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MS 202A-1, NASA Ames Rescarch Coanter
MofTett Field, CA., 94035 USA

1. Smammary

A class of explicit and implicit total variation diminishing (‘TVD) schemes for the compressible
Buler and Navier-Stokes equations has been developed [1-4]. They have the property of not
generating spurious oscillations across shocks and contact discontinuities. In gencral, shocks
can be captured within 1-2 grid points. For the inviscid case, one can divide these schemes into
upwind T'VD schemes and synunetric (non-upwind) TVD schemes. The upwind TVD scheme is
based on the seccond-order ‘I'VD scheme developed by Harten [5]. The symmetric TVD scheme
developed by the author is a generalization of Roe [6] and Davis’s |7] TV1) Lax-Wendroff scheme.

The objective of this paper is to investigate the performance of these schetnes on some viscous -

and inviscid airfoil steady-state calculations. A comparison of the symmmetric and upwind TVD
schemes is included.

11. Description of Algorithun for Systein of Hyperbolic Conservation Laws

The notion of upwind and symmetric TVD schemes, including formulation and extension to
system cases (in uniform Cartesian grids), can be found in references [1- 3,5]. Here the extension
of the imnplicit second-order-accurate TVD scheme for hyperbolic systems of conservation laws
in curvilinear coordinates |4 is briefly described.

Consider a two-dimensional system of hyperbolic conservation laws
0Q  IF(Q)  9G(Q)
AANTREIS 2R Al L ] 2.1
ot Tae 3y (2.1)
Here Q, F(Q) and G(Q) are columinn vectors of m components.

A generalized coordinate transformation of the form § = £(z,y) and n = n(z,y) which
maintains the strong conservation law form of equation (2.1) is given by

0Q  9F(Q)  9G@) 2

bt et Ty =0 (2.2)
where Q = Q/J, Fe=(&F £,G)/J, G = (nF+ nyG)/J,and J = &y - 5,,7),,the Jacobian
transformation. Let A = dF/8Q and B = 3G /38Q; then the Jacobians Aand B of Fand G
can be written as:

A=(EA+EDB) (2.3a)

B=(n.A+n,B). (2.3b)
Let the eigenvalues of A be (ag,a%,...,af) and the cigenvalues of B be (an,a ap). Donot,
R¢ and R, as the matrices whose columns are eigenvectors of A and B, and denote R¢" and

R;' as the inverses of Jt¢ and Ry,

Let the grid spacing be denoted by A€ and Ay such that § = jAL and 5 = kAn. Let @, 5k

denote some symmietric average of @,k and @, 41,x (for example, @, 3 , = 0.5+ (Qj41,64 Q%)
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or the Roe's average 8] for gas dynamics). Let a" e Ryyys R;{'% denote the quantiti. af, R,
Ré-x related to A evaluated at Q4 4. Similarly, let a‘Hé, ng' R';':_} denote the quantities
al, Ry, R, ! related to B evaluated at @, 44 4.

Define

- Q.H 1.k ™ Q
a4y = R} 2k 2.4
ERE] 05'(‘1,}1,‘*.],.';) ( El)
as the difference of the characteristic variables in the Jocal {-direction, and define
ayyy = Ry Dakin = Dok (2.4b)

k*'§05* (JJ,k+l -+ JJ»")

as the difference of the characteristic variables in the local p-direction. The J, x is the Jacobian
transformation evaluated at (FJAE, kAn). The averaged Jacobians are used here in order to
preserve {reestream.

With the above notation, a one-parameter family of TVD schemes can be written as

(‘enl‘l_‘ /\60 [Fn‘:vél.k_ F‘;ﬂ ]"f Ano[ n;:x (vnk ‘]

o Q?,k - l - 0) [[”'l{ ik P‘in~ ] /\'7(1 - 0 [GJ k+l - Gj,k— é] ) (25(’1)
where 0 < 6 < 1, AS = At/AE, A" = At/An, and At is the time step. This onc-parameter

family of schemes contains implicit as well as explicit schemes. When 6 = 0, (2.5) is an explicit.
method; when @ # 0, it is an implicit scheme. For example, if §-= 1/2, the time differencing

is the trapezoidal formula and scheme (2.5) is second-order in time and space. If § = 1, the

time differencing is the backward Euler method and schemne (2.5) is first-order in time but
sccond-order in space.

The numerical flux function ﬁﬂ 3 for both the upwind and symmetric TVD schemes (2,3]

can be expressed as
F_,-;,,élk = ;—[FA’,./‘ + 1:‘;4 1,6 Ra+éq’3+é.]' (2.5b)
Similarly, we can define the numerical flux 6J.k+¢~
Upwind TVD Scheme |5
For a particular form of the upwind TVD scheme [2,5], the elements of the (I)H% denoted by

u
(¢,+x)-,1 =1,..,m are

(¢4 ;) -"/’(a',+.,l.)(9;' + gy41) ~ w(a§+% + 75y %)Glﬂg (2.6a)
with
g; = minmod(a‘._‘ ,a‘.+‘). (2.6b)

The minmod function of a list of arguments is equal to the smallest number in absolute value if
the list of arguments is of the sanie sign, or is equal to zero if any argument is of opposite sign.
The function ¢ is

|| 2] > ¢
¥(z) = {(z 24e)/2 o < (2.6¢)
Here ¢ is a small positive parameter (sce reference 5 for a foriula of ¢), and
1 (95 41~ § /ey al y #£0
! — J J J+ 3t .
’714.% - 2¢( ,+l) { 0§+: = 0’ (2()(1)
) :
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341 are elements of (2.4a).
e

where a

Symmetric TVD Scheme |3)

For two particular forms of the symmetric TVD scheme, the clements of the @, denoted

s
by (¢:.{é) are
§ ‘
(¢;.+ ':‘) = —‘/’(a’,4,£)(2al’+£‘ - g; - g;-‘;l) (2'78)
and

8 i { : ! ! !
= ——z/r(a” %) ["H; - mmmud(o:’_%,ajJ;%,OzH %)] . (2.70)

(9% )

A Conservative Linearized ADI Form For Steady-State Application

For two-dimensional steady-state applications, the implicit schemes (2.5) can be solved by -
some appropriate relaxation method other than alternating direction implicit (ADI) and will
be the direction of future research. The schemes considered in this paper are implemented in
a conservative noniterative ADI form [2]. For steady-state applications, the numerical solution
is independent of the time step. The implicit operator has a regular block tridiagonal structure
and the resulting block tridiagonal matrix is diagonally dominant, One can modify a standard
central diflerence code by simply changing the conventional numerical dissipation term into the
one designed for the TVD scheme; i.e., the third term of equation (2.5b). -The only dilference
in computation is that the current scheme requires a more elaborate dissipation term for the
explicit operator; no extra computation is required for the implicit operator. For the Navier-
Stokes applications, the convection terms are discretized by a TVD scheme, and the diffusion
terms are discretized by central difference approximations.

A conservative lincarized ADI form of equation (2.5) used ainly for steady-state applications
as described in details in reference {2} can be written as

§. £ .- Tn . mn _ Sin ~
12kt -2t | 00 = -ae (B, Frya] = A" [@rasy - Griy] (12)

3
n — .
(1 +am0m?, - ,\"eﬂh,‘_%] D=0 (3.1b)
Qrtt=Qr4 D (3.1c)
where
¢ -1 e 1" d
By = 5 Aty (3.1d)
n " n "
Yy = Q[B,'k“ +00,,, ] . (3.1¢)
The nonstandard notation
dr. n
¢ . _ n . § . .
ey D" =5 ATy + 05,y D ] (3.11)
is used and
0,y 0" = ding |- max (el )| (D306~ D5) an
ﬂ;’l“ ',‘D = diag [-— rrnlaxgl)(ai+ %)] (Djksr ~ Djx). (3.1h)

Here /i,“.k, B, k41 are (2.3) evaluated at (5 + 1,k) and (7,k + 1). The expression diag(z')
denotes a diagonal matrix with diagonal clements 2!, All of the inviscid calculations shown in
this paper use (3.1). I
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For steady-state application, a simple algorithm utilizing the TVD scheme for the Navier-
Stokes equations is to difference the hyperbolic terms the same way as before, and then central
difference the viscous terms. The final algorithm is the same as equation (3.1) except that
the spatial central differencing of the viscous term is added to the right hand side of equation
(3.1). The numerical solution shown below illustrates that this algorithm produces a fairly good
solution for the case of a RA1:2822 airfoil calculation. A treatment for time-accurate caleulations
can be found in reference [2).

Numerical Results

Generally, for inviscid calculations, upwind ‘I'VD scheres produce sharper shocks than sytn-
metric TVI) schemes 7). For the current two methods (2.6) and (2.7), this scems to be not the
case. The two methods appeared to produce almost identical results for flow field conditions
ranging from subceritical to transonic and supersonic, Figures 1 and 2 show the comparison of
equation (2.6) with (2.7b) for two inviscid steady-state airfoil calculations. The advantages of
symmetric TVD schemes are that they require less computational effort-and provide a more
natural way of extending the scheme to two and three-dimensional problems.

Figures 3 and 4 show an inviscid comparison of the symmetric TVD scheme with the widely
distributed computer code ARC2D, version 150 [9]. The freestream Mach numbers are Af,_ - 1.2
and 1.8, and the angle of attack is o = 7. The pressure cocflicient distributions (not shown) are
identical between the two methods and yet the flow field appears very different. The symmetric
TVD scheme gives a very well-ordered flow structure and can still capture the shocks with a
coarse grid, especially near the trailing edge of the airfoil. On the other hand, the ARC2D
code did rather poorly. The same problem was studied for the upwind TVD scheme and the
results and convergence rates were found to be almost identical to those for the synumetric 'FVD
scheme. A residual of 10712 can be reached at around 400-500 steps. ARC2D, however, required
only 200-300 steps to converge-to the same residual. The ARC2D, version 150 computer code is
based on the Beam and Warming ADI algorithmn [10] but uses a mixture of second and fourth-
order numerical dissipation terms. Figure 5 is an example of the viscous case for the RAE2822
airfoil using the upwind T'VD scheme. The thin layer Navier-Stokes equations with the algebraic
turbulence model of Baldwin and Lomax [12] are used and the transition is fixed at 3% chord.
The overall agreement with experiments is quite good. The Lj-norm residual of 10-7 can be
reached in around 900 steps.

Concluding Reiarks

Both the symmetric and upwind T'VD schemes are designed to capture shock waves accurately
while not exhibiting the spurious oscillation associated with the more classical second-order
schemes. Numerical experiments with the TVD schemnes on problems containing no shock [11]
show that there is no advantage of the TVI) scheme over the-conventional Lax-Wendroff type
scheme. Numerical experiments with various inviscid airfoil calculations show that for weak to
moderate shocks the main advantage of the TVD schemes is that one can capture the shocks
in 1-2 grid points [5]. The flow field away from the shock looks very much like the classical
second-order central difference methods. But as one increases the shock strength, especially in
supersonic flow, T'VD schemes provide superior flow field solutions even with a very coarse yet
non-clustering grid near shock waves. Numerical experiments also indicate that the symmetric
and upwind TVD schemes are also applicable for viscous calculations. The current study furiher
shows that the symmetric T'VD scheme is Just as accurate as the upwind T'VD scheme while
requiring less computational effort than the upwind T'VD scheme. '
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Fig. 2 Comparison of a symmetric TVD (SYMTVD) scheme with a
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Fig. 3 Comparison of a symmetric TVD (SYMTVD) scheme with ARC2D (version 150) for the Mach contours,

pressure contours and entropy contours of the NACA0012 airfoil with Mo, = 1.2, a = 7 using a 163 x 49
C grid as shown in figure 1.
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