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ABSTRACT

This paper describes a new interacting boundary-layer approach for computing the
viscous transonic flow over airfoils. The theory includes a complete treatment of
viscous-interaction effects induced by the wake and accounts for normal pressure
gradient effects across the boundary layer near trailing edges. The method is based
on systematic expansions of the full Reynolds equation of turbulent flow in the limit
of Reynolds numbers, Re = «. The theory employs a local inner solution to describe
the strong interaction region at trailing edges. Procedures are developed for
incorporating the local trailing-edge solution into the numerical solution of the
coupled full-potential and integral boundary-layer equations. Although the theory is
strictly applicable to airfoils with cusped or nearly-cusped trailing edges and to
turbulent boundary layers that remain fully attached to the airfoil surface, the
method has been successfully applied to more general airfoils and to flows with small
separation zones. Comparisons of theoretical solutions with wind-tunnel data indi-
cate the present method can accurately predict the section characteristics of
airfoils including the absolute levels of drag. The results of the study clearly
demonstrate the importance of including both wake and normal pressure-gradient
effects in the theoretical formulation and of using a fully conservative difference
scheme in the solution of the inviscid equations. This study indicates that a simple
interacting boundary-layer approach can be an effective tool for the prediction of

viscous effects on airfoils.
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1. INTRODUCTION

The development of theoretical methods for the prediction of the section charac-
teristics of airfoils has always been an important problem area in aerodynamics. It
continues to receive much attention today, with interest focusing on the numerical
solution of various theoretical models for the viscous flow over airfoils. Recent
advances in numerical techniques for solving the full non-linear potential equation
have led to practical methods for computing the lift and drag of inviscid transonic
flows containing shock waves (Refs. 1, 2 & 3). It is, however, well known that
viscous effects are important and must be taken into account in these flows if accu-
rate section characteristics are to be predicted. This is particularly true for
supercritical flow over rear-loaded airfoils for which the combination of shock waves
and aft camber combine to produce significantly thickened boundary layers over the
rear upper surface. This in turn leads to much larger viscous effects than are expe-
rienced on conventional airfoils in supercritical flow. For heavy rear loading, the
boundary layer can reduce the lift by a factor of two below inviscid levels, even at

Reynolds numbers as large as 107.

In most practical problems the Reynolds number is large, the boundary layers are
mostly turbulent, and the direct effects of viscosity and turbulent transport are
confined to thin shear layers on the airfoil surface and along the wake. In these
situations the viscous flow can be effectively analyzed by interacting boundary-layer
theory (IBLT) in which the flow field is divided into a primary inviscid region, thin
shear layers, and localized strong-interaction regions. Previous applications of the
theory to airfoils used a highly simplified formulation based on the neglect of pres-
sure variations across the shear layers and neglect of all interaction effects
induced by the wake. This formulation led to a description in terms of the coupled

inviscid and Prandtl boundary-layer equations which are solved by standard iterative
schemes. These theories account for the primary viscous effect due to the displace-
ment thickness on the airfoil but do not properly treat viscous effects due to the

wake and in shock-wave/boundary-layer and trailing-edge interaction regiomns.



The new formulation developed in the present study extends the conventional
boundary-layer approach to include a full treatment of the wake and normal pres-
sure-gradient effects at the trailing edge. Our method is based on systematic
expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds
number, Re * «. The method of matched asymptotic expansions leads to a description
of the flow in terms of inviscid regions and thin shear layers near the airfoil and
wake. A local inner solution is developed to correct the standard Prandtl
boundary-layer formulation for strong-interaction effects at the trailing edge. This
work can be viewed as an extension and further development of Melnik and Chow's
turbulent-interaction theory previously described in Refs. 4 & 5. The method is
applicable for high Reynolds number‘flow over general airfoil shapes with cusped or
nearly cusped trailing edges and free-stream Mach numbers less than one. The method
is intended for flows that are turbulent over most of the airfoil and that are not
separated. However, provisions were made to allow for the presence of small sepa-
ration zones so that the resulting code will function and provide at least a rough

description of the solution for these cases.

The formulation of the present paper employs a version of the mixed-flow relax-
ation technique developed by Jameson (Refs. 6 & 7) for solving the full-potential
equation in conservation form*. The method employs a conformal mapping of the
airfoil to a circle to obtain a useful computational grid and uses a direct solver to
accelerate convergence. The inviscid boundary conditions are modified to account for
viscous effects using a surface-source formulation of the matching conditions thus
avoiding the need to carry out repeated conformal mappings as required in displace-
ment-thickness approaches. An iterative scheme is employed to obtain a
self-consistent solution of the coupled boundary-layer and inviscid-flow equations.
The viscous matching conditions employed in the theory account for displacement
effects on the airfoil as well as both wake-thickness and wake-curvature effects.
The local inner solution developed in Ref. 5 is used to correct the standard
boundary-layer solution for strong-interaction effects at the trailing edge. 'The

modified viscous method accounts for the significant pressure variation across the

*A nonconservative option is also provided in the computer code.



boundary layer and removes the nonuniformity of classical boundary-layer theory near
trailing edges. The resulting theory provides a completely rational treatment of the
trailing-edge region for cusped airfoils at lift. It does not account for the addi-
tional nonuniformity arising on airfoils with sharp but non-cusped trailing edges.
However, this nonuniformity can be ignored and the resulting computer code can be
applied to general airfoils with nonzero included angles. Results given later in the
paper indicate that the method gives good overall results for airfoils with small

trailing-edge angles (less than 10°).

The present theory also does not provide for a proper treatment of the
strong-interaction phenomenon near shock-wave/boundary-layer interaction zones. It
ignores the fact that the boundary-layer approximations fail in these regions and
determines the solution with a conventional interacting boundary-layer formulation.
Nevertheless, results obtained with this code reported in Refs. 5 & 8, and in the
present study indicate that the method yields remarkably accurate results for the

pressure distribution near shock waves.

The boundary-layer development on the airfoil and in the wake is determined from
simple integral methods. The laminar boundary layer starting from the stagnation
point is computed by an extention of Thwaites' method to compressible flow (Ref. 9).
A transition to turbulent flow is made at a given point on the airfoil on the basis
of either assigned position or by the use of established transition criteria. The
method also checks for leading-edge separation and whether it is of the long or short
bubble type and then assigns transition at the separation point. The development of
the turbulent boundary layer and wake downstream of transition is determined from the

lag-entrainment method of Green et al. (Ref. 10).

Calculations carried out with a preliminary version of code (Refs. 5 & 8)
employed a great deal of numerical smoothing of the surface-pressure distribution and
boundary-layer parameters near the shock wave and trailing edge. It has since been
determined (Ref. 11) that the smoothings were responsible for the "spiked" pressure
distributions observed near the trailing edge in these early studies. We have also
found that numerical smoothings are not necessary for convergence and they have,

therefore, been eliminated from the method.



There have been a number of other recent attempts to incorporate boundary-layer
corrections into full-potential flow codes. The work of Bauer, Garabedian and Korn
(BGK) (Ref. 12) is based on a non-conservative (N-C) treatment of the full potential
equation and a Nash-McDonald integral method for the turbulent boundary layer. It
does not solve for the laminar boundary layer near the leading edge and does not use
transition criteria to start the turbulent flow. It treats boundary-layer displace-
ment effects on the airfoil through a displacement-thickness formulation, requiring
repeated conformal mappings of the equivalent airfoil to a circle. Similar methods
have also been developed by Bavitz (Ref. 13) and Carlson (Ref. 14). These methods
take no account of wake-induced viscous effects nor strong-interaction effects near
shock waves or trailing edges. The§ all employ extensive numerical smoothings which
are apparently needed to assure convergence of the inviscid/boundary layer iteration.
These codes also contain adjustable parameters which can be used to improve agreement
with experiment. The non-conservative formulation employed in these methods leads to
the generation of spurious mass at the shock wave which causes an extra "sink" drag.
A post-solution correction for the spurious sink drag was added to a later version of

the BGK code (Ref. 15) resulting in improved drag predictions.

A similar method was also developed by Lock and Collyer (Refs. 16, 17 & 18) of
the Royal Aircraft Establishment (RAE). They employed a more complete boundary-layer
formulation, similar in many respects to the present method. A surface-source
formulation was used to represent displacement effects on the airfoil with both
wake-thickness and wake-curvature terms included in the matching conditions.
However, strong interaction effects at the trailing edge were not taken into account.
Numerical difficulties in implementing the wake-gurvature condition were reported and
extensive numerical smoothing of the solution near the trailing edge was required to
obtain converged solutions. It is likely that the neglect of strong interaction at

the trailing edge was at least partially responsible for these problems.

There has been some controversy regarding the proper choice of differencing,
fully-conservative (F-C) or non-conservative, to be used in these calculations. As
mentioned previously, non-conservative differencing introduces large errors into the
drag prediction that require correction. There are also indications (Refs. 5; 8 &
11) that the pressure rise across the shock wave is underestimated with a non-

conservative formulation. Lock (Ref. 19) also produced some results with a version



of the RAE viscous method employing a quasi-conservation formulation showing shock
waves that are too far aft. To improve the performance of their method, a partially
conservative (P-C) scheme was also developed by the RAE (Ref. 18) consisting of a
linear combination of non-conservative and quasi-conservative differencing. The
method contained an arbitrary parameter, X, that defines the weighting of the

non-conservative and quasi-conservative formulae, and which was adjusted to obtain
good agreement in shock position for a few selected cases. The present study indi-
cates that the fully-conservative method clearly gives the best predictions of shock
position, shock strength, and drag provided that the complete boundary-layer formu-

lation of the present method is employed in the computations.

It is difficult to form a firm opinion regarding the adequacy of interacting
boundary-layer theory for the airfoil problem on the basis of results obtained with
either the BGK or RAE methods. The neglect of potentially important viscous effects
in the theoretical formulation and the use of extensive numerical smoothing and
adjustable parameters in the ccmputer code definitely obscure the meaning of the
results obtained to date. The shortage of reliable experimental data with
boundary-layer information and the uncertainties associated with wind-tunnel wall
effects have also impeded progress on the evaluation of the theoretical methods.
Accurate Navier-Stokes (NS) solutions obtained on fine grids could fill this void

but, unfortunately, suitable solutions have not yet appeared in the literature.

The present work is a step in the direction of eliminating some of the above
problems. For airfoils with cusped trailing edges, the present method includes all
of the leading-order viscous terms consistent with a rational asymptotic analysis,
aside from the neglect of normal pressure gradient effects at shock waves. The
absence of these latter effecks in the theoretical model does not appear to be of
great consequence if the shock wave is not "too close" to the trailing edge. The
present mefhod also avoids all numerical smoothings, contains no adjustable para-
meters (aside from those appearing in the turbulence model and transition criteria),
and yields accurate solutions to the interacting boundary-layer equations
unencumbered by extraneous numerical issues. The organization of the remainder of

this paper is outlined below.



In Section 2 we describe the viscous-interaction formulation used in the present
work including a brief description of the classical boundary-layer formulation and an
outline of the Melnik-Chow strong-interaction trailing-edge theory. In Section 3 we
describe the boundary value problem governing the outer inviscid flow and outline the
numerical procedures used to solve the inviscid equations. In Section 4 we discuss
the methods used to determine the solution in the laminar and turbulent boundary
layers and to evaluate the matching conditions. In Section 5 results are given for
various airfoils which illustrate the importance of the individual viscous effects
that appear in the theoretical model. These include wake thickness, wake curvature,
and strong interactions at the trailing edge. Comparisons with experimental data are
also provided including some date for several important boundary-layer quantities.
In Section 6 we discuss the significance of this work, summarize the principal
conclusions of the study, and identify related problem areas requiring further
research. An epilogue is presented in sections which summarizes some improvements
that have been made to the method since a preliminary version of this report was

completed in 1980.



2. VISCOUS FLOW THEORY

In this section we describe the viscous flow formulation employed in the present
work. We will review conventional boundary-layer theory, describe the.development of
the local trailing-edge solution, and will indicate how the conventional matching
conditions can be corrected for strong interactions at the trailing edge. We first

briefly review previous theoretical studies of viscous interaction on airfoils.

2.1 BACKGROUND

Traditionally, two classes of methods have been used for viscous interactions on
airfoils at high Reynolds numbers. One is based on the direct numerical solution of
the full Reynolds equations of turbulent flow (Ref. 20) while the second is based on
Interacting Boundary Layer Theory (IBLT) (e.g., see Ref. 21). A combination of
these methods leading to a direct numerical solution of a "thin-layer" or parabolized
approximation to the full Reynolds equations have also recently appeared (Refs. 22,
23 & 24). Although methods based on the numerical solution of the full or
approximate Reynolds equations should be expected to yield the best solutions, they
have obtained only qualitative results to date. The methods are computationally
expensive and, consequently, have suffered from poor resolution due to the use of
coarse meshes - particularly in the streamwise direction. At present, it seems that
more accurate solutions can be obtained with far less computing time with a
boundary-layer type approach that takes advantage of the availability of fast
numerical methods for solving the full-potential equation. These methods permit the
use of relatively fine grids leading to solutions with good spatial resolution.
Because of their basic simplicity and high speed, boundary-layer methods have gained

widespread favor in the engineering community.

It should be noted, however, that although boundary-layer methods have been used
for many years and have become one of the standards methods for computing viscous
flows over airfoils, a completely satisfactory interacting boundary-layer
formulation for this problem has not yet been achieved. The standard boundary-layer
approach leads to a description of the flow in terms of coupled inviscid and

boundary-layer equations which are solved by iteration to obtain self-consistent



solutions. The theory is based on an asymptotic expansion of the full viscous
equations in the limit of Reynolds number, Re * «». The asymptotic theory leads to a
formal derivation of the matching conditions coupling the inviscid and viscous flows.
In this way, several terms appear in the matching conditions, all of which should be
included in a consistent, lowest-order description. Unfortunately, in most previous
works potentially important terms associated with the wake have been dropped from the
matching conditions. In addition, there are local failures of the boundary-layer
approximations in strong-interaction regions near shock waves and trailing edges.
Thus, a complete interacting boundary-layer formulation should, in principle,
consider all of the following factors:

o displacement-thickness effects on the airfoil

o displacement-thickness effects in the wake

o wake-curvature effects

®© strong-interaction effects at the trailing edge

o strong-interaction effects at shock waves.

The relative magnitude of these effects can be expressed in terms of a basic
small parameter, &, related to the Reynolds number, Re, such that & vanishes as
Re * «. For turbulent flow it is convenient to identify & with a typical value of
the friction velocity on the airfoil surface. For the choice £ = 0(1/&nRe), the
boundary-layer thickness, 8§, is 0(g) and the displacement and momentum thicknesses,
6* and B, are both 0(82). The boundary-layer formulation can be developed in a
formal asymptotic expansion in the limit & @+ 0. A formal asymptotic theory has been
developed for non-interacting turbulent boundary levels by Mellor (Ref. 25), Bush and
Fendell (Ref. 26), Yajnik (Ref. 27), and Afzal (Ref. 28) leading to a boundary layer

with a law-of-the-wake/law-of-the-wall, two-layer structure.

The displacement effect arises from a matching of the inviscid and
boundary-layer solutions. It produces an 0(52) perturbation to the outer inviscid
solution which can be incorporated into the solution through the concept of an
equivalent displacement body or equivalent source flow at the surface. In the first
approach, the equivalent body is formed by adding the boundary-layer displacement
thickness to the airfoil and trailing streamline, while in the source formulation,
sources and sinks are placed on the airfoil and trailing streamline. The equivalence
of these formulations (and others) was demonstrated by Lighthill (Ref. 29). The
works of Stuper (Ref. 30) (1933), Pinkerton (Ref. 31) (1936), and Nitzberg (Ref. 32)



(1946)-in a rough-way, and Preston (Refs. 33 & 34) (1945, 1949) more accurately, were
the first to apply the Prandtl boundary-layer theory to compute displacement effects
on airfoils. Preston used the surface-source formulation to account for displacement
effects on both the airfoil and wake by distributing sources and sinks along the
airfoil and wake. These methods have come into common usage although there has been
a tendency in recent work to ignore, without justification, the displacement effects

induced by the wake.

The wake-curvature effect arises from the turning of low momentum fluid in the
wake along curved streamlines. The turning of the flow induces a pressure drop
across the curved wake that leads to additional terms in the matching conditions.
These terms enter the formulation of the outer inviscid problem through a boundary
condition specifying a discontinuity in pressure along the trailing streamline. The
magnitude of the effect is 0(82) and it produces effects on the outer inviscid flow
that are similar to a jet flap with a negative jet-momentum coefficient of strength
0(52). From this is follows that wake curvature leads to a reduction in left that is
the same order as that produced by the displacement thickness. The importance of the
wake-curvature effect and its relationship to the jet flap was first noted by Preston
(Ref. 35) in 1954 (see also Spence and Beasely - Ref. 36). However, serious attempts
to include wake-curvature effects in interacting boundary-layer calculations were not
undertaken again until the mid 1970's in a series of papers by Firmin, Hall, Lock,
and Coyller of the RAE (Refs. 16-19 and 37-39) and by the present authors in Refs. &,
5 and 8. Although there were differences in the individual results, all displayed

significant effects of wake-curvature on section characteristics.

Interacting boundary-layer theory, as just described, is not uniformly valid at
trailing edges of airfoils. Non-uniformities in the theory are caused by
singularities in the inviscid solution for the pressure gradient and streamline
curvature at the trailing edge and by the change in the no-slip condition across the
trailing edge. The singularities of the inviscid solution lead to large local
streamline curvatures and to a breakdown of the boundary-layer approximations near
trailing edges. Because of this non-uniformity, the pressure can no longer be
regarded as constant across the boundary layer near trailing edges. This is
especially important since pressure variations across the boundary layer affect the
Kutta condition and, therefore, lead to relatively large global effects. Two types

of singularities arise in the outer inviscid solution. One is related to lift and



arises at the trailing edge of any lifting airfoil carrying a non-zero load at the
trailing edge. The second, due to the stagnation point singularity, appears at the

trailing edge of an airfoil with a non-zero included angle.

An analysis of the strong interaction problem associated with lift was initiated
by the first two authors in Ref. 4 and completed in Ref. 5. In these papers it was
shown that the inviscid flow leads to square root singularities in the pressure
gradient and wake curvature at the trailing edge and that, as a result, normal
pressure gradients were important in the boundary layer near the trailing edge, and
must be retained in a consistent description of the flow in these regions. It was
also concluded that a self-consistent boundary-layer formulation and the related
concept of an equivalent displacement body was not valid near trailing edges in

turbulent flow.

A rational asymptotic theory was developed to describe the local flow near
trailing edges of cusped airfoils. The analysis was carried out for compressible
flow under the assumption that the flow as subsonic in the immediate:vicinity of the
trailing edge. It was also assumed that the boundary layer was an attached,
fully-developed turbulent flow near the trailing edge and that the velocity profiles
could be adequately represented by Cole's law-of-the-wake/law-of-the-wall form.
Under these assumptions, it was shown that, in the limit € * 0, the boundary layer
developed a three-layer structure near the trailing edge that is a generalization of
the two-layer structure arising in non-interacting boundary layers. The three-layer
structure extended over a streamwise extent of the order of a boundary-layer
thickness (i.e., 0(e)). The pressure distribution was completely determined from the
solution in the outermost region, encompassing most of the boundary layer. To
leading order, the flow in the outer region is governed by linearized inviscid,
rotational flow equations. The dominant vorticity in the trailing-edge region is
"frozen" along the streamlines of the inviscid flow and is therefore completely

determined by the upstream velocity profiles.

The theoretical model accounts for both the pressure variation across the
boundary layer and for the vorticity in the boundary layer. The two inner layers
were asymptotically thin compared to the outer, inviscid shear layer and, hence, did
not effect the latter to lowest order. Thus, the solution of the outer problem for

the pressure distribution was independent of the Reynolds stresses and closure
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assumptions except through their influence on the shape of the velocity profile just
upstream of the trailing-edge region. Analytic solutions were given for the local
trailing-edge problem in Ref. 5. These solutions showed that the pressure

3/2) which is an order of

perturbations generated in the trailing edge region are 0(e
magnitude larger than the 0(82) disturbances generated by conventional displacement

and wake-curvature effects.

Similar interaction effects are also expected from the non-uniformity associated
with the stagnation point singularity arising on airfoils with non-zero trailing-edge
angles. Theoretical evidence indicates that the turbulent interaction changes the
pressure by 0(1) from the stagnation pressure arising in the inviscid solution.
Thus, this effect is clearly larger than the others considered so far and can be
expected to have important effects on the drag of airfoils with wedge-shaped trailing
edges. Unfortunately, definitive studies of this important strong-interaction

preblem have not yet been carried out.

Aside from the non-uniformities stemming from singularities in the inviscid
pressure distribution, an additional non-uniformity arises from the discontinuous
change of the no-slip boundary condition across the trailing edge. The jump in
boundary condition at the trailing edge causes an additional breakdown of the
interacting boundary-layer solution. A similar effect arises in laminar flow with
the transition of the laminar boundary layer to a wake across the trailing edge. In
this case, local asymptotic solutions were developed for the non-1lifting flat plate
by Stewartson (Ref. 40), Jobe and Burggraf (Ref. 41), Veldman and van de Vooren (Ref.
42), and Chow and Melnik (Ref. 44) and for the lifting case by Brown and Stewartson
(Ref. 43) and Chow and Melnik (Ref. 44). These solutions were based on the
triple-deck theories of laminar interacting flows. Unfortunately, because of the
difference in structure of laminar and turbulent flows, the laminar triple-deck
theories do not apply to the turbulent problem. In turbulent flow the transition of
the boundary layer to a wake is largely controlled by the law-of-the-wall region
which has no counterpart in laminar flow. Since the law-of-the-wall region is
exponentially thin compared to the boundary-layer thickness, the transition process
will have no effect on the leading-order outer solution for the pressure distribution
in turbulent flow, while in laminar flow it has a dominant effect. In general, the
turbulent boundary layer/wake transition process in the wall layer will have only a

higher-order effect on the outer solution and need not be considered in the solution
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for the pressure distribution and section characteristics. However, for a symmetric,

cusped airfoil at zero incidence the pressure-induced, strong interaction vanishes

and the local flow is dominated by the turbulent boundary/layer/wake transition which
then becomes the most important interaction effect near the trailing edge. Although
there have been some exploratory studies of this latter problem by Robinson (Ref. 45)
in 1967 and more recently by Alber (Ref. 46), these works were not definitive and
they did not establish the correct asymptotic flow structure at large Reynolds
numbers. Fortunately, the lack of knowledge of this aspect of the solution will only
affect higher-order terms and need not be taken into account in order to determine

the leading-order solution for the pressure, lift and drag.

For transonic flow an additional strong interaction arises at points where shock
waves impinge on the boundary layer. In turbulent flow, discontinuities in pressure
across the shock wave induce corresponding discontinuities in displacement thickness
(Refs. 47-48), leading to a breakdown of theories based on an interacting
boundary-layer description. The shock wave penetrates into the boundary layer and
generates large pressure variations across the layer that invalidate the standard

boundary layer approximations.

Rational asymptotic theories, recently developed (Refs. 47-53) to describe
shock-wave/turbulent boundary-layer interactions, are based on a large Reynolds
number (g * 0) asymptotic expansion of the full Reynolds equations. The boundary
layer develops a multi-layer structure, similar to the turbulent trailing-edge
interaction discussed previously. The pressure disturbances generated by the
interaction were shown to be the order of & x (shock strength) and hence larger than
the classical displacement effect for shock strengths greater than 0(g). The
analyses in Refs. 47-53 considered weak shock waves of various strengths. It was
also demonstrated in these works that the shock strength required to separate a
turbulent boundary layer is 0(1). These works considered only local behavior and did
not address the question of integrating these solutions into a complete airfoil
problem. Fortunately, this is not a major concern here since the normal pressure
gradient effect in shock-wave/boundary-layer interactions seem to have only a highly
localized effect on the pressure distribution. Alternative formulations of
shock-wave/boundary-layer interactions in the turbulent flow have also been proposed
recently by Inger and his co-workers (Refs. 54 & 55). This work was based on

application of Lighthill's laminar interaction theory (Ref. 56) to the turbulent
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problem. Inger's theory represents an ad-hoc approach to the problem that is not

related to a rational asymptotic description of the flow.

2.2 INTERACTING BOUNDARY-LAYER THEORY

We consider the problem of a uniform viscous flow over an airfoil of chord, c,

free-stream speed, Um, and density, p,» at an angle of attack, «, and Mach number,
Mw. The main assumptions of the work are that the Reynolds number Re is large in an
asymptotic sense and the free-stream Mach number is less than one. Under these
conditions the problem can be analyzed by rational asymptotic methods based on
expansions of the full Reynolds equations in the limit Re » « or £ * 0. In this
limit, a boundary-layer type flow structure develops as sketched in Fig. 1. The flow
outside the strong-interaction region can be described by a standard
inviscid/boundary-layer formulation with conventional matching conditions coupling
the solution. In the standard approach, the solution in the outer region is
represented by a sum-type asymptotic expansion. The solution in the outer region is
inviscid to all orders, apart from exponentially small terms, with the leading term
given by a solution to the full non-linear inviscid equations. Second and
higher-order terms of the outer solution are governed by linearized inviscid flow

equations.

This representation is somewhat inconvenient for supercritical flows because of
the need to deal with perturbations of discontinuous solutions. This problem can be

avoided by use of a slightly different representation for the outer solution. In

EXTERNAL INVISCID FLOW

BOUNDARY LAYER

y 2
z > - ~ WAKE

\

=
TRAILING EDGE REGION”

[

DISPLACEMENT THICKNESS

Figure 1 Flow Field Regions at High Reynolds Numbers
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this alternative formulation, the outer inviscid flow is governed to all orders, by
the full non-linear inviscid-flow equations with boundary conditions on the airfoil
and in the wake determined from the viscous matching conditions. Higher-order
viscous effects on the outer inviscid flow appear only through the matching
conditions. Thus, in this formulation the full non-linear inviscid equations must be

solved repetitively, employing successively improved matching conditions.

The form of the solution in the inner boundary-layer region depends on whether
the boundary layer is a laminar or turbulent. In the laminar case, the solution has
the form given by higher-order boundary-layer theory with the leading term governed
by the usual non-linear Prandtl boundary-layer equations. For turbulent boundary
layers, the form of the solution changes because of the two-layer structure of
turbulent boundary layers at high Reynolds numbers. The appropriate asymptotic
theory has been worked out for fully-developed turbulent boundary layers in Refs.
25-28. The leading-order solution is governed by boundary-layer equations with
linearized convective terms. However, the usual non-linear boundary-layer equations
do provide a composite equation that is valid to second-order in both the wake and
wall regions of the turbulent boundary layer. In the present work we follow the
composite equation approach and use the standard non-linear boundary-layer equations

to describe the flow in both the laminar and turbulent boundary-layer regions.

The outer inviscid and inner boundary-layer solutions can be combined in the
usual fashion to form a single composite expression that is uniformly valid in both
regions. We employ curvilinear coordinates (s,n) and corresponding velocity
components (U,7V) along and normal to the streamline defining the airfoil and wake.
In this study we employ nondimensionalized quantities with the velocities and density

normalized by free stream velocity and density (Uw, p)s the pressure and shear

stresses by twice the dynamic pressure, (p°° Ui) and all lengths are scaled by the
chord (c) of the airfoil. Composite expressions are denoted by the upper case script
letters. The composite solution for the velocity components and the pressure are
then represented in the form of a sum of the inviscid solution (capital letters) plus
boundary layer solution (lower-case letters) minus the common part (subscript cp) as

follows:

U=U(s, n; vg; [VIl; T)+u(s, 0) —u, (s, 0) (1la)
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V=V (s, n; Vg; [VI; T)+v(s, D) -V (s, 0) (1b)
® =P (s, n; vy [VI; T)+p(s, 0) — pg, (s, 0) (1c)

where n is a stretched inner variable defined by
n=n/e (2)

Similar expression are also assumed for the density, ®@, and temperature, T. The
quantities, Vo ﬂ:V:ﬂ and T appearing in the inviscid solution are functions entering
the boundary conditions that are determined by matching the inviscid and
boundary-layer solutions. The function vo(s) specifies the source velocity on the
surface of the airfoil,[[v(s)ﬂ specifies the jump in source velocity across the
wake and T(s) is the circulation distribution along the wake. For an inviscid flow
all three functions are zero as are the contributions from the boundary-layer and
common-part term in the above representation. The solution is then given by the

first term with boundary condition V(s,o0) = 0.

If u(s,n) and p(s,n) are the boundary-layer solutions for the streamwise
velocity and density profiles, the boundary-layer solution for the normal component

of velocity and pressure distribution can be written in

d d n
n .
p(s,ﬁ)=p(s,0)—x(s)peU§n+K(s)f (Pe Ui —pu®)dn+0(€?) (3b)
0

where k(s) is curvature of the airfoil or the wake streamline and where Pe and Ue are

the surface values of the inviscid solution defined by

pe(s)=lin3R (s, n) (4a)
U, (s)=1lim U(s, n) (4b)
n-0

We introduce here the definitions of the surface values of the normal velocity and
pressure from the outer inviscid solution as:
V,(s)=1lim V (s, n) (4c)
n-~90
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P,(s) =1im P(s, n) (4d)

n- 0

+
Note that the above quantities are generally different for n * 0 , the upper surface
and n * 0, the lower surface. When necessary to distinguish between the surfaces we

will include a + or - as a superscript.

Comparisons of the boundary-layer solution for n * « to the inviscid solution

for n * 0 leads to the following identification of the common parts:

Uep = Ue(s) +O(€?) (52)
d
Vep=V(s, 0) — 9P U, n+e?v,(s)+0 (%) (5b)
pe ds
pcpzp(s, O) —_ K(s) pe Ugn+€2po(s)+o(€3) (SC)
where
dp, U 6%
-y —FeVve” 6
Vo(s) + peds ( a)
Po(s) =p, U? K (s) (6% +80) (6b)
and where &% and 6 are the usual boundary-layer displacement and momentum

thicknesses. Note that &8* is defined such that it is positive on both upper and
lower surfaces. Matching conditions on the airfoil surface can.be derived by
substituting the above expressions for the common parts into Eq. (1). The
requirement that the normal component of velocity, U, vanish on the airfoil surface

then leads to the usual matching condifion on V(s,n) for n * 0:
V. (s)=€?v (s) +O(e?) (7)

Similarly, substitution of Eq. (5¢) into Eq. (lc) leads to the following expression

for the surface pressure distribution
®P.(s)= @ (s, 0) = P,(s) —e’p,(s) +O(e?) (8)

where Pe(s) is the surface value of pressure as determined from the inviscid solution
and the second term in Eq. (8) represents a correction for the pressure variation

across the boundary layer.
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The corresponding expressions in the wake are somewhat more complicated because
of discontinuities of the common-part terms across the wake. If we impose the
condition that the full solution forU, V, ®, etc. is continuous across the wake and
take proper care for the discontinuities of the common-part terms we can arrive at

the fcllowing jump conditions for the outer inviscid solution:

VI =V(s, 0%) = V(s, 07) =€2v,, (s) +O(e®) (9a)
[PI=P(s, 0") — P(s, 07) = —€?py Ugcy k(s) +O(e’) (9b)
Moreover, since
= 1 2
[ul =T LU, [Pl +O(IPI*)
then
[Ul =U(s, 0% — U(s, 07) =€?c K (s) +O(e®) (9¢)
where
. - dp, U, 0%
€2 vy (s) = vi(s) — v (s) =-—";:;;LL (94)
€2c,(s) =~ U,(6x+6,) (9e)

and where, Py and Uw are the surface values of the outer inviscid solution on the

wake streamline, and 6: and BW are the respective sums of the upper and lower
displacement and momentum thicknesses. The composite solution for the pressure at
the wake axis is continuous and is given by

@ (s)=® (s, 0) = P; (s) — p(s) = Pg(s) — pg(s) (10)
where the plus and minus superscripts refer to the upper and lower sides of the wake

axis. (In deriving the above expressions we have used the fact that the jumps in Po

and Ue across the wake axis are 0(82)). Equations (9a) and (9b) are jump conditions
to be imposed along the wake axis of the outer inviscid flow. It should be noted
that Eqs. (9) imply that the streamline slopes of the outer inviscid flow are also
discontinuous across the wake axis to 0(52) and that this in turn implies that the
wake axis cannot be chosen as a streamline of the outer inviscid solution (to this
order). A convenient choice for the wake axis is the composite solution for the
streamline passing through the trailing edge. An equivalent analysis of the matching
conditions in the wake is included in the more general work of Viviand (Ref. 57). In
the present study we use an irrotational approximation to justify the introduction of
a velocity potential in the outer inviscid problem. The above matching condition on
the streamwise velocity component implies the velocity potential, &, must also be

discontinuous across the wake. The appropriate jump condition on ¢ can be determined
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from Eq. (9¢), rewritten in the form

dr
I =e?c,, k(s) (11a)

where the circulation strength, T, is equal to the jump in potential across the axis.
That is,

I'= &(s, 0%) -~ &(s, 07) (11b)
If B is defined as the angle between the wake streamline (defined by the composite

solution) and the airfoil chord then,

K = — (12)

The expression for T can then be written in differential form,

dr=e’c, d8 (13)
relating changes in circulation to the turning angle of the wake. The interested
reader is referred to Refs. 5, 8, 16, 17, and 39 for further discussion of this

condition.

The complete set of matching conditions derived above are summarized in Fig. 2.
Note that within this formulation the wake thickness is prescribed but the location
is not. The location of the wake is determined as part of the outer inviscid
solution and is free to assume an equilibrium position consistent with the prescribed

pressure jump across the wake.

77 7 77 77 77777

I[vt] =-U, (6w*+0w) K

d
K =E§ (CURVATURE)

Figure 2 Viscous Matching Conditions

For cusped airfoils at lift, both the pressure gradient and streamline curvature

generally become unbounded at the trailing edge with the following behavior:
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2
lim SEe =y RteUteCa IS =841 1/2 (14a)

s, U8 2B
lim k=2 |g—s,|"1/? (14b)
a-g* 2

te

where the subscripts (te) denote values at the trailing edge, R and Ute are the

te
density and speed at the trailing edge, c, is a constant that depends on the overall
inviscid solution, B is the Prandtl-Glauert factor /1 - Mie, and the upper and lower
signs in Eq. (l4a) refer to the two sides of the airfoil. From the momentum integral
equation and the definition of the surface-source velocity - in Eq. (6a), we can

show that Eq. (14a) implies a corresponding singularity in Vg, as follows

*
lim vo=:!:Ut‘*c°‘6* (hta+1> |5 =84l "1/2 (14¢2)

8~ sze 2 hte

s

where 6: is the boundary-layer displacement thickness of either the upper or lower
surface boundary layers at the trailing edge. In deriving this result we assumed the
total temperature is constant across the boundary layer and have used the large

Reynolds number limit for the shape factor, h. That is,
h=h,, =1+(y —1) M}, for R,—

Similarly, from Eqs. (9b), (9e) and (14b) we obtain:

2 ¢ (6X+06y)
lim [IPI]=pQﬁUteca(2ﬂ w ls_stel-1/2 (144)
s~s}
te

Detailed analysis indicates that these singularities lead to a breakdown of
conventional boundary-layer theory at trailing edges and to a growth in the magnitude
of viscous effects induced by both the displacement thickness and wake curvature
terms from 0(82) to 0(83/2) near trailing edges. A separate "inner" solution is
required to resolve the nonuniformity at the trailing edge as described in the next

subsection.

2.3 TRAILING-EDGE REGION

In this secticn we present the results of an analysis of the strong-interaction
region that develops in turbulent flows near trailing edges. An analysis for the
incompressible case was first presented in Ref. & and later extended to compressible
flow in Ref. 5. The analysis is based on a formal application of the method of

matched asymptotic expansions (Ref. 58) to the full Reynolds equations of turbulent
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flow for Reynolds number Re » . The theory was developed under the following
assumptions:

o the trailing edge of the airfoil is cusped

o the flow is locally subsonic in the trailing-edge region

o total temperature is constant in the trailing-edge region

e the boundary layer upstream of the trailing-edge region is a fully-developed

turbulent flow

o the boundary layer approaching the trailing-edge region is not separated
In the present context, the assumption of a fully-developed turbulent flow is taken
to mean that the velocity profile in the outer part of the boundary layer can be
adequately represented by a Coles’ law-of-the-wall/law-of-the-wake, with a small
velocity defect. That is, we assume the velocity profile in the outer part of the

boundary layer, upstream of the trailing edge can be represented in the form

u=Uy(s)[1+e€f(s, i) ++°"] (15a)
with
_ u*(s) en \ - _f[em
=109 [m( 5(3)) "W( 6(s)>] (15b)
and

u*=v1,/p, (15¢)

where Tw, u*, and 8 are the local skin friction, friction velocity and boundary-layer
thickness, k is the von Karman constant, 7 is Coles' wake parameter, and W is the
wake function which, in the present work, is. assumed to be expressible as a simple
third-order polynomial. It is also assumed that the profile function, f(s, n)
approaches a definite 1limit, fte(ﬁ) at the trailing edge, s = Sio The above
assumptions permit a relatively complete solution to be obtained for the local flow
near the trailing edge. In this region the solution develops the multi-layer
structure shown schematically in Fig. 3. The upstream flow is divided into
conventional inviscid and boundary layer regions over a streamwise length of 0(1).
The turbulent boundary layer has a two-layer structure consisting of an outer, wake
region and an inner, equilibrium wall layer. The velocity profile in the outer

region is described by Eq. (15).

The velocity profile in the inner layer is expressed in a law-of-the-wall form,

which for incompressible flow is written as

n
u=eUe(s)F(s, €€) (16)
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Figure 3 Flow Field Structure Near the Trailing Edge

where £ is the ratio of wall-layer to boundary-layer thickness and is given by
E=(’R,)™ (17)

It follows that the wall layer is exponentially thin compared to the boundary layer

thickness.

The formal justification of the two-layer structure in terms of an asymptotic
limit solution for Re » = was carried out by Mellow (Ref. 25), Bush and Fendall (Ref.
26), and Yajnik (Ref._27) for incompressible flow. These studies showed that the
velocity profile functions satisfied simplified boundary layer equations with
linearized convective-terms. The usual non-linear boundary layer equations can be
viewed as composite equations valid in both inner and outer regions and containing

additional higher order terms.

An extension to compressible flow was attempted by Afzal (Ref. 28) but the
analysis was in error, with the result that his assumed inner and outer expansions
did not match. The reasons for the error and the modifications necessary to obtain a
valid compressible solution are discussed in Ref. 47. It was shown there that the
small defect form given in Eq. (15) carries over to the compressible case, but that
the inner expansion required modification to incorporate a preliminary van Driest
compressibility transformation. One of the more firm rational results in turbulence

theory concerns the logarithmic behavior of the velocity profiles in the overlap
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region between the inner and outer regions, i.e., n/€ << 1 and n/€€ >> 1 leading to
the form of the velocity profile given in Eq. (15).

The present work can be viewad as an extension of the asymptotic theory of
non-interacting boundary layers to the strong interaction problem. The boundary
layer in the interaction region develops a compact, multi-layer structure as

sketched in Fig. 3. Three layers are required:

1. An outer layer that is inviscid and rotational. The vorticity arises
from the nonuniform flow in the upstream boundary layer. In a fully-developed
turbulent flow the total vorticity is small and the solution in this region
can be described as a perturbation of the external potential flow induced by
the small vorticity. To lowest order, it can be assumed that the vorticity
is convected along the nearly parallel streamlines of the potential flow. In
the terminology of secondary-flow analysis, the flow in this region is class-

ified as a small shear, small-disturbance flow (Ref. 59).

2. An inner layer next to the wall. 1In this region the flow is de-
scribed as equilibrium wall layer that is a continuation of the wali layer
from the upstream flow. The total stress, laminar plus Reynolds stress, is
constant across the layer. The thickness of the layer is exponentially small

compared to the outer layer.

3. A blending layer situated between the outer and wall layers. It
is necessary in order to match the Reynolds stresses in the outer and wall
layers. The layer is thinner than the overall boundary layer but thicker

than the wall layer.

Turbulent closure approximations are required to -lowest order, only in
the two inner layers. The inner layers are thin and do not affect the
determination of the solution in the outer inviscid region. The outer

region is most important since it alone determines the pressure distribution

Outer Expansion and Governing Equations. The solution in the outer region is

developed as a perturbation to the basic external inviscid flow in the following

form:

=V (x, y;€)+€3/2\~’(1)(X,y)+"' (19)
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P=P(x, y;€) +€3/2pM) (x, y) 42+ (20)

where (x,y) form a local Cartesian coordinate system with an origin at the trailing

edge and scaled as follows
=5—"5¢ =
x ==, y=n/e (21)
with the Prandtl-Glauert factor B defined as
= 2 (22)
B=/1—-Mj,
The leading terms of Eqs. (18) - (20) are meant to include all terms that result
from expanding the known inviscid solution in powers of (s,n), transforming to (x,y)
and expressing the result as an expansion in €. For a cusped airfoil this leads to

the expansion

U=U,[1+€/2U (%, y)/B+*+"] (23a)
V=U,[e!/2V,(x, y) +**°] (23b)
where Ul’ V1 are known algebraic functions and Ute is the trailing-edge value of the

inviscid velocity. The second term in Eq. (18), f(y), arises from the nonuniform
flow in the upstream boundary layer and is a known function of the form given in Eq.
(15).

Notice that the expansion for u is similar to the law-of-the-wake in the
upstream boundary layer, except that now the full y-dependence of the inviscid flow
is accounted for in the leading term, U(x,y;e). The equations goverhing the
perturbation terms 5(1), ;(1), 5(1) are arrived at by substituting the above
expansion into the full Reynolds equations of turbulent flow. The series solution
must be augmented with similar expansions for the density and temperature. For
convenience we assume the total temperature in the upstream boundary layer is
constant across the boundary layer. The density can then be computed from the

equation of state and the total temperature. This is known to be a highly

satisfactory approximation in the speed range of interest.

The above analysis leads to a set of partial differential equations governing
the disturbance to a weakly sheared, compressible, inviscid flow. The disturbance
equations can be reduced to incompressible form by a generalization of the
Prandtl-Glauert transformation of subsonic potential flow. After transforming to the

. ~ ~(1
scaled coordinates x,y by Eq. (21) we transform the dependent variables u(l), v( ),
p y
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- - df oV
u(1)=UteB 1/2[212 U+(ag—vYM %E)Ty ¥y —a,fU; +ayx &L] (24a)

58U (24b)
T'(“=UteB1/2[a2V+(1—az)iVi—aix &1‘]
~ - = oV,
b =p, U}, B 1/2[3213—31)( 0% ] (24¢)

where Ul’ V1 and Yl are normalized velocities and streamfunction determined from the

inviscid expansion given in Eqs. (23). For cusped airfoils we have

Up—iVy=—ic, (x + iy)!/2 (24d)
or in real form,
Q £
= 1/2 qjn 24 = 1/2 =
Ui—car/ sin 35, Vi—car/ cos 3
(24¢)
2 372 3Q
\I/1=—§ Cy T COS?'

where ¢ is a known constant and (r,Q) are polar coordinates with r? = x? + y? and

tan @ = y/x. The function X is the streamfunction corresponding to f(y),

y
o Y
X J; &) dy (25)

The parameters ags as a, and C0 are Mach number dependent constants defined by

MZ
2p=3(Co— 1) — 735 (Co+ 1) (26a)
M?‘
—_ 2te
31 = 2B2 (CO+1) (26b)
=3(1+B3) (Cy+1)
2y =7 ( 0 (26c)
(26d)

Co= 1+ ('y - 1)M%e

With these transformations the basic equations governing the disturbances in the

outer region reduce to the following linearized, incompressible equations of mass and

vorticity
9u , 8V _ (27)
ox +8y =0
ou _8v _ )dz f(y) (28)
9y ox L7 dy
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The transformed static pressure is determined from the linearized Bernoulli

equation
— — df (29)
==—0-f1 + —
p=-1u-1U, ay ¥y
If the disturbance streamfunction, ¢, is introduced, Eq. (28) becomes
2
27 - d<f
Vius—=0(x,¥) 37 (30)
where U = 8y/3y, Vv = - 39/9x. This is the same basic equation derived in Ref. 4 for

the incompressible trailing edge problem. Equation (30) is a simple Poisson equation
relating the disturbance streamfunction, ¢, to the perturbation vorticity, z. The
vorticity perturbation arises from generation in the upstream boundary layer and
convection along the curved streamlines of the external potential flow, as sketched
in Fig. 4. The vorticity is known in terms of the upstream boundary layer velocity
profile and the inviscid streamfunction. The Poisson equation must be solved subject
to the boundary condition that the normal component of velocity vanish on the airfoil
surface, which, to the same order of approximation, is represented by a slit along

the negative x axis. Thus,

vix, Q)=o for x<0 (31)

— / |BOUNDARY LAYER PROFILE

INVISCID STREAMLINES

FO) = g (Y+ew +een)ten.

;'o (Y)+€%§’O(Y)\P1 + oo

= <t - v e
INITIAL
PROFILE INTERACTION

Figure 4 Vorticity Distribution in the Trailing Edge Region
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In addition, we must impose the condition that the pressure and flow deflection be
continuous across interfaces at the boundary layer edges and wake centerline. We
must also assure that the disturbances decay in the far field rapidly enough to allow

matching to the outer inviscid potential solution.

It is convenient to introduce the pressure and a variable w, related to the
disturbance flow angle, as dependent variables. Thus, we transform from (u, v) to

(p, w) defined by

\—/= (E + fV1 (32&)
- - df
u:_[p+m,_@\yl] (32b)
and arrive at the symmetric pair of differential equations
op ?EE —_of U,
ox ~ 8y ax (33a)
dp 0w 9V
a—y-+-é;——2f x (33b)

The function f(y) contains contributions from boundary layers on the upper and lower
surfaces of the airfoil. Since the equations are linear the two layers can be

treated separately and the results‘superposed to obtain a complete solution.

Scale Transformation. - The solution to the outer problem can be reduced to the

determination of universal functions through the introduction of the following scale
transformations appropriate to either the upper or lower surface boundary layer.
First, change coordinates according to

n=y/6 t=x/6 v=r/b (34)
where 8 is the thickness of the boundary layer at the trailing edge. Then the

boundary-layer profile functions f and X are expressed in the law-of-the-wake form as

f=y*[hi(m) + T hy(n)] 0<n<1 (35a)

X=7*6[h1(1'])+7?h2(7])] 0<T)<1 (35b)
n

hy=nlogn -1, h2=—fo W(n) dn (35¢)

and are zero outside the strip 0 €< 3 £ 1 (primes denote 3/3n). %’is Coles' wake
parameter, defined by the initial boundary-layer profile, and Y* is a friction

parameter defined by
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" VT1,/Pte Ul (36)
- k

and T, is the skin friction of the upper surface boundary layer at the trailing edge.

The following additional scalings are employed

Uy=c81/20(E, 1), Vi=cgd20 (¢, 1) (37a)
where

U=p/? sin—s; , VA=V’/zcos% (37b)

V2=§2+n2: 52=tan4(n/§) (37¢)
and

B=coy*8 /2 [By(€, m) + T By(&, M) (382)

B=cay*8! /2 [@y(, m)+ T &€, M) (38b)

The functions ﬁl 2 and are universal functions of (£, 1) that are independent of
b

1,2

all parameters appearing in the problem; although 52 and @ depend on the functional

2
form used to represent the wake function W(n).

The ﬁ and & functions satisfy the following inhomogeneous Cauchy-Riemann

equations,

My Wiy _ o aU(¢, m)
oe -~ - 2Pl T (39a)
8y, 0wy oo, av(£, )
with
Qy,5(, 0)=0 for £<0 (39¢)
Particular Solution. - A particular solution to the inhomogeneous Cauchy-Riemann

equations can be found by standard complex variable analysis. Following Ref. 60 we

introduce the complex representation

z=¢+1in (40a)
U -iV=-izg!/? (40b)
A2 =Dy, +10y 5 (40¢)

With (z,n) considered as independent complex variables, Eq. (30) can be written as

the single complex equation
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oA
1.2-_—_ —t e e
o vz — 2in

where the derivative with respect to n is applied holding z constant. The solution

b, (1) (41)
2

to Eq. (41) can be expressed as the sum,
)‘1.2::7\91,2(2: 7))""}‘}{1,2(2) (42)
where the first term is any particular solution satisfying Eq. (41) and the second is

an arbitrary analytic function that is determined from boundary and interface

conditions. The interface conditions now simply require continuity of Xl o Aacross
3
interfaces. A particular integral is easily found by quadrature
0 n>1
7 hi ()
= = - _——1;-'-2—_== d 0< S1
Ap1,2= Fi,202, M) , Nz-aig "
<0
0 n (43)
The above solution is continuous across the interface, nm = 1, but has jump

discontinuities across the real axis, n = 0.

The component corresponding to the logarithmic term in the velocity profile is
found by direct integration. The quadrature for the second component can be carried

out for polynomial approximations to the wake function W(n). We employ the

representation
Cyt, t2> C t“)
=l —]l1==)+ Z22{1~— t=2n-1.
Win) =1 8 [( 3 2( 5 ? n (44)
With C1 = 15.369157 and C2 = -0.36536. Eq. (44) is an accurate (to four places),

rational approximation to Cole's wake function, 1 + cos mn. Thus, Eq. (44) should
provide an acceptable fit to most turbulent velocity profiles. These procedures lead
to explicit algebraic expressions for the particular solution Xpl,z(z,n). They are
somewhat lengthy and, hence, will not be written-out here. For the purposes of the
present study we require only the limiting values on the real axis, n - 0+, leading
to the jump discontinuity referred to above. We introduce the real functions 81,2(5)
and 01’2(5) defined as the real and imaginary values of xp1,2 as the real axis is
approached from above. That is,

Bi,2(8) +i0q 5(8) =limApy o(2z, )

: 70,

These functions can be conveniently computed from the limiting values of analytic

functions gl,Z(Z) determined from kpl,z' Thus,
Bi,2 +i0y,,=1im gy 5(z) (45)
n-0.
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where

\/—Z-+V Z—z.l) (46)
ﬁ—

gi(z)=2i {,/‘z‘—{‘z_—Zi'+ \/—z_log< 577

g2(2z) = — 931- { 1- %(z —i)2}{-’5[z —i] (2572 = (z —20)/ % = L [27/2 —(2—21)7/2]}

_%2. 2z =il [z = (2 — 21)5/2] —i[25/2 +(z-21)5/2]}+212”2 47)
The only singularities in the strip are branch points at infinity and the origin.
The appropriate branch of the multivalued functions are defined by a cut along the
negative real axis and the limit n > 0_. The functions OI’Z(E) and 81’2(5) can be
shown to possess the following symmetry

01,2(8) = By,o(—£) (48)
Thus, only values on the negative (or positive) real axis need be computed. The
functions are plotted in Figs. 5 and 6. For £ - - « they possess the following

asymptotic behavior

o= —1£171/2 (49a)
~_1 -3/ ~_ % -3/2
By 117, Bp—= T 181 (49b)
The behavior for £ * 0 is given by
oy~—2+ 2 V=E +0(£)

(49¢)
0y — —1.3740+0(¢) (49d)
Bi—=2—V—£1Inl 28] +2V-£+0(&) (49¢)
By ——=1.3740+2V~£ +0(£) (49f)

-3

T + 3 N
-5 -4 -3 -2 -1
4

Figure 5 Particular Solutions for the Downwash Functions 09,09 29
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Figure 6 Particular Solutions for the Loading Functions 89. 82

The particular integral specified above is not unique and to it we can add
arbitrary analytic functions of z to obtain other solutions. From the above
expressions we can determine the contributions of the particular solution to the
normal component of velocity on the airfoil and to the jump in pressure across the
wake. These quantities have a direct correspondence to the source velocity and
pressure jump appearing in the matching conditions of the external flow discussed in
Section 2.2. It is convenient to arrange the particular solution so that these
quantities match the limiting behavior of the external solution for x > 0, € * 0 as
given in Eags. (7 and 9). This can be accomplished by adding the following piecewise

analytic function to the particular solution Fl 9 {(z, n),
3

AFy,5(2) =(7§f)17r n>0

where a, is a constant. The function AF1 2(z) is analytic in the upper half plane
3

(50)

3
and is defined to be zero in the lower half plane. Hence, it contributes to the
discontinuity of the particular solution across the real axis. The contribution to

the jump across n = 0 is given by

ABI:2+1AG1.2=@_a%WT”573’F for [£] —w

+ (51)

The full discontinuity of the particular solution across the real axis is therefore

equal to
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By o(£) +iTy 5(8) =By +i0y o + rgT?fm' (52)

The contributions of the above solution to the normal component of velocity

on the airfoil and to the pressure jump in the wake are given by

- 3/2A
3/2 _ € — [ S —S4e ~— [ S=5t \|
V=TT [Gl<€6B >+W02<65B (53a)
- 3/2
s2p o E A s (8=Ste) , =z (S =St
€ Pt [31( 6B ) * ”BZ< OB )] (53b)

where

€2 =c, UteB!2a,y*61/2(1 + 7) (53¢)
and where GP and 5p are contributions of the particular integral to the inner
solution Egs. (24). The above expressions correspond to both upper and lower
surfaces with the appropriate values of &6, Y*, and T. The plus and minus signs in

Eq. (53b) refer to the upper and lower surfaces, respectively.

To demonstrate matching to the external solution, we expand the above

expressions for | £ | * « using Egs. (49) and (51) to obtain

~ 3221 +a €2A(1 +a,)B!/251/2
1. 63/2 = - E-——WT‘Q -
cilf:o Vo (-%) (Ste —8)172 (54a)
lim €¥2p = 2A1 —-a)  €’A(1-ayB!/251/2 (549
p— = 172 =-—-
{=teo (£) (S —84e)1/2

For constant total temperature and large Reynolds number the displacement thickness
is given by
6*—Cy(1+7) (y*6) for R,— (55)

From the above relations and the definition of a2 in Eq. (26c) we can show that Egs.

(54) reduce to the singular expressions given in Eqs. (l4c, d) provided the constant

ag is given the value

M2
— te
2~ M (56)

Note that is is the negative of the particular integral that corresponds to the

ag

surface source velocity in Eq. (7). These results establish the close
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correspondences between the matching conditions of the external solution and the
discontinuities of the particular solution on the real axis. The determination of

the particular integral is the most important result of this section.

The- particular integral provides the contributions generated by the
inhomogeneous forcing term of the differential equations. It is not a complete
solution to the problem because it is discontinuous across the wake axis and it has a
nonzero imaginary part on the negative real axis and, therefore, violates the

boundary conditions given by Eq. (39c).

The complete solution in the trailing-edge region can be obtained by adding a
complementary solution to the particular integral determined above. The
complementary solution can be represented by an arbitrary analytic function of the
complex variable, z, which can be adjusted to satisfy the boundary conditions. The
analytic function is determined from conditions that v = v + V_ is zero on the

H
airfoil and the solution is continuous across the wake axis.

The solutions just described account for contributions generated by the upper
surface boundary layers. Similar contribution from the lower surface boundary layers
must be added to complete the solution. Since knowledge of the complementary

solutions are not needed in the present study, we will not discuss them further.

In the following section we show how the particular solution, by itself, can be
employed to correct the external viscid/inviscid solution for trailing-edge
interaction effects. A procedure for removing the singularities of second-order
boundary-layer theory and accounting for normal pressure-gradient effects will also

be described.

2.4 COMPOSITE SOLUTION

In this section we describe a procedure for using the inner trailing-edge
solution to correct the conventional boundary-layer formulation described in Sec.
2.2. The composite solution given in Sec. 2.2 is uniformly valid in the inviscid,

boundary-layer and wake regions but is not valid in the strong-interaction region at
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trailing edges. A solution, uniformly valid in the trailing edge region, can be
constructed by adding terms corresponding to the trailing-edge solution minus its
common part to the "outer" composite solution given in Eqs. (1). This extends the
domain of validity of the "outer' composite solution to include the trailing-edge
region. Thus, a composite solution that is uniformly valid in the trailing edge

region can be written in the following form

U=Uls,n; vg3 [VI; D)+ [uls, ) —uep (s, M)] +[ul€,n) = Gey&,m)] (57a)
TV=V(s,n; Vg3 [V T)+([v(s,0) =vey (s, W] +[V(E, 1) = Vep g, 1)) (57b)
® =P(s,n; v; [V]; T)+Ip(s, ) —pg (s, M +[p(¢,n) =Py (£,7)] (57¢)

where u, acp’ etc. are the contributions from the trailing-edge solution and its
associated common part. Similar representations are also assumed for the density and
temperature. As discussed in the previous section, the complete trailing-edge
solution is the sum of a particular integral and a homogeneous solution. The
homogeneous solution is a solution of the inviscid irrotational-flow equations that
is added to the particular integral in order to satisfy boundary conditions in the
trailing-edge region. The necessity of utilizing homogeneous solutions can be
avoided if we include only the contributions from the particular integral in the
expressions for the trailing-edge solution appearing in the last bracket of Egs.
(57). With this choice, the matching conditions and the functions VO’ [[V]] and T
which determine the outer inviscid solution, are modified such that the homogeneous
solution is automatically included in the inviscid outer solution given by the first

term in Egs. (57). Thus the trailing-edge terms in Eq. (57) are given by

‘-’—{’cp=€3/2‘-’n (58a)
P—Dop=€3"Dp (58b)
-1 =€%%, (58¢)

where ;P and ﬁp are determined from the contributions to the particular integral as
given in Egs. (53). The term ﬁp is obtained from ﬁp through the definitions in Egs.
(24a), (32b) and (38a).

The modified matching ‘conditions can be derived from Eqs. (57) by imposing the

condition that the normal velocity components U and v vanish on the airfoil surface
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(n = n = 0) and the condition that both the full solution (U,7TV ,® ) and the
boundary-layer solution (u,v,p) be continuous in the wake. Specializing Eqs. (57a,
b) to the airfoil surface and wake axis leads to the following expression for the

composite solution of the normal velocity and pressure on the airfoil surface and

wake axis:
[ - A(l+a.)
Ve(s) = Vo(s) +€3/? v(8) + (—_sz- H(=¢£) [ ~€®vy(s) (59a).
r -
B(s) = Py(s) +€¥/2 Bye) + 2 7 H(s>] ~&2p,(s) (390
where H(Z) is the unit step function; and
_, 4pU.0*
o peds (60a)
Dy =+P,UZ (6% +0) K (s) (60b)

The plus (minus) sign is for the upper (lower) side of the airfoil and the constants
A and as are given by Egs. (53c) and (56).
The condition that the V vanish on the airfoil surface leads to the following

expression for the corrected source velocity on the airfoil:

v<s>——e3/2[vp(g)+%—1§—)+i—"}1§l]+e2vo (61)

The requirement that the composite normal velocity and pressure, as determined from
Egs. (59), be continuous across the wake axis leads to the following relationships
for the jumps in source velocityl[V]and pressure EP] across the wake axis:

IVI=Vi(s) - Vy(s) = =¥ V(6" - V(e +€Pv
(62a)

[P =Pi(s) —P;(s) = —63’2[p,,(§ )-‘b,<5)+<\/-— J——)(l a3>] e’py Uy Cy K (62b)

The '"w'" subscripted quantities are defined by Eqs. (9).

+ - . . . .
The terms containing A° and A in the above equations are contributions from the

common-part terms. Note, there are no common-part contributions to the
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normal-velocity component terms in the wake or to the pressure distributions on the
airfoil surface since these common-part contributions vanish to the order of terms
retained in Eqs. (59). The formula given in Eq. (59) for G’e(S) provides composite
solutions for the pressure on the airfoil surface and wake axis as corrected for

pressure variations across the boundary layer and wake.

The matching conditions given in Eqs. (61) and (62) form a sum-type composite
expansion being given by the sum of a boundary-layer type solution plus the
trailing-edge solution minus the common part. The added terms from the trailing-edge
solution cancel the singular contributions appearing in the boundary-layer solution
(Eqs. l4c, d) resulting in "corrected" viscous matching conditions that are uniformly
valid in the "outer" boundary-layer and "inner'" trailing-edge regions. The. modified
matching conditions are valid in a formal asymptotic sense for the limit Re * «. In
our applications of these equations, the inner trailing edge solution is not carried
out to the same order as the outer boundary-layer solution. Consequently, in this
situation, the singular terms in the outer and inner solutions will not be identical,
but will differ by terms that are formally of higher order than O (83/2). Thus,
although the inner and outer solutions will formally match term by term if Eqs. (59)
- (62) are expanded in Re, the singular terms will not exactly match in our method
where the outer boundary-layer solution is not expanded in a formal asymptotic
expansion. This would lead to technical problems in numerical solutions based on
Eqs. (59) - (62). The problem can be avoided and a form suitable for numerical
computation can be obtained by rearranging part of the matching conditions into a
multiplicative-type composite solution. Thus, if we consider the boundary-layer and
trailing edge solutions as the "outer" and "inner" viscous solutions, we can replace

Eq. (59a) by:

V,(s) =€, (s) [:‘—’L‘L)] (airfoil) (63)
Ue(s)= ch(g)
Ve(s) —€3/2av (£) —e?v (s) (wake) (63b)
where
v
e/ Te——T K
AREREN (64a)
__ 1 [ +ise) |
K 31/26177(1+a3)[ 1+7 ? ] (64b)
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The leading order (83/2) term in the source velocity given by Eq. (63) is
continuous across the trailing edge, but the second-order term is discontinuous with
a small jump across the trailing edge. This jump is & consequence of the
viscid-inviscid interaction, which acts to smooth the corner formed by the airfoil
surface and the dividing streamline of the viscous flow leaving the trailing edge
(see Fig. 8). The value of the constant, a, is determined from the condition that
the jump in source velocity across the trailing edge is equal to‘U(ste) tan B(Ste)’
where
‘u(ste) and B(ste) are the values of the composite velocity and wake streamline angle
at the trailing edge. With this condition and Eq. (64), we can rearrange Eq. (63)

into the form,

Vo(s) —€®vy(s) Vs — s | K(£)  (airfoil) (65a)
Uels) ={Ve(s) —D K (£) —e?vy(s) (wake) : (65b)
where

7 - Fi(E) + T (&)
G1(0) + 75, (0) (65c)
where Ve (ste) is the 1limiting trailing edge value from the airfoil side as

determined from Eq. (65a) and VO(Ste) is the limiting value from the wake side.

In the above formulae, a multiplicative-type representation is used for the
velocity on the airfoil surface while a sum-type representation is used in the wake.
A multiplicative-type composite solution is not possible in the wake because the
common part vanishes in the wake to the order of the terms retained in Eq. (65).
However, the above representation is sufficient for our purposes. The square root
term appearing in Eq. (65a) cancels the corresponding singular term appearing in the
boundary-layer solution, vo(s) for s 2 Ste This leads to a smooth solution near the
trailing edge, independent of the order of the terms carried in the inner and outer
viscous solutions. The parameter, D, is a scaling parameter introduced to assure a
continuous transition of the inner solution across the trailing edge. The
representation in Eqs. (65) is formally equivalent to the original sum-type composite
expansion in Eq. (59a) in the sense that the difference between the two solutions is
less than 0(82).
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The same considerations lead to the following representation for the airfoil

surface and wake pressure distribution. Thus,

{ P,(s) —€3 2T(£) [P(sye )] — € p, () (airfoil) (66a)
® (s) = -
2(5) =) p,(s) - [ P(s)] (wake) (66b)
where

(67a)

[P] =e%py(s) VTS = Sge I 1(£)
[[p(ste)ﬂ = Pe(ste) —(Pe(ste)

_ 1 Bi(E) + 7B,(¢) 67
I B1/261/2(1_a3) [ 1+7? 2 ] ( C)

(67b)

7o B £ 70 e
B1(0) + mB4(0)

The viscous matching conditions can be obtained directly from the above
representation for the velocity i)e and pressure G;. The condition that the normal
velocity component vanish on the airfoil yields

Vo(0) =€2v (s) VTS — 551 K (£) (68)

The requirement that the viscous solution be continuous across the wake axis leads to

the following expressions for the jump in source velocity [V]]and pressure[[P] across

the wake: [V] = D' B (¢*) =D K (£7)] + vy (s)

(69a)
[pPl=0P]"-IPI" (69b)
The matching conditions for the circulation, T, follow from Eq. (69b) and the
relation
4L _fyp=- —1— [PR+O(IPI?Y
ds Pw Uy (70)

Thus, substitution of Eq. (69b) into Eq. (70) followed by some rearrangement leads to

the expression

dl=elcy, VTS —8¢ | Iyl dB (71a)
where _ 1 1 6%+ 0" Eg£3-+%*5153>
J‘”(S)‘[B‘”u—a»][(é*)‘”(6;+9w)< o
oL (8xr0n \(Bie) + 7B (71b)
6")1/2\ 6% +6, 1+7°
and
(71¢)

SX=0%+0% 6,=0"+0"
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Equations (68), (69) and (71) constitute the principal results of our viscous theory.
These equations provide all the boundary conditions needed to determine the
second-order, outer, inviscid solution. The formulae provide a rational method for
correcting the matching conditions of conventional interacting boundary layer to

account for strong-interaction effects near trailing edges of cusped airfoils.

Before concluding this section we provide alternative formulae for determining
the pressure on the airfoil and in the wake which are required in the solution of the
boundary-layer equations. The composite solution for the pressure on the wake axis
is given by Eq. (66b). Following some straightforward algebraic manipulations, it
can be expressed in terms of the inviscid quantity Pe(s) and a boundary-layer

function \*, as follows:

Gy(5) = Py (5) ~ 72— [P (72a)
where
[Pl=P; (s) — P;(s) and A is defined by
- (ér +6* ) [(6*)“2<1 +§r*)] [@zwg’r*_@(s*)]
6x+6 ) L)1 +7) JLB (g7 + 7 Ba(e) (72b)
The pressure on the airfoil surface can be written in the form
Pe(s) = Py () —€3/ 2 [P(sy,)] [%%;j—;’z%%] —€%p,y(s) (733
where
[P(s4e)]] = Po(s4e) — Py(sye)
(73b)
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The last two terms in Eq. (73a) account for the 0(53/2) and 0(52) variation in pres-

sure across the boundary layer.

2.5 SUMMARY OF THE CORRECTED MATCHING CONDITIONS

In the theory presented in this report, the inviscid and viscous solutions are

coupled through viscous matching conditions, just as in the standard interacting
boundary-layer theory. In the new theory, however, the matching conditions are cor-
rected as described in the previous subsection to account for strong interaction and
normal pressure-gradient effects in the trailing-edge region. The resulting numer-
ical problem is then very similar to the problem arising in standard interacting
boundary-layer theory. In both theories the inviscid and boundary-layer equations
are solved by iteration to obtain self-consistent solutions satisfying the matching
conditions coupling the two solutions. The new features arising in the present
method are concerned with corrections to the matching conditions and the need to
accommodate the wake matching conditions in the numerical solution. The new matching

conditions are summarized below:

Source velocity:

V,(s) =€2V0 [m K (Etg;—s-)] (airfoil) (74a)
IVI(s) = [D" K(ﬁlﬁh -D ﬁ(s;sm 2
Bo* Bo )| T (wake) (74b)

Wake circulation:
(74¢)

B8
I'(s) = I“,‘,+€2 f Cy V' 5 —Sie Jy(s)dp

Bte
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Pressure distribution:

Fe (5)=P(s) =3 2[P(s, )N T (iB-TSt&) % PULK (5% +6) (airfoil) (74d)
+ .—A'_
Gy (s) =P} (s) — T [P] (wake) (74e)
where

[ =27 -2

The trailing edge corrections used in the above coupling conditions are strictly
applicable only to airfoils with cusped trailing edges. Although the local strong
interaction theory can, in principle, be generalized to wedge shaped trailing edges,
this has not as yet been done. The present theory as formulated in Eqs. (74) leads
to an equivalent source velocity and flow deflection that has a discontinuity that
exactly cancels the geometric corner at the trailing edge of an airfoil with a wedge
shaped trailing edge. This is exactly the same behavior as in standard interacting
boundary layer theory. This discontinuity in source velocity across the trailing
edge requires us to modify the determination of the constant D defined by Eq. (654).
For airfoils with included trailing edge angles, Gte, the equation for the scaling

parameter, D, should be changed to,
D* = VE(5,,) — €2vE(S4e) — UlSy,) tan [Blsee) £04/2] (74f)

where the last term accounts for the jump in source velocity due to the nonzero

trailing edge angle.
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3. OUTER (POTENTIAL FLOW) SOLUTION

In this section we outline the procedures used to solve the outer inviscid
problem, assuming the boundary-layer quantities appearing in the matching conditions
are known from a previous iteration. The solution in the outer inviscid region is
based on a potential-flow approximation which should be adequate for weak shock
waves. We employ Jameson's (Refs. 6 & 7) hybrid, relaxation/direct-solver scheme for
solving the full-potential equation in conservative form. The particular version we
employ is described in Ref. 7. For completeness, we briefly review Jameson's scheme
and indicate where modifications are necessary to accommodate the viscous matching

conditions.

3.1 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Jameson's method is carried out in a computational plane that is developed from
the conformal transformation of the region exterior to the airfoil to the interior of
the unit circle. A polar coordinate system, (r, w) is used in the circle plane to
generate a desirable grid system for the finite-difference approximation. The
potential-flow problem to be solved in the circle plane is indicated in Fig. 7. The
conservation equation for the velocity potential in the circle plane can be written

in the form

2 S (75)
£ (RQ,) +r o (RQz) =0
where
8% _ o
=", =T % (7€)

and where, in the notation of the previous section, R is the density in the outer
(inviscid region) and Qf and Qw are the mapped velocity components in the T and w
directions, respectively. IfJC/r is the modulus of the transformation of the airfoil
into the exterior of the circle, the physical velocity components in the T and w

directions may be written as
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Figure 7 Computational Domain for the Inviscid Problem

_rQ, q_=?_Q£ (77)
3 r I

The density, R, is determined from speed of sound, a, and the energy equation in

isentropic flow, as follows

2 _ 2 _Yy—=1 2. 2
2" = a;— 5= (qp +qy) (78a)

R = (M2 a%yl/7! (78b)

where ag is the stagnation speed of sound. The uniform free stream and the net mass
flow from the boundary layer introduce singularities at the origin, ¥ = 0, in the

circle plane. These are removed by introducing a reduced potential, G, defined by

cos(w+ o -
_eosera) _ap i pava)

G=2¢ (79a)

where 27mE is the circulation at infinity and %4 is the source flow at infinity

introduced by the boundary layer and wake. Thus,

E = lim L@
2.0 2T (79b)
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2 s
€704 —]é:l.n[')l 27B, (79c¢)
where

Bo=v1-Mg (79d)

The transformation leads to a reduced potential that is single-valued and bounded at

infinity. The corresponding far-field boundary condition is

2
limG= E{(w+a)—tan™ [ B, tan(« + )]} ~£9 11 -M2sin(w+a)]
F-0 2 (80)

The last term in Eq. (80) arises from the viscous-induced source flow at infinity.
The mapped velocity components Qr and Qw can be written in terms of the reduced

potential as

in(w+0a
oG E_sm(ci )

Qu=%, ~ T (81a)
- oG o
Qs =72 —‘ﬁsiF‘Lheng (81b)

The boundary condition on the airfoil surface (r=1) is

-g% = cos(w + @) —€2gy + 30V, (82)

where Ve is the surface-source velocity defined in Egqs. (68).

To be consistent with the theoretical analysis, the wake boundary conditions
should be imposed along a reference curve that is close to the wake, say within 0 (g)
from the wake centerline. We stress the fact that the reference wake axis need not
be a streamline, but that it must only meet the requirement that it be sufficiently

close to the wake centerline. In the present study we align the reference wake axis

with the radial cut w = 0 in the circle plane as sketched in Fig. 8. Both the ‘cut
and the inviscid streamline are tangent to the airfoil bisector at the trailing edge.
With this choice, the wake axis is tangent to the trailing streamline of the inviscid

solution and will, therefore, be positioned close to the wake near the trailing edge.
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Since the wake matching terms decrease rapidly away from the trailing edge and
are quite small at distances greater than the present chord, the approximation should
be more than adequate. Thus, the matching conditions in the wake along w = O can be

written in the form

<8—G>+—(§9)- = E+sin(w+a)+ I V] (83a)
dw ow
G*'—G™ =AT () =AT(T) -T(0) (83b)

where ":V] is the jump in source velocity given by Eq. (69a) and T(r) is the
circulation distribution along the wake which is determined from the integration of
Eq. (17a) subject to the boundary condition at r = 0

T(0)=2rE (84)
The circulation at infinity (¥ = 0) and the constant E are determined from the Kutta
condition requiring the velocity at the trailing edge to be bounded. This is
satisfied by requiring Qw to be zero at the trailing edge. Therefore, from Eq. (81)
we arrive at the following condition for E

E=sina+%—3 atr =1, w=0 (85)
The determination of T (r) from Eq. (7la) requires knowledge of the wake angle, B.

In the present work 8 is defined to be equal to the angle between the extension of
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the airfoil chord and the composite streamline leaving the trailing edge (streamline
1 in Fig. 8). If this streamline is assumed to be close to the position of the cut,
then a sufficiently accurate approximation is

B = Bt Bo+ O(Yeut ~ ¥o) (86)
where Br is the angle between the radial line w = 0 and the extension of the airfoil
chord and B, is the local flow angle at the "cut" as depicted in Fig. 8. The local

flow angle, B can be determined from the composite solutions for the two velocity

components U :iQLe at the cut, w = 0; thus, by definition

8o = tan™ (T VU, ) (87)
where 1%2 is evaluated from Eq. (65b) using the modified expression for the scaling
parameter D given in Eq. (74f)

T, (8) = V,(s) = DK(£) = €*v,(s) (88)
The error term, (yCut - yo) appearing in Eq. (86) is the distance between the cut and
the wake centerline. For inviscid flow, the terms CFF Ve and [[VD are zero, the
circulation, T, is equal to 27mE and the above formulation reduces exactly to

Jameson's original fully-conservative scheme for the full potential equation.

3.2 NUMERICAL SOLUTION

The outer inviscid problem formulated above is solved by Jameson's (Refs. 6
and 7) fully-conservative relaxation method. The method employs a rotated-difference
scheme and a convergence acceleration technique based on a combined SLOR-Poisson
direct solver. Convergence is improved by carrying out the computations on a
sequence of three meshes. Options for a standard non-conservative formulation are
also programmed into the method. The basic numerical method is fully described in
the original references (Refs. 6 and 7). Here, we describe only the changes needed

to accommodate the viscous terms in the boundary conditioms.

The computational grid employed in the calculations is indicated in Fig. 9
together with a sketch illustrating the grid distribution in the physical plane. The

flow field in the computational plane is contained between the airfoil surface T = 1,

" 14

the "point" at infinity ¥ = 0, and the two sides of the "cut" w = 0, w = 2m. The

computational mesh consists of interior points, image points used to satisfy the

airfoil boundary condition and overlap points employed to satisfy the wake matching
conditions. The indices i, j are used to label grid points on the w, r axes,

respectively. The present method overlaps the grid on both the upper and lower sides
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of the cut, in contrast to Jameson's original method which uses overlap points only

on the lower side of the cut.

The body boundary condition is imposed by inserting appropriate values of mass
flux normal to the airfoil surface, RQf, into the image points. The values at the
image points (i, J+1) are obtained by setting the mass flux at the surface, j = J,

equal to the average of the points (J + 1) and (J - 1). Thus,

(RQF)i,J+1 == (RQ;)l,J-1 -23R,V, (89)

The wake conditions are imposed by setting appropriate values of the potential

1"

into the overlap, i = 2, and "cut", rows i = N. The solution in the overlap row,

i =N+ 1, is used in the derivation of the wake conditions but is not actually
employed in the numerical solution. The arrangement of the grid points across the
cut is indicated in Figs. 9 and 10. The reflection rules for the determination of

the potentials ¢ and §N j can be found from the finite-difference expressions for

2,] ,
the jumps in G, Gw and wa across the cut. Thus, from the definition of T we have

N-2
AIRFOIL SURFACE
F=1)

TRAILING EDGE

"'CuUT” § OVERLAPPED
RAYS

Figure 10 Wake Overlap Rays
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GN,j = G3,j +AI’, (90)

where Arj is the value of AT at r = rj. By using centered-difference expressions for
Gw on both sides of the cut in Eq. (83a), we can obtain the following expression for
the mass-flux discontinuity across the cut

(GNu1,5 — GN-1,5) = (Gy,5 = Go,4) = — 283 V] (91)

Similarly, an expression for the jump in wa across the cut can be obtained in the

form
(Gnat,5 —2GN,j +GN-1,35) —(Gyy3 — 2G5,y + Gy ) = Aw? [ G, ] (92)
where ﬁ?wé] is the jump in wa across the cut. A procedure for the evaluation of
G . . . .
[ ww] is given below. These equations can be used to express Gz,j and GN+1,j in
terms of GN-l,j and G4,j’ respectively. Thus,
Gy,y = Gyot,y— ATy + AKIV] - 342G, ] + O(Aw)) (93a)
(93b)
Gty = Gt g + AT, AGHCIV] + 342Gy, + O(Ac))
The solution is carried out by sweeping the field along columns i = constant

from the leading edge towards the trailing edge, first on the lower surface and then
on the upper surface. In carrying out the sweep on the lower surface, the value of
G2,j is used from Eq. (93a) with GN-l,j
sweep on the upper surface employs the potential G

and T evaluated from the preﬁious sweep. The

N, j as determined from Eq. (90) as
3

a boundary value in the solution. The circulation is obtained from an integration of

Eq. (71a) using a simple central difference approximation to yield

2
Fj.q = rj + %Ecw VIS =S | Jw)r=rj+1 +(CyVis—Sg | Jw)r=rj] (Bj"l_ﬁi)

(%4a)
with
I'y=27E (94b)
The value of E is determined from the Kutta condition, expressed in finite~-difference
form as
E = Q‘MZX_WEZJ— — sina + O(Aw?) (95)
The second-derivative term, E?mw]] , could be determined from the differential

equation evaluated on each side of the cut. However, we follow a simpler procedure

and evaluate this term numerically from central difference formulae centered one grid
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point on either side of the cut. This provides a first-order accurate estimate for

u?ww:ﬂ which is sufficient to evaluate the second-order terms in Eq. (93). Thus, we

can write

(Gl = (wa)N-i,j - (wa)4,1 +0(Aw) (96a)
and hence

[Guoll = [(Gy,; — 2Gn-1,3 + Gx-z,5) — (Gs,5 — 2Gy,3 + G3,3 )] / Aw? +O(Aw) (96b)

The flow angle Bj appearing in the equation for the circulation, Eq. (94a), is

determined from the velocities on the cut through Eqs. (86) - (88). To minimize

, * and lower
numerical error we compute U, as the average of TJe(S) on the upper and low

surfaces of the wake. Thus 1%(5) in Eq. (87) is computed from the following

expression (s) [v*(s) )]
Ue(s) =4 [0i(s) +V5(s
e e e (97)
Fo(s) 1 Ve (s) appearing in Eqs. (88) and (97) are the velocity components
where V e

normal to the cut (in Jameson's notation; the q, component defined by Eq. (77)).
These can be expressed in terms of the reduced potential by a central-difference

expression of G centered about the column i = N and i = 3, respectively. Thus,

V+(S)_ -_r— GN+1vj_GN'l'j _E_S_iﬂ] (98&)
e 3 24w T
Vi(s) = — r [G4,: — Gy, _E__sina] (98b)
€ e 20w r
where the potentials GN+1 j and G2 i appearing in the above equations are evaluated
3 b

from Eq. (93). The evaluation of the composite expression for radial velocity

component,4t, required in Eq. (87) is described in Section 4.

The formula for determining the velocities from the reduced potential, Eq. (77)
are indeterminate at the trailing edge since the metric, JC, vanishes at this point.
Hence, special formulae are needed to compute both the velocity and potential at thi:
point. In the original inviscid method (Refs. 6 and 7) the velocity at the trailing
edge was determined from a simple extrapolation of the velocity from neighboring
points on the airfoil side of the trailing edge. In the present work we employ a

simple extrapolation from the wake side. Since the velocity variations are more
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gradual in the wake, this change provides an improved determination of the velocity
at the trailing edge. A special formula is also needed to evaluate the potential at
the trailing edge since the transformed potential-flow equation is leo indeterminate
at this point. We employ the simple interpolation formula used in the inviscid
solution in Refs. 6 and 7 based on the grid points indicated in the Fig. 11. Thus,

with this scheme the trailing-edge potential, G3 3 is determined from the formula
’

G453 —2G3 5 +Gy 5 Ggy-1— ZGé,J’ +G3,54
Aw? * N =0 (99a)
A somewhat more complicated procedure based on the use of an approximate
Prandtl-Glauert equation in the physical plane near the trailing edge is employed in
Ref. (17).

The difference equations are solved for fixed estimates of the boundary-layer
parameters Ve’ T, and EV]]. The equations are solved by the fast iterative scheme
described in Refs. 6 and 7 which is based on alternating a sequence of SLOR and
Poisson iterative methods. In each work cycle, we first perform a Poisson step,
followed by a specified number of relaxation steps. During the computation we
monitor the ratio of the maximum residuals at the start and end of a work cycle.
When this “residual ratio" is reduced to a prescribed level, the boundary-layer
calculations are repeated and the boundary-layer parameters appearing in the matching
conditions are updated. The inviscid computations are then repeated. This
alternating sequence of inviscid and boundary layer ccmputations is continued until a

set of convergence criteria are satisfied. The criteria employed are based on the

PHYSICAL PLANE

AIRFOIL AIRFOIL

B C
Ll L@l L L L LLLLLY

A

“ouT”
(w=0)

Figure 11 Interpolation Points for the Trailing Edge Potential
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maximum residual in the inviscid computation and the change in lift coefficient (a
prescribed) or angle of attack (CL prescribed) between successive work cycles. We
also provide for a termination of the computation based on a maximum number of
iterations. The calculations are carried out on a sequence of three meshes. The
solution on the crude grid is initiated using built-in estimates for the
boundary-layer parameters and reduced potential. The solutions on succeeding grids
are initiated from interpolated boundary-layer parameters and reduced potentials.

The solution on each grid starts with a solution of the inviscid equations.
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4. BOUNDARY LAYER SOLUTION

The boundary-layer parameters appearing in the matching conditions are evaluated
from solution to the boundary-layer equations with a known pressure distribution
determined from the previous iterate. Since the present method accounts for pressure
variations across the boundary layer and wake, there is a certain degree of arbi-
trariness in the choice of the pressure distribution to be used in the boundary layer
computations. We could, for example, use the pressure distribution at either the
edge of the boundary layer or at the surface or, could use an appropriate average
across the boundary layer. Since the pressure variations across the boundary layer
and wake are small, being at most of 0 (83/2) near the trailing edge, the various
choices lead to equivalent solutions, to lowest order in €. In the present work we
use the composite solution for the pressure,(pe(s), on the airfoil surface, Eq. (73),
and cut, Eq. (72a), neglecting the small second-order term Po(s) appearing in Eq.
(73.) In the solution of the boundary layer equations it is assumed the pressure is

constant across the boundary layer and is given by(pe(s).

The edge velocity, Ue w(s), and density, Pe w(s), appearing in the boundary
3 3
layer equations and matching conditions can be evaluated from the exact isentropic

relations.

[y Mi® ()] /"' -1
(y—1)M5%/2 (100a)

Ulwls)=1+

Po,w(8) =y M2LC, (s)] /¥ (100b)

In the evaluation of the flow angle Bo in Eq. (87), we approximate‘ue(s) by
Uw(s) as determined from Eq. (100a) which is a consistent approximation to lowest

order in .

In the present work both the laminar and turbulent boundary-layer equations are

solved using simple integral methods. In this section we briefly describe the
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methods used to solve the boundary-layer equations and the procedures employed for

transition and leading edge separation.

4.1 LAMINAR BOUNDARY LAYER, LEADING-EDGE SEPARATION AND TRANSITION

The laminar boundary-layer equations are solved for &%, 6, h and Ce by a
compressible version (Ref. 9) of Thwaites' integral method (Ref. 61) for incompress-
ible flow. The laminar equations are integrated from the forward stagnation point to
a transition point whose location is either assigned or determined by a specified
transition criteria. Three semi-empirical, transition prediction methods have been
programmed into our method as user selected options. These include transition crite-
ria based on Crabtree's correlation (Ref. 62), Michel's correlation (Ref. 63), and
the correlation in Stevens, Goradia, and Braden (Ref. 64). We also test the laminar
solution for leading-edge separation according to the criterion in Ref. 64. If
leading-edge separation is present, a diagnostic is written indicating that sepa-
ration has occurred and whether it is of the long or short bubble type. If transi-
tion is not predicted before laminar separation, transition to turbulent flow is
assumed to occur at the laminar separation point. The user may choose both an
assigned transition location and one of the above transition criteria. In this case
the transition point used in the calculations is the most upstream of 1) the assigned
location, 2) the position predicted by the transition criteria or 3) the laminar
separation point. It is, of course, well known that these and other existing methods
of predicting transition are not reliable. They are included in the present method
merely as a guide to be used in the absence of any information regarding the position

of transition.

The turbulent boundary-layer calculation is initiated at the transition point,
generally, under the assumption that the momentum thickness is continuous and the
shape factor is discontinuous across transition. The initial value of the shape
factor in the turbulent flow is determined under the assumption that the increment in

the "incompressible" shape factor, h, is given by

Ah, =1.1 (101)
where, in turbulent flow

2
h=(h+1) <1+ ‘”—1;—4&) -1 (102)
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where r is the recovery factor and Me is the local Mach number at the boundary layer
edge. A more elaborate correlation in Schlichting (Ref. 65) based on the assumption
that Aht is a universal function of the momentum thickness Reynolds number at transi-
tion, can be used in place of Eq. (101). However, the turbulent boundary layer down-
stream of transition is not sensitive to the initial conditions at transition and the
simple relationship given in Eq. (101) is adequate. In our method, we also allow for
a jump in momentum thickness, ABt, across the transition point. This jump can be
used to simulate an increase in momentum thickness due to a roughness strip. Thus,
the initial values of the reduced shape factor and momentum thickness employed in the

calculation of the turbulent boundary layer are written in the form
T1=Tllammar(wt) + Aﬁt (103a)
0= By inacl @) + A6, (103b)
where w = W is the circle plane angle of the transition point.

The integrals appearing in the laminar solution are evaluated by a simple
trapezoidal rule and the surface source velocity at points where the flow is laminar

is evaluated from the following central-difference approximation:

(1 (0aU,5%) 141 = (0e0e0%) ;. |
Ve(wi)—(———p 0 )l[ ol mhl—wl;iL (104)

e

4.2 TURBULENT BOUNDARY LAYER SOLUTION

The solution of the turbulent boundary layer and wake are carried out by the

lag-entrainment method of Green et al. (Ref. 10). This is an entrainment-type inte-
gral method that includes an approximate treatment of the turbulent energy equation.
The method has been demonstrated to provide accurate solutions for airfoil-type flows
with large adverse pressure gradients. Such flows arise, for example, near shock

waves and trailing edges of rear-loaded supercritical airfoils.

The basic method employs the momentum-integral equation, a shape-factor equa-
tion, and a differential equation for the entrainment function. To avoid interpolat-
ing between the inviscid and boundary-layer solutions, the latter are integrated in

the circle plane using the same grid points employed in the inviscid solution. The
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basic equations for the momentum thickness, reduced shape factor, and entrainment

function and are written in the form

1 dé 6 dU
jeag meo —(he2-MY) 5 (109
e
1dh 1 dh 9 du
@H=5d_m{ce_hl[%°f—(h“)u a‘f]; (109
e

where £ is equal to the polar angle w on the airfoil surface and to the radius, r, in
the wake (We recall that JC is the modulus of the transformation.). The shape fac-
tor, h, is determined from h by Eq. (102) and the displacement thickness is given by

6% =ho (108)

The velocity-profile function, hl’ is given in terms of h by

hy = 3.15 + —% - 01 (A-1)° (109)
(h-1)
The skin friction is computed from the following empirical relations
9h 1
= __—0——--——
Cs =C¢o [10h—4 2] (110)
where
ho— T 2.]'1/2
hy=[1+6.55 Vi, (1+.04 M2) (111a)
1 0.01013
Cro= =~ —0.00075
=g I:logm(FRRg)-l.OZ ] (111b)
F.=vI+.2M, Fp=1.0+0.056 M (111c)

and Re is the local Reynolds number based on momentum thickness. The function Fe

appearing in the entrainment equation is an empirical function defined in Ref. 10

that depends on boundary-layer parameters, the external-velocity gradient 1 gge and
Ue ds’

the local external Mach number Me' This function also involves parameters that per-

mit a rcugh treatment of the effects of longitudinal curvature and mean dilatation
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on the turbulence. The same model is used to solve for both the flow in the boundary
layer and the wake. The wake is analyzed as if it were two separate symmetric half

wakes.

The integration of Eqs. (105) - (107) is initiated at the transition point using
values for h and 6 determined from Eqs. (103). The initial value of the entrainment
function, CE’ is determined from an equilibrium value defined in Ref. 10. For fur-

ther details of the model see Ref. 10.

The differential equations are integrated using a standard variable-step Runge-
Kutta method. The integrations are carried out on a basic grid formed by the w nodal
values used in the inviscid solution. The integration scheme allows repeated grid
halving, subject to an error measure, to maintain accuracy in regions of rapid varia-
tion as occur near shock waves and the trailing edge. In this way the solution for
the boundary-layer parameters are determined directly at the nodal points of the

inviscid flow without interpolation.

A useful expression for the source velocity, Vs in turbulent flow can be ob-
tained from the momentum-integral and shape-factor equations. Thus, employing Egs.
(105) and (106) in the definition of v, we arrive at the following expression for A

as a function of the gradient of the edge velocity Ue:

du,
Vg =01—02 TE (112)
where
U 1 dh
cl= Eg[th+(CE—2hICf)(Cr+ 1) a}.l_l-] (1133)
) (ce—1) (cg+1) 1 dh (113b)
c,=06(h+ 1)[h— ) — g Cot Dby G
and
2
co=1+1(y =M, co=1+(y~1) Me (113¢)
dh (h — 1)
dh, =~ T.72+0.02(A ~1° (113)
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In the numerical method, the velocity derivative appearing in Eq. (112) is approx-
imated by a simple centered difference in the circle plane. It is of some interest
to note that in the limit Re @ «, h * 1 and Vg approaches the following limit (for

recovery factor r = 1)

1 1 1 du
Va=Ue[§ CoCt —(°o+ —) 6* o dse] +0(€?) (114)

Co e

The boundary layer thickness, §, and Coles' wake parameter, T, are determined by
matching the skin friction and displacement thickness corresponding to Coles' com-
pressible law-of-the-wake (Refs. 66 & 67) to the solution of the lag equations just

upstream of the trailing edge.

The lag-entrainment method was not designed to deal with separation of the
boundary layer. In many cases of interest, small separation zones will appear in
airfoils flows, without significant influence on the surface-pressure distribution or
other section characteristics. For example, small separation regions can occur at
the foot of the shock wave or near the trailing edge without exerting a strong influ-
ence on the outer inviscid flow. In the case of shock-induced separation, the shape
factor is observed to undergo a very rapid increase as the shock wave is approached,
followed by an even steeper decrease behind the shock wave. In these cases, the lag-
entrainment method will predict an increase in the shape factor to unrealistically
large values (e.g., h 15), completely outside the range of data correlations on
which the method is founded. The method will also predict unrealistic values of the
skin friction in the separated zone. In order to enable the present method to func-
tion in these cases, we have set arbitrary bounds on both the skin friction and shape
factor when the flow is separated. Flow separation is predicted in the theory when
the skin friction computed by the lag-entrainment method is zero. If separation is
predicted, we set an upper bound on h given by hmax' Then, if h computed according
to Eq. (106) is greater than hmax’ it is set equal to hmax' The value of the upper
bound can be specified as part of the input; typically, we take hmax = 4.0. For the
skin friction, we follow Hunter and Reeves (Ref. 68) in their "wake like" model of
separation and set Ce = 0 if it is predicted to be less than zero in the lag-entrain-
ment solution. This approximation of the skin friction in separation zones can be
expected to have only a small influence on the solution since Ce is generally small

in the slender separation bubbles that occur on airfoils. The overall accuracy of
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this approach to separation is not expected to be very high but it should provide

useful estimates of incipient separation at the shock wave or trailing edge.
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5. RESULTS

The theoretical method described in previous sections has been developed into a
computer code GRUMFOIL to solve the viscous transonic flow over airfoils. A complete
description of the most recent version of the code is given in Ref. 69 along with
instructions for its operation. In the version of the code used for the present
computations, we allow for the choice of the constant, Cys which controls the
accuracy of the difference approximation in the supersonic zone and for the choice of
the parameter, Qc’ which determines the Mach number of the switch from a central to a
backward difference. The difference formulae are second (first)-order accurate at

supersonic points for c, = 1 (0) independent of the value of Qc' In this section

2

comparisons of theoretical solutions for various values of c¢. and QC are presented to

demonstrate the effect of the difference approximation on ihe solution. We also
present solutions that illustrate the effect of switching from a F-C or N-C
difference scheme. In the program we also provide an option for deleting the
trailing-edge corrections and for selectively dropping each of the terms appearing in
the viscous matching conditions. These options are used to generate results which

illustrate the effect of wake curvature, wake thickness, and trailing-edge correction

on the solution.

Although the basic theory used in the present work formally applies only to
closed airfoils with cusped trailing edges, the code can be applied to more general
airfoils not satisfying these conditions. Open trailing-edge airfoils are modeled by
continuing the airfoil surface downstream with a semi-infinite streamtube. The
region outside the airfoil plus extensions is then mapped to the region outside a
unit circle with the twn edges of the wake streamtube mapped to a single curve in the
circle plane. This procedure leads to a constant-thickness airfoil extension and to
a solution that is continuous across the wake streamtube. For an open airfoil, we
must also prescribe the base pressure and determine the base-drag contribution to the
total drag. In the present work we assume the base pressure is equal to the pressure
at the trailing edge as given by the viscous solution. This approximation is valid
if the base thickness is less than the boundary-layer momentum thickness at the \

trailing edge. The base drag contribution is usually negative, leading to a
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reduction in drag. The contribution is sensitive to the accuracy of the predicted
trailing edge pressure and can be significant. Unfortunately, the base drag

contribution has been missed in recent investigations (Refs. 12-15).

In this section we also present comparisons of theoretical solutions with
experimental data for a series of airfoils tested in various wind tunnels. The
influence of wall-interference effects on the wind-tunnel data introduces
considerable uncertainty into the interpretation of these comparisons. For small
enough models, the main effect of wall interference can be taken into account through
standard downwash and blockage corrections to the experimental values of the
incidence and free-stream Mach numbers. Unfortunately, reliable estimates for these
corrections are not available for most transonic wind tunnels, including all those
considered in the present study. Therefore, in the present investigation we avoid
interpretational difficulties associated with the angle of attack by comparing theory
and experiment at the same (measured) 1lift coefficient. In these calculations the
1lift coefficient is prescribed and the angle of attack is adjusted during the
relaxation process to satisfy the Kutta-condition at the trailing edge. If reliable
incidence corrections were available for a set of data, the difference between the
experimental and theoretical incidence could be used to judge the adequacy of the
theory. However, because of the absence of reliable incidence corrections, we have
not attempted such comparisons in the present study. The problem with blockage
corrections also remains. The main effect of wall-induced Mach number corrections is
to alter the position of shock waves on the airfoil surface. Mach number corrections
as small as M = 0.001 can produce noticeable shifts in shock-wave location. When
available, we followed the recommendations of tunnel operators in applying Mach
number corrections to the data. Unfortunately, accurate blockage corrections to the
Mach number were not generally available for most of the wind-tunnel data considered
in the present study. Therefore, in carrying out the comparisons presented later in
this section, we employed Mach number shifts for each tunnel that produced the best
overall agreement between the theoretical and experimental shock locations. Because
of the uncertainty in the free-stream Mach number, the conclusions drawn from the
present study must be regarded as tentative. More definitive evaluations of the
theory must await the availability of interference-free data or accurate
wall-interference corrections. All theoretical calculations presented in this report

were carried out on a sequence of three (Nr X Nw) grids consisting of (40 x 8), (80 x
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16) and (160 x 32) points. Except where noted, all calculations were carried out

with the fully-conservative, first-order accurate (c2 - 0, Qc = 1) version of the
method.

5.1 EFFECT OF INVISCID FINITE-DIFFERENCE PARAMETERS ON SOLUTION ACCURACY

The formal accuracy of the windward finite-difference approximation employed in

and near the supersonic zone is controlled by the parameter Cys with the solution

being first-order accurate for c, = 0 and second-order for c, = 1. Here we present

typical results which illustrate the effect of c, on the solution. In general,

convergence slows and the solution becomes more difficult to obtain as c, is

increased from zero to one. Fortunately, convergence is facilitated by reducing the
value of the parameter, Qc’ which controls the points at which the numerical scheme
is switched from central to backward differences. 1In the basic setup, Qc = 1 and the
switch is made at the sonic line (M = Qc = 1). Reducing Qc below one tends to smooth
the solution near shock waves and to speedup convergence. This smoothing effect of

QC is especially helpful for values of c2 close to one. We have been able to
routinely obtain fully second-order results (cz = 1) with QC = 0.9. We should stress

that the finite-difference approximation is formally second-order accurate for c, = 1

independent of the value of Qc.

To illustrate the effect of c2 on inviscid solutions we carried out

fully-conservative computations on an RAE 2822 airfoil at M = 0.725 for three values

of CL with various combinations of c. and Qc. This resulted in supercritical flow

2
with shock waves in all cases. The results for CD, @, and shock position, XS, are

summarized in Table 1.

Ve first note, the choice of QC has only a minimal effect on the solutions for

fixed values of Cy- Second, and more importantly, we note that the solutions for all

three values of CL’ are only weakly dependent on the value of Cg- The drag

coefficient is seen to increase by only two counts in going from a first-order (c2 =

0) to a second-order (c2 = 1) scheme. The shock position is uneffected and the angle

of attack is only slightly increased (A .01) as cy is increased from zero to one.
The results also indicate that the solution for c, = 0.8 and 0.9 are virtually

identical to the second-order (c2 = 1) solution. The pressure distribution on the
airfoil surface for the CL = 0.95 cases given in Fig. 12. The two solutions are

indistinguishable in this plot. These results indicate that the first-order accurate
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TABLE 1., EFFECT OF c, AND Q. ON SOLUTIONS FOR INVISCID FLOW
OVER A RATE 2822 AIRFOIL AT M_ = 0.725

CL Co QC CD o XS
0.9 0 1 0058 1.844 .65
0.9 0 .90 0058 1.853 .65
0.9 .8 .90 0060 1.830 .65
0.9 o8 .95 0060 1.829 .65
0.9 .9 .90 0060 1.827 .65
0.9 .9 .95 0060 1.827 .65
0.9 1.0 .90 0060 1.824 .65

«925 0 1 0069 1.904 .66

.925 .90 .90 0071 1.885 .66

.925 1.0 .90 0071 1,881 .66

.950 0 1 0082 1.960 .66

.950 .9 .9 0084 1.938 .66

version of the F-C scheme employed in the present method is surprisingly accurate
suggesting that the first-order truncation error terms must be relatively small. Our
experience with the present method is at variance with the results of Collyer and
Lock (Ref. 18), obtained for a similar case with their partially-conservative P-C

scheme. Their results showed a much larger effect of c¢ with the drag increasing by

2’
about twenty counts as <, increased from zero to one. The major discrepancy is
between the two first-order solutions, with Collyer and Lock's solutions producing
much lower drags. The reason for the poor performance of the Collyer and Lock

first-order P-C method has not been ascertained.

The above results indicate that the first-order accurate version of the present
method should be édequate for most purposes. However, there are some cases involving
weak shock waves for which variations of <,y produce more noticeable effects. In
these cases weak shock waves near the leading edge were not adequately resolved with
the first-order accurate version of the method. We found improved resolution could
be obtained by either refining the mesh or by increasing c, toward one. A typical

2
result illustrating this effect in a full viscous solution is given in Fig. 13. In
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Figure 12 RAE 2822 — Inviscid Pressure Distribution at M, = 0.725, CL =0.95,
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this figure first and second-order accurate solutions for the surface-pressure
distributions are compared for M°° = 0.725 and CL = 0.521. This case involves two
shock waves on the upper surface of the airfoil. The results indicate that the
forward, weak shock wave is not adequately resolved by the first-order scheme on the
(160 x 32) grid employed in the computation, but that good resolution is achieved
with the second-order scheme. Note that, as is generally the case, the drag and
angle of attack are only slightly affected by the choice of Cy-

The dotted line extending from the airfoil trailing edge in Figure 13 (and in

1" "

all others Cp plots to follow) is the transformed "cut" (w = 0) location in the
physical plane. The nearby solid curve is an approximation to the composite solution
for the streamline from the trailing edge as determined from an itegration of the

flow angle, B = B_+ B,, along the "cut". The closeness of these two curves near the
trailing edge is supportive of the approximations used in the evaluation of the

wake-curvature terms.

The first-order scheme is less expensive to use and has been found to be
generally adequate for most cases. Therefore, it is recommended for general use and
has been employed in all solutions presented in this report. The second-order scheme
is reserved for certain special cases requiring greater accuracy to resolve fine

details of the flow field as in Fig. 13.

5.2 EFFECTS OF THE WAKE AND TRAILING EDGE INTERACTION

The computer code has been organized so that individual terms appearing in the

viscous matching conditions can be selectively dropped from the computations. This
option has been employed to generate a series of solutions that illustrate the
importance of the individual terms in the matching conditions. Three cases have been
carried out, corresponding to subcritical and supercritical flows over an RAE 2822
airfoil and to supercritical flow over a more heavily rear-loaded supercritical
airfoil developed by the NASA (LaRC). For each case, a series of solutions have been
obtained with each of the terms appearing in the matching conditions selectively
dropped. Solutions for the drag, 1lift, and trailing edge pressure are summarized in
Tables 2A and 2B. In these tables CDB is the total drag, determined from integration
of the pressure and skin friction over the airfoil surface, and CDQ is the profile
Deo = 26“).

drag determined from the wake momentum thickness far downstream (i.e., C
Profile drag is equal to the total drag less the wave drag and is due solely to
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atM,, = 0.752,C, = 0.521, R, =21.5x 108 (x, = 0.10)
momentum losses in the boundary layer. For subcritical flow, C is equal to the

Do
total drag of airfoil and should be equal to CDB as determined by surface

integration. In general, however, these two evaluations of the drag will not be
equal with the differences due both to, numerical errors in the solution of the
governing equations and to approximations in the formulation of the viscous effects.
The momentum drag (i.e., 28 ) seems to be relatively insensitive to the details of
the numerical method and the formulation of the viscous theory, and is thought to be
the more accurate prediction of drag in subcritical flows. In these cases the
difference between profile and integrated drag is a useful measure of the overall

accuracy of the theoretical model.
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The results in the tables include solutions for (A) the inviscid theory, (B) the
full viscous theory, (C) the full viscous theory less the trailing-edge corrections,
(D) less the wake-curvature term, and (E) less the wake-thickness terms. In the
latter solution the wake is modeled as a constant thickness extension of the
displacement surface on the airfoil surface. We have also carried out solutions
neglecting the trailing-edge corrections and both the wake curvature and thickness
terms. This version of the theory, (F), includes only the displacement effect on the
airfoil surface and is, therefore, equivalent to the formulation employed in the BGKJ
(Refs. 12 & 15) method and its derivatives (Refs. 13 & 14). For the two
supercritical cases studied using this latter formulation, we have also obtained
solutions with the N-C version of our method (labeled (G) in the Table 2B). 1In
addition, for the two RAE 2822 cases considered in Tables 2A, B, we have also
included available results from the RAE non-conservative method (Ref. 17). The RAE
method accounts for both wake-thickness and wake-curvature but not trailing-edge

interaction effects.

The results for the subcritical RAE 2822 case are listed in Table 2A.
Comparisons of the inviscid (A) and full viscous (B) solutions illustrate the large
effect of the boundary layer on lift. Even for this subcritical case, the presence
of the boundary layer causes a nearly 1/3 decrease in lift. The results given in
lines (C), (D), and (E) illustrate the effect of the individual terms in the matching
conditions. Comparisons of the results in lines (A)-(E) indicate that the largest
effect is caused by the displacement thickness on the airfoil surface with the other
terms also producing significant effects. The influence of wake thickness on drag
and lift and of wake curvatures on lift are the most pronounced of these secondary
influences. The effect of wake thickness on lift was unanticipated since we would
expect predominately symmetric effects from this source. However, on reflection,
this behavior is not surprising. The neglect of the wake-thickness term is seen to
lead to an increase in pressure at the trailing edge which in turn, induces a
significant increase in boundary-layer thickness near the trailing edge. The
increase is largest on the upper surface because of the larger initial boundary-layer
thickness on this surface. It is this differential increase in boundary-layer
thickness caused by the neglect of the wake-thickness term that leads to the observed
lift reduction. We also call attention to the insensitivity of the momentum drag,
CD»’ to differences in the theoretical model and to the good agreement between the

two evaluations of drag in the full viscous solution (B). The good agreement evident
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TABLE 2A - RAE 2822 AIRFOIL AT M, = 0.676 a = 1,06°
Re = 5.7 x 109 X, = 0.11

Mode Theoretical Model Cp CD CL, CpTE
® | Inviscid 0 0 0.571 0.438
Full Viscous 0.0084 0.0083 0.431 0.234
© | ® Less 1E 0.0080 0.0083 0,416 0.234
Corrections

® Less Wake Curva- 0.0081 0.0083 | '0.454 0.234
ture

® Less Wake Thick- 0.0069 0.0082 | 0.398 0.289
ness

® Less TE Correc— 0.0064 0.0082 | 0.399 | o0.278
tions, Wake Curvature
& Thickness

©) | RAE (NC) (Ref 17) 0.0081 0.0083 | 0.430 0. 926

(0.420)

in this case is an encouraging indication of the overall accuracy of the present
method. The underpredicticn of the integrated drag and the poor agreement with CD°°
when the wake-thickness terms are suppressed (E), are indications of the importance
of these terms. The comparisons in Table 2A indicate that the formulation based on
airfoil displacement thickness only, underpredicts the drag by 25% and the 1lift by 7%

in this case.

The results of the N-C RAE method of Ref. 17 (C'), which is equivalent to the
formulation employed in case (C) of the present method, are in good agreement. Two
values of the 1lift coefficient are given for the RAE method. The higher value
results from a version of their method that employs considerable numerical smoothing
of the wake curvature terms near the trailing edge. The smaller value, obtained with
less smoothing, is in better agreement with the results of case (C) of the present
method. It was reported in Ref. 17 that convergence difficulties were experienced in
this latter version and its use was not recommended. This difficulty is 1likely

related to the neglect of trailing edge interaction effects in their formulation.
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A similar series of calculations were carried out for the same airfoil at a
higher free-stream mach number, resulting in a supercritical flow. The results are
listed in Table 2B. In this case the integrated drag includes wave drag and so is no
longer equal to the momentum drag, CD»' The difference between CDB and CDm is a
relatively accurate measure of the wave drag in the full viscous solution (case (B)),
but not in the other cases because of the inadequacies of the viscous formulation
clearly evident in the subcritical results (Table 2A4). The neglect of wake and
trailing edge interaction effects in this supercritical case leads to a 35%
underprediction of the drag coefficient (case (F)) compared to the full viscous
solution. We have also repeated case (F) with the N-C formulation (Line (G) in Table
2B). The N-C scheme leads to a weaker, more forward shock wave but to a higher drag.
This extra drag arises from a spurious mass generation at the shock wave caused by
N-C differencing. This spurious drag increase is also evident in the comparison of
the RAE results (case (C')) with the present, equivalent formulation using F-C

differencing (case (C)).

The solutions for the pressure distribution on the airfoil surface are given in
Fig. 14. 1Included in the figure are the inviscid solution (A), the full viscous
solution (B), and the viscous solution less the trailing correction and both wake
terms (F). Both F-C and N-C calculations of the latter case are included. These
results illustrate the very large effect of the boundary layer on the flow field in
supercritical conditions even at the relatively large Reynolds number of the
computations. The boundary layer drives the shock wave forward from X = 0.80 to X =
0.55, significantly reduces the pressure level on the upper surface, and increases it
on the lower surface of the airfoil. These effects produce a reduction in the lift
coefficient by nearly a factor of two. The neglect of the wake and trailing-edge
contributions to the matching conditions is seen to drive the shock wave forward by
about 5% and to reduce the 1lift by 10% and drag by 35% below the full viscous
solution (see Table 2B). The switch to a N-C scheme is seen to drive the shock wave

even further forward.

The details of the pressure distribution near the trailing edge for the full
viscous solution at the higher Mach number, M°° = 0.725, is plotted on an expanded
scale in Fig. 15. Included in this figure are the "composite" and "outer" solutions
computed from the full viscous theory. The composite solution contains contributions

from the "outer" and "inner" solution as given by Eq. (66) which account for the
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TABLE 2B - RAE 2822 AIRFOIL AT M = 0.725, a = 2.3°,

R, = 6.5 X 106 Xp = 0.03
Mode Theoretical Model CD CD CL CP
i TE
Inviscid - - 1.300 0,5265
Full Viscous 0.0110 0.0098 0.726 0.222

Less TE Corrrections 0.0101 0.0096 0.700 0.227

@D Less Wake Curvature 0.0112 0.0100 0,758 0.224

(B) Less Wake Thickness 0.0080 | 0.0093 | 0.661 | 0.276

Less TE Corrections, 0.0072 | 0.0043 | 0.658 0.271

Wake Curvature & Thickness

@ OI®|G6I®|®

(® With Nonconservative | 0.0081 | 0.0092 | 0.648 | 0.269

Differencing

© | maE @)’ 0.0119 - | 0.699 | 0.219

préssure variations across the boundary layer and wake. The outer solution clearly
exhibits the wake pressure jump imposed as part of the viscous matching conditions.
The pressure jump is largest at the trailing edge and rapidly decays away from the
trailing edge both in the wake and on the airfoil surface. The relatively large jump
in pressure at the trailing edge (ACp 0.2) is indicative of the importance of
normal pressure gradients near trailing edges. The crossing of the outer solution on
the airfoil is a typical property of the viscous wake solution which clearly

distinguishes it from jet-flap solutions with positive blowing coefficient.

The RAE 2822 is an airfoil with moderate rear loading. A similar series of
calculations have also been carried out for a more highly rear-loaded supercritical
airfoil developed by the NASA-Langley Research Center. The calculations for this
case were carried out for a free-stream Mach number of M°° = 0.768 and an angle of

attack of @ = -0.151, resulting in a lift coefficient in the full viscous solution of
CL = 0.852.

The solutions for this case are listed in Table 3. The airfoil has a nonzero
trailing-edge thickness which requires an estimate for the base-drag contribution to

CDB' This contribution amounted to 7 counts of drag for all cases considered in
Table 3.
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Figure 14 RAE 2822 — Effect of the Wake and Trailing Edge Corrections on the Theoretical
Pressure Distribution at M,, = 0.725, « = 2.3°, R, = 6.5 x 106 (X = 0.03)

The shock position in the inviscid solution at this incidence and Mach number
appears to be downstream of the trailing edge and, because of this, the inviscid
solution could not be computed with the circle plane code used in the present study.
The viscous solution could be determined without difficulty. The inclusion of the
boundary layer in the viscous solutions drove the shock wave forward to 73% chord,

again demonstrating the very large effect of the boundary layer on the flow field at
transonic speeds.

The results in Table 3 indicate that the trailing-edge correction and the
variation of profile drag with the theoretical model are much larger than in previous

cases. We also note that the neglect of trailing-edge correction and the wake terms
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(F) leads to a 30% an underprediction of drag and the use of a N-C formulation leads

to a partially compensating increase of drag of about 10%.

5.3 THEORETICAL PREDICTION OF PROFILE DRAG AT SUBCRITICAL CONDITIONS

At low Mach number subcritical conditions, the total drag of an airfoil is equal

to the profile drag given by the sum of skin friction and pressure drag. As
discussed previously, the profile drag can be evaluated either by integrating the
surface pressure and shear-stress distributions or from momentum considerations, by

CDB = 20 . The total drag can also be estimated from the Squire-Young approximation

based on momentum thickness at the trailing edge. The difference between the

integrated drag, and the more accurate momentum drag, CD“, is a useful measure

c
DB’
of the error of the theory. In Table 4 we compare the theoretical results for the

integrated and momentum drags for several airfoils at a variety of subcritical flow

conditions. In this table CDB is the total integrated drag, CD is the integrated

drag less the base drag, C, is momentum drag evaluated from CD°° = 28_ and CDSY is

Deo
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total drag evaluated from the Squire-Young formula. The results in the table also

include experimental data based on wake-rake measurements (Refs. 70-73).

TABLE 3 ADVANCED SUPERCRITICAL AIRFOIL AT M = 0.768 a = -0.1510

R, =7.7 X 100 X = 0.28

T

Mode Theoretical Model CpB CD Cr, CpTr
® Inviscid , NOT AVATLABLE
Full viscous 0.0122 | 0.0082 | 0.852 0.137
© Less TE corrections | 0.0097 | 0.0078 | 0.808 0.156
® (®) Less wake curvature | 0.0131 | 0.0091 | 0.871 0.120
@ Less wake thickness 0.0105 0.0079 0.835 0.155
® Less TE corrections, | 0.0088 | 0.0079 | 0.821 | 0.168

wake curvature &

thickness

(® with nonconservative | 0.0098 | 0.0074 | 0.768 0.155

®

differencing

The agreement between the integrated and momentum drags for the RAE 2822, GK1
and the NASA LaRC airfoils is strong evidence that the present method produces
accurate prediction of the absolute level of drag at subcritical conditions. The

difference between C. and CDB for the NASA airfoil arises from a thrust on the finite

base of this airfoif. The agreement between the integrated and momentum drags is
noticeably poorer for the NACA 0012 airfoil. This airfoil has a significant base
(Ay/c = 0.0026) and a relatively large trailing-edge angle of 160. These geometric
features make the solution for the integrated drag very sensitive to the pressure
levels near the trailing edge. The under-prediction of the integrated drag in this
case is very likely caused by neglect of strong-interaction effects associated with
the trailing-edge angle. The ratios of trailing-edge thickness to boundary-layer
momentum thickness (Ay/BTE) is 1.2 for the NASA airfoil and 0.4 for the NACA 0012
cases in Table 4, indicating that the approximations used for the base pressure is
adequate for these cases. The theoretical results for the Squire-Young evaluation of
the drag is nearly identical to the drag based on far-field momentum thickness in all

cases considered in the table. The momentum drag, C s Which is thought to be the

D
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more accurate theoretical prediction, is also in very good agreement with the data

from the RAE, Langely, and Ohio State University wind tunnels.

tunnel seems to be consistently high by about 10 counts compared to the present

The drag from the NAE

theory. The good agreement observed in other cases (compare, in particular, the Ohio

State and NAE data for the NACA 0012 airfoil) suggests this is due to a consistent

error in the NAE measurements.

TABLE 4 PROFILE DRAG RESULTS

Case

Present Theory

Experiment

Cp Cpg CDw CDSY Cp Exp Source
RAE 2822 M_=0.676 - 10.0087 | 0.0085]0.0085| 0.0085 | RAE
€,=0.576 R =5.7 X 10° X,=0.11 ggff-
RAE 2822 M,=0.676 - lo.0081 | 0.0082 | 0.0083]| 0.0079 | RaE
C,= -0.121 R =5.7 X 10° X,=0.11 gg;f-
GKI. M,=0.511 - |0.0063 | 0.0064 | 0.0064 | 0.0078 | NAE
€ =0.431 R _=21.5 X 10° X,=0.10 §§§f-
GKI M_=0.622 - |0.0065 | 0.0066 | 0.0066 | 0.0070 | NAE
C,=0.458 R_=21.5 X 10° X=0.10 §§§f-
NASA LRC M = 0.78 0.0079[0.0070 | 0.0070 | 0.0069 | 0.0072 | NASA
€;=0.42 R =7.7 X 10° X=0.28 LRC
NACA 0012 M =0.575 0.0079(0.0072 | 0.0082 | 0.0082 | 0.0081 | Ohio
€,=0.006 R_=4.7 X 10° X,=0.10 %ﬁiﬁf
(Ref.
72)
NACA 0012 M_=0.693 0.0065(0.0057 | 0.0067 [0.0068 | 0.0078 | NAE
€;=0.017 R =22.1 X 10° X,=0.05 ;Tff'
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In Table 5 the profile drag prediction of the full viscous theory for the NACA
0012 airfoil tested at Ohio State University are compared with parallel wake
solutions obtained with the present computer code and with the predictions of the
BGKJ and Carlson methods presented in Ref. (72). As discussed above, the momentum
drag from the full viscous solution is in good agreement with the experimental data.
The integrated drag shows a significant error for reasons previously mentioned. The
theoretical pressure distribution is compared with experimental data in Fig. 16. The
agreement is good, except near the trailing edge, where the theory indicates a more

positive pressure. This is consistent with the error in integrated drag.

TABLE 5 NACA 0012 AT ZERO LIFT

M=0,575 Re=4.68 X lO6 XT=O.10

Theory CD Cpp Cp, CDSY
Present - Full viscous 0.0079 0.0072 | 0.0082 0.0082
Present — Parallel wake 0.0063 0.0054 0.0081 | 0.0081
BGKJ (Ref. 72) 0,0047 | 0.0036% - -
Carlson (Ref. 72) 0.0051 | 0.0042% - -
Experiment (Ref. 72) 0.0081

(* Obtained by subtracting AC = 0,0009 from CD)

Fp

Neglect of the wake-thickness term leads to substantial increase in the error in
integrated drag but does not affect the solution for momentum drag. A significant
part of the discrepancy between the two evaluations of drag is due to the
contribution of the base, which in this case amounts to seven counts of thrust. We
note the very large underprediction of the drag by both the BGKJ and Carlson methods.
With the base drag included, these methods are seen to underpredict the drag by a
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factor of two. The base-drag contribution was not included in the original solutions
presented in Ref. (72). We have corrected these solutions for base drag using the
base-drag increments determined from our parallel-wake solution in order to provide a

uniform basis for comparison.

The results in this section demonstrated that the absolute value of the profile
drag can be adequately determined from the integrated drag of the full viscous
solution. This was demonstrated in Table 4 for airfoils with small trailing edge
angles. The trailing edge angles of the GK1. NASA~LaRC RAE 2822, and NACA 0012
airfoil are 0, 3.87, 8.67, 15.96 degrees, respectively. This differs from the
conclusion reached by Smith and Cebeci (Ref. 74) in a study of boundary-layer methods
for predicting profile drag. 1In their study they concluded that profile drag
predictions based on integrated shear and pressures were inadequate, and they
recommend exclusive use of the Squire-Young formula. The present study indicated
that Smith and Cebeci's difficulties with integrated drag were due entirely to the
neglect of the wake-thickness terms in their boundary-layer model. Calculation of
the Joukowski profile with the present method showed relatively good agreement

between the integrated and momentum drags. The results are summarized in Table 6.

We note that the present results for integrated drag obtained with the
wake-thickness terms neglected agree well with the results of Ref. (74) and that both

methods underpredict the drag by about a factor of two for the 30% thick airfoil.

The results in this section demonstrated the importance of the base drag
contribution for certain airfoils with open trailing edges. The contribution of the
base drag was an important element in obtaining favorable agreement between theory
and experiment of the NASA LaRC airfoil. The poorer agreement obtained the the NACA
0012 is indicative of the importance of strong interaction effects associated with
the large trailing-edge angle of this airfoil. Further improvements in the
prediction of profile drag of airfoils with sizeable trailing edge angles can be
achieved by incorporating an appropriate strong interaction solution into the

theoretical formulation.
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== FULL VISCOUS THEORY
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Figure 16 NACA 0012 - Pressure Distribution at Zero Lift at M = 0.575,

Re = 4.68 x 106(XT = 0.10)

TABLE 6 PROFILE DRAG FOR JOUKOWSKI AIRFOILS AT ZERO INCIDENCE

M_=0.05 R =10 X 106 X, =0.10
© e T
Present Theory Theory of Ref. (73)
t/c c C C c C C
f D DSY f D DSY
0.10. 0.0058 0.0064 0.0066 0.0057 0.0062 0.0065
(0.0063)
0.15 | 0.0060. 0.0070 0.0074 0.0058 0.0065 0.0072
(0.0067)
0,20 | 0.0061 0.0075 0.0081 0.0060 0.0067 0.0080
(0.0069)
0.25 | 0.0062 0.0082 0.0092 0.0061 0.0065 0.0090
(0.0069)
0.30 | 0.0063 0.0091 0.,0105 0.0062 0.0054 0.0102
(0.0063)
( ) Denotes results obtained with parallel wake formulation




5.4 COMPARISONS OF TRANSONIC RESULTS WITH EXPERIMENTAL DATA
In this section we present comparisons between theoretical computations and

wind-tunnel data for the GK1 the NASA LaRC, and the RAE 2822 airfoils. The

comparisons considered in this section include a number of cases of supercritical
flow with shock waves. The theoretical method described in this study does not
provide for a proper asymptotic description of the shock-wave boundary-layer
interaction process. A rational analysis of shock-wave boundary-layer interactions
in trubulent flow should account for the penetration of the shock wave into the
boundary layer and normal pressure gradients across the boundary layer. In the
present study, normal pressure-gradient effects are only accounted for near the
trailing edge. At shock waves, the present method reduces to a standard,
free-interaction type analysis employing a Prandtl boundary-layer description of the
shear layer. This theoretical scheme does not permit shock waves, with the attendant
discontinuous pressure distribution, to impinge on the boundary layer. A
discontinuity in pressure or edge velocity in the present method would lead to a
delta function behavior in the surface source velocity in the viscous matching
conditions (since v, dUe/ds) and to a breakdown of the present method. The results
of extensive computations suggest this does not occur in the present method.
Instead, interaction between the inviscid and boundary-layer regions leads to an
adjustment in the solution that avoids this type of singular breakdown. Within the

present method, the behavior near shock wave appears to be as sketched in Fig. 17.

‘ / SHOCK WAVE

/ SONIC LINE

COMPRESSION
WAVES

Figure 17 Schematic of a Shock-Wave Boundary Layer Interaction in the Present
Formulation
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In this model, the approach of the shock wave to the boundary layer causes a rapid
buildup of displacement thickness which, in turn, generates a narrow band of

compression waves. These compressions act to spread the shock wave and prevent a
discontinuity from impinging on the boundary layer. The interaction spreads the

pressure jump over a distance, AX#:GZ /\/Mfl, where 5L and M_ are the displacement

thickness and local Mach number just upstream of the shockI;ave. For the cases
considered in the present study, the interaction length is typically in the order of
AX=0.005. Since the minimum grid spacing on the fine mesh is about twice this
value, it is clear that the present computations do not resolve the flow near the
shock wave. Nevertheless, results presented in this section show that the present
method does lead to reasonable predictions of shock wave/boundary layer interactions.
It has been known for some time, from experiments on airfoils, that a turbulent
boundary layer reduces the pressure rise across a shock wave to about half of that
predicted by the shock conditions for a normal shock wave. This behavior is
predicted reasonability well in the present method and, in addition, also gives a
good overall prediction the pressure distribution near the shock wave.

GK1 Airfoil. - The first group of results are for the GK1 supercritical airfoil.
the airfoil is 11.5% thick, has a cusped trailing edge, and a moderate degree of aft
camber. The data are from tests at the NAE transonic wind tunnel at Ottawa (Ref. 73)
at a Reynolds number of 21.5 million with the tunnel walls set at 20.5% porosity.
The airfoil was aerodynamically smooth and was tested with natural transition. The
location of the transition point was not determined in the experiments. The
calculations were carried out with transition fixed at 10% chord which appears to be
a reasonable estimate, considering the high Reynolds number of the test. The
theoretical solutions were found to be insensitive to small changes in the
transition location. Recent studies (Ref. 75) have indicated the presence of
significant wall interference in the NAE wind tunnel. The studies iﬁdicate the need
for both downwash and blockage corrections to the angle of attack and free-stream
Mach number with the corrections varying with both free-system Mach number and lift
coefficient. Unfortunately, corrections were not yet available for the data
considered in this section. Therefore, in the present comparison, we avoid the need
for angle of attack correction by comparing theory and experiment at the same value
of the 1ift coefficient. Small Mach number shifts are applied to the data to obtain

agreement in the shock positions. The quantity,a appearing in the Figure is the

G_’
geometric angle of attack of the airfoil in the experiment.
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The comparison of the surface pressure distribution for two subcritical and two
supercritical cases are given in Figs. 18 to 21. We note the good agreement of the
pressure distribution near the trailing edge with experiment and the very good
predictions of the pressure levels behind the shock wave. The Mach number shift of
AM°° = 0.008 applied to the data of Fig. 21 is consistent with levels of the blockage
correction predicted in Ref. 75. The experimental drags are high compared to the
theoretical value in all cases with the largest discrepancy arising in the CL = 0.821
case. The difference in this case is surprisingly high considering the relatively
close agreement of the pressure distribution. as discussed previously, the
differences in drag seem to be due to experimental error. Some evidence. for this was

presented in Ref. 76.

-1.200 -
=== THEORY o =0.71°, Cp= 0.0063, Cpy =-0.098
O 0O EXPERIMENT Ag = 1.56°, CD =0.0078, C,, = -0.094

M

-0.800 |-

0.000 |-

0.400

0.800

1.200

"Figure 18 GK 1 — Pressure Distribution at M_, = 0.511,C; =0.431, R, =21.5x 106
(X¢=0.10)

79



-1.200 —

THEORY « =0.46°, Cp =0.0065, Cpm =-0.107
O, 0 EXPERIMENT QG =1.67°, Cp = 0.0070, Cym =-0.104
-0.800

!

o
N
o
o
|

0.000

0.400

0.800 |~

1.200 -~

(:::::i—- 4____;:::::::j---“ T ————

Figure 19 GK1 — Pressure Distribution at M_, = 0.622, CL =0.442, Re =215 (X-r =0.10)

The solution for the drag polar is compared with experiment and with solutions
to the Navier-Strokes equations® in Fig. 22. The theoretical solutions were obtained
with a small Mach number shift of M = -0.005. The present solutions give a
reasonable prediction of the overall shape of the drag polar but the level of the
data is about 15% higher than the computation. The poor agreement of the
Navier-Strokes solutions with both the data and the present computations is most
likely due to poor spatial resolution since only about 50 points were employed on the
airfoil in the calculation.

NASA-La RC Supercritical Airfoil. - This airfoil is a 10% thick, heavily

rear-loaded, supercritical airfoil with a trailing-edge angle of 3.87° that was
designed and tested at the NASA LaRC. The airfoil was tested in the 8 foot transonic
pressure tunnel at a Reynolds number Re = 7.7 X 106 and a nominal Mach number of M =

0.78. Transition was fixed with roughness strip at 28% chord.

* Unpublished results supplied by Dr. G. S. Deiwert of NASA Ames Research Center.
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Figure 20 GK1 — Pressure Distribution at M_, = 0.699, C_ =0669,R,=215x 106
(X4 =0.10)
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Figure 21 GK1 — Pressure Distribution at M, = 0.691, CL =0.821, Re =215x 106, (X-r =0.10)
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Figure 22 GK1 — Drag Polar at M = 0.752, R = 21.5 x 106, (XT =0.10)

o
This tunnel is known to be subject to relatively large tunnel-wall interference

effects, but, unfortunately, wall corrections have not been determined. We applied a

blockage correction of AM = -0.012 to improve the overall agreement of shock

position.

The calculations for the drag polar are compared with wind-tunnel data in Fig.
23. Theoretical solutions from the full viscous theory are presented along with
solutions obtained with the wake and trailing-edge correction terms deleted from the
matching conditions. In the latter case solutions are presented for both F-C and N-C
difference schemes. The results of the full viscous theory show good agreement with
experiment over a wide range of lift coefficients. The results show that neglect of
the wake and trailing-edge terms leads to noticeable underpredictions of drag and
that N-C differencing leads to a substantial overprediction of drag when shock waves

are present.
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Figure 23 NASA LaRC — Drag Polar at M, = 0.768, R, = 7.7 x 105, (X1 =0.28)

In Fig. 24 we compare the theoretical and experimental pressure distribution for
the highest 1ift coefficient of the drag polar. The comparisons are carried out at
the same lift coefficient (CL = 0.94) because of the uncertainties in the effective
angle of attack in the wind tunnel. Note the relatively good agreement in the
pressure distribution near the shock wave. Although the boundary-layer
approximations used in the present theory are certainly not valid near shock-wave
interaction regions, the present method does produce reasonable solutions in these
regions. The results also show a smooth pressure distribution near the trailing
edge. The elimination of all numerical smoothings from the present method has
eliminated the wiggles that appeared in solutions obtained with earlier versioms
(Refs. 5 & 8) of the method. The slightly higher pressures in the theoretical
solution between the shock wave and the trailing edge are likely due to the neglect
of strong interaction effects associated with the nonzero, trailing-edge angle of

this airfoil.
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Figure 24 NASA LaRC — Prossure Distribution at M_ = 0.768, C, =0.94, R, = 7.7 x 105

(X = 0.28)
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In Fig. 25 we present the theoretical solutions for the skin friction and
displacement thickness on the upper surface of the airfoil. The discontinuities near
the leading edge are due to transition from laminar to turbulent flow at 28% chord.
The skin friction shows a nearly discontinuous drop to zero at the shock wave
indicating that the flow is close to shock-induced separation and probably close to
stall. We also call attention to the steep and nearly discontinuous jump in
displacement thickness through the shock wave and the large increase in displacement

thickness between the shock wave and trailing edge.

RAE 2822 Airfoil. - The airfoil is 12% thick supercritical section with a

moderate amount of rear-loading and a trailing edge angle of 8.67°. The airfoil was
subject to extensive testing (Ref. 70) in the RAE 8 x 6 foot transonic tunnel in
which measurements of both surface pressures and boundary layer development were
carried out. The examples considered in this report were carried out at Reynolds
numbers from 2.7 x 106 to 6.5 x 106 and at two nominal Mach numbers, M°° = 0.676 and
M = 0.73, with the lower Mach number resulting in subcritical flow and the higher
value yielding supercritical flow. The supercritical cases covered a range of
incidence resulting in a variation of shock strength from moderate to strong-enough
to cause shock- induced boundary-layer separation. Transition was fixed at 11% chord
in the lower Mach number (sub-critical) cases and at 3% chord in the higher Mach
number (supercritical) cases. The momentum and displacement thicknesses, shape
factor, and skin friction were determined from velocity-profile measurements made at
a number of locations on the model, and the drag was determined from wake rake
measurements. All theoretical solutions were carried out at the measured 1lift

coefficients. The supercritical cases employed a small blockage correction of M =

# of Ref. 18.

0.003 which is consistent with recommendations
The pressure distribution for the two subcritical cases are compared with

experimental data in Figs. 26 and 27. These cases were for a Mach number of M =

0.676, Reynolds number Re = 5.7 x 106, and C. = 0.566 and CL = -0.121. The agreement

L
with experimental data is generally excellent over the entire airfoil

# It was actually suggested in Ref. 18 that AM_ = 0.004 be used as a blockage
correction. However, this reference became available only after the present
calculations are completed. The slight difference of AM = 0.001 did not warrant a

repeat of the computations.
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Figure 25 NASA LaRC Supercritical Airfoil — Boundary Layer Development
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for both cases, with a tendency of the theory to predict a slightly higher pressure on
the upper surface near the trailing edge. This trend appears in all the RAE 2822
cases considered, and is likely due to total pressure losses across the shock wave
that are not accounted for in the potential flow formulation. As previously
discussed, the prediction of drag for these two subcritical cases was also in very

good agreement with experimental data (see Table 4).

The pressure distribution for three supercritical cases tested at a Reynolds
number of Re = 6.5 x 106 and a nominal Mach number of M°° = 0.73 are compared with
experiment in Figs. 28, 29 and 30. Both F-C and N-C solutions are shown in the
comparisons. In addition, in the last case for CL = 0.803, we have included a
solution carried out at the experimentally quoted Mach number to illustrate the
effect of a small Mach number shift (AMw = 0.003) on the solution. The F-C solution
clearly shows the best agreement with experiment. In all three cases the agreement
between theory and experiment is excellent on the lower surface and the shock-wave
position and strength on the upper surface are well predicted in the F-C solutioms.
This set of results also shows very good agreement with experiment for the pressure
rise through the shock wave. Both the theoretical and experimental results indicate
that the pressure rise across the shock wave is only about one-half of that required
by the normal shock-wave relations. The overall levels of the pressure distribution
on the upper surface of the airfoil are also reasonably will predicted. The small
discrepancies between theory and experiment over the forward part of the upper
surface is probably due to both the roughness strip used to fix transition and
wall-interfgrence effects. The overprediction of the pressure on the upper surface
near the trailing edge in Figs. 28 and 29 is likely due to effects associated with
the nonzero trailing-edge angle not accounted for in our trailing-edge solution. The
discrepancy is somewhat larger in the higher 1ift case of Fig. 30, probably because
of the stronger shock wave and closeness of the boundary layer to separation. The
poorer agreement may be due to shortcomings in the lag entrainment method at high

values of the shape factor.

Since the flow field in these last three cases is supercritical, the total drag
is given by the sum of wave drag and profile drag. We have previously shown that the
profile drag of this airfoil can be well predicted by integration of the pressure and

shear stress. Since the present method seems to give a good prediction of shock

90



s e THEORY (N-C) @ =251° Cpg=00143 C,;=-0.090
THEORY (F-C) @ =235° Cpg=00123 Cy,=-0.091
EXPERIMENT Qn.=292° C_. =0.0127 C,,=-0.095

o ., G D M
o (M_ =0.725)

-1.200 |-

-0.800 |

-0.400 |-

Cp

0.000 |

0.400 1+

0.800 |

1200 L

Figure 28 RAE 2822 — Pressure Distribution at M_, = 0.728, C.= 0.743,R,=6.5x 108
(XT =0.03)
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strength, it can also be expected to give useful predictions of wave drag and total
drag. This expectation is borne out in the comparison of the drag polar in Fig. 31.
The theoretical solutions are integrated drags determined from the surface pressure
and shear stress distributions. We should point out that useful estimates for the
wave drag can be determined by subtracting the momentum drag (equal to 20w) from the
total drag computed by the surface integrations. We note that the F-C solution is in
good agreement with the measured values of drag. The small underprediction of the
theory evident in the figure amounts to no more than five counts of drag. About half
of the difference is due to the use of first-order differencing (c2 = 0) in the
inviscid solution. The remaining discrepancy can be associated with the slight
overestimate of the pressures on the upper surface near the trailing edge that was
pointed out earlier. These results clearly show that the N-C scheme leads to an

inferior prediction of both shock wave location and drag.

09
08}
CL 07}

o — & THEORY (F-C)

—~——@=~— THEORY (N-C)

O  EXPERIMENT
06 |-

1 1 1 1 1 1 J
60 80 1.0 1.2 14 16 18 20 x 1072
Co

Figure 31 RAE 2822 — Drag Polar at M, = 0.73, R, = 6.5 x 106, {XT =0.03)
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The theoretical solution (F-C) for the boundary-layer development on the upper
surface of the airfoil is compared with experimental measurements for the two
subcritical cases in Figs. 32 and 33 and for two supercritical cases in Figs. 34 and
35. Included in these figures are the solutions for the displacement and momentum
thicknesses (6%, 0), shape factor (h), skin friction (cf), and, for the two
supercritical cases, the solution for the source velocity, (Ve(s)) on the airfoil

surface.

The two subcritical flows in Figures 32 and 33 involve mild pressure gradients
and boundary layers not close to separation. The discontinuities near the leading
edge are due to transition from laminar to turbulent flow. Both theory and
experiment show rapid increases of displacement thickness and shape factor near the
trailing edge that are typical of airfoil flows. The agreement between theory and
experiment for all quantities is good for both cases. The good agreement observed
just downstream of transition indicates that the transition jump conditions employed
in the theoretical model were adequate. The close agreement between the
theoretical and experimental values of the momentum thickness at the trailing edge is

consistent with the good predictions of profile drag in these two cases.

The boundary-layer development for the two higher-1ift, supercritical cases is
given in Figs. 34 and 35. The overall agreement between theory and experiment is
relatively good over the entire upper surface aside from a tendency to slightly
underpredict 6%, O, and h between the shock wave and the trailing edge. The higher
lift case considered in Fig. 35 contains data from two different probes. The
differences between the two data sets provide some measure of the uncertainty in the
data. The experimental displacement thickness shows a very rapid and nearly
discontinuous rise through the shock wave, followed by a more gradual but larger
growth toward the trailing edge. The theory gives a good representation of this
behavior in both cases. The solution for the skin friction shows the characteristic
behavior near shock waves; a rapid, nearly discontinuous fall followed by a gradual
increase resulting in the development of a minimum in skin friction at the shock
wave. This behavior is reflected in the solution of the shape factor which shows a
very steep rise followed by a more gradual decrease behind the shock wave. The

agreement between theory and experiment for c_. and h is quite good except for the

f
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points immediately behind the shock wave in the CL = 0.803 case in Fig. 35. The
shock strength in the case is relatively large (The local Mach number upstream of the
shock wave was ML = 1.31), and the boundary layer is on the verge of separating at
the foot of the shock wave.

The theoretical solutions for the corrected source velocity for the CL = 0.743

and CL = 0.803 cases are shown in Figs. 34d and 35d, respectively. These solutions
show a large and highly localized increase of the source velocity at the shock wave
followed by a more gradual, but equally significant, growth toward the trailing edge.
These results clearly show the highly localized nature of the shock wave/boundary
layer interaction in the present theoretical model The interacting boundary-layer
description basically truncates the delta function behavior that would otherwise
arise at the shock impingement point were interaction not allowed in the formulation.
The resulting source velocity displays a highly peaked but finite distribution which
increases in amplitude with increasing shock strength (Compare Figs. 34d and 35d.)

The final case considered is for M°° = 0.753, C. = 0.743, Re = 6.2 x 106, and XT

= 0.03. The main difference from the previous ca;;s is a higher Mach number and a
much lower Reynolds number. These conditions lead to a more rearward and stronger
shock wave (ML = 1.35) which, combined with the lower Reynolds number, leads to
massive separation at the foot of the shock wave. The pressure distribution and
boundary-layer parameters are compared with experiment in Figs. 36 and 37,
respectively. The agreement between the theoretical and experimental pressure
distributions remains excellent on the lower surface but deteriorates noticeably on
the upper surface. The overall levels of the pressure in front of the shock wave are
in good agreement on the upper surface except near the leading edge where the
discrepancy is much larger. However, in the theoretical solution, the shock wave is
too far aft, its strength is overpredicted, and the pressure levels behind the shock
wave are overpredicted. The experimental pressures on the upper surface are much
lower near the trailing edge, showing clear signs of trailing-edge divergence-a
classical indicator of boundary-layer separation. Although both the theoretical and

experimental skin friction distributions clearly show separation, pressure divergence
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at the tailing edge is not apparent in the theoretical results and this must be
considered a major shortcoming of the therory. The failure of the theory to
adequately predict the pressure distribution behind the shock wave is likely due to
an inadequacy in the lag-entrainment method at high values of the shape factor. The
comparisons of the displacement and momentum thicknesses given in Fig. 35a show that
the theory gives a reasonably good description of boundary-layer growth in front of
and through the shock-pressure rise. However, it is seen that the theory seriously
underpredicts the boundary-layer growth behind the shock wave. It is this
underprediction of the boundary-layer thickness behind the shock wave that is most
likely responsible for the observed discrepancy in shock position. The failure of
the method behind the shock wave is also evident in the comparison of the shape
factor in Fig. 37b. The comparison of the skin friction is given in Fig. 37c. The
values of the skin friction in the reversed flow could not be determined in the
experiment. However, the presence of separation could be detected and such points
are indicated by the filled symbols in Fig. 37c. As previously noted, the skin
friction in the theoretical model is set to zero in regions of separation. Note that

both theory and experiment predict separation behind the shock wave.

The solution for the surface source velocity in Fig. 37d shows an extremely
large increase at the shock wave because of separation. In general, this is a rather
extreme case for the present theory, which was not intended to deal with regions of
extensive separated flow. Nevertheless, the present theory does seem to provide a
reasonably good prediction of the overall features of the flow and a surprisingly

accurate prediction of the drag. The theoretical drag was C_, = 0.0245 compared to

DB
the experimental value of CDB = 0.0242. 1In view of the significant differences
between the theoretical and experimental shock strength and location and

displacement-thickness distributions, this good prediction of the drag should be

considered fortuitous.

Collyer and Lock (Ref. 18) recently carried out similar comparisons between the
RAE 2822 data and results of their method. Their method is similar in many respects
to the present full viscous-flow theory in that both include the wake-thickness and
wake-curvature terms in the matching conditions. The Collyer-Lock method differs
from the present method in three ways: (1) it does not account for the strong
interaction at the trailing edge; (2) it requires significant numerical smoothings

particularly near the trailing edge while the present method uses no smoothings; and
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(3) it employs a special partially-conservative (P-C) scheme while the present
method uses a standard fully-conservative (F-C) method. The P-C differencing method
involves an arbitrary parameter, )\, that weighs the relative proportion of
conservative (A = 1) to non-conservative (A = 0) differencing used in the method.
The position of the shock wave and the value of the drag in the P-C method seemed to
be sensitive to the value of A. Good agreement with data was demonstrated in Ref. 18
but for values of X that were varied for the different cases. The present work
clearly indicated that the best results were obtained with the fully-conservative

difference scheme in all cases.

Comparisons of the RAE 2822 data set with Deiwert's (Ref. 20) Navier-Stokes (NS)
method were also recently carried out by Swafford in Ref. 77. The Navier-Stokes
calculations showed very poor agreement with the RAE 2822 data. The poor performance
of the NS method in this case was very likely due to the coarse grid employed in the
computations of Ref. 77 (Fourty points were used around the airfoil in the NS
computations compared to the 160 points used in the present set of calculationms.)
The coarse grid notwithstanding, the NS method required agbout ten times greater

computer time than the present interacting boundary-layer method.
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6. CONCLUDING REMARKS

In this report we described important extensions to the usual interacting
boundary-layer theory for computing the viscous effects on airfoils. Our method was
based on formal asymptotic expansions of the full Reynolds equations of turbulent
flow for Re*=. Formal analysis indicated that both wake-induced effects and normal
pressure-gradient effects near trailing edges contribute to the lowest-order so-
lution. Consequently, both must be retained along with standard displacement effects
on the airfoil in order to obtain a consistent formulation. The main contributions
of the present work were the determination of the local trailing-edge solution and
the development of systematic procedures for incorporating wake and trail-edge inter-
action effects into the theoretical description. The inner solution accounted for
normal pressure gradient effects across the boundary layer in the vicinity of the

trailing edge and is valid for airfoils with cusped or nearly cusped trailing edges.

Results presented in this report for a variety of airfoils indicated that the
new method gave reasonable predictions of the pressure distribution, shock location,
forces, and moments on airfoils in transonic flows. In particular, the new method
seems to give very accurate predictions of the absolute levels of the drag. Compara-
tive studies have indicated that both the wake and trailing-edge corrections terms
make an important contribution that must be included in the formulation if accurate
predictions of section characteristics are to be obtained. Neglect of either contri-
bution leads to noticeable errors in shock position, pressure distribution, lift, and
drag. In addition, the present study clearly indicated the superiority of conserva-
tive finite-difference formulations. The use of non-conservative differencing leads
to substantial over-predictions of the drag and to shock positions that are too far
forward. The present method is more complete and is clearly an improvements over
previous boundary-layer type methods. It agrees well with experiment, requires lit-
tle computing time, and is, therefore, well suited to aerodynamic design. The method
requires about 10 minutes on an IBM 370-168 computer to obtain converged solutions
for unseparated cases. This is about three times that required for a corresponding

calculation of an inviscid flow. These computer times are for unsmoothed versions of
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the theory. Faster run times can be achieved with numerical smoothings but only at

the expense of noticeably.degraded solutions.

The present method does not properly treat the details of shock wave/boundary
layer interactions. These interactions produce significant normal pressure gradients
in the boundary layer that are completely ignored in the simple interacting boundary-
layer equations used in our approach. Nevertheless, the new method seems to give
adequate predictions of the pressure distributions in the shock-wave interaction
zones. It is a well known experimental fact that the pressure rise through a shock
wave is about half that required by the normal shock-wave relations. This behavior
is well represented by the present method which also seems to give a consistently
good prediction of the pressure level behind the shock wave. The consequences of
using a crude description of the shock wave/boundary layer interaction process do not
appear to be great. The overall increase in displacement thickness through the shock
wave is reasonably well predicted by the present method, and this seems to be the
most important ingredient in obtaining good overall predictions of the section char-

acteristics of airfoils in supercritical flow.

The present method has two other more important deficiencies that should be men-
tioned. Namely, it does not properly treat the flow near the trailing edge of an
airfoil with non-zero trailing edge angles, and it does not adequately deal with
boundary layer separation. Fortunately, the present method seems to yield reasonably
good predictions when applied to more general airfoils with non-zero trailing edge
angles provided the trailing edge angles are small. However, the solution for the
NACA 0012 airfoil (GTE = 16°) showed pressures that were somewhat too high near the
trailing edge and drags that were substantially lower than experimental values.
These discrepancies were undoubtedly caused by pressure variations across the bounda-
ry layer in the vicinity of the trailing edge that are not accounted for in our local
inner solution. These extra pressure variations across the boundary layer are gen-
erated by the curved streamlines associated with the local wedge flow near the trail-
ing edge. These effects can be incorporated into the method through an appropriate
generalization of our inner trailing-edge solution. This improvement of the theory
would very likely result in better predictions of drag for this type of airfoil and
should therefore be pursued. Although the present method functions for separated
flow has produced reasonably good agreement with experiment in some cases, it is

clearly not satisfactory in this regard. The lag-entrainment method was developed
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from a data base for attached boundary layers and was not intended to deal with sep-
arated flows or with boundary layers with large shape factors. Treatment of

separation in the present method can be improved through improvements in the
lag-entrainment method (Some effort in this direction has been reported (Ref. 78).)
or through the use of other integral methods (Ref. 79) specifically designed for sep-
arated turbulent boundary-layers. In addition, the iteration scheme used to solve
the coupled inviscid and boundary layer equations loses some effectiveness when sepa-
ration is present. In these situations, solutions can be obtained only through the
use of drastically reduced relaxation factors, resulting in very long computer times.
Improved convergence can probably be achieved through the use of an iteration scheme

developed by Carter (Ref. 80) and LeBalleur (Refs. 81 & 82) for separated flows.

The most important result of the present work is the demonstration that a simple
interacting boundary-layer approach can be effective tool for predicting viscous ef-
fects on airfoils. Unfortunately, because of uncertainties in the experimental data,
due primarily to wind-tunnel wall interference, this must be regarded as a tentative
conclusion. A more clear-cut validation of the new theory would require improved
wind-tunnel tests with either small wall effects or accurate and well-documented cor-

rections.
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7. EPILOGUE

The present report was completed in early 1980 and the computations reported
herein were carried out with a preliminary version of the GRUMFOIL computer code des-
ignated MCMJ-4. Since that time, the GRUMFOIL code has undergone extensive modifica-
tion to incorporate a variety of improvements made to the theoretical formulation.
First, the hybrid, SLOR-direct solver, used to solve the full potential equation, was
replaced with a multi-grid method (Ref. 3) which accelerated convergence by a factor
of five in computing time. Second, an improved, second order artificial viscosity
and far field treatment was incorporated into the finite difference scheme used for
the inviscid flow. These significantly reduced the spatial truncation error, im-
proved the reliability of the second-order versions of the code, and reduced by
one-half the number of mesh points required to achieve a given accuracy. Finally,
the turbulence closure relations employed in the original Green's lag entrainment
method modified to improve the treatment of separated flow, and the direct method
employed for the global, viscid-inviscid iteration was replaced with Carter's
semi-inverse method to permit solution of the resulting turbulent boundary layer
equations when separation is present. Together, these changes led to a more accu-
rate, robust, and faster code which is capable of treating flows with extensive
regions of separated flow and which runs about ten times faster than the original
MCMJ-4 version. Further details of the new code, designated MCMJ-9N, are given in
Ref. 83. The user manual in the companion volume, Ref. 69, is based on the new

MCMJ-9N version of the code.
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