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I. Smmnary

A class of e×plicit and implicit total variation diminishing (TVI)) schenl(_s for the compressible

Euler and Nay|or-Stokes equations has |)(:ell developed 11-4]. They have the property of not

gelwrating spurious oscillations across shocks and contact discontinuities. In general, shocks

call })e capl.ur(:d within 1-2 grid pr)ints. For the inviscid case, one can divide these schemes into

upwind TVD schemes and symmetric (non-upwind) TVD schemes. The upwind TVD scheme is

based on the second-order TVD scheme developed by llarten [5], The symmetric TVD scheme

developed by tile author is a generalization of Roe [6] and Davis's [7} TVD Lax-Wendroff scheme.

The objective of this paper is to investigate the performance of these schemes on some viscous

and iiiviscid airfoil steady-state calculations. A comparison of the symmetric and upwi|,l TVI)
schc|lles is inch,led.

lI. Description of Algorithm for System of Ityperbollc Conservation Laws

Tile notion of upwind arid symmetric TVD schemes, including formulation and extension to
system cases (in unif(,rm Cartesian grids), can be found in references [1-3,5]. Ilere the extension

of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservation laws

in curvilinear coordinates [4] is brielly described.

Consider a two-dime||sional system of hyperbolic conservation laws

.... ocCq)OQ ._ Or(Q) + - o. ('_.1)
Ot Oz Oy

llere Q, F(Q) and G(Q) are column vectors of m components.

A generalized coordinate transformation of the form _ =: _(x,y) and '1 --- ,l(z,y) which
maintains the strong conservation law form of equation (2.1) is given by

04' a,¢'(O) a(_(¢)=o, (_.2)
b( + -aC + -);V-

whereq :=qlJ, k :-_(&v _.¢,c)/J, 5 = (,7,:F+ ,_,C)/J, andJ ::- (,,_,,- _,,,_,,theJac,,bia,,
transformation. Let A =: OF/b)Q and B = OG/gQ; then tire .lacobians /i, and f_ of _' and (}

call be written as

A = (_A -4-_u) (2.._a)

h = (,s_A+ ,,B). (2.3b)

l.ettheeige,,va.lesof.4he(,._ ' " ' "","7)" D,,note,_,¢,...,,,_) andtheeige,,v,.luesofh b. (,,_,,,,,,,
]i_and R,7 as the matriceswhose c_4umns arc eigenvectorsof J and /_,and denote T/_-I and

]¢_-tas the inversesof h'_and //v.

Let tile grid spacing be denoted by A_ and ATI such that _ == jA_ and r/:: kA_ I. Let Qj4 _,k

denote some symmetric average of Qj,k and Q_ 4 l,k (for example, Q#+ ._,k = 0.5, (Q_ + _,_4-Q)#,k),
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or the.R,,e's av_.ragelal for ga. dy,..nics), I.et "'j4-_, Itj, _, It_ _ denote the q,,antit,_." a_, R_,

1¢_t related u) A evahtat,ed at Qj., _,k' Similarly, let a_+_, Rk. + _, R__ denote the q,,antities

at,, R,, R, t related to/"_ evaluated at Q:,k.+ _.

Define

.... Q O-I '-k----Q-b-_-- (2.4a)

as the difference of the charactoristic variables in the local _-direct,ion, attd define

t_k , _ = ti'k_---._).,k),.- Q).k_ ...... (2.4b)
0,5 * (J_,l,+, ¢ Jj,k)

as the difference or the Characteristic variables in the local tl-dirertion. The J,_,k is the Jacobian

transformation ewduated at, (jA_,kAtl). The averaged Jacobians are used here in order to

preserve frccstream.

With the above notation, a one-parameter family Of TVD scl,emes can be written as

,5"" [_;,,4, - _¢- _.k -t A"0 --t_.,, -_A_oL',+;,', L"=.,,4_ ",,,,-_

"- _'" 5" _] (_.r,a).... 3',k - '

where 0 _< 8 < 1, )_ = At/A_, An = At/A_, and At is. the time step. Tiffs one:parameter

family of schemes contains implicit as well as explicit schemes. When e = o, (2.5) is an explicit

method; when e # o, it is an implicit scheme. For example, if 8.= I/2, the time differencing

is the trapezoidal h)rmula and scheme (2.5) is second-order in time and space. If 8 .--. !, the

time differencing is the backward Eulcr method and scheme (2.5) is first-order in "time but

second-order in space.

The numerical flux function Fj4 _,k for both the upwind and symmetrir_.q2VD schen:es [2,3]

can be expressed as

= ,.+ ,%,,.+ .,+, ¢,+,_].

Similarly,.we can define the mtmcrical flux G_,k+ _.

L't, wind TVD Scheme [5]

For a particular form of tl,e upwind TVD s_.hc,ne 12,5], the elements of the _I'_+ _ denoted by

AI _U
w_+_l.,l= l,...,m are

" ¢(%+_ + "h+_)%+ _ (2.6a)

with

g_t = minmod(a(__ _,_cal.:, _ ). (2.65)

The minmod fimetion of a list of arguments is equal to the smallest number in absolute value if

the list of arguments is of the same sign, or is equal to zero if any argument is of opposite sign.

The function ¢ is

Izl Izl .>_, (26_)

llerc c is a small positive parameter (see reference 5 for a formula of t), and ....

{(Og i ! !
, - _,)/%+,_.,',+,= -'

a' ¢0
(2.6d)

a_+ ½ = 0,

i
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ts of (2 4a)

__';_m_netric TVD Sch_.me 1'3J

For two particular forms of the symmetric TVD scherae, tile elements of tile (P_+ _ denoted

by(¢'+, _re
t I (2,7a)

all{]

A Cotlservative Lillearized ADI Forlii For Steady-State Application

For two-dimensional steady-state applications, the hnplicit schemes (2.5) can be solved by-

some appropriate relaxation method 0thor than alternating direction implicit (ADI) and will
be the direction of future research. The schemes considered in this paper are implemented in

a conservat.ive noniterative Al)I form [2]. For steady-state applications, the numerical solution

is independent of the time step. The implicit operator has a regular block trktiagonal strnct ure

and i,l,e resulting bh_ck t.ridiago|tal nlatrix is diagonally donfinant. One can modify a standar,l

cet,Lral differevce code by sitnply changing the c_mventioJ,al :ulmerical dissipation t.ernl int,_ the

one designed for the TVD scheme; i.e., tl,e third term of equation (2.5b).-The only difference

in eomputathm is that the current scheme requires a more elaborate dissipation term for the

explicit operator; no extra computation is required for the ioq_licit operator. For the Navicr-

Stokes applications, the convection terms are discretized by a TVD scheme, and the diffusion

terms are discrctized by central difference approxinmtions.

A crmservativc linearized ADI form of equation (2.5) used mainly h)r steady-state applications

as described in details in reference [2] can be written as

O"_' = (4", o

where

The nohstandard notation

is used and

1 [,'ij+t,k + _1_4 _,l,]"n_ ,,_= _

_-' +',L,.:']°

(!

(3.1a)

(zlb)

(3.1_,)

(3.1d)

(a.le)

('_.lf)

, . [ ]. .[1 x .D --- diag - m_xO(a*j.+_) (/):+t,k- D:,k) (3.1g)
34- :_ ,k

tl_,a4 ,D = diag [-m_x q)(a_+ t)] (Di,a+l - Dy,a). (3.1h)

llere Aj4t,_, H_,_._-t are (2.3) evaluated at (j + l,k) and (j,k + I). The expression diag(z')

denotes a diagonal matrix with diagonal elements z t. All of the inviscid calculations shown in

this paper use (3.1).
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For steady-state application, a simple algorithm utilizing the 'rv I) scheme for the Navier-

St.|_kes ecluatinns is I,o difference the hyperbolic terms the same way an before, and theu central

dilh:rencc the viscous terms, The fiual algorithm is the same as equation (3,1) except that

the spatial central differencing of the viscous term is added to the right haud sitie of equation

(3.1). The numerical solution shown below illustrates that this alg_rithm produces a fairly good
sc,lut icm for the case of a RA E2822 airfifil calculation. A treatment for ti|ne-accurate calculaticms

can be fimnd ia reference [2].

Nunmr|cal Results

<_enerally, fi)r inviscid calculatio||s, _,pwind TVD schemes prodtme sharper sl,ocks it,an sym-

metric TVi) schen,es [7[. For the current two methods (2.6) and (2.7), this seems to l,e not the

case. The two) methods appeared t,_ produce alnmst identical results for flow field conditions

ranging from subcritical to transonic and supersonic. Figures I and 2 show the comparison of

equation (2.6) with (2.7b) h_r two) inviscid steady-state airfifil calculations. The advantages of

symmetric TV1) schemes are that they require less computational effort-and provide a more

natural way of extending the scheme to two and three-dimensional problems.

Figures 3 amt .I show an inviscid comparison of the symmetric TVD scheme with the widely

dist, ribIJted computer c:c)(]e ARC21), Version 150 [9]. The freentream Mach numbers are hie,. : 172

and 1.8, and the angle of attack is tt : 7. The pressure coefficient dist.ributiotm (m_t sh_wn) are

identical between the two methods and yet the flow field appears very different. The symmetric
TVD scheme gives a very well-ordered flow structure and can still capture the shocks wit, it a

coarse grid, especially near the trailing edge of the airfoil. On the other hand, tt,e ARC2D

code did rather poorly. The same problen| was studied for the upwind TVD scheme and the

results and convergence rates were found to be ahnost identical to those fi_r the syzxixx|ctric TVD

scheme. A residual of 10-1_ can be reached at around 400-500 steps. ARC2D, lmwever, required

only 200-300 steps to converge-to the same residual. The ARC2D, version 150 computer code is

based on the Beam at,d Warming A1)l algorithm 110] but uses a mixture of second and fimrth-

order r,umerical dissipation tcrt,m. Figure 5 is an example of the viscous case h_r the RAE2822

airfoil using the upwind TVI) scheme. The thin layer Navier-Stokcs equations with the algebraic

turbulence, model of Baldwin and L(mmx [12] are used and the transition is fixed at 3% chord.

The overall agreement with experiments is quite good. The L2-norm residual of 10 -_ can bc

reached in around 900 steps.

Concluding Remarks

B_)th tim Symmetric and upwind TVD schemes are designed to capture shock waves accurately

while not exhibiting the spurious oscillation associated with the more. ch_ssical second-order

schemes, Numerical experiments with the TVI) schemes on problems ctmtaining no shock [11[
shrew that there is .no advantage of the TVI) scheme over the conveutiomd Lax-Wendroff type

scheme. Numerical experiments with various inviscid airfoil calculati(ms shrew that for weak to

moderate shocks the main advantage of the TVD schemes is that one can capture the shocks

in I-2 grid points 151. 'I'l,e flow field away from the shock looks very much like the classical

second-order central difi'erenee methods. But as one increases the shock strength, especially in

supersonic tlow, TVI) schemes provide superior flow field solutions even with a verb' coarse yet

non-clustering grid near shock waves. Numerical experiments also indicate that the symmetric
and upwind TVI) schemes are also applicable for Viscous calculations, The current study furl, her

shows that the symmetric TVI) scheme is just as accurate as the upwind TVD scheme while

requiring lens computati(mal efft_rt than the upwind TVI) scheme.
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Fig. 1 Comparison of a symmetric TVD (SYMTVD) scheme with an upwind TVD (UPTVD) scheme for the
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NACA0012 airfoil with M_ = 0.8, a = 1.25 using a 163 x 49 C grid.
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Fig.2 Comparison of a symmetric TVD (SYMTVD) scheme with an upwind TVD (UPTVD) scheme for the

RAE2822 airfoilwith Moo = 0.75,c== 3 using a 163 × 49 C grid.
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16 Abstract

A class of explicit and implicit total variation diminishing (TVD)

schemes for the compressible Eulerand Navier-Stokes equations has been

developed. They have the property of not generating spurious oscillations

across shocks and contact discontinuities. In general, shocks can be cap-

tured within i-2 grid points. For the inviscid case, one can divide these

schemes into upwind TVD schemes and symmetric (nonupwind)TVD schemes. The

upwind TVD scheme is based on the second-order TVD scheme developed by

Harten. The symmetrlc TVD scheme developed by the author is a generaliza-
tion of Roe's and Davis's TVD Lax-Wendroff scheme. The objective of this

paper is to investigate the performance of these schemes on some viscous and

inviscid airfoil steady-state calculations. A comparison of the symmetric

and upwind TVD schemes is included.
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