABOBM Absolute convergence criterion for the optimization subproblem when using sequential minimization techniques.
DABSTR Same as DABOBJ, but used at the strategy level.
DRLALF' Relative convergence criteria for the one-dimensional search when using the Golden Section method.
DEIOBJ Maximus relative change in the objective between two consecutive iterstions to indicate convergence in optimization.
DELOBM Relative convergence criterion for the optimization subproblem when using sequential minimization techniques.
DELSTR Same as DELOBJ, but used at the strategy level.
DLOBJl Relative change in the objective function attempted on the first optimization iteration. Used to estimate initial move in the one-dimensional search. Updated s the optimization progresses.
DLOBJ2 Absolute change in the objective function at ompted on the first optimization iteration. Used to estir 2 initial move in the one-dimnnsional search. Updated as the optimization progresses.
\(\because\) M Maximum relative change in a design variable attempted on the first optimization iteration. Used to estimate the initial move in the one-dimensional search. Updated as the optimization progresses.
DX2 Maximum absolute change in a design variable attempted on the first optimization iteration. Used to estimate the initial move in the one-dimensional search. Updated as the optimization progresses.
E:SPBN Initial transition point for extended penalty function methods. Updated as the optimization progresses.
BXTRAP Maximum multiplier on the one-dimensicnal search paraseter, ALPHA in the one-dimensional search using polynomial interpolation/extrapolation.

TABLB 7 CONGLUDBD: DRFINITIONS OF RBAL PARAMRTRPS COMTAINRD IN APRAY WM
PARAESTER
DRP' NITION
FDCH Kelative finite difference step when calculating gradienta.
FDCHM Minimu absolute value of the finite difference step when calculating gradients. This prevents too small a step when \(X(I)\) is near zero.
GMULTZ Initial penalty parameter in Sequential Quadratic programang.
PSAIZ Move fraction to avoid constraint violations in Sequential Quadratic Programoing.
RMULT Penalty function multiplier for the exterior penalty function method. Must be greater than 1.0 .
RMVIMZ Initial relative move limit. Used to set the move limits in sequential linear programing, method of inscribed hyperspheres and sequential quadratic programming as a fraction of the value of \(X(I), I=1, N D V\).
RP Initial penalty parameter for the exterior penalty function method or the Augmented Lagrange Multiplier method.
RPMAX Maximum value of RP for the exterior penalty function method or the Augmented Lagrange Multiplier method.
RPMULT Multiplier on RP for consecutive iterations.
RRPMIN Minimum value of RPPRIM to indicate convergence.
RPPRIM Initial penalty parameter for extended interior penalty function methods.
SCFO The user-supplied value of the scale factor for the objective function if the default or calculated value is to be overridden.
SCLMIN Minimum numerical value of any scale factor allowed.
STOL Tolerance on the conponents of the calculated search direction to indicate that the Kuhn-Tucker conditions are satisfied.
THETAZ Nominal value of the push-off factor in the Method of Feasible Directions.
XMULT Multiplier on the move parameter, ALPHA, in the onedimensional search to find bounds on the solution.
ZRO Numerical estimate of zero on the computer. Usually the default value is adequate. If a computer with a short word length is used, \(2 R O=1.0 \mathrm{~F}-4\) may be preferred.
PMLT Penalty multiplier for equality constraints when IOPT=4 or 5.

TABLB 8: INTBGBR PARAMBTERS STORED IN ARRAY IW
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARANETER} & \multirow[b]{2}{*}{LOCATION} & \multirow[b]{2}{*}{DBFAULT} & \multicolumn{3}{|l|}{MOPULES WHERR USED} \\
\hline & & & ISTRAT & IOPT & IONBD \\
\hline ICNDIR & 1 & NDV+1 & - & ALL & - \\
\hline ISCAL & 2 & 1 & ALL & ALL & ALL \\
\hline ITMAX & 3 & 40 & - & ALL & - \\
\hline ITRMOP & 4 & 3 & - & 1,2,3 & - \\
\hline I'TMMS'T & 5 & 2 & ALL & -- & - \\
\hline JONED & 6 & IONED & 8 & - & - \\
\hline JTMAX & 7 & 20 & ALL & - & - \\
\hline
\end{tabular}

TABLS 9: DEFINITIONS OF INTECER PARAMETEES COHTAINED IN ARRAY IN

PARAMETER
DEFINITION
ICNDIR Restart parameter for conjugate direction and variable metric methods. Unconstrained minimization is restarted with a steepest descent direction every ICNDIR iterations.
ISCAL Scaling parameter. If ISCAL=0, no scaling is done. II ISCAL=1, the design variables, objective and constraints are scaled automatically.
ITMAX Maximum number of iterations allowed at the optimizer level.
ITRMOP The number of consecutive iterations for which the absolute or relative convergence criteria must be met to indicate convergence at the optimizer level.
ITRWST The number of consecutive iterations for which the absolute or relative convergence criteria must be met to indicate convergence at the strategy level.
JONBD The one-dimensional search parameter (IONBD) to be used in the Sequential Quadratic Programing method at the strategy level.
JTMAX Maxima number of iterations allowed at the strategy level.

\subsection*{4.4 User-Supplied Gradients}

If it is convenient to supply analytic gradients to ADS, rather than using internal finite difference calculations, considerable optimization efficiency is attainable. If the user wishes to supply gradients, the flow logic given in Figure 3 is used. In this case, the information parameter, INFO, will be returned to the user with a value of INFO =2 when gradients are needed. The user calculates the NGT gradients of the constraints identified by array IC and stores these in the first NGT column of array \(A\). That is column \(I\) of \(A\) contains the gradient of constraint \(J\), where \(J=I C(I)\).

\subsection*{4.5 Restarting ADS}

When solving large and complex design problems, or when multi-level optimization is being performed, it is of ten desirable to terminate the optimization process and restart from that point at a later time. This is easily accomplished using the ADS program. Figure 4 provides the basic flowchart for this process. Whenever control is returned from ADS to the calling program, the entire contents of the parameter list are written to disk (or a file in a database management system). The program is then stopped at this point. Later, the program is restarted by reading the information back from disk and continuing from this point. If optimization is performed as a sub-problem within analysis, the information from the system level optimization is written to disk and the analysis is called. The analysis module can then call ADS to perform the sub-optimization task. Then, upon return from analysis, the system level information is 1 esd hack from storage and the optimization proceeds as usual. From this, it is seen that considerable flexibility exists for multi-level and multi-discipline optimization with ADS, where the ADS program is used for multiple tasks within the overall design process.

The user may wish to stop the optimization at specific times during the procens. The parameter IMAT is array IWE gives general information regarding the progress of the optimization. Appendix B provides detaila of this parameter as well as other parameters stored in Wx and TYI which may be useful to the experienced user of ADS.


Figure 4: Restarting ADS

\subsection*{4.6 Choosing An Algorithm}

One difficulty with a program such as ADS, which provides numerous options, is that of picking the best combination of algorithms to solve a given problem. While it is not possible to provide a concise set of rules, some general guidelines are offered here based on the author's experience. The user is strongly encouraged to try many different options in order to gain familiarity with ADS and to improve the probability that the best combination of algorithas is found for the particular class if problems being solved.
```

UNCONSTRAINBD FUNCTIONS (MCON=0, Side Constraints OR)
ISTRAT=0
Is computer storage very limited?
Yes - IOPT=l. Are Sunction evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONFD=4
No - IONED=3
No - IONED=1 or 2
No - Is the analysis iterative?
Yes - IOPT=3. Are function evaluations expensive?
Yea - Is the objective known to be approximately quadratic?
Yes - ICNED=4
No - IONED=3
No - IONED=1 or 2
No - IOPT=2 or 3. Are function evaluations expensive?
Yes - Is the objective known to be approximately quadratic?
Yes - IONED=4
No - IONED=3
No - IONED=1 or 2

```
CONSTRAINBD FUNCTIONS (MCON 0)
Are relative minima known to exist?
    Yes - ISTRAT=1, IOPT=3. Are function evaluations expensive?
        Yes - IONED=3
        No - IONED=1 or 2
    No - Are the objective and/or constraints highly nonlinear?
        Yes - Are function evaluations expensive?
            Yes - ISTRAT=0, IOPT=4: IONED=7
            No - ISTRAT=2, 3 or 5 , IOPT=2 or 3 , IONED \(=1\) or 2
        No - Is the design expected to be fully-constrained?
            (ie. NDV active constraints at the optimum)
            Yes - ISTRAT=6, IOPT=5, IONED=6
            No - Is the analysis iterative?
                Yes - ISTRAT=0, IOPT=4, IONED=7 or
                        ISTRAT \(=8\), LOP \(\tau^{\prime}=5\), TONED \(=7\) or
                ISTRAT \(=9\), IOPT \(=5\), TONED \(=7\)
            No - ISTRAT \(=0\), IOPT \(=!6\), IONED \(=7\) or
                        ISTRAT \(=8\), IOPT \(=5\), TONED \(=7\) or
                        ISTRAT \(=9, \quad\) OPT \(=5, \quad\) IONED \(=7\)

\section*{GENERAL APPLICATIONS}

Often little is known about the nature of the problem being solved. based on experience with a wide variety of problems, a very direct approach is given here for using ADS. The following table of parameters is of is red pa sequence of algorithms. When using ADS the first few times, the user may prefer to run the cases given here, rather than using she decision approach given above. It is assumed here that a constrained optimization problem is being solved. If the problem is unconstrained, ISTRAT \(=0, I O P T=3\) and \(I O N B D=2\) or 3 is recommended.
\begin{tabular}{cccc} 
ISTRAT & IOPT & IONED & IPRINT \\
\hline 8 & 5 & 7 & 2200 \\
0 & 5 & 7 & 2020 \\
0 & 4 & 7 & 2020 \\
3 & 5 & 7 & 2200 \\
6 & 5 & 6 & 2200 \\
5 & 3 & 3 & 2200 \\
2 & 3 & 3 & 2200 \\
1 & 3 & 3 & 2200
\end{tabular}

\subsection*{5.0 RXAMPLES}

Consider the following two-variable optimization problem with two nonlinear constraints:
\[
\begin{array}{ll}
\text { Mininize } \quad \text { OBJ }= & 2 * \operatorname{SQRT}(2) * A 1+A 2 \\
\text { Subject to; } \quad G(1)=\frac{2 * A 1+\operatorname{SQRT}(2) * A 2}{2 * A l *[A i+\operatorname{SQRT}(2) * A 2]}-1
\end{array}
\]
\[
G(2)=\frac{1}{2 *[A 1+\operatorname{SQRT}(2) * A 2]}-1
\]
\[
0.01 \leq \mathrm{Ai} \leq 1.0 \mathrm{~B}+20 \quad i=1,2
\]

This is actually the optimization of the classical 3-bar truss shown in Figure 5 where, for simplicity, only the tensile stress constraints in members 1 and 2 under load Pl are included. The loeds, Pl and P2, are applied separately and the material specific weight \(j s 0.1 \mathrm{lb}\). per cubic inch. The structure is required to be symmetric so \(X(1)\) corresponds to the cross-sectional area of members 1 and 3 and \(X(2)\) corresponds to the cross-sectional area of member 2.


Figure 5: Three-Bar Iruss

\subsection*{5.1 Example 1 All Détult Parameters}

Figure 6 gives the FORTRAN program to be used with ADS to solve this problem. Only one line of data is read by this program to define the values of ISTRAT, IOPT, IONBD and IPRINT and the FORMAT is 415. When the optiaization is complete, another case may be run by reading a new set of data. The program terminates when ISTRAT=-1 is read as data. Figure 7 gives the results obtained with ISTRAT=0, IOPT=4, IONBD=7 and IPRINT=1000. The reader is encouraged to experiment with this program using various combinations of the options from Table 4.

\section*{5. 2 Kxample \(\underline{x}_{1}\) Initiol Panoters Are Modified}

The 3-bar truss deaigned in Section 5.1 is now designed with the following changes in the internal parameters:
\begin{tabular}{lccc} 
Paramater & New Value & Location in WR & Location in IWE \\
\hline CT & -0.1 & 3 & - \\
CTMIN & 0.002 & 6 & - \\
THBTAZ & 1.0 & 35 & - \\
ITRMOP & 2 & - & 4
\end{tabular}

The FORTHLAN program used here is shown in Figure 8 and the rusults are given in Figure 9.

\section*{6. 3 Bxample 3 ; Gradienta Supplied by the User}

The 3-bar truss designed in Sections 5.1 and 5.2 is designed here with user-supplied gradients. The parameters CT, CTMIN, CTMIN, THBTAZ and ITRMOP are over-ridden as in Section 5.2. Also, ncw IPRINT=2020 to provide a more typical level of optimization output.

The FORTRAN progrem associated with this exemple is given in Figure 10. Figure 11 gives the realts.

C SIIMPLIFIED USAGE OF ADS. THE THREE-BAR TRUSS.
C REOUIRRD ARRAYS.
DIMENSION \(X(3), \operatorname{VLB}(3), \operatorname{VUB}(3), G(2), \operatorname{IDG}(2), \operatorname{IC}(2), \operatorname{DF}(3), A(2,2)\), 1 WK(1000), IWK(500)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK \(=1000\)
NRIWK=500
C PARAMBTERS. IGRAD=0 NDV \(=2\)
NCON=2
C INITIAL DESIGN.
\(X(1)=1\).
\(X(2)=1\).
C BOUNDS.
\(\operatorname{VLB}(1)=.01\)
\(\operatorname{VLB}(2)=.01\)
\(\operatorname{VUB}(1)=1.0 E+20\)
\(\operatorname{VUB}(2)=1.0{ }^{-1}+20\)
C IDRNTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
\(\operatorname{IDG}(1)=0\)
JDG(2) \(=0\)
C INPIIT.
RLEAD \((5,30)\) ISTRAT, IOPT, IONED, IPRINT
C OPTIMIZE.
INFO=C
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, X, VLB, 1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA, WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQRT (2.)*X(1)+X(2)
\(G(1)=(2 . * X(1)+\operatorname{SQRT}(2) * X.(2)) /(2 . * X(1) *(X(1)+\operatorname{SQRT}(2) * X.(2)))-1\).
\(G(2)=.5 /(X(1)+\operatorname{SQRT}(2) * X.(2))-1\).
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10
20 CONTINUE
C PRINT RESULTS.
WRITB \((6,40)\) OBJ, \(X(1), X(2), G(1), G(2)\)
STOP
30 FORMAT (415)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ \(=\), E12.5 \(/ / 5 X, 6 \mathrm{HX}(1)=, \mathrm{El} 2.5,5 \mathrm{X}\),
\(16 \mathrm{HX}(2)=, \mathrm{El} 2.5 / 5 \mathrm{X}, 6 \mathrm{HG}(1)=, \mathrm{Bl} 2.5,5 \mathrm{X}, 6 \mathrm{HG}(2)=, \mathrm{El} 2.5)\)
END

Figure 6: Example 1; All Defeult Parameters

\[
\therefore \because T R A A N P R O G R A M
\]

FOR
AUTOMATED DESIGN SYNTHESIS
VERSION 1.10


OBJECTIVB FUNCTIoN VALUE .26217B+01

DESIGN VARIABLES
\begin{tabular}{cccc} 
& LOWER & & UPPER \\
VARIABLE & BOUND & VALUE & BOUND \\
1 & \(.10000 \mathrm{~B}-01\) & \(.77035 \mathrm{~B}+00\) & \(.10000 \mathrm{~B}+21\) \\
2 & \(.10000 \mathrm{~B}-01\) & \(.44281 \mathrm{E}+00\) & \(.10000 \mathrm{~B}+21\)
\end{tabular}

DESIGN CONSTRAINTS
1) \(.7075 \mathrm{~B}-02 \quad-.6420 \mathrm{~B}+00\)

FUNCTION EVALUATIONS \(=56\)

OPTIMA \(\quad O B J=.26217 B+01\)
\(X(1)=.77035 \mathrm{~B}+00 \quad X(2)=.44281 \mathrm{~B}+00\)
\(G(1)=.70753 \mathrm{E}-02 \quad G(2)=-.64: 38 \mathbb{E}+00\)
Figure 7: Example 1; Output

USAGE OF ADS. OVER-RIDING DEFAULT PARAMBTBRS.
C THE TMREE-BAR TRUSS.
C REQUILRED ARRAYS.
DIMENSION X(3),VLB(3),VUB(3),G(2),IDG(2),IC(2),DF(3)•(2,2), 2 WK(1000), IWK(500)
C ARPAY DIMENSIONS.
\(\mathrm{NF} \cdot \mathrm{A}=2\)
nc:ola \(=2\)
HRNK \(=1000\)
NRIIYK=500
C PARAMETERS.
IGRAD \(=0\)
NDV=2
NCON=?
C INITIAL DESIGN.
\(X(1)=1\).
\(X(2)=1\).
C BOUNDS.
\(\operatorname{VLB}(1)=.01\)
\(\operatorname{VLB}(2)=.01\)
\(\operatorname{VUB}(1)=1.0 \mathrm{~B}+20\)
\(\operatorname{VUB}(2)=1.0 \mathrm{~B}+20\)
C IDENTIFY CONSTRAINTS AS NONLINEAR, INEQUALITY.
IDG(1) =0
IDG(2) \(=0\)
C INPUT.
RRAD \((5,30)\) ISTTAT, IOPT, IONBD, IPRINT
C INITiALIZB INTRRNAL PARNMETERS.
INFO \(=-2\)
CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, X, VLB,
1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA, WK, NRWK, IWK, RAIWK)
C OVER-RIDE DEFAULT VALUBS OF CT, CTMIN, thetaz and itramp.
WK (3) \(=-0.1\)
WK (6) \(=0.002\)
\(W K(35)=1.0\)
IWK (4) \(=2\)
C OPTIMIZE.
10 CALL ADS (INFO, ISTRAT, TOPT, IONBD, IPRINT, IGRAD, NRV, NCON, X, VLB,
1 VUB, OBJ, G, IDG, NGT, IC , DF , A, NRA, NCOLA, WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.O) GO TO 20
C bvaluatl objective and constraints.
\(\mathrm{OBJ}=2 . * \operatorname{SQRT}(2) * .\mathrm{X}(1)+\mathrm{X}(2)\)
\(\mathrm{G}(1)=(2 . * X(1)+\operatorname{SQRT}(2) * X.(2)) /(2 . * X(1) *(X(1)+\operatorname{SQRT}(2) * X.(2)))-1\).
\(G(2)=.5 /(X(1)+\operatorname{SORT}(2) * X.(2))-1\).
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10
20 CONTINUB
C PRINT RBSULTS.
WRITE \((6,40)\) OBJ, \(X(1), X(2), G(1), G(2)\)
5 MF
30 FORMAT (415)
40 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ \(=, 12.5 / / 5 \mathrm{X}, 6 \mathrm{HX}(1)=, \mathrm{Bl2.6} 5 \mathrm{X}\), \(16 \mathrm{HX}(2)=, \mathrm{Bl} 2.5 / 5 \mathrm{X}, 6 \mathrm{HG}(1)=, \mathrm{Bl2.5}, 5 \mathrm{X}, 6 \mathrm{HG}(2)=, \mathrm{Bl} 2.5)\)
BND
Figure 8: Example 2; Modify Default Parameters
\begin{tabular}{|c|c|c|}
\hline MAF \({ }^{\text {a }}\) & UDDDDD & SSSSSS \\
\hline \(\boldsymbol{A} \quad \mathbf{A}\) & D D & S \\
\hline A A & D D & S \\
\hline mamana & D D & SSSES \\
\hline A A & D D & S \\
\hline A A & D D & S \\
\hline \(\boldsymbol{A} \quad \mathbf{A}\) & DUDDDD & SSSSSS \\
\hline
\end{tabular}

\section*{FGRTKAN PROGRAM}
\[
F O R
\]

AUTOMATED DBSIGN SYNTHESIS
VERSION1.10

CONTEROL PARAMERTERS
\begin{tabular}{llllll} 
ISTHiT \(=\) & 0 & IOPT & \(=\) & 4 & IONED \(=\) \\
IORAD \(=\) & 0 & NDV & \(=\) & 2 & IPRRINT \(=1000\)
\end{tabular}

OPTIMIZATION RESULTS

OBJBCTIVE FUNCTION VALUB . 26400R+01

DESIGN VARIABLB'S
\begin{tabular}{cccc} 
& LOWER & & UPPBR \\
VARIABLB & BOUND & VALUE & BOUND \\
1 & \(.10000 \mathrm{~B}-01\) & \(.78640 \mathrm{~B}+00\) & \(.10000 \mathrm{~B}+21\) \\
2 & \(.10000 \mathrm{~B}-01\) & \(.415698+00\) & \(.10000 \mathrm{~B}+21\)
\end{tabular}

DESIGN CONSTRAINTS
1) \(-.3624 \mathrm{E}-03-.6352 \mathrm{~B}+00\)

FUNCTIUN BVALUATIONS \(=18\)

OPTIMEM OBJ \(=.26400 \mathrm{~B}+01\)
\(X(1)=.78640 \mathrm{~B}+0 \mathrm{C} \quad X(2)=.41569 \mathrm{~B}+00\)
\(G(1)=-.36236 \mathrm{~B}-03 \quad G(2)=-.63617 \mathrm{~B}+00\)
Figure 9: Bxample 2; Output
\(\approx\) USAGB OF ADS. OVER-RIDINC DEFAULT PARAMBTERS, AND PROVIDING
C GRADIENTS. THE TKRRE-BAR TRUSS.
C RROUIRRD ARRAYS.
DIMENSION X(3), VLB(3), VUB (3), G(2), IDG(2), IC(2), DF(3), A(2,2), 1 WK(1000), IWK(500)
DIMENSION B(2,2)
C ARRAY DIMENSIONS.
NRA=2
NCOLA=2
NRWK \(=1000\)
NRIWK \(=500\)
C PARAMBTERS.
IGRAD=1
\(\mathrm{NDV}=2\)
\(\mathrm{NCON}=2\)
C INITIAL DESIGN.
\(X(1)=1\).
\(X(2)=1\).
C BOUNDS.
\(\operatorname{VLB}(1)=.01\)
\(V^{\top}-(2)=.01\)
\(\operatorname{VUB}(1)=1.0 \mathrm{~B}+20\)
\(\operatorname{VUB}(2)=1.0 \mathrm{~F}+20\)
C IDENTTFY CONSTRAINTS AS NONLINEAR, INRQUAI-ITY.
IDG(1) \(=0\)
IDG(2) \(=0\)
C INPUT.
RRAD (5,70) ISTRAT, IOPT, IONED, IPRINT
C INITIALIZE INTERNAL PARAMBTERS.
INFO \(=-2\)
CALL ADS (INFO, ISTRÃT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, X, VLB, 1 VUB, OBJ, G, IDG, NGT, IC, DF , A, NFA, NCOLA, WK, NRWK, IWK, NRIWK)
C OVER-RIDE DEFAULT VALUBS OF CT, CTMIN, THBTAZ AND ITRMOP.
\(W K(3)=-0.1\)
WK (6) \(=0.002\)
\(W K(35)=1.0\)
IWK (4) \(=2\)
C OPTIMIZE .
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, NDV, NCON, X, VLB, i VUB, OBJ, G, IDG, NGT, IC, DF , A, NRA, NCOLA, WK, NRWK, IWK, NRIWK)
IF (INFO.EQ.0) GO TO 60
IF (INFO.GT.l) GO TO 20
C EVALUATE OBJECTIVE AND CONSTRAINTS.
OBJ=2.*SQF/T (2.) *X(1)+X(2)
\(G(1)=(2 . * X(1)+\operatorname{SQRT}(2) * X.(2)) /(2 . \notin X(1) *(X(1)+\operatorname{SORT}(2) * X.(2)))-1\). \(G(2)=.5 /(X(1)+\operatorname{SORT}(2.) \neq X(2))-1\).
C GO CONTINUE WITH OPTIMIZATION.
GO TO 10

Figure 10: Example 3; Gradients Supplied by the User
```

20 CONTINUE
C GRADIENT OF OBJ.
DF(1)=2. \#SQRT(2.)
DF(2)=1.0
IF (IGGT.EQ.O) GO IO iO
C CONSTRAINT GRADIRNTS. USR ARRAY B FOR TRGEORARY STORAGR.
Dl=(X(1)+SORT(2.)*X(2)) \#\#2
C G(1).
B(1,1)=-(2.*X(1)*X(1)+2.*SORT(2.)*X(1)*X(2)+ 2. *X(2)*X(2))/
1 (2.*X(1)*X(1)*Dl)
B(2,1)=-1./(SORT(2.)*D1)
C G(2).
B(?,2)=-0.5/Dl
B(2,2)=SQRT(2.)*B(1,2)
C STORB APPROPRIATB GRADIBNTS IN ARRAY A.
DO 30 J=l,NGT
K=IC(J)
A(l,J)=B(I,K)
30 A(2,J)=B(2,K)
GO TO 10
80 CONTINUE
C PRINT RBSULTS.
WRITE(6,80) OBJ,X(1),X(2),G(1),G(2)
STOP
70 FORMAT (4I5)
80 FORMAT (//5X,7HOPTIMUM,5X,5HOBJ =,R12.5//5X,6HX(1) =,R12.5,5X,
l 6HX(2) -, \&゙l2.5/5X,6HG(1) =,Bl2.5,5X,6HG(2) =,Bl2.5)
END

```

Figure 10 Concluded: Example 3; Gradients Supplied by the User
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{anana} & DDDDDD & SSSSSS \\
\hline \(\boldsymbol{A}\) & \(\wedge\) & D & S \\
\hline A & \(\wedge\) & D & S \\
\hline ananna & & D & SSSSS \\
\hline A & \(\wedge\) & D D & S \\
\hline A & A & D D & S \\
\hline \(A\) & A & DDDDDD & SSSSSS \\
\hline
\end{tabular}

\section*{FORTRAN PROGRAM}

> FOR

AUTOMATED DESIGN SYNTHESIS
VERSION 1.10
CONTROL PARAMBTERS
ISTRAT \(=0 \quad 0 \quad\) IOPT \(=4 \quad 4 \quad\) IONBD \(=7 \quad 7 \quad\) IPRINT \(=2020\)
IGRAD \(=1\)

\section*{SCALAR PROGRAM PARAMETERS}

RRAL PARAMBTERS
1) ALAMDZ \(=.00000 \mathrm{~B}+00 \quad\) 20) EXTRAP \(=.50000 \mathrm{E}+01\)
2) BETAMC \(=.00000 \mathrm{~B}+00\) 21) \(\mathrm{FDCH}=.10000 \mathrm{E}-01\)
3) \(\mathrm{CT}=-.10000 \mathrm{E}+00 \quad\) 22) \(\mathrm{FDCHM}=.10000 \mathrm{E}-02\)
4) \(\mathrm{CTL}=-.50000 \mathrm{~B}-02 \quad\) 23) \(\mathbf{G M U L T Z}=.10000 \mathrm{~B}+02\)
5) CTIMIN \(=.10000 \mathrm{~B}-02\) 24) PSAIZ \(=.95000 \mathrm{E}+00\)
6) CTMIN \(=.20000 \mathrm{E}-02\) 25) FMULT \(=.50000 \mathrm{~B}+01\)
7) \(\operatorname{DABALP}=.10000 \mathrm{~B}-03 \quad\) 26) RMVLMZ \(=.20000 \mathrm{E}+00\)
8) DABOBJ \(=.38284 \mathrm{~B}-02\) 27) RP \(=.10000 \mathrm{~B}+02\)
3) DABOBM \(=.38284 \mathrm{~B}-01 \quad\) 28) RPMAX \(=.10000 \mathrm{~B}+11\)
10) DAESTR \(=.38284 \mathrm{E}-02\) 29) RMULT \(=20000 \mathrm{~B}+00\)
11) DELALP \(=.50000 \mathrm{E}-02\) 30) RPPMIN \(=.10000 \mathrm{E}-09\)
12) DBLOBJ \(=.10000 \mathrm{~B}-02\) 31) FPPRIM \(=.10000 \mathrm{E}+03\)
13) DBLOBM \(=.10000 \mathrm{~B}-01\) 32) \(\mathrm{SCFO}=.10000 \mathrm{E}+01\)
14) DBLSTR \(=.10000 \mathrm{~B}-02\) 33) SCLMIN \(=.10000 \mathrm{~B}-02\)
15) DLOBJl \(=.10000 \mathrm{~B}+00\) 34) \(\mathrm{STOL}=.10000 \mathrm{E}-02\)
16) DLOBJ2 \(=.10000 \mathrm{E}+04\) 35) THETAZ \(=.10000 \mathrm{~B}+01\)
17) DX1 \(=.10000 \mathrm{~B}-01\) 36) XMULT \(=.26180 \mathrm{E}+01\)
18) DX2 \(=.20000 \mathrm{E}+00\) 37) ZRO \(=.10000 \mathrm{~B}-04\)
19) EPSPBN \(=-.50000 \mathrm{E}-01\) 38) \(\mathrm{PMLT}=.10000 \mathrm{E}+02\)

\section*{INTBGBR PARAMBTERS}
1) ICNDIR \(=3\)
2) ISCAL \(=1\)
3) ITMAX \(=40\)
4) \(\operatorname{ITRMOP}=2\)
5) ITRMST \(=2\)
6) JONED \(=7\)
7) JTMAX \(=20\)
\begin{tabular}{ccc} 
ARRAY & STORAGE REJUIREMENTS \\
& DIMBNS IONED & RROUIRED \\
ARRAY & SIZE & SIZE \\
WK & 1000 & 197 \\
IWK & 500 & 184 \\
Figure & \(11:\) & Example \(3-0\) Output
\end{tabular}
```

-- INITIAL DESIGN
OBJ = .38284B+01
DECISION VARIABLES (X-VECTOR)
1). .10000B+01 .10000B+01
LONER BOUNDS ON TIES DEGISION VARIABLES (VLB-VBCTOR)
1) .10000B-01 .100008-01
UPPER BOUNDS ON TEB DECISION VARIABLES (VUB-VECTOR)
1) .99746B+20 . 10000B+21
CONSTRAINT VALUBS (G-VBCTOR)
1) -.41831E+00 -.79289B+00
-- ITBRATION 1 OSJ = .28261B+01
DECISICN VARIABLES (X-\$XCTOR)
1) .867798+00 .37164B+00
-- ITERATION 2 OBJ = .27594R+01
DBCISION VARIABLES (X-VECTOR)
1) . .88867E+00 .81159B+00
-- ITERATION 3 OBJ = .26402B+01
DECISION VARIABLES (X-VECTOR)
1).80834E+00 . 35388Eヶ00

- ITRRATION 4 OBJ = .26381B+01
DECISION VARIABLES (X-VECTOR)
l) .79603B+00 .38657B+00
-- ITBRATION 5 OBJ = .2S375B+01
DECISION VARIABLRS (X-VECTOR)
l) .79037B+00 .4019985+00

```

Figure 11 Continued: Example 3 - Outfut
FINAL OPTIMIZATION RESULTS
NUMBER OF ITBRATIONS = ..... 5
OBJECTIVE \(=.26375 \mathrm{E}+01\)
DECISION VARIABLBS (X-VECTOR)
1) .79037E+00 .40199E+00
CONSTRAINT VALUES (G-VECTOR)
1) \(.80391 \mathrm{~B}-03-.63205 \mathrm{E}+00\)
CONSTRAINT TOLERANCE, \(C T=-.51000 \mathrm{E}-01\) CTL \(=-.30000 \mathrm{~B}-02\)
THBRE ARE 1 ACTIVE CONSTRAINTS AND 0 VIOLATBD CONSTRAINTSCONSTRAINT NUMBERS
    1
THBRE ARE 0 ACTIVE SIDE CONSTRAINTS
TREMINATION CRITERIA
RELATIVE CC`IVBRGENCE CRITERION WAS MET FOR 2 CONSECUTIVB ITERATIONS
ABSOLUTE CONVERGENCE CRITERJ V WAS MET FOR 2 CONSECUTIVB ITERATIONS
    OPTIMIZATION RESULTS
OBJECTIVB FUNCTION VALUE .26375B+01
DESIGN VARIABLES
\begin{tabular}{cccc} 
& LOWER & & UPPER \\
VARIABLE & BOUND & VALUE & BOUND \\
1 & \(.10000 \mathrm{E}-01\) & \(.79037 \mathrm{E}+00\) & \(.10000 \mathrm{E}+21\) \\
2 & \(.10000 \mathrm{E}-01\) & \(.40199 \mathrm{~B}+00\) & \(.10000 \mathrm{E}+21\)
\end{tabular}
DBSIGN CONSTRAINTS
1) . \(5629 \mathrm{E}-03-.6320 \mathrm{E}+00\)
FUNCTION EVALUATIONS \(=16\)
GRADIEIVT BVALUATIONS \(=5\)
OPTIMUM OBJ \(=.26375 E+01\)
\(X(1)=.79037 \mathrm{E}+00 \quad X(2)=.40199 \mathrm{E}+00\)
\(G(1)=.56288 \mathrm{E}-03 \quad G(2)=-.63205 E+00\)
Figure 11 Concluded: Example 3; Output

\subsection*{6.0 MAIN PROGRAM FOR SIMPLIFIBD USAGE OF ADS}

Figure 12 is a general-purpose calling program for use with ADS. The array are dimensioned sufficient to solve problems or up to 20 design variables and 100 constraints. Arrays IC and are dimensioned to allow for evaluation of 30 constraint gradients. Wherever a question mark (?) is given, it is understood that the user will supply the appropriate information. Note that the statement \(x(I)=\) ?, \(I=1\), ND V is not an implied FORTRAN DO LOOP, but imply denotes that the value of the NDV design variables must be defined here.

Subroutine BVAL is the user-supplied subroutine for evaluating functions and gradients (if user-supplied). The calling statement is:

CALL REAL (INFO, NOV, NON, OBJ, X, G, DP, NOT, IC', A, NRA)
The parameters INFO, NDV, NCON, Y, NOT, IC and NRA are input to Subroutine EVAL, while OBJ, G, DF and A are output. Depending on the user needs, this may be simplified. For example, if IGRAD=0 and NDV and NCON are not required by the analysis, the calling statement may be

CALL EVIL (OBJ,X,C)

Also, a print control may be added so, after the optimization is complete, EVAL can be called again to print analysis information.

C SIMPLIFIED USAGE OF THE ADS OPTIMIZATION PROGRAM.
DIMENSION X(21),VLB(21),VUB(21),G(100), IDG(100), IC (30), DF(21),
\# A(21, 30), WK (10000), IWK(2000)
NRA =21
NCOLA=30
\(N R W R=10000\) NRIWK=2000
C INITIALIZATION. IGRAD=? ND=?
NON=? \(X(I)=\) ?, \(I=1, N D V\) \(\operatorname{VLB}(I)=?, \quad I=1, \operatorname{NLV}\) \(\operatorname{VUB}(I)=?, \quad I=1, \operatorname{NDV}\) \(\operatorname{IDG}(\mathrm{I})=\) ? \(\quad \mathrm{I}=1, \mathrm{NCON}\) ISTRAT=? IOPT=? CONED \(=\) ? IPRINT=? INFO \(=0\)
10 CALL ADS (INFO, ISTRAT, IOPT, IONED, IPRINT, IGRAD, ND, NCO, X, * VLB, NUB, OBJ, G, ID, HGT, IC, DP, A, NRA , NCOLA, WK, NRWK, INK, NRIWK) CALL EVIL (INFO, NOV, MUN, OBJ, X, G, DP, SGT, IC, A, NRA) IF (INFO.GT.0) GO TO 10
C OPTIMIZATION IS COMPLETE. PRINT RESULTS. STOP END

Figure 12: Prigren for Simplified Usage of ADS

\subsection*{7.0 REFERENCIS}
1. Vanderplaats, G. N., "ADS - A FORTRAN Program for Automated Design Synthesis," NASA CR 172460, Oct. 1984.
2. Fleury, C. and Brabant, V., "Structural Optimization; A New Dual Method Using Mixed Variables," LTAS Report SA-115, University of Leige, Leige, Belgium, March 1984.
3. Fox, R. L., "Optimization methods for Engineering Design," AddisonWesley, 1971.
4. Fiacco, A. V. and McCormick, G. P., Nonlinear Programing: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, 1968.
5. Kavlie, D. and Moe, J., "Automated Design of Frame Structures," ASCE Journal of Structural Div., Vol.STl, Jan. 1971, pp. 33-62.
6. Cassis, J. H., "Optimum Design of Structures Subjected to Dynamic Loads," Ph.D. Thesis, University of California, Los Angeles, 1974.
7. Cassis, J. H. and Schmit, L. A., "On Implementation of the Extended Interior Penalty Function," International Journal of Numerical Methods in Engineering, Vol. 10, No. 1, 1976, pp. 3-23.
8. Haftka, R. T. and Starnes, J. H., Jr., "Applications of a Quadratic Extended Interior Penalty Function for Structural Optimization," alA Journal, Vol.14, June 1976, fp. 718-724.
9. Prasad, B. and Haftka, R. T., "Optimum Structural Design with Plate Finite Elements," ASCE Journal of Structural Div., Vol.STll, Nov. 1979, pp. 2367-2382.
10. Prasad, B., "A Class of Generalized Variable Penalty Methods for Nonlinear Programing," Journal of Optimization Theory and Applications, Vol.35, No.2, Oct. 1981, pp. 159-182.
11. Rockafellar, R. T., "The Multiplier Method of Hestenes and Powell Applied to Convex Programing," Journal of Optimization Theory and Application, Vol. 12, No. 6, 1973, pp. 555-562.
1.2. Pierre, D. A. and Lowe, M. J., "Mathematical Programming Via Augmented Lagrangians," Applied Mathematics and Computation Series, Addison-Wesley, 1975.
13. Powell, M. J. D., "Algorithms for Nonlinear Constraints that use Lagrangian Functions," Mathematical Programming, Vol. 14, No. 2, 1978, pp. 224-248.
14. Imai, K., "Configuration Optimization of Trusses by the Multiplier Method," Ph.D. Thesis, University of California, Los Angeles, 1978.
15. Imai, K. and Schmit, L. A., "Configuration Optimization of Trusses," Journal of the Structural Division, ASCE, Vol. 107, No. ST5, May 1981, pp. 745-756.
16. Kelley, J. E., "The Cutting Plane Method for Solving Convex Programs," J. SIAM, 1960, pp. 703-712.
17. Moses, F., "Optimum Structural Design Using Linear Programming," Proc. A.S.C.E., Vol. 90, ST6, 1964, pp. 89-104.
18. Baldur, R., "Structural Optimization by Inscribe \(\begin{gathered}\text { H } \\ \text { Hyperspheres," }\end{gathered}\) Journal of Engineering Mechanics, ASCE, Vol. 98, No. EM3, June 1972, pp. 503-508.
19. Powell, M. J. D., "The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations," Proc. Nonlinear Programming Symposium 3, Madison, Wisconsin.
20. Powell, M. J. D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Report DAMTP77/NA2, University of Cambridge, England.
21. Fletcher, R. and Reeves, C. M., "Function Minimization by Conjugate Gradients," Computer Journal, Vol. 7, No. 2, 1964, pp. 149-154.
22. Davidon, W. C., "Variable Metric Method for Minimization," Argone National Laboratory, ANL-5990 Rev., University of Chicago, 1959.
23. Fletcher, F. and Powell, M. J. D., "A Rapidly Convergent Method for Minimization," Computer Journal, Vol. 6, No. 2, 1963, pp. 163-168.
24. Broydon, C. G., "The Convergence of a Class of Double Rank Minimization Algorithms," Parts I and II, J. Inst. Maths. Applns.. Vol. 6, 1970, pp. 76-90 and 222-231.
26. Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer Journal, Vol 13, 1970, pp. 317-322.
26. Goldfarb, D., A Family of Variable Metric Methods Derived by Variational Means," Maths. Comput., Vol. 24, 1970, pp. 23-36.
27. Shannon, D. F., "Conditioning of Quasi-Newton Methods for Function Minimization," Maths. Compute., Vol. 24, 1970, pp. 647-656.
28. Zoutendijk, M., Methods of Feasible Directions. Elsevier Publishing Co., Ansterden, 1960.
29. Vanderplaats, G. N. and Moses, F., "Structural Optimization by Methods of Feasible Directions," Journal of Computers and Structures, Vol. 3, Pergamon Press, July 1973, pp. 739-755.
30. Vanderplaats, G. N., "An efficient Feasible Directions Algorithm for Design Synthesis," AIAA J., Vol. 22, No. ll, Oct. 10R4, pp. 1633-1640.
31. Himelblau, D. M., Applied Nonlinear Programing, McGraw-Hill, 1972.
32. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design: With Applications, McGraw-Hill, 1984.

APYKNDIX A

QUICK HKFKHKN:H TO ADS DHTION:


NOTE: An X denotes an allowed combination of algorithes.

\section*{APPENDIX B}

\section*{USEFUL INFORMATION STORED IN ARRAYS WE AND ING}

Arrays W and IW contain information calculated by ADS which is sometimes useful in monitoring the progress of the optimization. Tables \(\mathrm{B}-1\) and \(\mathrm{B}-2\) identify parameters which may be of interest to the user. Note that these parameters must not be changed by the user during the optimization process.


TABLB B-2: INTEGER PARAMBTERS STORED IN ARRAY IWK
\begin{tabular}{lcl} 
PARAMETBR LOCATION & \multicolumn{1}{c}{ DEFINITION } \\
\hline IDAB & 23 & \begin{tabular}{l} 
Number of consecutive times the absolute \\
convergence criterion has been satisfied at the \\
optimization level.
\end{tabular} \\
IDAB3 \\
IDEL
\end{tabular}

\section*{APPENDIX C}

\section*{SUBROUTINBS NBEDED FOR A SPECIFIBD COMBINATIGX OF ISTRAT IOPT AND IONED}

Depending on the combination of ISTRAT, IOPT and IONED, only a subset of subroutines contained in the ADS syster are used. Therefore, if computer memory is linited, it may be desired only to load those routines which are actually used. This will result in "unsatisfied externals" at run time, but on most system the program can be execuied anyway since the unsatisfied exter. 1 routines are not actually called. Below is a list of the routines inceded for a given combination of algorithes. In some cases, slightly more routines are included than are absolutely necessary, but they are short and a more precise list would be undully complicated.

\section*{ALWAYS LOAD THB TOLLOWING SUBROUTINBS:}

ADS, ADS001, ADS002, ADS004, ADS005, ADS006, ADS007, ADS009, ADS010, ADS 102, ADS103, ADS 105, ADS112, ADS122, ADS201, ADS206, ADS211, ADS216, ADS236, ADS237, ADS401, ADS402, ADS403, ADS420, ADS503, ADS504, ADS506, ADS510

\section*{STRATEGY LEVEL}

Depending on the value of ISTRAT, the following subroutines are also required:
```

ISTRAT = U, No strategy routines are added. Go to the optimizer level.

```
ISTRAT \(=1\), Add: ADS008, ADS301, ADS302, ADS508
ISTRAT \(=2\), Add: ADS008, ADS302, ADS303, ADS308, ADS508
ISTRAT \(=3\), Add: ADS008, ADS302, ADS304, ADS308, ADS508
ISTRAT \(=4\), Add: ADS008, ADS302, ADS305, ADS308, ADS5C8
ISTHAT \(=5\), Add: ADS008, ADS302, ADS306, ADS307, ADS508
ISTRA'T \(=6\), Add: \(\operatorname{ADS320}, \operatorname{ADS} 321\), ADS323, ADS333
ISTRAT \(=7\), Add: ADS323, ADS330, ADS331, ADS333
ISTRAT \(=8\), Add: ADS207, ADS217, ADS218: ADS221, ADS223, ADS310, ADS333,
    ADS371, ADS3'75, ADS376, ADS377, ADS378, ADS404, ADS507,
    ADS508, ADS509
ISTRAT \(=9\), Add: ADS207, ADS217, ADS218, ADS221, ADS223, ADS325, ADS326,
    ADS509

\section*{OPTIMIZER LBVEL}

Depending on the sa* of IOPT, the following ubroutines ere also required:

IOPT :: 1, Add: ADS 204 , ADS213, ADS214, A0S509
IOPT \(=2\), Add: ADS213, ADS21a adS235, ADE404, ADS503, ADS599
IOPT \(=3\), Add: ADS213, ADS214, ADS235, ARS404, ADS503, ADS5C,
IOPT \(=4\), Add: ADS201, ADS205, ADS207, ADS217, ADS218, ADS221, ADS223, ADS507

IOPT \(=5\), Add: ADS201, ADS202, ADS203, ADS207, ADS209, ADS217, ADS218, ADS221, ADS223, ADS235, ADS507

ONR-DIPIENSIONAL SEARCH LBVEL
repending on the value of IONED, the following subroutines are also reouired:

IONED \(=1-4\), Add: ADS116, ADS117, ADS118, ADS121, ADS126, ADS127
IONBD \(=5-8\), Add: ADS 101, ADS 104, ADS 106, ADS 108, ADS 109, ADS 110 , ADSll1, ADS 115, ADS 119, ADS \(123, ~ A D S 124, ~ A D S 125, ~\) ADS502

\section*{APPENDIX D}

ADS SYSTEM SUBROUTINES

The subroutines in the \(A D C\) system are listed here with a very orief dessription of each. Most suoroutines are internaily iocumented, and the user is referred to the program listing for more details.

Generally, ADS001-ADSC99 are control level routines. ADS101ADSl99 are one-dimensional search level routines, ADS201-ADS299 are optimization level routines and ADS301-ADS399 are strategy level routines. ADS401-ADS499 are print roatines and ADS501-ADS599 are litility routines.

ROUTINE
PURPOSE
\begin{tabular}{|c|c|}
\hline ADS & - Min control routine for optimization. \\
\hline ADS001 & - Control one-dimensional search level. \\
\hline ADS002 & - Control optimizer level. \\
\hline ADS003 & - Control strategy level. \\
\hline ADS004 & - Define work array storage allocations. \\
\hline ADS005 & - Initialize scialar parameters to their default values. \\
\hline ADS006 & - Initialize scale factors. \\
\hline ADS007 & - Calculate scale factors, scale, unscale. \\
\hline ADS008 & - Calculate gradients of pseudo-objective for ISTRAT=1-5. \\
\hline ADS009 & - Re-order IC and A arrays. \\
\hline .S010 & - Calculates convergence criteria parameters. \\
\hline ADS101 & - Coefficients of linear polynomial. \\
\hline ADS102 & - Coefficients of quadratic polynomial. \\
\hline ADS103 & - Coefficients of cubic polynow 11. \\
\hline ADS104 & - Zerces of polynomial to third-order. \\
\hline ADS105 & - Minimums of polynomial to third-order. \\
\hline ADS106 & - Evaluate n -th order polynomial. \\
\hline ADS108 & - Find minimum of a function by polynomial interpolation. \\
\hline ADS109 & - Find zeroes of a runction by polymomial interpolation. \\
\hline
\end{tabular}

ADSI10 - Evaluate slope of \(n\)-th order polynomial.
ADSlll - Polynomial interpolation for constraint boundaries.
ADSll2 - Find ALPMAX so NDV side constraints are encountered.
ADS 115 - Control one-dimensional search for constrained functions.

ADSll6 - Control one-dimemsional search for unconstrained functions.
ADS117 - Polynomial interpolation of unconstrained function, within bounds.
- Polynomial interpolation of unconstrained function, no bounds given.

ADS119 - Polynomial interpolation of constrained function, no bounds given.

ADS 121 - Find bounds on minimum of unconstrained function.

ADS 122
- Initial interior points for Golden Section method.

ADS 123
- Constrained one-dimensional search by Golden Section method.

A 3124 - Update bounds and get new interior point in Golden Section method, constrained.

ADS 125
- Find bounds on minimus of constrained function.

ADS 126 - Unconstrained one-dimensional search by Golden Section method.

ADS 127 - Update bounds and get new interior point by Golden Section method, unconstrained.

ADS 201
- Identify HGT most critical constraints.

ALSS202
- Invert matrix E and store back in B.

ADS203 - Delta-X back to boundary in Modified Method of Feasible Directions.
- Fletcher-Reeves unconstrained minimization.

ADS2(55 - Method of Feasible Directions.
ADS206 - \(\quad\) = Mold + ALPHA *S, subject to side constraints.
iUS20? - Maximum component (magnitude) of each column of \(A\).
\begin{tabular}{ll} 
ADS209 & - Calculate B = A-Tranapose times A. \\
ADS211 & - Update convergence parameters IDBL and IDAB. \\
ADS213 & - Calculate initial ALPHA for one-dimensional search based on \\
& objective function value.
\end{tabular},
\begin{tabular}{|c|c|}
\hline ADS323 & - Update move Iimita, ISTRAT \(=6,7\). \\
\hline ADS325 & - Sequertial Convex Programing, ISTRAT=9. \\
\hline ADS326 & - Solve convex aub-problen, ISTRAT=9. \\
\hline ADS330 & - Method of Centers, IStrat=7. \\
\hline ADS331 & - Control solction of LP sub-problen, ISTRAT=7. \\
\hline ADS333 & - Calculate maximum constraint value. \\
\hline ADS371 & - Control solution of QP sub-problem, ISTRAT=8. \\
\hline ADS375 & - Temporary objective, ISTRAT=8. \\
\hline ADS376 & - Gradient of pseudo-objective for one-dimensional eearch, ISTRAT=8. \\
\hline ADS377 & - Change in objective gradients, ISTRAT=8. \\
\hline ADS378 & - Update Hessian matrix, ISTRAT=8. \\
\hline ADS401 & - Print arrays. \\
\hline ADS402 & - Print array title and array. Calls ADS40l. \\
\hline ADS403 & - Print scalar control parameters. \\
\hline ADS404 & - Print Hessian matrix. \\
\hline ADS420 & - Print final optimization results. \\
\hline ADS501 & - Evaluate scalar product of two vectors.. \\
\hline ADS502 & - Find maximum component of vector. \\
\hline ADS503 & - Equate two vectors. \\
\hline ADS504 & - Matrix-vector product. \\
\hline ADS506 & - Initialize symetric matrix to the identity matrix. \\
\hline ADS507 & - Normalize vector by dividing by maximm component. \\
\hline ADS508 & -- Calculate gradient of pseudo-d,jective for ISTRAT=1-5. Called by ADS008. \\
\hline ADS509 & - Identify active side constraints. \\
\hline ADS510 & - Scale, unscale the X -vector. \\
\hline
\end{tabular}

Standard Bibliographic Page
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
1. Report No. \\
NASA CR-177985
\end{tabular} & 2. Rovipient' Catalog No. \\
\hline 4. Ťitle and Subtitle \\
ADS - A FORTRAN Program for Automated Design \\
Synthesis - Version 1.10
\end{tabular}

For gale by the National Ta ical Information Service, Springfeld, Virginia 22161
NA8A Langlay Form 83 (June 1005)
it```

