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ABSTRACT

This paper describes a new interacting boundary-layer approach for computing the

viscous transonic flow over airfoils. The theory includes a complete treatment of

viscous-interaction effects induced by the wake and accounts for normal pressure

gradient effects across the boundary layer near trailing edges. The method is based

on systematic expansions of the full Reynolds equation of turbulent flow in the limit

of Reynolds numbers, Re _ _. The theory employs a local inner solution to describe

the strong interaction region at trailing edges. Procedures are developed for

incorporating the local trailing-edge solution into the numerical solution of the

coupled full-potential and integral boundary-layer equations. Although the theory is

strictly applicable to airfoils with cusped or nearly-cusped trailing edges and to

turbulent boundary layers that remain fully attached to the airfoil surface, the

method has been successfully applied to more general airfoils and to flows with small

separation zones. Comparisons of theoretical solutions with wind-tunnel data indi-

cate the present method can accurately predict the section characteristics of

airfoils including the absolute levels of drag. The results of the study clearly

demonstrate the importance of including both wake and normal pressure-gradient

effects in the theoretical formulation and of using a fully conservative difference

scheme in the solution of the inviscid equations. This study indicates that a simple

interacting boundary-layer approach can be an effective tool for the prediction of

viscous effects on airfoils.
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i. INTRODUCTION

The development of theoretical methods for the prediction of the section charac-

teristics of airfoils has always been an important problem area in aerodynamics. It

continues to receive much attention today, with interest focusing on the numerical

solution of various theoretical models for the viscous flow over airfoils. Recent

advances in numerical techniques for solving the full non-linear potential equation

have led to practical methods for computing the lift and drag of inviscid transonic

flows containing shock waves (Refs. i, 2 & 3). It is, however, well known that

viscous effects are important and must be taken into account in these flows if accu-

rate section characteristics are to be predicted. This is particularly true for

supercritical flow over rear-loaded airfoils for which the combination of shock waves

and aft camber combine to produce significantly thickened boundary layers over the

rear upper surface. This in turn leads to much larger viscous effects than are expe-

rienced on conventional airfoils in supercritical flow. For heavy rear loading, the

boundary layer can reduce the lift by a factor of two below inviscid levels, even at

Reynolds numbers as large as 107.

In most practicalproblems the Reynoldsnumber is large,the boundary layers are

mostly turbulent,and the direct effectsof viscosity and turbulenttransport are

confinedto thin shear layerson the airfoil surface and along the wake. In these

situationsthe viscousflow can be effectivelyanalyzedby interactingboundary-layer

theory (IBLT)in which the flow field is divided into a primaryinviscidregion,thin

shear layers,and localizedstrong-interactionregions. Previousapplicationsof the

theory to airfoilsused a highly simplifiedformulationbased on the neglect of pres-

sure variations across the shear layers and neglect of all interactioneffects

inducedby the wake. This formulationled to a descriptionin terms of the coupled

inviscid and Prandtl boundary-layer equations which are solved by standard iterative

schemes. These theoriesaccountfor the primaryviscous effectdue to the displace-

ment thicknesson the airfoil but do not properlytreat viscous effectsdue to the

wake and in shock-wave/boundary-layerand trailing-edgeinteractionregions.



The new formulation developed in the present study extends the conventional

boundary-layer approach to include a full treatment of the wake and normal pres-

sure-gradient effects at the trailing edge. Our method is based on systematic

expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds

number, Re _ -. The method of matched asymptotic expansions leads to a description

of the flow in terms of inviscid regions and thin shear layers near the airfoil and

wake. A local inner solution is developed to correct the standard Prandtl

boundary-layer formulation for strong-interaction effects at the trailing edge. This

work can be viewed as an extension and further development of Melnik and Chow's

turbulent-lnteraction theory previously described in Refs. 4 & 5. The method is

applicable for high Reynolds number flow over general airfoil shapes with cusped or

nearly cusped trailing edges and free-stream Mach numbers less than one. The method

is intended for flows that are turbulent over most of the airfoil and that are not

separated. However, provisions were made to allow for the presence of small sepa-

ration zones so that the resultingcode will function and provide at least a rough

description of the solution for these cases.

The formulation of the present paper employs a version of the mixed-flow relax-

ation technique developed by Jameson (Refs. 6 & 7) for solving the full-potential

equation in conservation form*. The method employs a conformal mapping of the

airfoil to a circle to obtain a useful computational grid and uses a direct solver to

accelerate convergence. The inviscid boundary conditions are modified to account for

viscous effects using a surface-source formulation of the matching conditions thus

avoiding the need to carry out repeated conformal mappings as required in displace-

ment-thickness approaches. An iterative scheme is employed to obtain a

self-consistent solution of the coupled boundary-layer and inviscid-flow equstions.

The viscous matching conditions employed in the theory account for displacement

effects on the airfoil as well as both wake-thickness and wake-curvature effects.

The local inner solution developed in Ref. 5 is used to correct the standard

boundary-layer solution for strong-interaction effects at the trailing edge. The

modified viscous method accounts for the significant pressure variation across the

*A nonconservative option is also provided in the computer code.
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boundary layer and removesthe nonuniformity of classical boundary-layer theorynear

trailingedges. The resultingtheoryprovidesa completelyrationaltreatmentof the

trailing-edgeregion for cuspedairfoilsat lift. It does not account for the addi-

tional nonuniformityarising on airfoilswith sharp but non-cuspedtrailing edges.

However, this nonuniformitycan be ignored and the resultingcomputercode can be

appliedto generalairfoilswith nonzero includedangles. Resultsgiven later in the

paper indicatethat the method gives good overall results for airfoilswith small

trailing-edgeangles (lessthan I0°).

The present theory also does not provide for a proper treatment of the

strong-interaction phenomenon near shock-wave/boundary-layer interaction zones. It

ignores the fact that the boundary-layer approximations fail in these regions and

determines the solution with a conventional interacting boundary-layer formulation.

Nevertheless, results obtained with this code reported in Refs. 5 & 8, and in the

present study indicate that the method yields remarkably accurate results for the

pressure distribution near shock waves.

The boundary-layer development on the airfoil and in the wake is determined from

simple integral methods. The laminar boundary layer starting from the stagnation

point is computed by an extention of Thwaites' method to compressible flow (Ref. 9).

A transition to turbulent flow is made at a given point on the airfoil on the basis

of either assigned position or by the use of established transition criteria. The

method also checks for leading-edge separation and whether it is of the long or short

bubble type and then assigns transition at the separation point. The development of

the turbulent boundary layer and wake downstream of transition is determined from the

lag-entrainment method of Green et al. (Ref. I0).m --

Calculations carried out with a preliminary version of code (Refs. 5 & 8)

employed a great deal of numerical smoothing of the surface-pressure distribution and

boundary-layer parameters near the shock wave and trailing edge. It has since been

determined (Ref. Ii) that the smoothings were responsible for the "spiked" pressure

distributions observed near the trailing edge in these early studies. We have also

found that numerical smoothings are not necessary for convergence and they have,

therefore, been eliminated from the method.
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There have been a number of other recent attempts to incorporate boundary-layer

corrections into full-potential flow codes. The work of Bauer, Garabedian and Korn

(BGK) (Ref. 12) is based on a non-conservative (N-C) treatment of the full potential

equation and a Nash-McDonald integral method for the turbulent boundary layer. It

does not solve for the laminar boundary layer near the leading edge and does not use

transition criteria to start the turbulent flow. It treats boundary-layer displace-

ment effects on the airfoil through a displacement-thickness formulation, requiring

repeated conformal mappings of the equivalent airfoil to a circle. Similar methods

have also been developed by Bavitz (Ref. 13) and Carlson (Ref. 14). These methods

take no account of wake-induced viscous effects nor strong-interaction effects near

shock waves or trailing edges. They all employ extensive numerical smoothings which

are apparently needed to assure convergence of the inviscid/boundary layer iteration.

These codes also contain adjustable parameters'which can be used to improve agreement

with experiment. The non-conservative formulation employed in these methods leads to

the generation of spurious mass at the shock wave which causes an extra "sink" drag.

A post-solution correction for the spurious sink drag was added to a later version of

the BGK code (Ref. 15) resulting in improved drag predictions.

A similarmethod was also developedby Lock and Collyer (Refs.16, 17 & 18) of

the Royal AircraftEstablishment(RAE). They employeda more completeboundary-layer

formulation,similar in many respects to the present method. A surface-source

formulationwas used to represent displacementeffects on the airfoil with both

wake-thickness and wake-curvature terms included in the matching conditions.

However,strong interactioneffectsat the trailingedge were not taken into account.

Numericaldifficultiesin implementingthe wake-_urvatureconditionwere reportedand

extensivenumericalsmoothingof the solutionnear the trailingedge was requiredto

obtain convergedsolutions. It is likelythat the neglectof strong interactionat

the trailingedgewas at leastpartiallyresponsiblefor these problems.

There has been some controversyregardingthe proper choice of differencing,

fully-conservative(F-C) or non-conservative,to be used in these calculations. As

mentionedpreviously,non-conservativedifferencingintroduceslarge errors into the

drag predictionthat require correction. There are also indications(Refs.5, 8 &

ii) that the pressure rise across the shock wave is underestimatedwith a non-

conservativeformulation.Lock (Ref.19) also producedsome resultswith a version



of the RAE viscous method employing a quasi-conservation formulation showing shock

waves that are too far aft. To improve the performance of their method, a partially

conservative (P-C) scheme was also developed by the RAE (Ref. 18) consisting of a

linear combination of non-conservative and quasi-conservative differencing. The

method contained an arbitrary parameter, _, that defines the weighting of the

non-conservative and quasi-conservative formulae, and which was adjusted to obtain

good agreement in shock position for a few selected cases. The present study indi-

cates that the fully-conservative method clearly gives the best predictions of shock

position, shock strength, and drag provided that the complete boundary-layer formu-

lation of the present method is employed in the computations.

It is difficult to form a firm opinion regarding the adequacy of interacting

boundary-layer theory for the airfoil problem on the basis of results obtained with

either the BGK or RAE methods. The neglect of potentially important viscous effects

in the theoretical formulation and the use of extensive numerical smoothing and

adjustable parameters in the computer code definitely obscure the meaning of the

results obtained to date. The shortage of reliable experimental data with

boundary-layer information and the uncertainties associated with wind-tunnel wall

effects have also impeded progress on the evaluation of the theoretical methods.

Accurate Navier-Stokes (NS) solutions obtained on fine grids could fill this void

but, unfortunately, suitable solutions have not yet appeared in the literature.

The present work is a step in the direction of eliminating some of the above

problems. For airfoils with cusped trailing edges, the present method includes all

of the leading-order viscous terms consistent with a rational asymptotic analysis,

aside from the neglect of normal pressure gradient effects at shock waves. The

absence of these latter effects in the theoretical model does not appear to be of

great consequence if the shock wave is not "too close" to the trailing edge. The

present method also avoids all numerical smoothings, contains no adjustable para-

meters (aside from those appearing in the turbulence model and transition criteria),

and yields accurate solutions to the interacting boundary-layer equations

unencumbered by extraneous numerical issues. The organization of the remainder of

this paper is outlined below.



In Section2 we describethe viscous-interactionformulationused in the present

work includinga brief descriptionof the classicalboundary-layerformulationand an

outline of the Melnik-Chowstrong-interactiontrailing-edgetheory. In Section3 we

describethe boundaryvalue problemgoverningthe outer inviscidflow and outlinethe

numericalproceduresused to solve the inviscidequations. In Section4 we discuss

the methodsused to determinethe solution in the laminar and turbulent boundary

layers and to evaluate the matching conditions. In Section5 resultsare given for

various airfoilswhich illustratethe importanceof the individualviscous effects

that appear in the theoreticalmodel. These includewake thickness,wake curvature,

and strong interactionsat the trailingedge. Comparisonswith experimentaldata are

also provided includingsome date for several importantboundary-layerquantities.

In Section 6 we discuss the significanceof this work, summarize the principal

conclusionsof the study, and identify related problem areas requiring further

research. An epilogue is presented in sectionswhich summarizessome improvements

that have been made to the method since a preliminaryversion of this report was

completedin 1980.



2. VISCOUS FLOW THEORY

In this sectionwe describethe viscousflow formulationemployedin the present

work. We will reviewconventionalboundary-layertheory,describethe developmentof

the local trailing-edgesolution,and will indicatehow the conventionalmatching

conditionscan be correctedfor strong interactionsat the trailingedge. We first

brieflyreviewprevioustheoreticalstudiesof viscousinteractionon airfoils.

2.1 BACKGROUND

Traditionally,two classesof methodshave been used for viscous interactionson

airfoilsat high Reynoldsnumbers. One is based on the directnumericalsolutionof

the full Reynolds equationsof turbulentflow (Ref. 20) while the second is based on

InteractingBoundary Layer Theory (IBLT) (e.g., see Ref. 21). A combinationof

these methods leadingto a directnumericalsolutionof a "thin-layer"or parabolized

approximationto the full Reynolds equationshave also recentlyappeared (Refs.22,

23 & 24). Although methods based on the numerical solution of the full or

approximateReynolds equationsshould be expectedto yield the best solutions,they

have obtained only qualitativeresults to date. The methods are computationally

expensiveand, consequently,have suffered from poor resolutiondue to the use of

coarse meshes - particularlyin the streamwisedirection. At present, it seems that

more accurate solutions can be obtained with far less computingtime with a

boundary-layertype approach that takes advantage of the availabilityof fast

numericalmethods for solvingthe full-potentialequation. These methodspermit the

use of relatively fine grids leading to solutionswith good spatial resolution.

Becauseof their basic simplicityand high speed,boundary-layermethodshave gained

widespreadfavor in the engineeringcommunity.

It should be noted,however,that althoughboundary-layer methods have been used

for many years and have become one of the standardsmethods for computingviscous

flows over airfoils, a completely satisfactory interacting boundary-layer

formulationfor this problemhas not yet been achieved. The standardboundary-layer

approach leads to a descriptionof the flow in terms of coupled inviscid and

boundary-layerequationswhich are solvedby iterationto obtainself-consistent



solutions. The theory is based on an asymptotic expansion of the full viscous

equations in the limit of Reynolds number, Re _ ®. The asymptotic theory leads to a

formal derivation of the matching conditions coupling the inviscid and viscous flows.

In this way, several terms appear in the matching conditions, all of which should be

included in a consistent, lowest-order description. Unfortunately, in most previous

works potentially important terms associated with the wake have been dropped from the

matching conditions. In addition, there are local failures of the boundary-layer

approximations in strong-interaction regions near shock waves and trailing edges.

Thus, a complete interacting boundary-layer formulation should, in principle,

consider all of the following factors:

o displacement-thickness effects on the airfoil

o displacement-thickness effects in the wake

o wake-curvature effects

o strong-interaction effects at the trailing edge

o strong-interaction effects at shock waves.

The relativemagnitudeof these effects can be expressed in terms of a basic

small parameter, _, related to the Reynolds number, Re, such that E vanishes as

Re _ _. For turbulentflow it is convenient to identifyc with a typical value of

the frictionvelocity on the airfoil surface. For the choice E = 0(i/£nRe),the

boundary-layerthickness,6, is 0(a) and the displacementand momentum thicknesses,

6* and 8, are both O(g2). The boundary-layerformulationcan be developedin a

formalasymptoticexpansionin the limit _ _ 0. A formal asymptotictheory has been

developedfor non-interactingturbulentboundary levelsby Mellor (Ref.25), Bush and

Fendell (Ref. 26), Yajnik (Ref. 27), and Afzal (Ref. 28) leadingto a boundarylayer

witha law-of-the-wake/law-of-the-wall,two-layerstructure.

The displacement effect arises from a matching of the inviscid and

boundary-layersolutions. It produces an 0(_2) perturbationto the outer inviscid

solution which can be incorporatedinto the solution through the concept of an

equivalentdisplacementbody or equivalentsource flow at the surface. In the first

approach,the equivalentbody is formed by adding the boundary-layerdisplacement

thicknessto the airfoil and trailing streamline,while in the source formulation,

sourcesand sinks are placed on the airfoiland trailingstreamline. The equivalence

of these formulations(and others)was demonstratedby Lighthill (Ref. 29). The

worksof Stuper (Ref.30) (1933),Pinkerton(Ref.31) (1936),and Nitzberg (Ref.32)



(1946)-in a rough-way, and Preston (Refs. 33 & 34) (1945, 1949) more accurately, were

the first to apply the Prandtl boundary-layer theory to compute displacement effects

on airfoils. Preston used the surface-source formulation to account for displacement

effects on both the airfoil and wake by distributing sources and sinks along the

airfoil and wake. These methods have come into common usage although there has been

a tendency in recent work to ignore, without justification, the displacement effects

induced by the wake.

The wake-curvature effect arises from the turning of low momentum fluid in the

wake along curved streamlines. The turning of the flow induces a pressure drop

across the curved wake that leads to additional terms in the matching conditions.

These terms enter the formulation of the outer inviscid problem through a boundary

condition specifying a discontinuity in pressure along the trailing streamline. The

magnitude of the effect is 0(g2) and it produces effects on the outer inviscid flow

that are similar to a jet flap with a negative jet-momentum coefficient of strength

0(g2). From this is follows that wake curvature leads to a reduction in left that is

the same order as that produced by the displacement thickness. The importance of the

wake-curvature effect and its relationship to the jet flap was first noted by Preston

(Ref. 35) in 1954 (see also Spence and Beasely - Ref. 36). However, serious attempts

to include wake-curvature effects in interacting boundary-layer calculations were not

undertaken again until the mid 1970's in a series of papers by Firmin, Hall, Lock,

and Coyller of the RAE (Refs. 16-19 and 37-39) and by the present authors in Refs. 4,

5 and 8. Although there were differences in the individual results, all displayed

significant effects of wake-curvature on section characteristics.

Interacting boundary-layer theory, as just described, is not uniformly valid at

trailing edges of airfoils. Non-uniformities in the theory are caused by

singularities in the inviscid solution for the pressure gradient and streamline

curvature at the trailing edge and by the change in the no-slip condition across the

trailing edge. The singularities of the inviscid solution lead to large local

streamline curvatures and to a breakdown of the boundary-layer approximations near

trailing edges. Because of this non-uniformity, the pressure can no longer be

regarded as constant across the boundary layer near trailing edges. This is

especially important since pressure variations across the boundary layer affect the

Kutta condition and, therefore, lead to relatively large global effects. Two types

of singularities arise in the outer inviscid solution. One is related to lift and



arises at the trailing edge of any lifting airfoil carrying a non-zero load at the

trailing edge. The second, due to the stagnation point singularity, appears at the

trailing edge of an airfoil with a non-zero included angle.

An analysis of the strong interaction problem associated with lift was initiated

by the first two authors in Ref. 4 and completed in Ref. 5. In these papers it was

shown that the inviscid flow leads to square root singularities in the pressure

gradient and wake curvature at the trailing edge and that, as a result, normal

pressure gradients were important in the boundary layer near the trailing edge, and

must be retained in a consistent description of the flow in these regions. It was

also concluded that a self-consistent boundary-layer formulation and the related

concept of an equivalent displacement body was not valid near trailing edges in

turbulent flow.

A rational asymptotic theory was developed to describe the local flow near

trailing edges of cusped airfoils. The analysis was carried out for compressible

flow under the assumption that the flow as subsonic in the immediatevicinity of the

trailing edge. It was also assumed that the boundary layer was an attached,

fully-developed turbulent flow near the trailing edge and that the velocity profiles

could be adequately represented by Cole's law-of-the-wake/law-of-the-wall form.

Under these assumptions, it was shown that, in the limit g _ 0, the boundary layer

developed a three-layer structure near the trailing edge that is a generalization of

the two-layer structure arising in non-interacting boundary layers. The three-layer

structure extended over a streamwise extent of the order of a boundary-layer

thickness (i.e., 0(c)). The pressure distribution was completely determined from the

solution in the outermost region, encompassing most of the boundary layer. To

leading order, the flow in the outer region is governed by linearized inviscid,

rotational flow equations. The dominant vorticity in the trailing-edge region is

"frozen" along the streamlines of the inviscid flow and is therefore completely

determined by the upstream velocity profiles.

The theoretical model accounts for both the pressure variation across the

boundary layer and for the vorticity in the boundary layer. The two inner layers

were asymptotically thin compared to the outer, inviscid shear layer and, hence, did

not effect the latter to lowest order. Thus, the solution of the outer problem for

the pressure distribution was independent of the Reynolds stresses and closure
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assumptions except through their influence on the shape of the velocity profile just

upstream of the trailing-edge region. Analytic solutions were given for the local

trailing-edge problem in Ref. 5. These solutions showed that the pressure

perturbations generated in the trailing edge region are 0(_3/2)" which is an order of

magnitude larger than the 0(_ 2) disturbances generated by conventional displacement

and wake-curvature effects.

Similar interaction effects are also expected from the non-uniformity associated

with the stagnation point singularity arising on airfoils with non-zero trailing-edge

angles. Theoretical evidence indicates that the turbulent interaction changes the

pressure by 0(i) from the stagnation pressure arising in the inviscid solution.

Thus, this effect is clearly larger than the others considered so far and can be

expected to have important effects on the drag of airfoils with wedge-shaped trailing

edges. Unfortunately, definitive studies of this important strong-interaction

problem have not yet been carried out.

Aside from the non-uniformities stemming from singularities in the inviscid

pressure distribution, an additional non-uniformity arises from the discontinuous

change of the no-slip boundary condition across the trailing edge. The jump in

boundary condition at the trailing edge causes an additional breakdown of the

interacting boundary-layer solution. A similar effect arises in laminar flow with

the transition of the laminar boundary layer to a wake across the trailing edge. In

this case, local asymptotic solutions were developed for the non-lifting flat plate

by Stewartson (Ref. 40), Jobe and Burggraf (Ref. 41), Veldman and van de Vooren (Ref.

42), and Chow and Melnik (Ref. 44) and for the lifting case by Brown and Stewartson

(Ref. 43) and Chow and Melnik (Ref. 44). These solutions were based on the

triple-deck theories of laminar interacting flows. Unfortunately, because of the

difference in structure of laminar and turbulent flows, the laminar triple-deck

theories do not apply to the turbulent problem. In turbulent flow the transition of

the boundary layer to a wake is largely controlled by the law-of-the-wall region

which has no counterpart in laminar flow. Since the law-of-the-wall region is

exponentially thin compared to the boundary-layer thickness, the transition process

will have no effect on the leading-order outer solution for the pressure distribution

in turbulent flow,while in laminarflow it has a dominant effect. In general,the

turbulent boundary layer/wake transition process in the wall layer will have only a

higher-ordereffecton the outer solutionand need not be consideredin the solution
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for the pressure distribution and section characteristics. However, for a symmetric,

cusped airfoil at zero incidence the pressure-induced, strong interaction vanishes

and the local flow is dominated by the turbulent boundary/layer/wake transition which

then becomes the most important interaction effect near the trailing edge. Although

there have been some exploratory studies of this latter problem by Robinson (Ref. 45)

in 1967 and more recently by Alber (Ref. 46), these works were not definitive and

they did not establish the correct asymptotic flow structure at large Reynolds

numbers. Fortunately, the lack of knowledge of this aspect of the solution will only

affect higher-order terms and need not be taken into account in order to determine

the leading-order solution for the pressure, lift and drag.

For transonic flow an additional strong interaction arises at points where shock

waves impinge on the boundary layer. In turbulent flow, discontinuities in pressure

across the shock wave induce corresponding discontinuities in displacement thickness

(Refs. 47-48), leading to a breakdown of theories based on an interacting

boundary-layer description. The shock wave penetrates into the boundary layer and

generates large pressure variations across the layer that invalidate the standard

boundary layer approximations.

Rational asymptotic theories, recently developed (Refs. 47-53) to describe

shock-wave/turbulent boundary-layer interactions, are based on a large Reynolds

number (c _ 0) asymptotic expansion of the full Reynolds equations. The boundary

layer develops a multi-layer structure, similar to the turbulent trailing-edge

interaction discussed previously. The pressure disturbances generated by the

interaction were shown to be the order of _ x (shock strength) and hence larger than

the classical displacement effect for shock strengths greater than 0(_). The

analyses in Refs. 47-53 considered weak shock waves of various strengths. It was

also demonstrated in these works that the shock strength required to separate a

turbulent boundary layer is 0(i). These works considered only local behavior and did

not address the question of integrating these solutions into a complete airfoil

problem. Fortunately, this is not a major concern here since the normal pressure

gradient effect in shock-wave/boundary-layer interactions seem to have only a highly

localized effect on the pressure distribution. Alternative formulations of

shock-wave/boundary-layer interactions in the turbulent flow have also been proposed

recently by Inger and his co-workers (Refs. 54 & 55). This work was based on

application of Lighthill's laminar interaction theory (Ref. 56) to the turbulent

12



problem. Inger's theory represents an ad-hoc approach to the problem that is not

related to a rational asymptotic description of the flow.

2.2 INTERACTING BOUNDARY-LAYER THEORY

We consider the problem of a uniform viscous flow over an airfoil of chord, c,

free-stream speed, U , and density, p , at an angle of attack, =, and Mach number,

M . The main assumptions of the work are that the Reynolds number Re is large in an

asymptotic sense and the free-stream Math number is less than one. Under these

conditions the problem can be analyzed by rational asymptotic methods based on

expansions of the full Reynolds equations in the limit Re _ _ or _ _ 0. In this

limit, a boundary-layer type flow structure develops as sketched in Fig. i. The flow

outside the strong-interaction region can be described by a standard

inviscid/boundary-layer formulation with conventional matching conditions coupling

the solution. In the standard approach, the solution in the outer region is

represented by a sum-type asymptotic expansion. The solution in the outer region is

inviscid to all orders, apart from exponentially small terms, with the leading term

given by a solution to the full non-linear inviscid equations. Second and

higher-order terms of the outer solution are governed by linearized inviscid flow

equations.

This representation is somewhat inconvenient for supercritical flows because of

the need to deal with perturbations of discontinuous solutions. This problem can be

avoided by use of a slightly different representation for the outer solution. In

EXTERNAL INVISClD FLOW

jBOUNDARY LAYER

Figure1 Flow Field Regionsat High ReynoldsNumbers
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this alternative formulation, the outer inviscid flow is governed to all orders, by

the full non-linear inviscid-flow equations with boundary conditions on the airfoil

and in the wake determined from the viscous matching conditions. Higher-order

viscous effects on the outer inviscid flow appear only through the matching

conditions. Thus, in this formulation the full non-linear inviscid equations must be

solved repetitively, employing successively improved matching conditions.

The form of the solution in the inner boundary-layer region depends on whether

the boundary layer is a laminar or turbulent. In the laminar case, the solution has

the form given by higher-order boundary-layer theory with the leading term governed

by the usual non-linear Prandtl boundary-layer equations. For turbulent boundary

layers, the form of the solution changes because of the two-layer structure of

turbulent boundary layers at high Reynolds numbers. The appropriate asymptotic

theory has been worked out for fully-developed turbulent boundary layers in Refs.

25-28. The leading-order solution is governed by boundary-layer equations with

linearized convective terms. However , the usual non-linear boundary-layer equations

do provide a composite equation that is valid to second-order in both the wake and

wall regions of the turbulent boundary layer. In the present work we follow the

composite equation approach and use the standard non-linear boundary-layer equations

to describe the flow in both the laminar and turbulent boundary-layer regions.

The outer inviscid and inner boundary-layer solutions can be combined in the

usual fashion to form a single composite expression that is uniformly valid in both

regions. We employ curvilinear coordinates (s,n) and corresponding velocity

components (_,_) along and normal to the streamline defining the airfoil and wake.

In this study we employ nondimensionalized quantities with the velocities and density

normalized by free stream velocity and density (U , p ), the pressure and shear

stresses by twice the dynamic pressure, (p. U_) and all lengths are scaled by the

chord (c) of the airfoil. Composite expressions are denoted by the upper case script

letters. The composite solution for the velocity components and the pressure are

then represented in the form of a sum of the inviscid solution (capital letters) plus

boundary layer solution (lower-case letters) minus the common part (subscript cp) as

follows:

Rl=U(s, n; vo;IV]I;r)+u(s, 5)-ucp(s ,N) (la)
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"0 =V(s, n; vo; IlV]]; F)+v(s, 5)-vep(s, _) (lb)

6'=P(s, n; va;[[V]];F) +p(s, _)- pep(s,N) (Ic)

where n is a stretched inner variable defined by

n = n/€ (2)

Similar expression are also assumed for the density, _, and temperature, T. The

_V_ and r appearing in the inviscid solution are functions enteringquantities, V O ,

the boundary conditions that are determined by matching the inviscid and

boundary-layer solutions. The function vo(s ) specifies the source velocity on the

surface of the airfoil, _V(s)_ specifies the jump in source velocity across the

wake and F(s) is the circulation distribution along the wake. For an inviscid flow

all three functions are zero as are the contributions from the boundary-layer and

common-part term in the above representation. The solfltion is then given by the

first term with boundary condition V(s,o) = 0.

If u(s,_) and p(s,_) are the boundary-layer solutions for the streamwise

velocity and density profiles, the boundary-layer solution for the normal component

of velocity and pressure distribution can be written in

dr0.V(S,5)=V(S,0)--_ n+ -- (PeUe-PU)dn+0(€3) (3a)
Pe ds PedS

fo I1
p(s,n)=p(s,0)-K(s)pe n+K(s) (PeU_-pu2)dn+0 (€3) (3b)

where K(s) is curvature of the airfoil or the wake streamline and where Pe and Ue are

the surface values of the inviscid solution defined by

Pe(S)= ItmR(s,n) (4a)
n- 0

Ue(s)=liraU(s,n) (4b)
n- 0

We introduce here the definitions of the surface values of the normal velocity and

pressure from the outer inviscid solution as:

V e (s) =limV (s, n) (4c)
n-O
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P,(s)= lirnP(s,n) (4d)
n-0

Note that the above quantities are generally different for n _ 0+ , the upper surface

and n _ 0 , the lower surface. When necessary to distinguish between the surfaces we

will include a + or - as a superscript.

Comparisonsof the boundary-layersolution for n _ - to the inviscidsolution

for n _ 0 leadsto the followingidentificationof the commonparts:

u_p=Ue(S) +O(E2) (Sa)

Vcp=V(S,O)--_ n+€ 2vo(s)+O (€3) (5b)
Peds

Pe_=P(S,O)--_(S)PeU2en+£2Po(s)+O(€3) (5c)

where

d PeUf.6"
vo(s) =_- ' ' (6a)

pods

po(s) = PeU2e K(s) (6* + O) (6b)

and where 6" and 8 are the usual boundary-layer displacement and momentum

thicknesses. Note that 6" is defined such that it is positive on both upper and

lower surfaces. Matching conditions on the airfoil surface can.be Oerived by

substituting the above expressions for the common parts into Eq. (i). The

requirement that the normal component of velocity,W, vanish on the airfoil surface

then leads to the usual matching condition on V(s,n) for n _ O:

Ve(S)= c2va(s)+O(€ 3) (7)

Similarly, substitution of Eq. (5c) into Eq. (ic) leads to the following expression

for the surface pressure distribution

e,(s)_ • (s,o)=Po(s)-c2p_(s)+O(€3) (8)

where P (s) is the surface value of pressure as determined from the inviscid solutione

and the second term in Eq. (8) represents a correction for the pressure variation

across the boundary layer.
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The corresponding expressions in the wake are somewhat more complicated because

of discontinuities of the common-part terms across the wake. If we impose the

condition that the full solution for_, %3,_, etc. is continuous across the wake and

take proper care for the discontinuities of the common-part terms we can arrive at

the following jump conditions for the outer inviscid solution:

_V_ --V(s, 0+)- V(S, 0-)=E2Vw (s) +O(€ 3) (9a)

_P]]--P (S, 0.)--P(s, 0-)=-_2p w UwowK(S) +O(E 3) (9b)

Moreover, since

_UB -- 1 [p_ +O(_p]2)
PwUw

then

flU]]=U(s, 0.)- U(S,0-)=E2CwK(S)+O(_3) (9c)

where

_2vw(s)=v$(s)-v_(s)= dpwUw6_
Pwds (9d)

_2Cw(S)= --Uw(6w_+ 0w) (9e)

and where, Pw and U are the surface values of the outer inviscidsolutionon thew

wake streamline,and 6 and 8 are the respectivesums of the upper and lowerw w

displacementand momentum thicknesses. The compositesolution for the pressure at

the wake axis is continuousand is given by

e,(s)m • (s,o)= P_(s)- p_(s)= P_(s)- p_(s) (I0)

where the plus and minus superscriptsrefer to the upper and lower sides of the wake

axis. (In derivingthe above expressionswe have used the fact that the jumps in Pe

and U acrossthe wake axis are 0(g2)). Equations(9a) and (9b)are jump conditionse

to be imposed along the wake axis of the outer inviscidflow. It should be noted

that Eqs. (9) imply that the streamlineslopes of the outer inviscid flow are also

discontinuousacross the wake axis to 0(g2) and that this in turn impliesthat the

wake axis cannotbe chosen as a streamlineof the outer inviscid solution (to this

order). A convenientchoice for the wake axis is the compositesolution for the

streamlinepassingthroughthe trailingedge. An equivalentanalysisof the matching

conditionsin the wake is includedin the more generalwork of Viviand (Ref. 57). In

the presentstudy we use an irrotationalapproximationto justifythe introductionof

a velocitypotentialin the outer inviscidproblem. The above matching conditionon

the streamwisevelocity component impliesthe velocitypotential, @, must also be

discontinuousacrossthewake. The appropriatejumpconditionon @ can be determined
17



from Eq. (9c), rewritten in the form

dF

_s =€20w K(S) (lla)

where the circulation strength, r, is equal to the jump in potential across the axis.

That is,

F- _(s,0.)-_(s, 0-) (lib)

If _ is defined as the angle between the wake streamline (defined by the composite

solution) and the airfoil chord then,

K = d-_ (12)

The expression for ? can then be written in differential form,

dF =_2cwdfl (13)

relating changes in circulation to the turning angle of the wake. The interested

reader is referred to Refs. 5, 8, 16, 17, and 39 for further discussion of this

condition.

The complete set of matching conditions derived above are summarized in Fig. 2.

Note that within this formulation the wake thickness is prescribed but the location

is not. The location of the wake is determined as part of the outer inviscid

solution and is free to assume an equilibrium position consistent with the prescribed

pressure jump across the wake.

dPe Ue _ *=

I vn OedS dPe Ue _w*

/ I ," . , ,-_ +/ n Pe ds

,/ t, ,, / t " _ _+ _fl_
I

Kvt] = -U e(6w*+8 w) K
d_ /

= "_s (CURVATURE)

Figure 2 Viscous Matching Conditions

For cusped airfoils at lift, both the pressure gradient and streamline curvature

generally become unbounded at the trailing edge with the following behavior:
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lim _ --_Rt"U_"c_ Is--ste1-t/2 (14a)
8__e ds 2B

lim K = _ Is [-I/2 (14b)
2 -- ste

8" 8;e

where the subscripts (re) denote values at the trailing edge, Rte and Ute are the

density and speed at the trailing edge, c is a constant that depends on the overall

inviscid solution B is the Prandtl-Glauert factor /i M2 and the upper

I

and lower
' te'w

signs in Eq. (14a) refer to the two sides of the airfoil. From the momentum integral

equation and the definitionof the surface-sourcevelocity vO in Eq. (6a), we can

showthat Eq. (14a)impliesa correspondingsingularityin v , as follows

lim v = Utica6: (h,.+lh
_'_e 2 k hte ) I S -- Ste I -1/2 (14c)

where 6± is the boundary-layer displacement thickness of either the upper or lower

surface boundary layers at the trailing edge. In deriving this result we assumed the

total temperature is constant across the boundary layer and have used the large

Reynolds number limit for the shape factor, h. That is,

h=hie=i+(T- i)M_e forRe-

Similarly,fromEqs. (9b),(9e)and (14b)we obtain:

lim _P_ = p,,U_,c_(6$+ew) is_Stei-I/2 (14d)

Detailed analysis indicatesthat these singularitieslead to a breakdown of

conventionalboundary-layertheory at trailingedges and to a growth in the magnitude

of viscous effects inducedby both the displacementthickness and wake curvature

terms from 0(E2) to 0(_3/2) near trailing edges. A separate "inner"solution is

requiredto resolvethe nonuniformityat the trailingedge as described in the next

subsection.

2.3 TRAILING-EDGEREGION

In this sectionwe presentthe resultsof an analysisof the strong-interaction

region that develops in tuzbulent flows near trailing edges. An analysis for the

incompressiblecase was first presentedin Ref. 4 and later extendedto compressible

flow in Ref. 5. The analysis is based on a formal applicationof the method of

matchedasymptoticexpansions(Ref.58) to the fullReynoldsequationsof turbulent
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flow for Reynolds number Re _ ®. The theory was developedunder the following

assumptions:

o the trailing edge of the airfoil is cusped

o the flow is locally subsonic in the trailing-edge region

• total temperature is constant in the trailing-edge region

• the boundary layer upstream of the trailing-edge region is a fully-developed

turbulentflow

o the boundary layer approaching the trailing-edge region is not separated

In the present context, the assumptionof a fully-developedturbulentflow is taken

to mean that the velocity profile in the outer part of the boundary layer can be

adequately representedby a Coles' law-of-the-wall/law-of-the-wake,with a small

velocity defect. That is, we assume the velocity profile in the outer part of the

boundarylayer,upstreamof the trailingedgecan be representedin the form

U=Ue(s)[1+E f(s,_)+''"] (15a)
with

El= kUe(S) In \ 6--_/J (15b)

and

u*= _./Pe (15c)

u W
where _w' , and 6 are the local skin friction, friction velocity and boundary-layer

thickness, k is the von Karman constant, _ is Coles' wake parameter, and W is the

wake function which, in the present work, is assumed to be expressible as a simple

third-order polynomial. It is also assumed that the profile function, f(s, _)

approaches a definite limit, fte(n) at the trailing edge, s = Ste. The above

assumptions permit a relatively complete solution to be obtained for the local flow

near the trailing edge. In this region the solution develops the multi-layer

structure shown schematically in Fig. 3. The upstream flow is divided into

conventional inviscid and boundary layer regions over a streamwise length of 0(I).

The turbulent boundary layer has a two-layer structure consisting of an outer, wake

region and an inner, equilibrium wall layer. The velocity profile in the outer

region is described by Eq. (15).

The velocity profile in the inner layer is expressed in a law-of-the-wall form,

which for incompressible flow is written as
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Figure 3 Flow Field Structure Near the Trailing Edge

where _ is the ratio of wall-layer to boundary-layer thickness and is given by

= (E2Re )'1 (17)

It follows that the wall layer is exponentially thin compared to the boundary layer

thickness.

The formal justification of the two-layer structure in terms of an asymptotic

limit solution for Re _ _ was carried out by Mellow (Ref. 25), Bush and Fendall (Ref.

26), and Yajnik (Ref. 27) for incompressible flow. These studies showed that the

velocity profile functions satisfied simplified boundary layer equations with

linearized convective-terms. The usual non-linear boundary layer equations can be

viewed as composite equations valid in both inner and outer regions and containing

additional higher order terms.

An extension to compressible flow was attempted by Afzal (Ref. 28) but the

analysis was in error, with the result that his assumed inner and outer expansions

did not match. The reasons for the error and the modifications necessary to obtain a

valid compressible solution are discussed in Ref. 47. It was shown there that the

small defect form given in Eq. (15) carries over to the compressible case, but that

the inner expansion required modification to incorporate a preliminary van Driest

compressibility transformation. One of the more firm rational results in turbulence

theory concerns the logarithmic behavior of the velocity profiles in the overlap
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region between the inner and outer regions, i.e., n/E << 1 and n/E_ >> 1 leading to

the form of the velocity profile given in Eq. (15).

The present work can be viewed as an extension of the asymptotic theory of

non-interacting boundary layers to the strong interaction problem. The boundary

layer in the interaction region develops a compact, multi-layer structure as

sketched in Fig. 3. Three layers are required:

i. An outer layer that is inviscid and rotational. The vorticity arises

from the nonuniform flow in the upstream boundary layer. In a fully-developed

turbulent flow the total vorticity is small and the solution in this region

can be described as a perturbation of the external potential flow induced by

the small vorticity. To lowest order, it can be assumed that the vorticity

is convected along the nearly parallel streamlines of the potential flow. In

the terminology of secondary-flow analysis, the flow in this region is class-

ified as a small shear, small-disturbance flow (Ref. 59).

2. An inner layer next to the wall. In this region the flow is de-

scribed as equilibrium wall layer that is a continuation of the wall layer

from the upstream flow. The total stress, laminar plus Reynolds stress, is

constant across the layer. The thickness of the layer is exponentially small

compared to the outer layer.

3. A blending layer situated between the outer and wall layers. It

is necessary in order to match the Reynolds stresses in the outer and wall

layers. The layer is thinner than the overall boundary layer but thicker

than the wall layer.

Turbulent closure approximations arerequired to lowest order, only in

the two inner layers. The inner layers are thin and do not affect the

determination of the solution in the outer inviscid region. The outer

region is most important since it alone determines the pressure distribution

Outer Expansionand GoverningEquations. The solution in the outer region is

developedas a perturbationto the basic external inviscid flow in the following
form:

_= U (x,y;_)+E Utef(y)+E 3/2_ (I)(X,y)+ ""• (18)

_¢=V(x, y;€)+€ 3/2rc(i)(x,y)+-.. (19)
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p= P (x,y;_)+E 3/2_(I)(X, y)+-'" (20)

where (x,y) form a local Cartesian coordinate system with an origin at the trailing

edge and scaled as follows

x = _ y=n/€ (21)cB '
with the Prandtl-Glauert factor B defined as

B= __e (22)

The leading terms of Eqs. (18) - (20) are meant to include all terms that result

from expanding the known inviscid solution in powers of (s,n), transforming to (x,y)

and expressing the result as an expansion in c. For a cusped airfoil this leads to

the expansion

U = U_ [1 "{-EI/2 UI(X ,y)/B +''" ] (23a)

V = Ute [El/2 Vl(x, y) +...] (23b)

where UI, V1 are known algebraic functions and Ute is the trailing-edge value of the

inviscid velocity. The second term in Eq. (18), f(y), arises from the nonuniform

flow in the upstream boundary layer and is a known function of the form given in Eq.

(iS).

Notice that the expansion for u is similar to the law-of-the-wake in the

upstream boundary layer, except that now the full y-dependence of the inviscid flow

is accounted for in the leading term, U(x,y;g). The equations governing the

perturbation terms _(i), _(i), _(i) are arrived at by substituting the above

expansion into the full Reynolds equations of turbulent flow. The series solution

must be augmented with similar expansions for the density and temperature. For

convenience we assume the total temperature in the upstream boundary layer is

constant across the boundary layer. The density can then be computed from the

equation of state and the total temperature. This is known to be a highly

satisfactory approximation in the speed range of interest.

The above analysis leads to a set of partial differential equations governing

the disturbance to a weakly sheared, compressible, inviscid flow. The disturbance

equations can be reduced to incompressible form by a generalization of the

Prandtl-Glauert transformation of subsonic potential flow. After transforming to the

scaled coordinates x,y by Eq. (21) we transform the dependent variables _(i) _(i)

_(i) by
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a df 8V__VI_] (24a)u(1)=UteB-I/2 2E+(a0-TM_e)-_y _l-adUl+alx 8x J

a 8-_-iU] (24b)
V(1)=Ute Bi/2 _+(l-a2) fVi

2 --aIX 8x J

PcI)=PteU_B-I/2 a2P-a1× 8x J (24c)

where UI, V1 and YI are normalized velocities and streamfunction determined from the

inviscid expansion given in Eqs. (23). For cusped airfoils we have

Ul-iv I=-i c_ (x + iy)I/2 (24d)

or in real form,

rl/2 cos --_2Ul=carl/2sin-_ , Vl=c e

2 r312 3f2 (24e)
€,=-_ % cos -Z

where c is a known constant and (r,_) are polar coordinates with r 2 = x 2 + y2 anda

tan _ = y/x. The function X is the streamfunction corresponding to f(y),

fo'X= f_v)dy
(25)

The parameters a0, al, a 2 and CO are Mach number dependent constants defined by

ao=½(Co-i)-_ (Co+i)4B 2 (26a)

M2

al =- _(Co+I) (26b)

a2=¼(I+B-2)(Co+i)
(26c)

Co= I+ (T--l)M2e (26d)

With these transformations the basic equations governing the disturbances in the

outer region reduce to the following linearized, incompressible equations of mass and

vorticity

8E 8V (27)
F£+_ =0

__ _ __ ) d2f(y) (28)
8y 8x
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The transformedstatic pressure is determined from the linearizedBernoulli

equation

df (29)
>=-u-fU1+--_y_ 1

If the disturbance streamfunction, _, is introduced, Eq. (28) becomes

V2_=- _=_I(x,y)d2f_2 (_o)
where _ = _/_y, _ = - _/_x. This is the same basic equation derived in Ref. 4 for

the incompressible trailing edge problem. Equation (30) is a simple Poisson equation

relating the disturbance streamfunction, _, to the perturbation vorticity, $. The

vorticity perturbation arises from generation in the upstream boundary layer and

convection along the curved streamlines of the external potential flow, as sketched

in Fig. 4. The vorticity is known in terms of the upstream boundary layer velocity

profile and the inviscid streamfunction. The Poisson equation must be solved subject

to the boundary condition that the normal component of velocity vanish on the airfoil

surface, which, to the same order of approximation, is represented by a slit along

the negative x axis. Thus,

V(x,0)=0forx<0 (31)

/

/

I BOUNDARY LAYER PROFILE

INVISCID STREAMLINES

_(q,) = _'olY+e½_l+oo.)+oo.

= _o (Y) + e½_'o(Ylq'l + " ' '

= _ f '(Y) - e3/2f" (Y) _'1 + " ° "

INITIAL
PROFILE INTERACTION

Figure4 Vorticity Distribution in the TrailingEdgeRegion
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In addition, we must impose the condition that the pressure and flow deflection be

continuous across interfaces at the boundary layer edges and wake centerline. We

must also assure that the disturbances decay in the far field rapidly enough to allow

matching to the outer inviscid potential solution.

It is convenientto introducethe pressure and a variable _-,relatedto the

disturbance flow angle, as dependent variables. Thus, we transform from (u, v) to

(p, w) defined by

v=W +fV 1 (32a)

_ df

u=- [P+fUI _y_i] (32b)

and arrive at the symmetric pair of differential equations

OF a_ _ 2f 8U---!
ax ay 8x (33a)

8y + 8x = 8x (33b)

The function f(y) contains contributions from boundary layers on the upper and lower

surfaces of the airfoil. Since the equations are linear the two layers can be

treated separately and the results superposed to obtain a complete solution.

Scale Transformation.- The solution to the outer problem can be reduced to the

determinationof universalfunctionsthroughthe introductionof the followingscale

transformationsappropriateto either the upper or lower surface boundary layer.

First,changecoordinatesaccordingto

N=y/6 _=x/6 v=r/6 (34)

where 6 is the thickness of the boundary layer at the trailing edge. Then the

boundary-layer profile functions f and X are expressed in the law-of-the-wake form as

f=T*[hi(N)+_ h_(v)]0<7<1 (35a)

X=T*6[hl(7)+£h2(7)]0<7 <I (35b)

hl=71ogT-7, h2=- W(7) d7 (35c)

and are zero outside the strip 0 _ q _ i (primes denote _/aq). _ is Coles' wake

parameter, defined by the initial boundary-layer profile, and y* is a friction

parameter defined by
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2 2

(36)k

and t is the skin frictionof the upper surfaceboundary layer at the trailingedgeW

The followingadditionalscalingsare employed

U1=c_61/21_(_, 7/), VI=ca61/2V(_, N) (37a1
where

U=v'/2sin_ ' V=v'/2c°s_2 (37b)

P2=_2+N 2, -q=tan'* (N/_) (37c)
and

P=Ca_ '.61/2 [Pl(_, 17)+ _ P2(_'N)] (38a)

w=caY .6112 [_I(_,N) +£w2(_, _)] (38b)

The functions PI,2 and _i,2 are universal functions of (_, _) that are independent of

all parameters appearing in the problem; although P2 and _2 depend on the functional

form used to represent the wake function W(n).

The p and _ functions satisfy the following inhomogeneousCauchy-Riemann

equations,

- cO(+,N)
o_f o_ = 8f (39a)

_ 2h,l,2(N ) 8"_(_, N)
_+ O_ = O_ (39b)

with

_I,2(_,0)=0 for_<0 (39c)

ParticularSolution. - A particular solution to the inhomogeneousCauchy-Riemann

equationscan be found by standardcomplexvariableanalysis. FollowingRef. 60 we

introduce the complex representation

z = _ + iN (40a)

0 --iV = - izI/2 (40b)

_1,2 =Pl,2 + iwl,2 (40c)

With (z,_) considered as independent complex variables, Eq. (30) can be written as

the single complex equation
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(41)

where the derivative with respect to _ is applied holding z constant. The solution

to Eq. (41) can be expressed as the sum,

kl,2= k_l,2(Z,_)+ kHi,2(Z) (42)

where the first term is any particular solution satisfying Eq. (41) and the second is

an arbitrary analytic function that is determined from boundary and interface

conditions. The interface conditions now simply require continuity of XI, 2 across

interfaces. A particular integral is easily found by quadrature

_ _ d_ 0<r_-<l
_.pl,2=F1,2(z, r/)= - 4z-21_

0 _<0
(43)

The above solution is continuous across the interface, _ = i, but has jump

discontinuities across the real axis, _ = 0.

The component corresponding to the logarithmic term in the velocity profile is

found by direct integration. The quadrature for the second component can be carried

out for polynomial approximations to the wake function W(D). We employ the

representation

(44)

With C1 = 15.369157 and C2 = -0.36536. Eq. (44) is an accurate (to four places),

rational approximation to Cole's wake function, 1 + cos _n. Thus, Eq. (44) should

provide an acceptable fit to most turbulent velocity profiles. These procedures lead

to explicit algebraic expressions for the particular solution Xpl,2(z,_ ). They are

somewhat lengthy and, hence, will not be written-out here. For the purposes of the

present study we require only the limiting values on the real axis, _ + 0+, leading

to the jump discontinuity referred to above. We introduce the real functions _1,2($)

and Ol,2($) defined as the real and imaginary values of Xpl,2 as the real axis is
approached from above. That is,

/31,2(_)+i_1,2(})=limXpl,2(z, N)
O+

These functionscan be convenientlycomputed from the limitingvalues of analytic

functionsgl,2(z)determinedfrom XpI,2" Thus,i

/31,2+i_i,2= lim gl,2(z) (45)
n-o.

28



where

I_ -- f"i-_-+_\ 1g1(z)= 2i --_+ _/Zlog _ 2_[Z ) (46)

g2(z)=-_ {I-sc_(z-i)2}{_[z-i'[z_/2-(z-2i)_/2'-_3 33 [z'/2-(z-2i)'/21}

- CIC2 {_[z-i][z5/2-(z-2i)5/2133 -i[z5/2 +(z-2i)5/21} -'2iz'/2 (47)
The only singularities in the strip are branch points at infinity and the origin.

The appropriate branch of the multivalued functions are defined by a cut along the

negative real axis and the limit _ + 0 . The functions Ol,2($) and 61,2($) can be

shown to possess the following symmetry

_,2(_)=_,2(-}) (4s)

Thus, only values on the negative (or positive) real axis need be computed. The

functions are plotted in Figs. 5 and 6. For $ _ - ® they possess the following

asymptotic behavior

_,2---1_1-I12 (49a)

1 -3/2 C! I_ I "3/2_--- ¥ I ,_1 , f12--- 4--_ (49b)

The behavior for _ _ 0 is given by

7r

_1---2+ _ 4-_ +0(4)
(49c)

if2-- - I.3740 + 0(4) (49d)

ill--- 2--4-L-"_-_lnl 2_1 +2 "_L-'_'+0(_) (49e)

f12 -- -- 1.3740 + 2_ + 0(4) (49f)
--3

0"i, 2

I
!
! .-2

I
!

°,

...........
. |--
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Figure 5 Particular Solutions for the D0wnwashFunctionsOl, 02 29
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Figure6 ParticularSolutionsfor the LoadingFunctions#1' _2

The particular integral specifiedabove is not unique and to it we can add

arbitrary analytic functions of z to obtain other solutions. From the above

expressionswe can determine the contributionsof the particularsolutionto the

normal component of velocity on the airfoil and to the jump in pressure across the

wake. These quantities have a direct correspondence to the source velocity and

pressure jump appearing in the matching conditions of the external flow discussed in

Section 2.2. It is convenient to arrange the particular solution so that these

quantities match the limiting behavior of the external solution for x _ 0, E _ 0 as

given in Eos. (7 and 9). This can be accomplishedby adding the followingpiecewise

analyticfunctionto the particularsolutionFI,2 (z, _),

a_
_Ft,2( z)= (z+i)I/2 7 >0 (50)

where a 3 is a constant. The function AFI,2Cz ) is analytic in the upper half plane
and is defined to be zero in the lower half plane. Hence, it contributes to the

discontinuity of the particular solution across the real axis. The contribution to

the jump across _ = 0 is given by

_P1'2+i_t'2=(4+i)I/_-- forI_I--_ (51)

The full discontinuity of the particular solution across the real axis is therefore

equal to
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_1,2 (_) + i_1,2(_) = ill,2 + i(_1,2 + _ (52)

The contributions of the above solution to the normal component of velocity

on the airfoil and to the pressure jump in the wake are given by

_3/2A [ (S_--Ste_--- / S--Ste_]

E3/2PP=! (i+_) ETB 7 €6B
where

_3/2A = ca UteB_/2 a27"_I/2(1 + _) (53c)

and where Vp and pp are contributions of the particular integral to the inner

solution Eqs. (24). The above expressions correspond to both upper and lower

surfaces with the appropriate values of 6, 7", and _. The plus and minus signs in

Eq. (53b) refer to the upper and lower surfaces, respectively.

To demonstrate matching to the external solution, we expand the above

expressions for I $ [ _ - using Eqs. (49) and (51) to obtain

- €3/2A(1 +a,_) E2A(1 +a_)Bl/26 I/2
lim € 3/2 vp })_/2 (54a)_--_ (- (st_-s)'/2

- E3/2A(1 --a_ €2A(1 - a_)B1/261/2lim _3/2p_ 172 (54b)
_-._ (D (s-sty),/2

For constant total temperature and large Reynolds number the displacement thickness

is given by

6"--C0(I+_) (7"6)forRe--_ (55)

From the above relationsand the definitionof a2 in Eq. (26c)we can show that Eqs.
(54) reduce to the singular expressions given in Eqs. (14c, d) provided the constant

a3 is given the value

a3- 2 --M_e (56)

Note that is is the negative of the particular integral that corresponds to the

surface source velocity in Eq. (7). These results establish the close
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correspondences between the matching conditions of the external solution and the

discontinuities of the particular solution on the real axis. The determination of

the particular integral is the most important result of this section.

The particular integral provides the contributions generated by the

inhomogeneous forcing term of the differential equations. It is not a complete

solution to the problem because it is discontinuous across the wake axis and it has a

nonzero imaginary part on the negative real axis and, therefore, violates the

boundary conditions given by Eq. (39c).

The complete solution in the trailing-edge region can be obtained by adding a

complementary solution to the particular integral determined above. The

complementary solution can be represented by an arbitrary analytic function of the

complexvariable,z, which can be adjustedto satisfythe boundary conditions. The

analytic function is determined from conditions that _ = 5 + 5H is zero on thep
airfoil and the solution is continuous across the wake axis.

The solutions just described account for contributions generated by the upper

surface boundary layers. Similar contribution from the lower surface boundary layers

must be added to complete the solution. Since knowledge of the complementary

solutions are not needed in the present study, we will not discuss them further.

In the following section we show how the particular solution, by itself, can be

employed to correct the external viscid/inviscid solution for trailing-edge

interaction effects. A procedure for removing the singularities of second-order

boundary-layer theory and accounting for normal pressure-gradient effects will also

be described.

2.4 COMPOSITE SOLUTION

In this section we describe a procedure for using the inner trailing-edge

solution to correct the conventional boundary-layer formulation described in Sec.

2.2. The composite solution given in Sec. 2.2 is uniformly valid in the inviscid,

boundary-layer and wake regions but is not valid in the strong-interaction region at
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trailing edges. A solution, uniformly valid in the trailing edge region, can be

constructed by adding terms corresponding to the trailing-edge solution minus its

common part to the "outer" composite solution given in Eqs. (i). This extends the

domain of validity of the "outer" composite solution to include the trailing-edge

region. Thus, a composite solution that is uniformly valid in the trailing edge

region can be written in the following form

ql= U(s,n; v¢; _V_; F)+[u(s,_)--Ucp(S,N)]+[u(_,N)-_cp(_,U)] (57a)

=V(s,n;vo;IV _;F)+[v(s,_)-Vc_(s,_)]+[v(_,_)-_cp(_,_)] (57b)

• = P(s,n;va;_V _;F)+ [p(s,_)- p_ (s,H)]+[p(_,7)-Pcp (_,U)] (57c)

where _, _ , etc. are the contributionsfrom the trailing-edgesolution and itscp
associated common part. Similar representations are also assumed for the density and

temperature. As discussed in the previous section, the complete trailing-edge

solution is the sum of a particular integral and a homogeneoussolution. The

homogeneous solution is a solution of the inviscid irrotational-flow equations that

is added to the particular integral in order to satisfy boundary conditions in the

trailing-edgeregion. The necessity of utilizing homogeneous solutions can be

avoided if we includeonly the contributionsfrom the particular integral in the

expressionsfor the trailing-edgesolution appearingin the last bracket of Eqs.

(57). With this choice, the matching conditions and the functions va, _V_ and r

which determine the outer inviscid solution, are modified such that the homogeneous

solution is automatically included in the inviscid outer solution given by the first

term in Eqs. (57). Thus the trailing-edge terms in Eq. (57) are given by

- ~ =€3/2_pv -- v cp (58a)

--Pcp = E312Pp (58b)

-5 _ =€3/2_b (ssc)

where _p and pp are determined from the contributions to the particular integral as

given in Eqs. (53). The term _p is obtained from _Sp through the definitions in Eqs.
(24a), (32b) and (38a).

The modified matching'conditionscan be derivedfrom Eqs. (57)by imposingthe

conditionthat the normalvelocitycomponents_ and v vanishon the airfoilsurface
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(n = n = 0) and the condition that both the full solution (ql, 23,_ ) and the

boundary-layer solution (u,v,p) be continuous in the wake. Specializing Eqs. (57a,

b) to the airfoil surface and wake axis leads to the following expression for the

composite solution of the normal velocity and pressure on the airfoil surface and

wake axis:

Iv. A(I+a'_) )]23e(S)=Ve(S)+E3/2 (4)+ i__)i/2 H(--_ -E2va(s) (59a)

[_ A(l-a_) ] (59b)(Pe(s)=Pe(S)+E3/2 _(_)+ (4)i/2 H(_) --c2pa(s)

where H($) is the unit step function, and

d p_U_6*

v_=_ peds (60a)

pg = _PeUe2(6* + O) K (s) (60b)

The plus (minus) sign is for the upper (lower) side of the airfoil and the constants

A and a 3 are given by Eqs. (53c) and (56).

The condition that the V vanish on the airfoil surface leads to the following

expression for the corrected source velocity on the airfoil:

Ve(s)= --E3/2[rcp(_)+ A(l + a3)] +_2va(_4)I/2 (61)

The requirement that the composite normal velocity and pressure, as determined from

Eqs. (59), be continuous across the wake axis leads to the following relationships

for the jumps in source velocity _V_ and pressure _P_ across the wake axis:

_v_-vJs)-v;(s)=__3/2[_(_+)__(_-)1+_2v.
(62a)

[_ A(_.:_. A_))]_ E2pwUw cw K_PD - P_(s)-P$(s)= __3/2 (4.)-p_(_-)+ + (I-a 3 (62b)

The "w" subscripted quantities are defined by Eqs. (9).

The terms containing A+ and A- in the above equations are contributions from the

common-part terms. Note, there are no common-part contributions to the
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normal-velocitycomponentterms in the wake or to the pressuredistributionson the

airfoilsurfacesince these common-partcontributionsvanish to the order of terms

retained in Eqs. (59). The formulagiven in Eq. (59) for _e(S) providescomposite

solutionsfor the pressure on the airfoilsurface and wake axis as correctedfor

pressurevariationsacrossthe boundarylayerandwake.

The matching conditions given in Eqs. (61) and (62) form a sum-type composite

expansion being given by the sum of a boundary-layer type solution plus the

trailing-edge solution minus the common part. The added terms from the trailing-edge

solution cancel the singular contributions appearing in the boundary-layer solution

(Eqs. 14c, d) resulting in "corrected" viscous matching conditions that are uniformly

valid in the "outer" boundary-layer and "inner" trailing-edge regions. The. modified

matching conditions are valid in a formal asymptotic sense for the limit Re _ ®. In

our applications of these equations, the inner trailing edge solution is not carried

out to the same order as the outer boundary-layer solution. Consequently, in this

situation, the singular terms in the outer and inner solutions will not be identical,

but will differ by terms that are formally of higher order than 0 (3/2). Thus,

although the inner and outer solutions will formally match term by term if Eqs. (59)

- (62) are expanded in Re, the singular terms will not exactly match in our method

where the outer boundary-layer solution is not expanded in a formal asymptotic

expansion. This would lead to technical problems in numerical solutions based on

Eqs. (59) (62). The problem can be avoided and a form suitable for numerical

computation can be obtained by rearranging part of the matching conditions into a

multiplicative-type composite solution. Thus, if we consider the boundary-layer and

trailing edge solutions as the "outer" and "inner" viscous solutions, we can replace

Eq. (59a) by:

IVe(S)--_3/2a_p(_)-E2va(s) (wake) (63b)

where

=Vl s--stelK
_= (64a)

1 _,(_) + _(_)]K=-- _i/26t/2(l+a3)L i+£ (64b)
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The leading order (3/2) term in the source velocity given by Eq. (63) is

continuous across the trailing edge, but the second-order term is discontinuous with

a small jump across the trailing edge. This jump is a consequence of the

viscid-inviscid interaction, which acts to smooth the corner formed by the airfoil

surface and the dividing streamline of the viscous flow leaving the trailing edge

(see Fig. 8). The value of the constant, a, is determined from the condition that

the jump in source velocity across the trailing edge is equal toql(Ste) tan _(Ste),
where

ql(Ste) and B(Ste) are the values of the composite velocity and wake streamline angle

at the trailing edge. With this condition and Eq. (64), we can rearrange Eq. (63)

into the form,

Ve(S)--E2Va(S)_[S--SteI K(_) (airfoil) (65a)
_e(s)=[Ye(s)- D _ (4)- _2va(s)(wake) (65b)

where

= +
+ (65c)

D = Ve(s_) - E2vz(ste) -'lte(ste)tan_(ste ) (65d)

where Ve (Ste) is the limiting trailing edge value from the airfoil side as

determined from Eq. (65a) and vc(Ste) is the limiting value from the wake side.

In the above formulae, a multiplicative-type representation is used for the

velocity on the airfoil surface while a sum-type representation is used in the wake.

A multiplicative-type composite solution is not possible in the wake because the

common part vanishes in the wake to the order of the terms retained in Eq. (65).

However, the above representation is sufficient for our purposes. The square root

term appearing in Eq. (65a) cancels the corresponding singular term appearing in the

boundary-layer solution, vo(s) for s _ Ste. This leads to a smooth solution near the

trailing edge, independent of the order of the terms carried in the inner and outer

viscous solutions. The parameter, D, is a scaling parameter introduced to assure a

continuous transition of the inner solution across the trailing edge. The

representation in Eqs. (65) is formally equivalent to the original sum-type composite

expansion in Eq. (59a) in the sense that the difference between the two solutions is

less than 0(_2).
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The same considerationslead to the followingrepresentationfor the airfoil

surfaceandwake pressuredistribution.Thus,

I Pe(S)--E3/2y(_)_P(Ste)D- E2pa(S). (airfoil) (66a)(s)= Pe(S)- _P(s)D (wake) (66b)

where
(67a)

_P_ = E2pa(s)4 1s --ate[I(_) (67b)

[P(Ste)_= Pe(Ste)--(_e(Ste)

I [ [i(_ + _(_) ] (67c)I- B1126t12(l_ a3) +

y = _I(_)+ _2($) (67d)

The viscous matching conditions can be obtained directly from the above

and pressure 6) The condition that the normalrepresentation for the velocity 23e e"

velocity component vanish on the airfoil yields

Ve(0)=E2V=(S) _/[ S--Ste[ K (_) (68)

The requirement that the viscous solution be continuous across the wake axis leads to

the following expressions for the jump in source velocity _V_ and pressure_P_ across

the wake :
_VD= [D*k'*(_*)- D"K-(_')]+vw(s)

(69a)

_Pn = _Pn *-- _PB" (695)

The matching conditions for the circulation, r, follow from Eq. (69b) and the

relation

dr __U_- i _Pn+O(_P_2)
ds Pw Uw (70)

Thus, substitution of Eq. (69b) into Eq. (70) followed by some rearrangement leads to

the expression

dF=E2Cw[vr]s--ateI Jw]dfl (71a)

where IB I ]I_ <6+*+0 + >(_t(_+?+fl?(_)J_,(s)=i/2(f_a3) 6:+@w \ i+-

+_ ,5*+e,," -" 'and

(71c)
6"=6"+6" ew=e*+o"

37



Equations (68), (69) and (71) constitute the principal results of our viscous theory.

These equations provide all the boundary conditions needed to determine the

second-order, outer, inviscid solution. The formulae provide a rational method for

correcting the matching conditions of conventional interacting boundary layer to

account for strong-interaction effects near trailing edges of cusped airfoils.

Before concluding this section we provide alternative formulae for determining

the pressure on the airfoil and in the wake which are required in the solution of the

boundary-layer equations. The composite solution for the pressure on the wake axis

is given by Eq. (66b). Following some straightforward algebraic manipulations, it

can be expressed in terms of the mnviscid quantity P (s) and a boundary-layere
function _*, as follows:

@e(s)= Pc(S)-_k liP]] (72a)

where

[P]] = P_ (s) - P_(s) and k is defined by

x=\6,+o-/ L(,_-),/2(1+_.-)j __(_-)+_.-_(_-).j (72b)

The pressure on the airfoil surface can be written in the form

•o(sl=p_(s>-_/_ _pls,o)Dr_,(_>+;_%(_I]L_(o)+;_(o) --E2pc(s) (73a)

where

_P(Ste)_= Pe(Ste)-_e(Ste)

(73b)
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The last two terms in Eq. (73a) account for the 0(_3/2) and O(€2) variation in pres-

sure across the boundary layer.

2.5 SUMMARY OF THE CORRECTED MATCHING CONDITIONS

In the theory presented in this report, the inviscid and viscous solutions are

coupled through viscous matching conditions, just as in the standard interacting

boundary-layer theory. In the new theory, however, the matching conditions are cor-

rected as described in the previous subsection to account for strong interaction and

normal pressure-gradient effects in the trailing-edge region. The resulting numer-

ical problem is then very similar to the problem arising in standard interacting

boundary-layer theory. In both theories the inviscid and boundary-layer equations

are solved by iteration to obtain self-consistent solutions satisfying the matching

conditions coupling the two solutions. The new features arising in the present

method are concerned with corrections to the matching conditions and the need to

accommodate the wake matching conditions in the numerical solution. The new matching

conditions are summarized below:

Source velocity:

Ve(S)=E2va[_Is-stel K(St_--s_]\B6 /J (airfoil) (74a)

_V]](s)= K B6 + B6" (wake) (74b)

Wake circulation:

(74c)

2 Cs--Ste Jw(s) dflte
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Pressure distribution:

(S--St_) eK (6*+0) (airfoil) (74d)(Pe(s)=Pe(s)-E3/2[[P(Ste)]]r_k B6 _ _-peU2

X _p_
_(s) = Pe (s)--i+-----_ (wake) (74e)

where

_P_ = p+ _ p-e e

The trailing edge corrections used in the above coupling conditions are strictly

applicable only to airfoils with cusped trailing edges. Although the local strong

interaction theory can, in principle, be generalized to wedge shaped trailing edges,

this has not as yet been done. The present theory as formulated in Eqs. (74) leads

to an equivalent source velocity and flow deflection that has a discontinuity that

exactly cancels the geometric corner at the trailing edge of an airfoil with a wedge

shaped trailing edge. This is exactly the same behavior as in standard interacting

boundary layer theory. This discontinuity in source velocity across the trailing

edge requires us to modify the determination of the constant D defined by Eq. (65d).

For airfoils with included trailing edge angles, 8re , the equation for the scaling

parameter, D, should be changed to,

D* = V_e(s_)--_2v_(s_)--ql(s_) tan [_(s_)_8_/2 ] (74f)

where the last term accounts for the jump in source velocity due to the nonzero

trailing edge angle.
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3. OUTER (POTENTIAL FLOW) SOLUTION

In this section we outline the procedures used to solve the outer inviscid

problem, assuming the boundary-layer quantities appearing in the matching conditions

are known from a previous iteration. The solution in the outer inviscid region is

based on a potential-flow approximation which should be adequate for weak shock

waves. We employ Jameson's (Refs. 6 & 7) hybrid, relaxation/direct-solver scheme for

solving the full-potential equation in conservative form. The particular version we

employ is described in Ref. 7. For completeness, we briefly review Jameson's scheme

and indicate where modifications are necessary to accommodate the viscous matching

conditions.

3.1 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Jameson's method is carried out in a computational plane that is developed from

the conformal transformation of the region exterior to the airfoil to the interior of

the unit circle. A polar coordinate system, (r, _) is used in the circle plane to

generate a desirable grid system for the finite-difference approximation. The

potential-flow problem to be solved in the circle plane is indicated in Fig. 7. The

conservation equation for the velocity potential in the circle plane can be written

in the form

8 _ (75)

where

O_ 8_
Qo_- 80., ' Q_ = _ 8_ (76)

and where, in the notationof the previous section,R is the density in the outer

(inviscidregion) and Q_ and Qw are the mapped velocity components in the _ and w
directions,respectively. If_]/r is the modulusof the transformationof the airfoil

into the exterior of the circle,the physicalvelocity componentsin the [ and w

directionsmay be writtenas
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=r___r- (77)
q_=_ , q_

The density, R, is determined from speed of sound, a, and the energy equation in

isentropic flow, as follows

= -- 2 (78a)

R = (M_ a2)[/_-1 (78b)

where a is the stagnation speed of sound. The uniform free stream and the net mass
o

flow from the boundary layer introduce singularities at the origin, _ = 0, in the

circle plane. These are removed by introducing a reduced potential, G, defined by

G = ¢ cos(w+_) 2--E _dln_ + E(_+ a)p (79a)

where 2_E is the circulation at infinity and ad is the source flow at infinity

introduced by the boundary layer and wake. Thus,

E = lira
2Tr (79b)_-0
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€2_d = lim
_-0 2_B_ (79c)

where

B_ = _fl -MS (79d)

The transformation leads to a reduced potential that is single-valued and bounded at

infinity. The corresponding far-field boundary condition is

limG= E{ (w+ _) -tan"[B_tan(w+a)l}_E__ in[ I - M_ sin2(w + _)]
_-0 2 (80)

The last term in Eq. (80) arises from the viscous-induced source flow at infinity.

The mapped velocity components Qr and Qm can be written in terms of the reduced

potential as

_G siniw + _)

Q_:-_ -E - _ (81a)

Q7 = F 8G c°s(co+_)+_2ad_ (81b)a_ r

The boundary condition on the airfoil surface (r = i) is

_G
-- _V- cos(-'+ _) E2(Xd+'_ e (82)

8P

where V is the surface-source velocity defined in Eqs. (68).
e

To be consistent with the theoretical analysis, the wake boundary conditions

should be imposed along a reference curve that is close to the wake, say within 0 (g)

from the wake centerline. We stress the fact that the reference wake axis need not

be a streamline, but that it must only meet the requirement that it be sufficiently

close to the wake centerline. In the present study we align the reference wake axis

with the radial cut _ = 0 in the circle plane as sketched in Fig. 8. Both the "cut"

and the inviscid streamline are tangent to the airfoil bisector at the trailing edge.

With this choice, the wake axis is tangent to the trailing streamline of the inviscid

solution and will, therefore, be positioned close to the wake near the trailing edge.
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Since the wake matching terms decrease rapidly away from the trailing edge and

are quite small at distances greater than the present chord, the approximation should

be more than adequate. Thus, the matching conditions in the wake along _ = 0 can be

written in the form

_'/ - _ = E+stn(w+a)+_C_Vn (83a)

O .- G- =AF¢_) -m_ F_) - F(0) (83b)

where IV] is the jump in source velocity given by Eq. (69a) and r(r) is the

circulation distribution along the wake which is determined from the integration of

Eq. (17a) subject to the boundary condition at r = 0

r (0) = 2_E (84)

The circulation at infinity (_ = 0) and the constant E are determined from the Kutta

condition requiring the velocity at the trailing edge to be bounded. This is

satisfied by requiring Q_ to be zero at the trailing edge. Therefore, from Eq. (81)
we arrive at the following condition for E

aG
E=sin_ + _ at F =1, w= 0 (85)

The determination of f (r) from Eq. (71a) requires knowledge of the wake angle, B.

In the present work _ is defined to be equal to the angle between the extension of
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the airfoil chord and the composite streamline leaving the trailing edge (streamline

1 in Fig. 8). If this streamline is assumed to be close to the position of the cut,

then a sufficiently accurate approximation is

= _r+ _0+ O(Y=t - Y0) (86)

where B is the angle between the radial line _ = 0 and the extension of the airfoilr

chord and B0 is the local flow angle at the "cut" as depicted in Fig. 8. The local

flow angle, B0, can be determined from the composite solutions for the two velocity

at the cut, _ = 0; thus by definitioncomponents _ e,_e

#o = tan'l(_e_e ) (87)

where _ is evaluated from Eq. (65b) using the modified expression for the scaling
e

parameter D given in Eq. (74f)

_e (S) = Ve(S) -D R(_) - _2va(s) (88)

The error term, (Ycut " Y0 ) appearing in Eq. (86) is the distance between the cut and

and [V_ are zero thethe wake centerline. For inviscid flow, the terms Od, Ve

circulation, f, is equal to 2_E and the above formulation reduces exactly to

Jameson's original fully-conservative scheme for the full potential equation.

3.2 NUMERICALSOLUTION

The outer inviscidproblemformulatedabove is solvedby Jameson's(Refs.6

and 7) fully-conservativerelaxationmethod. The method employsa rotated-difference

scheme and a convergenceaccelerationtechnique based on a combined SLOR-Poisson

direct solver. Convergence is improved by carrying out the computationson a

sequence of three meshes. Options for a standardnon-conservativeformulationare

also programmed into the method. The basic numericalmethod is fully describedin

the originalreferences(Refs.6 and 7). Here, we describe only the changesneeded

to accommodatethe viscousterms in the boundaryconditions.

The computational grid employed in the calculations is indicated in Fig. 9

together with a sketch illustrating the grid distribution in the physical plane. The

flow field in the computational plane is contained between the airfoil surface T = i,

the "point" at infinity [ = 0, and the two sides of the "cut" _ = 0, _ = 2_. The

computational mesh consists of interior points, image points used to satisfy the

airfoil boundary condition and overlap points employed to satisfy the wake matching

conditions. The indices i, j are used to label grid points on the _, r axes,

respectively. The present method overlaps the grid on both the upper and lower sides
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of the cut, in contrast to Jameson's original method which uses overlap points only

on the lower side of the cut.

The body boundary condition is imposed by inserting appropriate values of mass

flux normal to the airfoil surface, RQ_, into the image points. The values at the

image points (i, J+l) are obtained by setting the mass flux at the surface, j = J,

equal to the average of the points (J + i) and (J - i). Thus,

(RQF)i,z*1= - (RQ_r)iJ-I- 2 5Cl_V e (89)

The wake conditions are imposed by setting appropriate values of the potential

into the overlap, i = 2, and "cut", rows i = N. The solution in the overlap row,

i = N + I, is used in the derivation of the wake conditions but is not actually

employed in the numericalsolution. The arrangementof the grid points across the

cut is indicatedin Figs. 9 and i0. The reflectionrules for the determinationof

the potentials _2,j and @N,jcan be found from the finite-difference expressions for

the jumps in G, G and G across the cut. Thus, from the definition of r we havew ww

AIRFOILSURFACE N-2

(_= 1) i

Q_ Qr

2, N-1

r

,TRAILING EDGE

"CUT" _ = 2_ OVERLAPPED
= 0 3, N RAYS

4, N+I

Figure10 WakeOverlapRays
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GN, j = G3, j +Arl
(90)

where AF. is the value of AF at r = r.. By using centered-differenceexpressionsfor3 3
G on both sides of the cut in Eq. (83a),we can obtain the followingexpressionfor

the mass-fluxdiscontinuityacrossthe cut

(ON+t,j--ON-I,J)--(G4,j--G2,j)=- 2A_SC_V_ (91)

Similarly,an expressionfor the jump in G across the cut can be obtainedin the

form

(GN+I,j--2GN,j+GN-t,j)--(G4,1- 2G3,j+G2,j)= Aa'2[G_,.,B (92)

where _- -_[G a_ is the jump in G w across the cut. A procedure for the evaluation of

_G _ is given below. These equations can be used to express G2, i_ and GN+I, i_ in

terms of GN_I, j and G4,j, respectively. Thus,

G2,5= GN.I,5--AF5+ A0)_V_ --½_w2_O,,,_+O(Aw3) (93a)
1 2 (93b)

GN.I, | = GN.I, 5 +Al" 5 _W_l[V_ + _A¢0 [G_]] + O(Aa '3)

The solution is carried out by sweeping the field along columns i = constant

from the leading edge towards the trailing edge, first on the lower surface and then

on the upper surface. In carrying out the sweep on the lower surface, the value of

G2, j_ is used from Eq. (93a) with GN_I, i_ and F evaluated from the previous sweep. The

sweep on the upper surface employs the potential GN, i_ as determined from Eq. (90) as
a boundary value in the solution. The circulation is obtained from an integration of

Eq. (71a) using a simple central difference approximation to yield

rj+l = y5 + -7 Cw_f ] s --Ste I Jw)r=rj+l + (Cw_fl s-Ste I Jw)r=rj (J3l+l-/35) (9/+a)

with

F 2= 2_E (945)

The value of E is determined from the Kutta condition, expressed in finite-difference

form as

E = G4:z-G%j -sin_+O(Aw2)
2Aw (95)

The second-derivativeterm, [G _ , could be determined from the differentia!
u_wm

equationevaluatedon each side of the cut. However,we followa simplerprocedure

and evaluatethistermnumericallyfrom centraldifferenceformulaecenteredone grid
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pointon eitherside of the cut. Thisprovidesa first-orderaccurateestimatefor

[G _ which is sufficientto evaluatethe second-orderterms in Eq. (93). Thus, we
can write

[Gw,,,H = (G_)N.I,j--(G_)4,j+O(Aio) (96a)
and hence

[G_n = [(GN,j--2GN-I,j+ GN-2,j)--(G5,j- 2G4,j+ G3,|)]/Aw2 +O(Atu) (965)

The flow angle _i appearingin the equationfor the circulation,Eq. (94a),is

determined from the velocitieson the cut throughEqs. (86) - (88). To minimize
+ on the upper and lower

numericalerror we compute W e as the averageof 13e(S)

surfaces of the wake. Thus _)e(S)in Eq. (87) is computed from the following
expression

=2[_,(s)+_(s)] (97)
_3,(s)i .

(s) appearing in Eqs. (88) and (97) are the velocity components
where V+e (s) and V e

normal to the cut (in Jameson'snotation;the q_ componentdefined by Eq. (77)).
These can be expressedin terms of the reducedpotentialby a central-difference

expressionof G centeredabout the columni = N and i = 3, respectively.Thus,

F [GN-1,1- C'N-I,t sino_] (98a)

_ [p4,, -- G2,j s_n_] (98b)v;(s)=- L- E -

where the potentials GN+I, ]_ and G2, ]_ appearing in the above equations are evaluated

from Eq. (93). The evaluation of the composite expression for radial velocity

component,_, required in Eq. (87) is described in Section 4.

The formula for determining the velocities from the reduced potential, Eq. (77)

are indeterminate at the trailing edge since the metric,_C, vanishes at this point.

Hence, special formulae are needed to compute both the velocity and potential at thi:

point. In the original inviscid method (Refs. 6 and 7) the velocity at the trailing

edge was determined from a simple extrapolation of the velocity from neighboring

points on the airfoil side of the trailing edge. In the present work we employ a

simple extrapolation from the wake side. Since the velocity variations are more
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gradual in the wake, this change provides an improved determination of the velocity

at the trailing edge. A special formula is also needed to evaluate the potential at

the trailing edge since the transformed potential-flow equation is also indeterminate

at this point. We employ the simple interpolation formula used in the inviscid

solution in Refs. 6 and 7 based on the grid points indicated in the Fig. ii. Thus,

with this scheme the trailing-edge potential, G3, j is determined from the formula

G4,_ - 2G3j + G2j G3j -I- 2G3j + G3j *t

_w 2 + _2 = 0 (99a)

A somewhat more complicated procedure based on the use of an approximate

Prandtl-Glauert equation in the physical plane near the trailing edge is employed in

Ref. (17).

The difference equations are solved for fixed estimates of the boundary-layer

parametersVe, [, and _V_ • The equationsare solvedby the fast iterativescheme
described in Refs. 6 and 7 which is based on alternating a sequence of SLOR and

Poisson iterativemethods. In each work cycle, we first perform a Poisson step,

followed by a specifiednumber of relaxation steps. During the computationwe

monitor the ratio of the maximum residuals at the start and end of a work cycle.

When this "residual ratio" is reduced to a prescribed level, the boundary-layer

calculationsare repeatedand the boundary-layerparametersappearingin the matching

conditions are updated. The inviscid computations are then repeated. This

alternating sequence of inviscid and boundary layer cemputations is continued until a

set of convergence criteria are satisfied. The criteria employed are based on the

PHYSICAL PLANE
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Figure11 Interpolation Pointsfor the Trailing EdgePotential
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maximum residual in the inviscid computation and the change in lift coefficient (_

prescribed) or angle of attack (CL prescribed) between successive work cycles. We

also provide for a termination of the computation based on a maximum number of

iterations. The calculations are carried out on a sequence of three meshes. The

solution on the crude grid is initiated using built-in estimates for the

boundary-layer parameters and reduced potential. The solutions on succeeding grids

are initiated from interpolated boundary-layer parameters and reduced potentials.

The solution on each grid starts with a solution of the inviscid equations.
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4. BOUNDARY LAYER SOLUTION

The boundary-layer parameters appearing in the matching conditions are evaluated

from solution to the boundary-layer equations with a known pressure distribution

determined from the previous iterate. Since the present method accounts for pressure

variations across the boundary layer and wake, there is a certain degree of arbi-

trariness in the choice of the pressure distribution to be used in the boundary layer

computations. We could, for example, use the pressure distribution at either the

edge of the boundary layer or at the surface or, could use an appropriate average

across the boundary layer. Since the pressure variations across the boundary layer

and wake are small, being at most of 0 (3/2) near the trailing edge, the various

choices lead to equivalent solutions, to lowest order in _. In the present work we

use the composite solution for the pressure, _e(S), on the airfoil surface, Eq. (73),

and cut, Eq. (72a), neglecting the small second-order term P0(s) appearing in Eq.

(73.) In the solution of the boundary layer equations it is assumed the pressure is

constant across the boundary layer and is given by _e(S).

The edge velocity, Ue,w (s)' and density, Pe,w(S), appearing in the boundary
layer equations and matching conditions can be evaluated from the exact isentropic

relations.

M ee(s)]/r-1_1u =1+ (7- i)M2/2 (lOOa)

Pe,w(S)= [TM_e,(s)]i/z (100b)

In the evaluationof the flow angle 6° in Eq. (87), we approximateqle(S)by
U (s) as determined from Eq. (lOOa) which is a consistent approximation to lowest

w

order in E.

In the presentwork both the laminarand turbulentboundary-layerequationsare

solvedusing simpleintegralmethods. In this sectionwe brieflydescribethe
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methodsused to solve the boundary-layerequationsand the procedures employed for

transitionand leadingedgeseparation.

4.1 LAMINARBOUNDARYLAYER,LEADING-EDGESEPARATIONAND TRANSITION

The laminar boundary-layerequations are solved for 6*, 8, h and cf by a

compressibleversion (Ref.9) of Thwaites'integralmethod (Ref. 61) for incompress-

ible flow. The laminarequationsare integratedfrom the forwardstagnationpoint to

a transitionpoint whose locationis either assigned or determinedby a specified

transitioncriteria. Three semi-empirical,transitionpredictionmethodshave been

programmedinto our method as user selectedoptions. These includetransitioncrite-

ria based on Crabtree'scorrelation(Ref. 62), Michel's correlation(Ref. 63), and

the correlationin Stevens,Goradia,and Braden (Ref. 64). We also test the laminar

solution for leading-edgeseparation accordingto the criterion in Ref. 64. If

leading-edgeseparationis present, a diagnosticis written indicatingthat sepa-

ration has occurred and whether it is of the long or short bubble type. If transi-

tion is not predictedbefore laminarseparation,transition to turbulent flow is

assumed to occur at the laminar separationpoint. The user may choose both an

assignedtransitionlocationand one of the above transitioncriteria. In this case

the transitionpoint used in the calculationsis the most upstreamof i) the assigned

location,2) the position predictedby the transitioncriteriaor 3) the laminar

separationpoint. It is, of course,well known that these and other existingmethods

of predictingtransitionare not reliable. They are included in the present method

merely as a guide to be used in the absenceof any informationregardingthe position

of transition.

The turbulent boundary-layer calculation is initiated at the transition point,

generally, under the assumption that the momentum thickness is continuous and the

shape factor is discontinuous across transition. The initial value of the shape

factor in the turbulent flow is determined under the assumption that the increment in

the "incompressible" shape factor, _, is given by

_t = I.i (101)

where,in turbulentflow

h=(h+l)(l+ _)-I (102)
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where r is the recoveryfactorand M is the local Mach number at the boundarylayere

edge. A more elaboratecorrelationin Schlichting(Ref. 65) based on the assumption

that Aht is a universalfunctionof the momentumthicknessReynoldsnumber at transi-
tion, can be used in place of Eq. (i01). However,the turbulentboundary layer down-

stream of transitionis not sensitiveto the initialconditionsat transitionand the

simple relationshipgiven in Eq. (i01) is adequate. In our method,we also allow for

a jump in momentum thickness,ASt, across the transitionpoint. This jump can be
used to simulate an increasein momentumthicknessdue to a roughnessstrip. Thus,

the initialvalues of the reducedshape factorand momentumthicknessemployedin the

calculationof the turbulentboundarylayerare writtenin the form

h=hlamln_(_t) + L_q t (103a)

8= @laminar(_t)4 A@ t (103b)

where _ = _t is the circleplane angleof the transitionpoint.

The integrals appearing in the laminar solution are evaluated by a simple

trapezoidalrule and the surfacesourcevelocityat pointswhere the flow is laminar

is evaluatedfromthe followingcentral-differenceapproximation:

) <o°o.o.>,.,Vo (_1) = (104)

4.2 TURBULENTBOUNDARYLAYER SOLUTION

The solutionof the turbulentboundary layer and wake are carriedout by the

lag-entrainmentmethod of Green et al. (Ref. i0). This is an entrainment-typeinte-

gral method that includesan approximatetreatmentof the turbulentenergyequation.

The method has been demonstratedto provideaccuratesolutionsfor airfoil-typeflows

with large adverse pressure gradients. Such flows arise, for example,near shock

waves and trailingedgesof rear-loadedsupercriticalairfoils.

The basic method employs the momentum-integralequation, a shape-factorequa-

tion, and a differentialequationfor the entrainmentfunction. To avoid interpolat-

ing between the inviscidand boundary-layersolutions,the latter are integratedin

the circleplaneusing the same gridpointsemployedin the inviscidsolution. The
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basic equationsfor the momentum thickness,reduced shape factor, and entrainment

functionand are writtenin the form

1 dO !c _(h+2_Me2) 0 dU2
d_ - 2 f Ue_ d_ (I05)

_:_d£ - 0 _ ce -hl ½c, -(h+ I) _e d_ J (106)

I dOE i
:}Cd_ - 0 Fe (107)

where £ is equal to the polar angle _ on the airfoilsurfaceand to the radius,r, in

the wake (We recall that _ is the modulusof the transformation.).The shape fac-

tor,h, is determinedfromh by Eq. (102)and the displacementthicknessis given by

6" = h0 (108)

The velocity-profile function, hl, is given in terms of h by

hI = 3=15 + 1.72 01 (h-l)2
(h-l) (109)

The skin frictionis computedfromthe followingempiricalrelations

r _no1]c, = C_oL10h_4 -'_ (110)

where

ho=[1+6.55 ¢½cf(l+.04M_)] "1/2 (llla)

1 r o 01013
Oto- L1og, i - i-3-1.o2-o. (111b)

Fc=,/1 +. 2Me2' FR= 1.0 + 0. 056 Me2 (lllc)

and R8 is the local Reynolds number based on momentum thickness. The functionFe

appearingin the entrainmentequation is an empiricalfunctiondefined in Ref. i0

that dependson boundary-layerparameters,the external-velocitygradient 1 dU
Ue dse' and

the local externalMach number M . This functionalso involvesparametersthat per-e
mita roughtreatmentof the effectsof longitudinalcurvatureand mean dilatation
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on the turbulence. The same model is used to solve for both the flow in the boundary

layer and the wake. The wake is analyzedas if it were two separatesymmetrichalf

wakes.

The integration of Eqs. (105) - (107) is initiated at the transition point using

values for h and 8 determined from Eqs. (103). The initial value of the entrainment

function, CE, is determined from an equilibrium value defined in Ref. I0. For fur-

ther details of the model see Ref. i0.

The differential equations are integrated using a standard variable-step Runge-

Kutta method. The integrations are carriedout on a basic grid formed by the _ nodal

values used in the inviscid solution. The integration scheme allows repeated grid

halving, subject to an error measure, to maintain accuracy in regions of rapid varia-

tion as occur near shock waves and the trailing edge. In this way the solution for

the boundary-layer parameters are determined directly at the nodal points of the

inviscid flow without interpolation.

A useful expressionfor the source velocity,vo, in turbulentflow can be ob-
tained from the momentum-integraland shape-factorequations. Thus, employingEqs.

(105)and (106) in the definitionof vc we arrive at the followingexpressionfor v°
as a function of the gradient of the edge velocity U :e

dU e

va=Cl-c2 d--_ (112)

where

Ue[h ½hlCf)(Cr+I)d_l]cI=_- cf+ (cE- (l13a)

c2=O(h+l)[ h (c-_-l)(co+l)(cr+1) 21(Cr+l) hldd-'_'l] (l13b)

and

cr=l+r(_-l)N_,c0=l+(_-l)MZe (i13c)

dh (h-1)2
d---_-i=- 1.72 + O. 02(i_ _ 1)3 (l13d)
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In the numerical method, the velocity derivative appearing in Eq. (112) is approx-

imated by a simple centered difference in the circle plane. It is of some interest

to note that in the limit Re _ h _ 1 and v °_, approaches the following limit (for

recovery factor r = i)

va =Ue _ CoC_- Co+ Ue ds (114)

The boundary layer thickness, 6, and Coles' wake parameter, _, are determined by

matching the skin friction and displacement thickness corresponding to Coles' com-

pressible law-of-the-wake (Refs. 66 & 67) to the solution of the lag equations just

upstream of the trailing edge.

The lag-entrainment method was not designed to deal with separation of the

boundary layer. In many cases of interest, small separation zones will appear in

airfoils flows, without significant influence on the surface-pressure distribution or

other section characteristics. For example, small separation regions can occur at

the foot of the shock wave or near the trailing edge without exerting a strong influ-

ence on the outer inviscid flow. In the case of shock-induced separation, the shape

factor is observed to undergo a very rapid increase as the shock wave is approached,

followed by an even steeper decrease behind the shock wave. In these cases, the lag-

entrainment method will predict an increase in the shape factor to unrealistically

large values (e.g., h 15), completely outside the range of data correlations on

which the method is founded. The method will also predict unrealistic values of the

skin friction in the separated zone. In order to enable the present method to func-

tion in these cases, we have set arbitrary bounds on both the skin friction and shape

factor when the flow is separated. Flow separation is predicted in the theory when

the skin friction computed by the lag-entrainment method is zero. If separation is

predicted, we set an upper bound on h given by hmax. Then, if h computed according

to Eq. (106) is greater than hmax, it is set equal to hmax. The value of the upper

bound can be specified as part of the input; typically, we take h = 4.0. For themax

skin friction, we follow Hunter and Reeves (Ref. 68) in their "wake like" model of

separation and set cf = 0 if it is predicted to be less than zero in the lag-entrain-

ment solution. This approximation of the skin friction in separation zones can be

expected to have only a small influence on the solution since cf is generally small

in the slender separation bubbles that occur on airfoils. The overall accuracy of
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this approach to separation is not expected to be very high but it should provide

useful estimates of incipient separation at the shock wave or trailing edge.
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5. RESULTS

The theoretical method described in previous sections has been developed into a

computer code GRUMFOIL to solve the viscous transonic flow over airfoils. A complete

description of the most recent version of the code is given in Ref. 69 along with

instructions for its operation. In the version of the code used for the present

computations, we allow for the choice of the constant, c2, which controls the

accuracy of the difference approximation in the supersonic zone and for the choice of

the parameter, Qc' which determines the Mach number of the switch from a central to a

backward difference. The difference formulae are second (first)-order accurate at

supersonic points for c2 = 1 (0) independent of the value of Qc" In this section

comparisons of theoretical solutions for various values of c2 and Qc are presented to

demonstrate the effect of the difference approximation on the solution. We also

present solutions that illustrate the effect of switching from a F-C or N-C

difference scheme. In the program we also provide an option for deleting the

trailing-edge corrections and for selectively dropping each of the terms appearing in

the viscous matching conditions. These options are used to generate results which

illustrate the effect of wake curvature, wake thickness, and trailing-edge correction

on the solution.

Although the basic theory used in the present work formally applies only to

closed airfoils with cusped trailing edges, the code can be applied to more general

airfoils not satisfying these conditions. Open trailing-edge airfoils are modeled by

continuing the airfoil surface downstream with a semi-infinite streamtube. The

region outside the airfoil plus extensions is then mapped to the region outside a

unit circle with the two edges of the wake streamtube mapped to a single curve in the

circle plane. This procedure leads to a constant-thickness airfoil extension and to

a solution that is continuous across the wake streamtube. For an open airfoil, we

must also prescribe the base pressure and determine the base-drag contribution to the

total drag. In the present work we assume the base pressure is equal to the pressure

at the trailing edge as given by the viscous solution. This approximation is valid

if the base thickness is less than the boundary-layer momentum thickness at the\

trailing edge. The base drag contribution is usually negative, leading to a
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reduction in drag. The contribution is sensitive to the accuracy of the predicted

trailing edge pressure and can be significant. Unfortunately, the base drag

contribution has been missed in recent investigations (Refs. 12-15).

In this section we also present comparisons of theoretical solutions with

experimental data for a series of airfoils tested in various wind tunnels. The

influence of wall-interference effects on the wind-tunnel data introduces

considerable uncertainty into the interpretation of these comparisons. For small

enough models, the main effect of wall interference can be taken into account through

standard downwash and blockage corrections to the experimental values of the

incidence and free-stream Mach numbers. Unfortunately, reliable estimates for these

corrections are not available for most transonic wind tunnels, including all those

considered in the present study. Therefore, in the present investigation we avoid

interpretational difficulties associated with the angle of attack by comparing theory

and experiment at the same (measured) lift coefficient. In these calculations the

lift coefficient is prescribed and the angle of attack is adjusted during the

relaxation process to satisfy the Kutta-condition at the trailing edge. If reliable

incidence corrections were available for a set of data, the difference between the

experimental and theoretical incidence could be used to judge the adequacy of the

theory. However, because of the absence of reliable incidence corrections, we have

not attempted such comparisons in the present study. The problem with blockage

corrections also remains. The main effect of wall-induced Mach number corrections is

to alter the position of shock waves on the airfoil surface. Mach number corrections

as small as M = 0.001 can produce noticeable shifts in shock-wave location. When

available, we followed the recommendations of tunnel operators in applying Mach

number corrections to the data. Unfortunately, accurate blockage corrections to the

Mach number were not generally available for most of the wind-tunnel data considered

in the present study. Therefore, in carrying out the comparisons presented later in

this section, we employed Mach number shifts for each tunnel that produced the best

overall agreement between the theoretical and experimental shock locations. Because

of the uncertainty in the free-stream Mach number, the conclusions drawn from the

present study must be regarded as tentative. More definitive evaluations of the

theory must await the availability of interference-free data or accurate

wall-interference corrections. All theoretical calculations presented in this report

were carried out on a sequence of three (Nr x N ) grids consisting of (40 x 8), (80 x
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16) and (160 x 32) points. Except where noted, all calculations were carried out
with the fully-conservative, first-order accurate

(c2 - O, Qc = I) version of the
method.

5.i EFFECT OF INVISCID FINITE-DIFFERENCE PARAMETERS ON SOLUTION ACCURACY

The formal accuracy of the windward finite-difference approximation employed in

and near the supersonic zone is controlled by the parameter c2, with the solution

being first-order accurate for c2 = 0 and second-order for c2 = i. Here we present

typical results which illustrate the effect of c2 on the solution. In general,

convergence slows and the solution becomes more difficult to obtain as c2 is

increased from zero to one. Fortunately, convergence is facilitated by reducing the

value of the parameter, Qc' which controls the points at which the numerical scheme

is switched from central to backward differences. In the basic setup, Qc = 1 and the

switch is made at the sonic line (M = Qc = i). Reducing Qc below one tends to smooth

the solution near shock waves and to speedup convergence. This smoothing effect of

Qc is especially helpful for values of c2 close to one. We have been able to

routinely obtain fully second-order results (c2 = i) with Qc = 0.9. We should stress

that the finite-difference approximation is formally second-order accurate for c2 = 1

independent of the value of Qc"

To illustrate the effect of c2 on inviscid solutions we carried out

fully-conservative computations on an RAE 2822 airfoil at M = 0.725 for three values

of CL with various combinations of c2 and Qc" This resulted in supercritical flow

with shock waves in all cases. The results for CD, _, and shock position, X areS'
summarized in Table i.

We first note, the choiceof Qc has only a minimaleffect on the solutionsfor

fixed values of c2. Second,and more importantly,we note that the solutionsfor all

three values of CL, are only weakly dependent on the value of c2. The drag

coefficientis seen to increaseby only two counts in going from a first-order(c2 =
0) to a second-order(c2 = i) scheme. The shock positionis uneffectedand the angle

of attack is only slightlyincreased(As .01)as c2 is increasedfrom zero to one.

The results also indicate that the solution for c2 = 0.8 and 0.9 are virtually

identicalto the second-order(c2 = i) solution. The pressure distributionon the

airfoil surface for the CL = 0.95 cases given in Fig. 12. The two solutionsare

indistinguishablein thisp].ot.These resultsindicatethatthe first-orderaccurate
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TABLE io EFFECT OF c2 AND Qc ON SOLUTIONS FOR INVISCID FLOW
OVER A RATE 2822 AIRFOIL AT M = 0.725

CL c2 Qc CD a Xs

0.9 0 1 0058 1.844 .65

0.9 0 .90 0058 1.853 .65

0.9 .8 .90 0060 1.830 .65

0.9 o8 .95 0060 1.829 .65

0.9 .9 .90 0060 1.827 .65

0.9 .9 .95 0060 1.827 .65

0.9 1.0 .90 0060 1.824 .65

.925 0 i 0069 1.904 .66

.925 .90 .90 0071 1.885 .66

.925 1.0 .90 0071 io881 .66

.950 0 i 0082 1.960 .66

.950 .9 .9 0084 1.938 .66

version of the F-C scheme employed in the present method is surprisingly accurate

suggesting that the first-order truncation error terms must be relatively small. Our

experience with the present method is at variance with the results of Collyer and

Lock (Ref. 18), obtained for a similar case with their partially-conservative P-C

scheme. Their results showed a much larger effect of c2, with the drag increasing by

about twenty counts as c2 increased from zero to one. The major discrepancy is

between the two first-order solutions, with Collyer and Lock's solutions producing

much lower drags. The reason for the poor performance of the Collyer and Lock

first-order P-C method has not been ascertained.

The above results indicate that the first-order accurate version of the present

method should be adequate for most purposes. However, there are some cases involving

weak shock waves for which variations of c2 produce more noticeable effects. In

these cases weak shock waves near the leading edge were not adequately resolved with

the first-order accurate version of the method. We found improved resolution could

be obtained by either refining the mesh or by increasing c2 toward one. A typical

result illustrating this effect in a full viscous solution is given in Fig. 13. In
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this figure first and second-order accurate solutions for the surface-pressure

distributions are compared for M. = 0.725 and CL = 0.521. This case involves two

shock waves on the upper surface of the airfoil. The results indicate that the

forward, weak shock wave is not adequately resolved by the first-order scheme on the

(160 x 32) grid employed in the computation, but that good resolution is achieved

with the second-order scheme. Note that, as is generally the case, the drag and

angle of attack are only slightly affected by the choice of c2.

The dotted line extending from the airfoil trailing edge in Figure 13 (and in

all others C plots to follow) is the transformed "cut" (_ = 0) location in the
P

physical plane. The nearby solid curve is an approximation to the composite solution

for the streamline from the trailing edge as determined from an itegration of the

flow angle, B = _r + B0' along the "cut". The closeness of these two curves near the

trailing edge is supportive of the approximations used in the evaluation of the

wake-curvature terms.

The first-order scheme is less expensive to use and has been found to be

generally adequate for most cases. Therefore, it is recommended for general use and

has been employed in all solutions presented in this report. The second-order scheme

is reserved for certain special cases requiring greater accuracy to resolve fine

details of the flow field as in Fig. 13.

5.2 EFFECTS OF THE WAKE AND TRAILING EDGE INTERACTION

The computer code has been organized so that individual terms appearing in the

viscous matching conditions can be selectively dropped from the computations. This

option has been employed to generate a series of solutions that illustrate the

importance of the individual terms in the matching conditions. Three cases have been

carried out, corresponding to subcritical and supercritical flows over an RAE 2822

airfoil and to supercritical flow over a more heavily rear-loaded supercritical

airfoil developed by the NASA (LaRC). For each case, a series of solutions have been

obtained with each of the terms appearing in the matching conditions selectively

dropped. Solutions for the drag, lift, and trailing edge pressure are summarized in

Tables 2A and 2B. In these tables CDB is the total drag, determined from integration

of the pressure and skin friction over the airfoil surface, and CD_ is the profile

drag determined from the wake momentum thickness far downstream (i.e., CD® = 28 ).

Profile drag is equal to the total drag less the wave drag and is due solely to
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at Moo=0.752,CL = 0.521,Re =21.5 x 106(Xr = 0.10)

momentum losses in the boundary layer= For subcritical flow, CD, is equal to the

total drag of airfoil and should be equal to CDB as determined by surface

integration. In general, however, these two evaluations of the drag will not be

equal with the differences due both to, numerical errors in the solution of the

governing equations and to approximations in the formulation of the viscous effects.

The momentum drag (i.e., 28) seems to be relatively insensitive to the details of

the numerical method and the formulation of the viscous theory, and is thought to be

the more accurate prediction of drag in subcritical flows. In these cases the

difference between profile and integrated drag is a useful measure of the overall

accuracy of the theoretical model.
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The resultsin the tables includesolutionsfor (A) the inviscidtheory, (B) the

full viscoustheory,(C) the full viscoustheory less the trailing-edgecorrections,

(D) less the wake-curvatureterm, and (E) less the wake-thicknessterms. In the

latter solution the wake is modeled as a constant thickness extension of the

displacementsurface on the airfoil surface. We have also carriedout solutions

neglectingthe trailing-edgecorrectionsand both the wake curvatureand thickness

terms. This versionof the theory,(F), includesonly the displacementeffect on the

airfoilsurfaceand is, therefore,equivalentto the formulationemployedin the BGKJ

(Refs. 12 & 15) method and its derivatives (Refs. 13 & 14). For the two

supercriticalcases studiedusing this latter formulation,we have also obtained

solutionswith the N-C version of our method (labeled(G) in the Table 2B). In

addition,for the two RAE 2822 cases considered in Tables 2A, B, we have also

includedavailableresults from the RAE non-conservativemethod (Ref. 17). The RAE

method accounts for both wake-thicknessand wake-curvaturebut not trailing-edge
interactioneffects.

The results for the subcritical RAE 2822 case are listed in Table 2A.

Comparisons of the inviscid (A) and full viscous (B) solutions illustrate the large

effect of the boundary layer on lift. Even for this subcritical case, the presence

of the boundary layer causes a nearly 1/3 decrease in lift. The results given in

lines (C), (D), and (E) illustrate the effect of the individual terms in the matching

conditions. Comparisons of the results in lines (A)-(E) indicate that the largest

effect is caused by the displacement thickness on the airfoil surface with the other

terms also producing significant effects. The influence of wake thickness on drag

and lift and of wake curvatures on lift are the most pronounced of these secondary

influences. The effect of wake thickness on lift was unanticipated since we would

expect predominately symmetric effects from this source. However, on reflection,

this behavior is not surprising. The neglect of the wake-thickness term is seen to

lead to an increase in pressure at the trailing edge which in turn, induces a

significant increase in boundary-layer thickness near the trailing edge. The

increase is largest on the upper surface because of the larger initial boundary-layer

thickness on this surface. It is this differential increase in boundary-layer

thickness caused by the neglect of the wake-thickness term that leads to the observed

lift reduction. We also call attention to the insensitivity of the momentum drag,

CD., to differences in the theoretical model and to the good agreement between the

two evaluations of drag in the full viscous solution (B). The good agreement evident
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TABLE 2A - RAE 2822 AIRFOIL AT M_ = 0°676 e = 1.06°

Re = 5.7 x 106 XT = 0. ii

Mode Theoretical Model CD CD CL CpTE

@ Inviscid 0 0 0.571 0.438

Full Viscous 0.0084 0o0083 0.431 0.234

@ @ Less TE 0.0080 0.0083 0o416 0.234

Corrections

@ @ Less Wake Curva- 0.0081 0.0083 0.454 0.234

ture

@ @ Less Wake Thick- 0.0069 0.0082 00398 0.289

Less

@ @ Less TE Correc- 0.0064 0.0082 0.399 0o278

tions, Wake Curvature

& Thickness

@ RAE (NC) (Ref 17) 0.0081 0.0083 00430
00226

(0°420)

in this case is an encouraging indication of the overall accuracy of the present

method. The underprediction of the integrated drag and the poor agreement with CD_

when the wake-thickness terms are suppressed (E), are indications of the importance

of these terms. The comparisons in Table 2A indicate that the formulation based on

airfoil displacement thickness only, underpredicts the drag by 25% and the lift by 7%

in this case.

The results of the N-C RAE method of Ref. 17 (C'), which is equivalent to the

formulation employed in case (C) of the present method, are in good agreement. Two

values of the lift coefficient are given for the RAE method. The higher value

results from a version of their method that employs considerable numerical smoothing

of the wake curvature terms near _he trailing edge. The smaller value, obtained with

less smoothing, is in better agreement with the results of case (C) of the present

method. It was reported in Ref. 17 that convergence difficulties were experienced in

this latter version and its use was not recommended. This difficulty is likely

related to theneglect of trailing edge interaction effects in their formulation.
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A similar series of calculations were carried out for the same airfoil at a

higher free-stream mach number, resulting in a supercritical flow. The results are

listed in Table 2B. In this case the integrated drag includes wave drag and so is no

longer equal to the momentum drag, CD . The difference between CDB and CD_ is a

relatively accurate measure of the wave drag in the full viscous solution (case (B)),

but not in the other cases because of the inadequacies of the viscous formulation

clearly evident in the subcritical results (Table 2A). The neglect of wake and

trailing edge interaction effects in this• supercritical case leads to a 35%

underprediction of the drag coefficient (case (F)) compared to the full viscous

solution. We have also repeated case (F) with the N-C formulation (Line (G) in Table

2B). The N-C scheme leads to a weaker, more forward shock wave but to a higher drag.

This extra drag arises from a spurious mass generation at the shock wave caused by

N-C differencing. This spurious drag increase is also evident in the comparison of

the RAE results (case (C')) with the present, equivalent formulation using F-C

differencing (case (C)).

The solutions for the pressure distribution on the airfoil surface are given in

Fig. 14. Included in the figure are the inviscid solution (A), the full viscous

solution (B), and the viscous solution less the trailing correction and both wake

terms (F). Both F-C and N-C calculations of the latter case are included. These

results illustrate the very large effect of the boundary layer on the flow field in

supercritical conditions even at the relatively large Reynolds number of the

computations. The boundary layer drives the shock wave forward from X = 0.80 to X =

0.55, significantly reduces the pressure level on the upper surface, and increases it

on the lower surface of the airfoil. These effects produce a reduction in the lift

coefficient by nearly a factor of two. The neglect of the wake and trailing-edge

contributions to the matching conditions is seen to drive the shock wave forward by

about 5% and to reduce the lift by 10% and drag by 35% below the full viscous

solution (see Table 2B). The switch to a N-C scheme is seen to drive the shock wave

even further forward.

The details of the pressure distribution near the trailing edge for the full

viscous solution at the higher Mach number, M = 0.725, is plotted on an expanded

scale in Fig. 15. Included in this figure are the "composite" and "outer" solutions

computed from the full viscous theory. The composite solution contains contributions

from the "outer" and "inner" solution as given by Eq. (66) which account for the
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TABLE 2B - RAE 2822 AIRFOIL AT M = 0.725, e = 2.3°,

Re = 6.5 X 106 XT = 0.03

Mode Theoretical Model CD CD CL CPT E

@ Inviscid - - 1.300 0°5265

Full Viscous 0.0110 0.0098 0.726 0.222
i,

@ @ Less TE Corrrections 0.0101 0.0096 0.700 0°227

@ @ Less Wake Curvature 0.0112 0.0100 0°758 0.224

@ G Less Wake Thickness 0.0080 0.0093 0.661 0.276

@ Q Less TE Corrections, 0.0072 0.0043 0.658 0.271

Wake Curvature & Thickness

@ Q With Nonconservative 0.0081 0.0092 0.648 0.269

Differencing

RAE (NC)5 0.0119 - 0.699 0.219

pressure variations across the boundary layer and wake. The outer solution clearly

exhibits the wake pressure jump imposed as part of the viscous matching conditions.

The pressure jump is largest at the trailing edge and rapidly decays away from the

trailing edge both in the wake and on the airfoil surface. The relatively large jump

in pressure at the trailing edge (AC 0.2) is indicative of the importance of
P

normal pressure gradients near trailing edges. The crossing of the outer solution on

the airfoil is a typical property of the viscous wake solution which clearly

distinguishes it from jet-flap solutions with positive blowing coefficient.

The RAE 2822 is an airfoil with moderate rear loading. A similar series of

calculations have also been carried out for a more highly rear-loaded supercritical

airfoil developed by the NASA-Langley Research Center. The calculations for this

case were carried out for a free-stream Mach number of M = 0.768 and an angle of

attack of _ = -0.151, resulting in a lift coefficient in the full viscous solution of

CL = 0.852.

The solutions for this case are listed in Table 3. The airfoil has a nonzero

trailing-edge thickness which requires an estimate for the base-drag contribution to

CDB. This contribution amounted to 7 counts of drag for all cases considered in

Table 3.
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Figure14 RAE 2822 -- Effect of the WakeandTrailing EdgeCorrectionson the Theoretical

PressureDistributionat Moo= 0.725, _ = 2.3°, Re = 6.5 x 106 (XT = 0.03)

The shock position in the inviscidsolution at this incidenceand Mach number

appearsto be downstreamof the trailing edge and, because of this, the inviscid

solutioncould not be computedwith the circleplane code used in the presentstudy.

The viscous solution could be determinedwithout difficulty. The inclusionof the

boundary layer in the viscous solutionsdrove the shock wave forwardto 73% chord,

again demonstratingthe very large effectof the boundary layeron the flow field at

transonicspeeds.

The results in Table 3 indicate that the trailing-edge correction and the

variation of profile drag with the theoretical model are much larger than in previous

cases. We also note that the neglect of trailing-edge correction and the wake terms
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(F) leads to a 30% an underprediction of drag and the use of a N-C formulation leads

to a partially compensating increase of drag of about 10%.

5.3 THEORETICAL PREDICTION OF PROFILE DRAG AT SUBCRITICAL CONDITIONS

At low Mach number subcritical conditions, the total drag of an airfoil is equal

to the profile drag given by the sum of skin friction and pressure drag. As

discussed previously, the profile drag can be evaluated either by integrating the

surface pressure and shear-stress distributions or from momentum considerations, by

CDB = 28. The total drag can also be estimated from the Squire-Young approximation
based on momentum thickness at the trailing edge. The difference between the

integrated drag, CDB, and the more accurate momentum drag, CD®, is a useful measure
of the error of the theory. In Table 4 we compare the theoretical results for the

integrated and momentum drags for several airfoils at a variety of subcritical flow

conditions. In this table CDB is the total integrated drag, CD is the integrated

drag less the base drag, CD_ is momentum drag evaluated from CD, = 28 and CDSY is
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total drag evaluated from the Squire-Young formula. The results in the table also

include experimental databased on wake-rake measurements (Refs. 70-73).

TABLE 3 ADVANCED SUPERCRITICAL AIRFOIL AT M = 0.768 = = -0.1510

Re = 7.7 X 106 XT = 0.28

Mode Theoretical Model CDB CD CL CpT E

Inviscid NOT AVAILABLE

Full viscous 0.0122 0.0082 0.852 0.137

@ @ Less TE corrections 0.0097 0.0078 0.808 0.156

@ @ Less wake curvature 0.0131 0.0091 0.871 0.120

@ @ Less wake thickness 0.0105 0°0079 0.835 0.155

@ Q Less TE corrections, 0.0088 0.0079 0.821 0.168

wake curvature &

thickness

@ @ With nonconservative 0.0098 0.0074 0.768 0.155

differencing

The agreement between the integrated and momentum drags for the RAE 2822, GKI

and the NASA LaRC airfoils is strong evidence that the present method produces

accurateprediction of the absolute level of drag at subcriticalconditions. The

difference between CD and CDB for the NASA airfoil arises from a thrust on the finite

base of this airfoil. The agreementbetween the integratedand momentum drags is
i

noticeably poorer for the NACA 0012 airfoil. This airfoil has a significant base i

(Ay/c = 0.0026) and a relatively large trailing-edge angle of 160 . These geometric

features make the solution for the integrated drag very sensitive to the pressure

levels near the trailing edge. The under-prediction of the integrated drag in this

case is very likely caused by neglect of strong-interaction effects associated with

the trailing-edge angle. The ratios of trailing-edge thickness to boundary-layer

momentum thickness (Ay/STE) is 1.2 for the NASA airfoil and 0.4 for the NACA 0012

cases in Table 4, indicating that the approximations used for the base pressure is

adequate for these cases. The theoretical results for the Squire-Young evaluation of

the drag is nearly identical to the drag based on far-field momentum thickness in all

cases considered in the table. The momentum drag, CD. , which is thought to be the
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more accurate theoretical prediction, is also in very good agreement with the data

from the RAE, Langely, and Ohio State University wind tunnels. The drag from the NAE

tunnel seems to be consistently high by about i0 counts compared to the present

theory. The good agreement observed in other cases (compare, in particular, the Ohio

State and NAE data for the NACA 0012 airfoil) suggests this is due to a consistent

error in the NAE measurements.

TABLE 4 PROFILE DRAG RESULTS

Present Theory Experiment
Case

CD CDB CD_ CDsy CD Exp Source

RAE 2822 M_=0.676 - 0.0087 0.0085 0.0085 0.0085 RAE

CL=0.576 R =5.7 X 106 XT=O.II (Ref.e 70)

RAE 2822 M_=0o676 - 0o0081 0°0082 0.0083 0.0079 RAE

CL= -0o121 R =5°7 X 106 XT=0oll (Ref.e 70)

GKI M_=0.511 - 0.0063 0.0064 0.0064 0.0078 NAE

(Ref.
CL=0.431 R =21o5 X 106 XT=0.10e 73)

GKI M_=0.622 - 0.0065 0.0066 0.0066 0.0070 NAE

CL=0.458 R =21.5 X 106 XT=0.10 (Ref.e 73)

NASA LRC M = 0.78 0.0079 0.0070 0.0070 0.0069 0.0072 NASA

CL=0.42 Re=7O7 X 106 XT=0.28 LRC

NACA 0012 M =0.575 0.0079 0.0072 0.0082 0.0082 0.0081 Ohio

CL=0.006 R =4.7 X 106 XT=0.10 Statee Univ.

(Ref.

72)

NACA 0012 M_=0.693 0.0065 0.0057 0°0067 0.0068 0.0078 NAE

CL=O.OI7 Re=22.1 X 106 XT=0.05 71)(Ref"
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In Table 5 the profile drag prediction of the full viscous theory for the NACA

0012 airfoil tested at Ohio State University are compared with parallel wake

solutions obtained with the present computer code and with the predictions of the

BGKJ and Carlson methods presented in Ref. (72). As discussed above, the momentum

drag from the full viscous solution is in good agreement with the experimental data.

The integrated drag shows a significant error for reasons previously mentioned. The

theoretical pressure distribution is compared with experimental data in Fig. 16. The

agreement is good, except near the trailing edge, where the theory indicates a more

positive pressure. This is consistent with the error in integrated drag.

TABLE 5 NACA 0012 AT ZERO LIFT

M=0.575 R =4.68 X 106 XT=0.10e

Theory CD CDB CD_ CDs Y

Present - Full viscous 0.0079 0°0072 0.0082 0.0082

Present - Parallel wake 0.0063 0.0054 0.0081 0.0081

BGKJ (Ref. 72) 0.0047 0.0036* - -

Carlson (Ref. 72) 0.0051 0.0042* - -

Experiment (Ref. 72) 0.0081

(* Obtained by subtracting ACPB = 0.0009 from CD)

Neglect of the wake-thickness term leads to substantial increase in the error in

integrated drag but does not affect the solution for momentum drag. A significant

part of the discrepancy between the two evaluations of drag is due to the

contribution of the base, which in this case amounts to seven counts of thrust. We

note the very large underprediction of the drag by both the BGKJ and Carlson methods.

With the base drag included, these methods are seen to underpredict the drag by a
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factor of two. The base-drag contribution was not included in the original solutions

presented in Ref. (72). We have corrected these solutions for base drag using the

base-drag increments determined from our parallel-wake solution in order to provide a

uniform basis for comparison.

The results in this section demonstrated that the absolute value of the profile

drag can be adequately determined from the integrated drag of the full viscous

solution. _is was demonstrated in Table 4 for airfoils with small trailing edge

angles. The trailing edge angles of the GKI. NASA-LaRC RAE 2822, and NACA 0012

airfoil are 0, 3.87, 8.67, 15.96 degrees, respectively. This differs from the

conclusion reached by Smith and Cebeci (Ref. 74) in a study of boundary-layer methods

for predicting profile drag. In their study they concluded that profile drag

predictions based on integrated shear and pressures were inadequate, and they

recommend exclusive use of the Squire-Young formula. The present study indicated

that Smith and Cebeci's difficulties with integrated drag were due entirely to the

neglect of the wake-thickness terms in their boundary-layer model. Calculation of

the Joukowski profile with the present method showed relatively good agreement

between the integrated and momentum drags. The results are summarized in Table 6.

We note that the present results for integrated drag obtained with the

wake-thickness terms neglected agree well with the results of Ref. (74) and that both

methods underpredict the drag by about a factor of two for the 30% thick airfoil.

The results in this section demonstrated the importance of the base drag

contribution for certain airfoils with open trailing edges. The contribution of the

base drag was an important element in obtaining favorable agreement between theory

and experiment of the NASA LaRC airfoil. The poorer agreement obtained the the NACA

0012 is indicative of the importance of strong interaction effects associated with

the large trailing-edge angle of this airfoil. Further improvements in the

prediction of profile drag of airfoils with sizeable trailing edge angles can be

achieved by incorporating an appropriate strong interaction solution into the

theoretical formulation.
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Figure 16 NACA 0012 - Pressure Distribution at Zero Lift at M = 0.575,

Re = 4.68 x 106(XT = 0.10)

TABLE 6 PROFILE DRAG FOR JOUKOWSKI AIRFOILS AT ZERO INCIDENCE

M = 0.05 Re = i0 X 106 XT = 0.10

Present Theory Theory of Ref. (73)

t/c cf CD cf CD
CDsy CDsy

0.I0 0.0058 0°0064 0.0066 0.0057 0.0062 0.0065

(0.0063)

0.15 0.0060 0.0070 0.0074 0.0058 0.0065 0.0072

(0.0067)

0°20 0.0061 0.0075 0.0081 0.0060 0.0067 0.0080

(0.0069)

0.25 0.0062 0.0082 0.0092 0.0061 0.0065 0.0090

(0.0069)

0.30 0.0063 0.0091 0o0105 0.0062 0.0054 0.0102

(0.0063)

( ) Denotes results obtained with parallel wake formulation
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5.4 COMPARISONS OF TRANSONIC RESULTS WITH EXPERIMENTAL DATA

In this section we present comparisons between theoretical computations and

wind-tunnel data for the GKI the NASA LaRC, and the RAE 2822 airfoils. The

comparisons considered in this section include a number of cases of supercritical

flow with shock waves. The theoretical method described in this study does not

provide for a proper asymptotic description of the shock-wave boundary-layer

interaction process. A rational analysis of shock-wave boundary-layer interactions

in trubulent flow should account for the penetration of the shock wave into the

boundary layer and normal pressure gradients across the boundary layer. In the

present study, normal pressure-gradient effects are only accounted for near the

trailing edge. At shock waves, the present method reduces to a standard,

free-interaction type analysis employing a Prandtl boundary-layer description of the

shear layer. This theoretical scheme does not permit shock waves, with the attendant

discontinuous pressure distribution, to impinge on the boundary layer. A

discontinuity in pressure or edge velocity in the present method would lead to a

delta function behavior in the surface source velocity in the viscous matching

conditions (since v° _ dU /ds) and to a breakdown of the present method. The resultse

of extensive computations suggest this does not occur in the present method.

Instead, interaction between the inviscid and boundary-layer regions leads to an

adjustment in the solution that avoids this type of singular breakdown. Within the

present method, the behavior near shock wave appears to be as sketched in Fig. 17.

SHOCK WAVE

, SONIC LINE
COMPRESSION
WAVES

IL_
iv

ML

Figure17 Schematicof a Shock-WaveBoundaryLayer Interaction in the Present
Formulation
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In this model, the approach of the shock wave to the boundary layer causes a rapid

buildup of displacement thickness which, in turn, generates a narrow band of

compression waves. These compressions act to spread the shock wave and prevent a

discontinuity from impinging on the boundary layer. The interaction spreads the

/VM_I where 6L and ML are the displacementpressure jump over a distance, AX_ _L

thickness and local Mach number just upstream of the shock wave. For the cases

considered in the present study, the interaction length is typically in the order of

AXe0.005. Since the minimum grid spacing on the fine mesh is about twice this

value, it is clear that the present computations do not resolve the flow near the

shock wave. Nevertheless, results presented in this section show that the present

method does lead to reasonable predictions of shock wave/boundary layer interactions.

It has been known for some time, from experiments on airfoils, that a turbulent

boundary layer reduces the pressure rise across a shock wave to about half of that

predicted by the shock conditions for a normal shock wave. This behavior is

predicted reasonability well in the present method and, in addition, also gives a

good overall prediction the pressure distribution near the shock wave.

GKI Airfoil. - The first group of results are for the GKI supercritical airfoil.

the airfoil is 11.5% thick, has a cusped trailing edge, and a moderate degree of aft

camber. The data are from tests at the NAE transonic wind tunnel at Ottawa (Ref. 73)

at a Reynolds number of 21.5 million with the tunnel walls set at 20.5% porosity.

The airfoil was aerodynamically smooth and was tested with natural transition. The

location of the transition point was not determined in the experiments. The

calculations were carried out with transition fixed at 10% chord which appears to be

a reasonable estimate, considering the high Reynolds number of the test. The

theoretical solutions were found to be insensitive to small changes in the

transition location. Recent studies (Ref. 75) have indicated the presence of

significant wall interference in the NAE wind tunnel. The studies indicate the need

for both downwash and blockage corrections to the angle of attack and free-stream

Mach number with the corrections varying with both free-system Mach number and lift

coefficient. Unfortunately, corrections were not yet available for the data

considered in this section. Therefore, in the present comparison, we avoid the need

for angle of attack correction by comparing theory and experiment at the same value

of the lift coefficient. Small Mach number shifts are applied to the data to obtain

agreement in the shock positions. The quantity,a G' appearing in the Figure is the

geometric angle of attack of the airfoil in the experiment.
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The comparison of the surface pressure distribution for two subcritical and two

supercritical cases are given in Figs. 18 to 21. We note the good agreement of the

pressure distribution near the trailing edge with experiment and the very good

predictions of the pressure levels behind the shock wave. The Math number shift of

AM = 0.008 applied to the data of Fig. 21 is consistent with levels of the blockage

cQrrection predicted in Ref. 75. The experimental drags are high compared to the

theoretical value in all cases with the largest discrepancy arising in the CL = 0.821

case. The difference in this case is surprisingly high considering the relatively

cl:ose agreement of the pressure distribution, as discussed previously, the

differences in drag seem to be due to experimental error. Some evidence for this was

presented in Ref. 76.

-1.200

THEORY O_ = 0.71 °, CD = 0.0063, CM = -0.098

on EXPERIMENTo_G= 1.56°, CD = 0.0078,CM = -0.094

-0.800

-0.400

Cp

0.000

0.400

0.800

1.200

....

Figure 18 GK 1 - PressureDistributionat Moo= 0.511, CL = 0.431, Re = 21.5 x 106
(XT = 0.10)
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Figure19 GK1 - PressureDistributionatM_ =0.622, CL =0.442, Re=21.5(X T =0.10)

The solutionfor the drag polar is comparedwith experimentand with solutions

to the Navier-Strokesequations*in Fig. 22. The theoreticalsolutionswere obtained

with a small Mach number shift of M = -0.005. The present solutionsgive a

reasonablepredictionof the overall shape of the drag polar but the level of the

data is about 15% higher than the computation. The poor agreement of the

Navier-Strokessolutionswith both the data and the present computationsis most

likelydue to poor spatialresolutionsince only about 50 pointswere employedon the
airfoilin the calculation.

NASA-LaRC SupercriticalAirfoil. - This airfoil is a 10% thick, heavily

rear-loaded,supercriticalairfoil with a trailing-edgeangle of 3.87° that was

designedand tested at the NASA LaRC. The airfoilwas tested in the 8 foot transonic

pressuretunnelat a ReynoldsnumberRe = 7.7 X 106 and a nominalMach number of M =

0.78. Transitionwas fixedwith roughnessstrip at 28% chord.

* Unpublished results supplied by Dr. G. S. Deiwert of NASA Ames Research Center.
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Figure20 GK1 - PressureDistributionat Moo= 0.699, CL = 0.669, Re= 21.5 x 106
(XT = 0.10)
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Figure21 GK1 - PressureDistributionat M_ = 0.691, CL = 0.821, Re = 21.5 x 106, (XT = 0.10)
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Figure22 GK1 - DragPolarat M = 0.752, Re = 21.5 x 106, (XT 0.10)

O
This tunnel is known to be subject to relatively large tunnel-wall interference

effects, but, unfortunately, wall corrections have not been determined. We applied a

blockage correction of AM = -0.012 to improve the overall agreement of shock

position.

The calculations for the drag polar are compared with wind-tunnel data in Fig.

23. Theoretical solutions from the full viscous theory are presented along with

solutions obtained with the wake and trailing-edge correction terms deleted from the

matching conditions. In the latter case solutions are presented for both F-C and N-C

difference schemes. The results of the full viscous theory show good agreement with

experiment over a wide range of lift coefficients. The results show that neglect of

the wake and trailing-edge terms leads to noticeable underpredictions of drag and

that N-C differencing leads to a substantial overprediction of drag when shock waves

are present.

83



FULL VISCOUS THEORY ,==,=.=_===_.o_"

LESSWAKEANDTE CORRECTIONS ..____=_

(N-C) ., ."""

" 0

c D

Figure23 NASA LaRC -- DragPolarat Moo= 0.768, Re = 7.7 x 106, (XT = 0.281

In Fig. 24 we compare the theoretical and experimental pressure distribution for

the highest lift coefficient of the drag polar. The comparisons are carried out at

the same lift coefficient (CL = 0.94) because of the uncertainties in the effective

angle of attack in the wind tunnel. Note the relatively good agreement in the

pressure distribution near the shock wave. Although the boundary-layer

approximations used in the present theory are certainly not valid near shock-wave

interaction regions, the present method does produce reasonable solutions in these

regions. The results also show a smooth pressure distribution near the trailing

edge. The elimination of all numerical smoothings from the present method has

eliminated the wiggles that appeared in solutions obtained with earlier versions

(Refs. 5 & 8) of the method. The slightly higher pressures in the theoretical

solution between the shock wave and the trailing edge are likely due to the neglect

of strong interaction effects associated with the nonzero, trailing-edge angle of

this airfoil.
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In Fig. 25 we present the theoretical solutions for the skin friction and

displacement thickness on the upper surface of the airfoil. The discontinuities near

the leading edge are due to transition from laminar to turbulent flow at 28% chord.

The skin friction shows a nearly discontinuous drop to zero at the shock wave

indicating that the flow is close to shock-induced separation and probably close to

stall. We also call attention to the steep and nearly discontinuous jump in

displacement thickness through the shock wave and the large increase in displacement

thickness between the shock wave and trailing edge.

RAE 2822 Airfoil. - The airfoil is 12% thick supercriticalsection with a

moderateamountof rear-loadingand a trailingedge angle of 8.67° The airfoilwas

subjectto extensivetesting (Ref. 70) in the RAE 8 x 6 foot transonictunnel in

which measurementsof both surfacepressures and boundary layer developmentwere

carried out. The examplesconsideredin this report were carriedout at Reynolds

numbers from 2.7 x 106 to 6.5 x 106 and at two nominalMach numbers,M = 0.676 and

M = 0.73, with the lower Mach number resultingin subcriticalflow and the higher

value yielding supercriticalflow. The supercriticalcases covered a range of

incidenceresultingin a variationof shock strengthfrom moderateto strong-enough

to cause shock- inducedboundary-layerseparation. Transitionwas fixed at 11% chord

in the lower Mach number (sub-critical)cases and at 3% chord in the higher Mach

number (supercritical)cases. The momentum and displacementthicknesses,shape

factor,and skin frictionwere determinedfrom velocity-profilemeasurementsmade at

a number of locationson the model, and the drag was determined from wake rake

measurements. All theoreticalsolutionswere carried out at the measured lift

coefficients. The supercriticalcases employeda small blockagecorrectionof AM =

0.003which is consistentwith recommendations# of Ref. 18.

The pressure distributionfor the two subcriticalcases are compared with

experimentaldata in Figs. 26 and 27. These cases were for a Mach number of M =

0.676,ReynoldsnumberRe = 5.7 x 106, and CL = 0.566 and CL = -0.121. The agreement
with experimentaldatais generallyexcellentover the entireairfoil

# It was actually suggested in Ref. 18 that AM = 0.004 be used as a blockage

correction. However, this reference became available only after the present

calculations are completed. The slight difference of AM = 0.001 did not warrant a

repeat of the computations.
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Figure25 NASA LaRC SupercriticalAirfoil - BoundaryLayerDevelopment
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Figure 27 RAE 2822 - PressureDistribution at Moo= 0.676, CL = -0.121, Re = 5.7 x 106
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for both cases, with a tendency of the theory to predict a slightly higher pressure on

the upper surface near the trailing edge. This trend appears in all the RAE 2822

cases considered, and is likely due to total pressure losses across the shock wave

that are not accounted for in the potential flow formulation. As previously

discussed, the prediction of drag for these two subcritical cases was also in very

good agreement with experimental data (see Table 4).

The pressure distribution for three supercritical cases tested at a Reynolds

number of Re = 6.5 x 106 and a nominal Mach number of M = 0.73 are compared with

experiment in Figs. 28, 29 and 30. Both F-C and N-C solutions are shown in the

comparisons. In addition, in the last case for CL = 0.803, we have included a

solution carried out at the experimentally quoted Mach number to illustrate the

effect of a small Mach number shift (AM = 0.003) on the solution. The F-C solution

clearly shows the best agreement with experiment. In all three cases the agreement

between theory and experiment is excellent on the lower surface and the shock-wave

position and strength on the upper surface are well predicted in the F-C solutions.

This set of results also shows very good agreement with experiment for the pressure

rise through the shock wave. Both the theoretical and experimental results indicate

that the pressure rise across the shock wave is only about one-half of that required

by the normal shock-wave relations. The overall levels of the pressure distribution

on the upper surface of the airfoil are also reasonably will predicted. The small

discrepancies between theory and experiment over the forward part of the upper

surface is probably due to both the roughness strip used to fix transitionand

wall-interferenceeffects. The overpredictionof the pressure on the upper surface

near the trailing edge in Figs. 28 and 29 is likelydue to effectsassociatedwith

the nonzero trailing-edge angle not accounted for in our trailing-edge solution. The

discrepancy is somewhat larger in the higher lift case of Fig. 30, probably because

of the strongershock wave and closenessof the boundary layer to separation. The

poorer agreementmay be due to shortcomingsin the lag entrainmentmethod at high

valuesof the shape factor.

Since the flow field in these last three cases is supercritical, the total drag

is given by the sum of wave drag and profile drag. We have previously shown that the

profile drag of this airfoil can be well predicted by integration of the pressure and

shear stress. Since the present method seems to give a good prediction of shock
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Figure28 RAE 2822 - PressureDistributionat Moo= 0.728, CL = 0.743, Re = 6.5 x 106
(XT= 0.03)
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Figure30 RAE 2822 -- PressureDistributionat Moo= 0.733, CL = 0.803, Re = 6.5 x 10 6 (XT = 0.03)
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strength, it can also be expected to give useful predictions of wave drag and total

drag. This expectation is borne out in the comparison of the drag polar in Fig. 31.

The theoretical solutions are integrated drags determined from the surface pressure

and shear stress distributions. We should point out that useful estimates for the

wave drag can be determined by subtracting the momentum drag (equal to 28®) from the

total drag computed by the surface integrations. We note that the F-C solution is in

good agreement with the measured values of drag. The small underprediction of the

theory evident in the figure amounts to no more than five counts of drag. About half

of the difference is due to the use of first-order differencing (c2 = 0) in the

inviscid solution. The remaining discrepancy can be associated with the slight

overestimate of the pressures on the upper surface near the trailing edge that was

pointed out earlier. These results clearly show that the N-C scheme leads to an

inferior prediction of both shock wave location and drag.
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CL 0.7- ss SS

O THEORY (F-C)
-----,_.---- THEORY (N-C)

I-! EXPERIMENT I
0,6-

_/_7, I I I I I I I

.60 .80 1.0 1.2 1.4 1.6 1.8 2.0 x 10-2

CD

Figure31 RAE 2822 - DragPolarat Moo--_0.73, Re = 6.5 x 106, (XT O.O3)
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The theoretical solution (F-C) for the boundary-layer development on the upper

surface of the airfoil is compared with experimental measurements for the two

subcritical cases in Figs. 32 and 33 and for two supercritical cases in Figs. 34 and

35. Included in these figures are the solutions for the displacement and momentum

thicknesses (6*, 0), shape factor (h), skin friction (cf), and, for the two

supercritical cases, the solution for the source velocity, (Ve(S)) on the airfoil
surface.

The two subcritical flows in Figures 32 and 33 involve mild pressure gradients

and boundary layers not close to separation. The discontinuities near the leading

edge are due to transition from laminar to turbulent flow. Both theory and

experiment show rapid increases of displacement thickness and shape factor near the

trailing edge that are typical of airfoil flows. The agreement between theory and

experiment for all quantities is good for both cases. The good agreement observed

just downstream of transition indicates that the transition jump conditions employed

in the theoretical model were adequate. The close agreement between the

theoretical and experimental values of the momentum thickness at the trailing edge is

consistent with the good predictions of profile drag in these two cases.

The boundary-layer development for the two higher-lift, supercritical cases is

given in Figs. 34 and 35. The overall agreement between theory and experiment is

relatively good over the entire upper surface aside from a tendency to slightly

underpredict 6*, 8, and h between the shock wave and the trailing edge. The higher

lift case considered in Fig. 35 contains data from two different probes. The

differences between the two data sets provide some measure of the uncertainty in the

data. The experimental displacement thickness shows a very rapid and nearly

discontinuous rise through the shock wave, followed by a more gradual but larger

growth toward the trailing edge. The theory gives a good representation of this

behavior in both cases. The solution for the skin friction shows the characteristic

behavior near shock waves; a rapid, nearly discontinuous fall followed by a gradual

increase resulting in the development of a minimum in skin friction at the shock

wave. This behavior is reflected in the solution of the shape factor which shows a

very steep rise followed by a more gradual decrease behind the shock wave. The

agreement between theory and experiment for cf and h is quite good except for the
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points immediatelybehind the shock wave in the CL = 0.803 case in Fig. 35. The
shock strengthin the case is relativelylarge (The local Mach numberupstreamof the

shock wave was ML = 1.31), and the boundarylayer is on the verge of separatingat
the footof the shockwave.

The theoreticalsolutionsfor the correctedsourcevelocityfor the CL = 0.743

and CL = 0.803 cases are shown in Figs. 34d and 35d, respectively. These solutions

show a large and highly localizedincreaseof the sourcevelocity at the shock wave

followedby a more gradual,but equallysignificant,growth towardthe trailingedge.

These results clearlyshow the highly localizednature of the shock wave/boundary

layer interactionin the present theoreticalmodel The interactingboundary-layer

descriptionbasically truncates the delta function behavior that would otherwise

arise at the shock impingementpoint were interactionnot allowedin the formulation.

The resultingsourcevelocitydisplaysa highlypeaked but finitedistributionwhich

increasesin amplitudewith increasingshockstrength(CompareFigs. 34d and 35d.)

The final case consideredis for M = 0.753, CL = 0.743,Re = 6.2 x 106, and XT
= 0.03. The main differencefrom the previous cases is a higherMach number and a

much lower Reynoldsnumber. These conditionslead to a more rearward and stronger

shock wave (ML = 1.35) which, combinedwith the lower Reynolds number, leads to
massive separationat the foot of the shock wave. The pressure distributionand

boundary-layerparameters are compared with experiment in Figs. 36 and 37,

respectively. The agreement between the theoretical and experimentalpressure

distributionsremains excellenton the lower surfacebut deterioratesnoticeablyon

the upper surface. The overalllevelsof the pressure in front of the shock wave are

in good agreement on the upper surface except near the leading edge where the

discrepancyis much larger. However, in the theoreticalsolution,the shock wave is

too far aft, its strengthis overpredicted,and the pressure levelsbehind the shock

wave are overpredicted. The experimentalpressureson the upper surface are much

lower near the trailing edge, showing clear signs of trailing-edgedivergence-a

classicalindicatorof boundary-layerseparation. Althoughboth the theoreticaland

experimentalskin frictiondistributionsclearlyshow separation,pressuredivergence
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at the tailing edge is not apparent in the theoretical results and this must be

considered a major shortcoming of the therory. The failure of the theory to

adequately predict the pressure distribution behind the shock wave is likely due to

an inadequacy in the lag-entrainment method at high values of the shape factor. The

comparisons of the displacement and momentum thicknesses given in Fig. 35a show that

the theory gives a reasonably good description of boundary-layer growth in front of

and through the shock-pressure rise. However, it is seen that the theory seriously

underpredicts the boundary-layer growth behind the shock wave. It is this

underprediction of the boundary-layer thickness behind the shock wave that is most

likely responsible for the observed discrepancy in shock position. The failure of

the method behind the shock wave is also evident in the comparison of the shape

factor in Fig. 37b. The comparison of the skin friction is given in Fig. 37c. The

values of the skin friction in the reversed flow could not be determined in the

experiment. However, the presence of separation could be detected and such points

are indicated by the filled symbols in Fig. 37c. As previously noted, the skin

friction in the theoretical model is set to zero in regions of separation. Note that

both theory and experiment predict separation behind the shock wave.

The solution for the surface source velocity in Fig. 37d shows an extremely

large increase at the shock wave because of separation. In general, this is a rather

extreme case for the present theory, which was not intended to deal with regions of

extensive separated flow. Nevertheless, the present theory does seem to provide a

reasonably good prediction of the overall features of the flow and a surprisingly

accurate prediction of the drag. The theoretical drag was CDB = 0.0245 compared to

the experimental value of CDB = 0.0242. In view of the significant differences

between the theoretical and experimental shock strength and location and

displacement-thickness distributions, this good prediction of the drag should be

considered fortuitous.

Collyer and Lock (Ref. 18) recently carried out similar comparisons between the

RAE 2822 data and results of their method. Their method is similar in many respects

to the present full viscous-flow theory in that both include the wake-thickness and

wake-curvature terms in the matching conditions. The Collyer-Lock method differs

from the present method in three ways: (I) it does not account for the strong

interaction at the trailing edge; (2) it requires significant numerical smoothings

particularly near the trailing edge while the present method uses no smoothings; and
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(3) it employs a special partially-conservative (P-C) scheme while the present

method uses a standard fully-conservative (F-C) method. The P-C differencing method

involves an arbitrary parameter, _, that weighs the relative proportion of

conservative (_ = i) to non-conservative (_ = 0) differencing used in the method.

The position of the shock wave and the value of the drag in the P-C method seemed to

be sensitive to the value of %. Good agreement with data was demonstrated in Ref. 18

but for values of % that were varied for the different cases. The present work

clearly indicated that the best results were obtained with the fully-conservative

difference scheme in all cases.

Comparisons of the RAE 2822 data set with Deiwert's (Ref. 20) Navier-Stokes (NS)

method were also recently carried out by Swafford in Ref. 77. The Navier-Stokes

calculations showed very poor agreement with the RAE 2822 data. The poor performance

of the NS method in this case was very likely due to the coarse grid employed in the

computations of Ref. 77 (Fourty points were used around the airfoil in the NS

computations compared to the 160 points used in the present set of calculations.)

The coarse grid notwithstanding, the NS method required about ten times greater

computer time than the present interacting boundary-layer method.
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6. CONCLUDING REMARKS

In this report we described important extensions to the usual interacting

boundary-layer theory for computing the viscous effects on airfoils. Our method was

based on formal asymptotic expansions of the full Reynolds equations of turbulent

flow for Re_®. Formal analysis indicated that both wake-induced effects and normal

pressure-gradient effects near trailing edges contribute to the lowest-order so-

lution. Consequently, both must be retained along with standard displacement effects

on the airfoil in order to obtain a consistent formulation. The main contributions

of the present work were the determination of the local trailing-edge solution and

the development of systematic procedures for incorporating wake and trail-edge inter-

action effects into the theoretical description. The inner solution accounted for

normal pressure gradient effects across the boundary layer in the vicinity of the

trailing edge and is valid for airfoils with cusped or nearly cusped trailing edges.

Results presented in this report for a variety of airfoils indicated that the

new method gave reasonable predictions of the pressure distribution, shock location,

forces, and moments on airfoils in transonic flows. In particular, the new method

seems to give very accurate predictions of the absolute levels of the drag. Compara-

tive studies have indicated that both the wake and trailing-edge corrections terms

make an important contribution that must be included in the formulation if accurate

predictions of section characteristics are to be obtained. Neglect of either contri-

bution leads to noticeable errors in shock position, pressure distribution, lift, and

drag. In addition, the present study clearly indicated the superiority of conserva-

tive finite-difference formulations. The use of non-conservative differencing leads

to substantial over-predictions of the drag and to shock positions that are too far

forward. The present method is more complete and is clearly an improvements over

previous boundary-layer type methods. It agrees well with experiment, requires lit-

tle computing time, and is, therefore, well suited to aerodynamic design. The method

requires about I0 minutes on an IBM 370-168 computer to obtain converged solutions

for unseparated cases. This is about three times that required for a corresponding

calculation of an inviscid flow. These computer times are for unsmoothed versions of
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the theory. Faster run times can be achieved with numerical smoothings but only at

the expense of noticeably degraded solutions.

The present method does not properly treat the details of shock wave/boundary

layer interactions. These interactions produce significant normal pressure gradients

in the boundary layer that are completely ignored in the simple interacting boundary-

layer equations used in our approach. Nevertheless, the new method seems to give

adequate predictions of the pressure distributions in the shock-wave interaction

zones. It is a well known experimental fact that the pressure rise through a shock

wave is about half that required by the normal shock-wave relations. This behavior

is well represented by the present method which also seems to give a consistently

good prediction of the pressure level behind the shock wave. The consequences of

using a crude description of the shock wave/boundary layer interaction process do not

appear to be great. The overall increase in displacement thickness through the shock

wave is reasonably well predicted by the present method, and this seems to be the

most important ingredient in obtaining good overall predictions of the section char-

acteristics of airfoils in supercritical flow.

The present method has two other more important deficiencies that should be men-

tioned. Namely, it does not properly treat the flow near the trailing edge of an

airfoil with non-zero trailing edge angles, and it does not adequately deal with

boundary layer separation. Fortunately, the present method seems to yield reasonably

good predictions when applied to more general airfoils with non-zero trailing edge

angles provided the trailing edge angles are small. However, the solution for the

NACA 0012 airfoil (@TE = 16°) showed pressures that were somewhat too high near the

trailing edge and drags that were substantially lower than experimental values.

These discrepancies were undoubtedly caused by pressure variations across the bounda-

ry layer in the vicinity of the trailing edge that are not accounted for in our local

inner solution. These extra pressure variations across the boundary layer are gen-

erated by the curved streamlines associated with the local wedge flow near the trail-

ing edge. These effects can be incorporated into the method through an appropriate

generalization of our inner trailing-edge solution. This improvement of the theory

would very likely result in better predictions of drag for this type of airfoil and

should therefore be pursued. Although the present method functions for separated

flow has produced reasonably good agreement with experiment in some cases, it is

clearly not satisfactory in this regard. The lag-entrainment method was developed
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from a data base for attached boundary layers and was not intended to deal with sep-

arated flows or with boundary layers with large shape factors. Treatment of

separation in the present method can be improved through improvements in the

lag-entrainment method (Some effort in this direction has been reported (Ref. 78).)

or through the use of other integral methods (Ref. 79) specifically designed for sep-

arated turbulent boundary-layers. In addition, the iteration scheme used to solve

the coupled inviscid and boundary layer equations loses some effectiveness when sepa-

ration is present. In these situations, solutions can be obtained only through the

use of drastically reduced relaxation factors, resulting in very long computer times.

Improved convergence can probably be achieved through the use of an iteration scheme

developed by Carter (Ref. 80) and LeBalleur (Refs. 81 & 82) for separated flows.

The most important result of the present work is the demonstration that a simple

interacting boundary-layer approach can be effective tool for predicting viscous ef-

fects on airfoils. Unfortunately, because of uncertainties in the experimental data,

due primarily to wind-tunnel wall interference, this must be regarded as a tentative

conclusion. A more clear-cut validation of the new theory would require improved

wind-tunnel tests with either small wall effects or accurate and well-documented cor-

rections.
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7. EPILOGUE

The present report was completed in early 1980 and the computations reported

herein were carried out with a preliminary version of the GRUMFOIL computer code des-

ignated MCMJ-4. Since that time, the GRUMFOIL code has undergone extensive modifica-

tion to incorporate a variety of improvements made to the theoretical formulation.

First, the hybrid, SLOR-direct solver, used to solve the full potential equation, was

replaced with a multi-grid method (Ref. 3) which accelerated convergence by a factor

of five in computing time. Second, an improved, second order artificial viscosity

and far field treatment was incorporated into the finite difference scheme used for

the inviscid flow. These significantly reduced the spatial truncation error, im-

proved the reliability of the second-order versions of the code, and reduced by

one-half the number of mesh points required to achieve a given accuracy. Finally,

the turbulence closure relations employed in the original Green's lag entrainment

method modified to improve the treatment of separated flow, and the direct method

employed for the global, viscid-inviscid iteration was replaced with Carter's

semi-inverse method to permit solution of the resulting turbulent boundary layer

equations when separation is present. Together, these changes led to a more accu-

rate, robust, and faster code which is capable of treating flows with extensive

regions of separated flow and which runs about ten times faster than the original

MCMJ-4 version. Further details of the new code, designated MCMJ-9N, are given in

Ref. 83. The user manual in the companion volume, Ref. 69, is based on the new

MCMJ-gN version of the code.
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