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1.0 Summary

This report covers activity during the time period 1 May 1985
through 31 October 1985, DUDuring this time one faculty member and two
graduate students were supported by this grant. One student, Mr. James
Sallee spent 10 weeks in-residence at NASA Langley as part of his gradc
ate training. A second student, Mr. Thomas Zeiler received his Ph.D.
degree from Purdue in August 1985. His graduate dissertation was spon-
sored by the Grant. The Principal Investigator spent one week in-
residence at NASA/Langley during June 1985. In addition, he presented a
talk at the Aerospace Flutter and Dynamics Council Semi-annual meeting
in Atlantic City, New Jersey in October 1985. A portion of Mr. Zeiler’s
dissertation work has been submitted for consideration for the AIAA SDM
Meeting to be held in San Antonio, Texas in May 1986,

This report briefly describes research completed by Dr. Zeiler and
Professor Weisshaar. A copy of Dr. Zeiler’s dissertation has been for-
warded to the contract monitor. The proposal for the SDM paper is con-
tained in the Appendix, In addition, the preliminary work by Mr. Sallee
and Professor Weisshaar is discussed. A detailed exposition of that

work is also contained in the Appendix.



2.0 Aeroservoelastic Optimizat{on Studies

A preliminary study of aeroserwvoelastic optimization techniques was
completed in August 1985. The objective of this study was to determine
a methodology for maximization of the stable flight envelope of an
idealized, actively controlled, flexible airfoil. The equations of
motion for the airfoll were developed in state-space form to include
time-domain representations of aerodynami. forces and active control.
For optimization, the shear center position was taken to be a design
variable. Optimal, steady-state, linear-quadratic regulator theory
(SSLQR) was used for control law synthesis.

The synthesis of feedback control laws with SSLOR theory can
present problems. One recurring problem is that a system may be stabil-
ized actively at a certain design airspeed (or a nondimensional counter-
part, ﬁbES) but may be unstable at lower, off-design airspeeds. This
peculiarity necessitated the development of an optimization scheme to
stabilize the aeroelastic system over a range of airspeeds, including
the design airspeed. This requirement led to an integrated or multi-
disciplinary approach that was demonstrated to be beneficial.

Dr. Zeiler organized his solution approach into two levels, one at
the "system"” level, the other at the "subsystem” level. The subsystems
are: (a) the airfoil structure, with a design variable represented by
the ghear center position; and, (b) the control system. An objective
wvas stated in mathematical form and a search was conducted with the res-
triction that each subsystem be constrained to be optimal in some sense.

To implement the procedure, analytical expressions were developed
to compute the changes in the eigenvalues of the closed-loop, actively

controlled system. A stability index was constructed to ensure that



stability was present at the design speed and at other airspeeds away
from the design speed.

The design procedure beging with the choice of initial values of
shear center position, design airspeed and other control related parame-
ters. A feedback control law is then synthesized and the airspeed
envelope is checked for stability by computing the value of the stabil-
ity index. When the stability index is positive, the system is
ungtable. The approach relies on a procedure to reduce the value of the
stability index below zero (to achieve scability) in an optimal manner.
This procedure was demonstrated to be effective. Mathematical results
vere explained in a physical context.

The above study and the procedure used is described in detail in
the Ph.D. dissertation "An Approach to Integrated Aeroservoelastic
Tailoring for Stability" by T.A. Zeiler. This study is notable because
it indicates a procedure (not the procedure) for a successful iterative
structures/control design modification. It has a realistic measure of
performance (instability freedom at and within the largest possible
design envelope). It also 1llustrates how one might organize the struc-

tural design and control design procedures in a logical way.



3.0 Jurrent Aeroservoelastic Tailoring Studies

The study described in Section 2.0 and the experience gained from
those studies has enabled the Principal Investigator to move to the next
level of effort. This effort includes a more realistic structural
model, incorporating the influence of advanced composite materials. 1Im
addition, the effort includes the use of 3-D unsteady aerodynamic
effects and classical control procedures (as opposed to optimal control
procedures).

This effort 1s currently in a preliminary stage. As a first step,
a highly idealized analytical model has been developed to efficiently
include the effect of directional stiffness such as might be present in
laminated structures. This model also has educational value as well as
research significance. A computer program has also been developed to
perform flutter calculations on both the open-loop and closed-1c 3ys—-
tems. In addition, the program can compute "sensitivity derivatives"
with respect to a variety of system design variables such as stiffness
and feedback control gains. These sensitivity derivatives are necessary
for system redesign procedures.

The model 1s also useful as an educational tool to demonstrate to
students and professionals the various opportunities afforded by
integrated design, The model development has been done by Mr. James
Sallee under the direction of Professor Weisshaar, The current status
of the analysis and a detailed model description and development is con-
tained in the Appendix to this report. This portion of the effort is
due for completion at the end of this year. At that time a more
detailed, multi-mode analytical model will be implemented to further

investigate interesting features revealed by the initial model.



4.0 Future Work

This semi-annual period of the grant has produced results beyond
expectation. One Ph.D. student, well-schooled in both control methodol-~
ogy, structural dynamics and aeroelasticity and optimization methods has
been graduated and has joined the ranks of American aerospace workers.
This event would not have occurred without NASA research sponsorship.
The results of the research effort produced by this study are signifi-
cant and far-reaching. A new student has begun to delve into the sub-
ject where the other left off.

The idealization described in the Appendix will be used to survey,
in a preliminary manner, several of the more interesting results
obtained from Dr., Zeiler’s dissertation. In particular, the effects of
stiffness cross—coupling on active control are of interest in the
current work. An additional difference between the current study and
that which preceded it will be the design methodology for the active
control 1itself.

A large portion of the next research period will be spent develop-
ing a Qodal model of a swept wing design. For this study we will
attempt to have remote use of ISAC via a Purdue/Langley phone hookup.
This effort will be continued with Mr. Sallee in-residence at

NASA/Langley, beginning in May 1986.
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The design of an aerospace structure involves a complicated
sequence of operations requiring multiple, interdisciplinary interac-
tions. The overall design process has a single objective, superior per-
formance subject to a multitude of constraints. Unfortunately, perfor-
mance has a multiplicity of definitions, depending upon the specific
discipline involved within the design process. Worse yet, sometimes
these measures of performance are at odds with one another. Future com-
petitive aerospace structural designs will increase the need for
creative interaction among the various disciplines and also require
accounting for these interactions early in the design process. This
paper will discuss the integration of two of these areas, the optimal
design* process for structures and active control of such a structure.
While the results presented are limited in scope, they nonetheless
illustrate benefits of integrating the aeroservoelastic design process.

This integrated design process is referred to as integrated aeroservoe-

lastic tailoring.

The objective of this study was to determine how to maximize the
stable flight envelope of an idealized, actively controlled aeroelastic
system shown in Figure 1. This 4~degree-of-~freedom system consists of a
3-degree-of-freedom, typical-section airfoil mounted on a rigid support
with a stabilizing tail surface; the model is free to pitch about a
pivot. This model is intended to simulate a flexible wing with an
important body freedom. This model has the potential for simulating
high frequency classical flutter behavior, low frequency body-freedom
flutter and classical divergence.

An analytical formulation of the equations of motion of this model

was developed, including unsteady aerodynamic loads in an s-plane or



time domain form. The result was a state—-space representation of the
equations of motion. The structural design variable was taken to be the
shear center position with respect to the airfoil midchord, denoted as
a, in Figure 1. This parameter is nondimensional with respect to the
airfoil semi-chord dimension, b, and is taken to be positive if the
shear center lies aft of the airfoil midchord. As a result, the limits
to a  are -1 < a, <1,

Optimal steady~-state linear quadratic regulator theory (SSLQR) was
used to synthesize full-state feedback control laws to stabilize the

model at different airspeeds (represented in nondimensional form as

UDES) and different values of a,. Figure 2 shows the “open-loop",

control-off, stability boundaries for the model dimensions chosen, but
with a, taken to be a design parameter capable of being chosen arbi-
trarily. In Figure 2, the parameter bCT/b represents the ratio of tail
surface area to wing surface area. Note that full body pitch restraint
or "clamping”" the fuselage reduces the flutter and divergence boundaries
to those of the 3-degree-of-freedom airfoil alone. The use of SSLQR
theory to synthesize control laws with the shear center at various posi-~
tions uses a measure of state and control activity at a fixed design
airspeed, ﬁbES’ as a cost function, J, to be minimized. Values of tkis
function J for this idealization are plotted versus a, and design
airspeed, ﬁbES’ in Figure 3. While the absolute value of J has no phy-
sical significance, the relatively large values of J near a = -0.4 and
ﬁbES = 6 indicate that the active control is experiencing difficulty
stabilizing the system in this region.

These regions of relatively high cost correspond to configurations

for which the system experiences near-uncontrollability of unstable



modes. This is indicated in Figure 4 by the close proximity of zeros of
the loop transfer matrix to some system poles (eigenvalues) near the juw
axis.

A similar contour plot for control cost was constructed for the
airfoil model with rigid body pitch freedom suppressed. This contour
plot, shown in Figure 5, indjcates that high cost regions are also
present, particularly where open-loop divergence is to be stabilized.

It would appear that a design procedure that can select low control cost
regions at a fixed design airspeed would be sufficient to the integrated
optinal design task. Such is not the case, as indicated in Figure 6.

Figure 6 shows the closed-loop stability boundaries of the actively
controlled 3-degree-of-freedom airfoil model, as functions of shear
center position, a_. Open-loop stability boundaries are superimposed on
this figure. Figure 6 was constructed by choosing a large number of ae

values and then constructing a control law with ﬁbE held fixed at 6.0.

S

Thus, while ﬁbE held fixed at 6.0, the control law changes with a, in

S
Figure 6. The high control cost region near a, = -0.4 also includes
instabilities below the design speed. Thus, while the active control
has extended the upper part of the flight envelope, in this region a new
instability associated with off-design airspeeds has appeared. For this
reason, the cost function from SSLOR theory is inadequate as a sole per;
formance index to be used in the integrated design process. To remedy
this, a combined design procedure based upon multi-level linear decompo—-
sition [1] of the aeroservoelastic system into structural and control
subsystems was formulated. For this procedure, the overall design

objective was maximization of the stable alrspeed envelope with a struc-

tural parameter (ae) and control parameters from SSLQR theory as design



variables.

With multi-level, linear decomposition, the subsystem designs are
themselves in some measure optimal. Optimal sensitivity derivatives are
computed with respect to specified system parameters to aid in choosing
a new design that is both optimal on the subsystem level, yet satisfies
the global objectives at the system level. In this case, analytical
expressions for the changes in the eigenvalues of the closed-loop system
(subject to the constraint that the system is optimally controlled) were
constructed using a method proposed by Gilbert [2]. No structural cost
was associated with changes in the shear center position, representing a
limiting case such as might be present in a laminated wing structure.

This assumption does not, however, limit the future applications of the

procedure, To assess system stability, a stability index st is defined
such that
N po
st=-1-1n(z e 1)
P 1=1

where p is a weighting function (in this case, p = 1), N is equal to the

number of potentially critical eigenvalues, o, {s the real part of the

i
ith eigenvalue and'ﬁj is the alrspeed at which st is computed
(Uj # UDES)' If st < 0 then the system is stable. If st > 0 then the

system is to be stabilized by finding the proper combination of a, and
control parameters that will minimize st.
The design procedure begins with the choice of initial values of a,
and other system parameters. Next, a control law is synthesized at
ﬁbES' An airspeed ﬁk is chosen for which the closed-loop system is
unstable (FBk > 0). The derivatives of Fsk with respect to a, and ﬁbES

are computed, subject to the constraint that the active control law is



optimal. In addition, derivatives of other stability indices at lower

airspeeds, 35. (ﬁj < ﬁk), with respect to these variables are also com-
puted. An optimization procedure based upon a simplex algorithm uses

this sensitivity information to choose changes in a, and ﬁb to ninim~

ES
ize Fsk’ without allowing other st values to become positive

(unstable).
If the value of Fsk is found to be negative on a certain design

cycle (the system is thus stable at ﬁk), the airspeed ﬁk becomes a sub~

critical airspeed. A new, post-critical airspeed i1s then chosen as Uk

and the procedure continues. The procedure terminates when ﬁL is either

equal to the desired maximum stable airspeed or when no further stabili-
zation’ 1s possibie. Figure 7 illustrates this procedure.

For this example, the nondimensional alrspeeds ﬁj at which stabil-

ity was required were chosen (arbitrarily) to be integers, thus U, = j

i

in Figure 7. Initially, the system is unstable at ﬁk = 7,0 with a con-

trol design airspeed of ﬁbES = 6,0, The first design iteration reduces

the measure of instability Fsk by instructing the "structures group" to
shift the shear center aft towards the mid-chord and asking the "con-
trols group” to reduce _Lhe value of its design airspeed. At design
cycle 4 the actively controlled system is stable at U_=7.0 so it is now

7

required that the closed-loop system attempt stabilization at ﬁ% = 8.0.

This task 1s achieved at design cycle 7. At this point, the requirement
is changed to attempt closed-loop stability at ﬁk = 9,0. Figure 7(b)
indicates that this objective cannot be met; however, Fsk’ at ﬁk =9 is
minimized. The root locus plot (using airspeed as the gain) of the

final, actively controlled system is shown in Figure 8.



Figure 8 ghows that the final design is a compromise between
flutter in two different modes. The paper discusses the reasons for
arriving at this result. It is interesting to note that the optimal
actively controlled structural configuration does not correspond to the
structural configurstion that one would find if only passive tailoring
were used to increase stability,

The SSLQR theory requires the user to choose weighting matrices in
the cost function J. These elements are found to have a significant
effect, in some cases, upon the appearance of sub-critical stability
regions. As a result, a second example was choseu to illustrate the use
of a state weighting element Qe, (the weighting on rigid body pitch), as
a desigr parameter. In addition, the position of the airfoil with
respect to the pivot, given as the dimension bx in Figure 1 was also
treated as a design parameter, together with ﬁbES and ae.

Figure 9 shows the design cycle history for the 4-degree-of-freedom
wing configuration, which includes rigid-body pitch. The initial objec-
tive was to stabilize the system at U = 4.0 and 5.0 using Qe and ﬁDES as
design variabies. Note that. the closed-loop system is stable at
U = 6.0. By design cycle number 7, the procedure was experiencing dif-
ficulty meeting its objectives. At this point, the position of the
wing, with respect to the pivot, 5;, was allowed to change, together
with 3, for the next two iteratiomns. After cycle 9, a, and x were held
fixed and optimization continued using ﬁbES and Qe as design variables.

The effects of the use of bx and a, as parameters can be seen in
Figure 10. Figure 10 plots the partial derivatives of the stability

indices, with respect to Qe, as functions of design cycle number. This

figure indicates that changes in bx and a, increase the magnitudes of



these derivatives. As a result, Qe becomes more effective as a design
parameter.

Figure 11 shows the root-locus plots, with U as a gain, for the
initial closed-loop design and the final closed-loop design. The final
design is seen to be a compromise between flutter at U = 7.04 and
flutter in a hump mode at around U = 5.0. If one were to try to further
increase the U = 7.04 flutter speed, the stability constraint at U = 5.0
would be violated.

The paper will describe additional features of this integrated
design technique. Included will be additional data indicating why
several of the features observed in the previous figures occur as they
de. 1In addition, a discussion will be included as to how this procedure
may be expanded to include control synthesis by techniques other than

SSLQR theory.
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e
Figure 6 - Open and closed-loop stability boundaries as a
function of a_ for the 3-dof aeroelastic
model; controf laws are synthesized at UDES = 6.0
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Figure 8 - Velocity root loci, design cycle #11 for the
3-dof aerocelastic model,
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APPENDIX B

The attached document summarizes the development of a two-degree
of freedom idealization used to study the interaction between
directional stiffness and feedback control. This model was developed
by Professor Weisshaar and has been implemented on the computer by
Mr. Sallee. A two-mode flexible model could also be used. However,
past experience with the semi-rigid model has been quite good. As a

result, it is the choice for demonstration purposes.



An Idealized Aeroelastic Model for Active Control Studies

Consider the idealized lifting surface shown in Figures 1, 2, 3.
The surface itself 1s rigid, but is attached to a pivot on a wall; it
has mass uniformly distributed along the span. A reference axis, the
y-axis in Figure 2, is used for the determination of the equations of
motion: the reference axis lies a distance ba aft of the midchord. The
line of aerodynamic centers is located at a distance bac ahead of the
airfoil midchord and is shown in Figure 3. For the position shown,

b(a-ac) is a negative quantity. The chordwise offset of the line of

centers of mass from the reference axis is denoted as L this latter
coordinate is positive when the sectional centers of mass are located

aft of the reference axis.

The downward deflection of the line of centers of mass 1s denoted
as z. This deflection and the velocity z are expressed in terms of the

torsional rotation, 6, and "bending" rotation, ¢, as:

~N
[

x 8~ ¢y (1)

=z =x0-4t (23

The airfoil has constant mass per unit length, m, so that the kinetic

energy, T, may be written as:

T = %-{1092}1 +-% £ mzzdy (3)
or
- .0 3 L]
T = 2 {1 + mx }e? - ax {200 + m%- 42 (4)

where I0 is the pitch mass moment of inertia per unit length of each
section along the wing surface, taken about the line of centers of mass,

The strain energy in the spring supports due to deformations 6 and ¢ is:

P
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Figure 1 - Idealized airfoil, shown swept at an angle A to the airstream
and attached to a pivot on the wind-tunnel wall.

Principal ind Tunniel wap

Figure 2 - Planform view of 2-D, idealized airfoil showing: rotational
deformations 0 and ¢; orientation of principal bending and
torsion axes, 9; and, effective root and tip approximations.
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Figure 3 - Planform view of idealized airfoil showing: aerodynamic
center/reference axis offset; reference axis/center of
mass offset; reference axis/milchord offset distance, ba;
and, normal component of velocity, Vn.

A

Figure 4 - Full spar control surface model.



U= % Ko(8 cos v - ¢ sin v} (5)
+'%-K’ {$ cos Y+ 0 sin Y}z

Froam Lagrange’s equations the equations of motion for free vibration in

the absence of airloads are found to be:

!(Io+nx§) %310’2 a. Kecoszy+x’sinzy (K‘-Ke)cosysiny e' lo
o0 + . - (6)
-;-xc‘z %"3 ¢ (KQ'Ke) sinycosy Kesinzrﬂqcoszv ’| lo

To simplify the writing of these equations, elements of the matrices in

Eqn. 6 are defined as follows.

Inertia terms

I
* m, = m’{x(2!+ rg} = mﬂri where rg = ;9

x1

| P

™2 = nfl 7}
2
= wfil
Mo = "‘1{3 }

{Note that mﬁ is the total mass of the idealized wing.)

Stiffness terms

_ 2 2
kll = Kecos Y + K¢sin Y
kl2 = (K¢ - Ke)cosy siny

_ 2 2
k22 = Kesin Y + K¢cos Y

Aerodynamic Forces

Aerodynamic forces due to the motion of the idealized airfoil, cam
be related to the two degrees of freedom, 6 and ¢. For the present
analysis these forces were computed from modified aerodynamic strip
theory as outlined by Yates in Reference 1. The pitching moment about

the y-axis in Figure 3 1is denoted as Me, while bending moment about the



x-axis, located at the root, is M¢.
The aerodynamic load per unit length along the swept y-axis is P.
The load P is positive when it acts in the upward direction, out of the

plane of the paper. In the present case, this load is [1]:

P = 7o~%[~¢ y + V_8 - V_gtanA - bad]

+ claanPC(k)Q N

where Q is the downwash velocity at the control point on the airfoil.
The Theodorsen function C(k) i1s valid only when ¢ and 6 are simple har-

monic functions of time. The downwash is:

¢1

. o .
Q = ~¢y + Vn(9-¢tanA) + béfg--+ ac-a)e (8)

In Eqn. 8, the term a, represents the distance, measured in semi-chords,

that the static aerodynamic center lies behind the wing mid-chord posi-

tion. For subsonic flow this term is negative. For incompressible flow
conditions, ac = --%, since the aerodynamic center will be at the air-
foil quarter-chord positionm.

The aerodynamic pitching moment, per unit length, measured positive

nose-up about the reference axis is:

Mu = ﬁnpbé(%+a2)é. - npbzvn(;y+vn¢tanA)
- npb3a(;.y+vn;tanA) + wpb2V§e
C
2.1 la
- Zﬂanb [i-- (a-ac)C(k)i;—]Q (9

To develop the equations for the motion dependent airloads, we define

the moments M, and M, as follows

6 ¢

M, = fMady (10)



M, = [Pydy (11)
¢ o

Equations 10 and 11 can be written as

] 2 0
- mltam _ (12)
M
K ¢
In Eqn. 12, wp is a reference frequency. When motion of the form
® t
o\ _ef (13)
¢
is assumed, expressions for'ﬁe and'ﬁ¢ can be constructed. These expres-—
sions are written symbolically as follows:
M —
s,2 s o
- 1= |G ) + DB+ [Ag] (14)
n¢ P P $

Elements of the [M,.] matrix are the apparent mass terms for this air-

1j
foil, while the [Bij] matrix represents the aerodynamic damping. [Aij]
is the aerodynamic stiffness matrix. The elements of these three

matrices may be conveniently defined in terms of a group of parameters.

These parameters are:

V = VeosA/bw (15)
n P
1
c = 2n(§--(a-ac)c(k)clc/2n) (16)
Cp =a -at Cla/Z" (17)
r, = rG/b (18)
y= m/wpb2
-2
d = T, (19)

(AR) = structural aspect ratio = 1/2b



The matrix elements are then written as follows:

1 2
Hll = (§-+ a )/d

M9

My9

B

B2

B

By2

11

12

21

Ayg

le = a(AR)/d

4(AR)?
3d

A
wd

C, (AR) V;
()

CIQ VD

(-(AR) - — Cp(AR)C(k))'E—
v

(AR)(tanA +-§ e;4 (ARIC())F
CR

((AR) + a tanA -~

C
L
(-1 +7)

C, tanA

(tanA -~ )

- (-c1 (AR)C(k))
a

= ——-(c1 (AR)C(k)tanA)

a

The equations of motion are written as

=l

)
2 2 2
[s [mij] + [kij]] ;_+ mlrawp‘ﬁ

'sand

¢
Dividing by the factor mlrimi gives the following equations:

=0

-x (AR)
(3+1) (P - Y,
32 \[R
a

<

(20)

(21)

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

(31)

(32)




-2 -
+ [s ["131 + 3(313] + [Aijl] 3 "0
The parameter ;;
‘;; = xa/b
while

v = Ko\ KKy,

and

R = K,;,/Ky,

These matrix equations may be combined and written as
s _ 8o
(i) + 30 + D)),

(M) = [mg ] + [My,]
[Ry) = [ky ] + (4]

This equation may also be written as follows:

where

(M1ix } = ~[B](x} - (K }{x}

a( )

where {x} = %%} and (.) = ETEEEY'

the problem in the following form:
X 0 I X
* 0 = -l -l L]
) MRy s x

If the vector {n} is defined as

(32) canc\»au

(33)
(34)

(35)

(36)

(37)
(38)

(39)

This, in turn can be used to recast

(40)

(41)



vhere {n} represents a vector of system states, then

{n} = {A]{n} (42)
The eigenvalues of [A] determine the natural frequencic- and damping in

the system,



Eigenvalue Sensitivity Derivatives

The objective of this section 1s to outline a procedure for calcu-
lating the first-order changes (first derivatives) in system eigenvalues
due to changes in system parameters ¥, R and V. these derivatives will
be used to estimate the effects upon stability of a change in stiffness
cross—coupling (y), primary stiffness ratio (R) or airspeed ).

Begin by defining the eigenvalue problem at a given airspeed v.

s{n} = [A]{n} (42)

The solution to Eqn. 42 is written as:

Xi{ei} = [Aij]{ei} (43)
where Ai is an eigenvalue corresponding to the eigenvector {ei}. The

eigenvalue A, and the vector {ei} may be complex.

i

The parameters Y, R and V'may be represented, in general, by the

symbol p. Let’s differentiate Eqn. 43 with respect to p.

DY de 9A de

1 e SO S 5 1

5o (et + ) = [l (o) + 1Ay )5 (44)
Equation 44 now may be written as:

DA 0A de

1 = [—1d - 1

5 (e} =[5t leg} + [[ag4) - A (T]figs (45)

We are only interested in the change in Ai’ not the change in the eigen-

vector e . To eliminate aei/ap from Eqn. 45, consider the so-called

"left-hand" or transpose eigenvalue problem defined as:

(A, )T 0x,} = 20 (46)

i}

Equation 46 defines an eigenvalue problem for the matrix transpose of

[Aij]° The eigenvalues of Eqn. 46 will be the same as those found in



Eqn. 43, since the determinant of the matrix transpose is the same as
the determinant of the matrix. As a result, both Eqns. 43 and 46 have
the same characteristic equations. However, the eigenvectors {ri} and

{ei} associated with A, are not identical unless [A] = [A]T, that 1is,

i
unless the [A] matrix is symmetrical. Equation 46 1s important; taking

its matrix transpose, it becomes:

r) 7| a1 - 11| = 0 (47)
Notice the similarity between the term in Eqn. 47 and the last term in

Eqn. 45. Pre-multiplying Eqn. 45 by {ri}T, we get

axi 3Ai,
S Lr d{e,} = Lrd -351 {eg} (48)
+ L, d{[A] - A [T]({e}

The last term in Eqn. 48 is zero, from Eqn. 47. This gives the follow-

ins result for the change in A, with respect to p.

i
A
_4_1 34|,
3p "' "Idpl (49
where
cy = erl{ei} 0 (50)

Equation 49 is an exact solution for the first~order (first derivative)

sensitivity of the eigenvalue A, to changes in a system parameter, p,

i
present in the [Aij] matrix. Since the matrix [Aij] defined in Eqn. 40
consists of algebraic expressions, we also can derive algebraic expres-
aA1
sions for the elements —351, as will be illustrated.

We must know {ri}T and {ei} before we can carry out the operation
defined in Eqn, 49. Since the transposad eigenvalue problem is related

to the original eigenvalue nroblem (Eqn. 43), it can be shown that:
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[R] = [£]7! (51)
vhere the columns of the NxN modal matrix {E] are constructed by insert-

ing the N eigenvectors {ei} such that

[Ey,] = [{eyHey} oo {eg)] (51)
As a result,
l.riJ
LrZJ
Ry = | (52)
e
and

Lrij{ei} =C = 1 (i=1, 2, ..., N) (53)

Lr deb =0 (1% (54)

h|
Since the mode shapes (eigenvectors) of both problems are orthogonal to
each other, the sensitivities of all eigenvalues can be computed in a

single operation, as follows.

Let us define a matrix [Dij] as follows:

dA
i
(D41 = 1R} |—5=d) (] (55)
Then
BAi
-5'—= D11 (56)

Note that the off-diagonal elements of Dij are not zero, nor are they

meaningful,
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The procedure for computing sensitivity derivatives of our eigen-

values is now easily constructed.

1.

2,

3.

4,

6.

Now, let’s turn to the actual computation of the matrix

parameters.

Compute the N eigenvalues and eigenvectors of the problem
[A,[1] - [A]l{e,} = {0}
Construct the matrix [Eij]

Invert [Eij] to find [Rij]

aAi!

Construct the matrix 3p

for the parameter of interest.

aAi1

,Compute [Dij] = [R] 3

[E]

8A1

—_—= ]

ap i1

—

ap

v

)
The elements of [—fil are:

axT‘ ; o1
GRS

Therefore

-
-

34, J 0 0
vl -1
(-4 1K) 0

for a few

First consider the stiffness cross—coupling parameter ¢.

(57)

(58)

(59)

Next, consider changes with respect to the primary stiffness ratio, R =
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K11/K22'
A, .1 0 0
[_aliz‘i] - ? (60)
-1 %¢
Mo O
)
The elements of R are:
) -
3K, ] 2\|R
2\|R
Therefore:
T3A 0 0
{"3%1 B -1 (62)
[-M 17 (R ] O

It 1s also important to predict how the eigenvalues change with

airspeed since the eigenvalues determine system stability. Let’s com-

94
pute i‘-—%{l, as follows:

v
9A 3A
[——_;_-‘1 = -—_:L;]cos A (63)
v g 3VUJ
and
9A 0 0
—d- (64)
W ] -1 _2B
v T v
n n
Let us represent the matrix ofIZhanges in KT as =
a -
ki Y (65)
v

v
n
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and changes in Bij as
B s (66)
v Vv
n n
Elements of these matrices are:
2V
K_(1,1) = —~ (-1 + ;"-) (67)
v
n
-2V
K_(1,2) = —d—“~ tan A(~-1 + ;—L—) (68)
vn
—26;
K_(2,1) = —3~ (AR)C(K)C, (69)
v a
n
26;
K (2,2) = —— (AR)C(K)C, tan A (70)
"7 1Td 1(!
n

Elements of the changes in the aerodynamic decaping matrix are:

C.C

L”p
n
B (1,2) = (AR + a tan A - CL(AR)/n)/d (72)
vn
B (2,1) = (~AR)(1 - C, C_C(k)/m)/d (73)
v 1,®

n
B_(2,2) = (AR)(zan A + 3C(K)C, /m)/d (74)
\Y a

n
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The Addition of a Control Surface to the Idealization

If a full-span, trailing edge control is attached as shown in Fig-
ure 4, the equations of moticn (Eqn. 36) will be modified. If the con-
trol deflection is denoted as 60 and the control is irreversible, then

pitching and bending moments at the airfoil root may be written as:

M

668 8é
= m!rzmz s (75)
Mes *Plyg |\ °
$5
where
= e
Mos ﬁi “as * 7 Ces
5 75\ (Rets (76)
: $6 Tur
and
e=a-a_ . an
Equation 36 now becomes
., _ o( § Cos
s [MT] + s[B] + [KT] ¢ =<l?¢6 50 = {C6}6° (78)
where
y P
o6 =~ (cas ¥ 7 C14) (79
T
and
27’
C¢6 = = (AR)ch (80)
mur
a

In terms of time derivatives of 6 and ¢, Eqn. 78 1s written as:
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LN ] e L ]
1= = -7 R - g T Bl + g Hears, (8D
¢

Equation 81 may be written in state-space form as:

{n} = (A}{n} + (s}s_ (82)

0
=y (83)
Il

Note that the symbcl [B] also has been used previously to denote for

where

aerodynamic damping. However, in all that follows, the symbol B will

refer to the control matrix, in this case, a vector quantity defined in

Eqn. 83.

Modal Controllability

The aeroelastic response problem is now cast in terms of the state

vector {n} (defined in Eqn. 41) as follows:

; = An + BS§ . (84)
Again, the eigenvectors of the problem n = An are {ei} and, as before,
can be arranged to form an NxN modal matrix [Eij] defined in Egqn. 51.
We can use [Eij] to transform the n coordinates to a new set of coordi-

nates {Ei}' defined as:

{n} = [E, 1{&} (85)

1]

so that

{8 = (£, 17 {n} = [R]{n} (36)

Our equation of motion, including the control, then becomes:

[Eij]{a} = [A][E,,J{E)} + {B}Go (87)

13
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or

(8} = [Ry JIANE, H{E} + [RM(B}S, (88)

1}

The matrix RAE = J, is a diagonal matrix composed of the N eigenvalues

of the matrix [A]. The matrix [J] is called the Jordan canonical form

of [A]. Let us define a colunn matrix {P} as

{r} = [E, 17 (B} = [R]{B) (89)

so that now we have the equation of motion written as:

(8} = [IHE} + {P}S, (90)

The matrix {P} is called the mode-controllability matrix of the system

and has some interesting characteristics.

Since [J] is diagonal and {P} is a vector, the equations of motion

in terms of Ei are uncoupled and have the general form:

£y = N& + RS 1=1,2, «ec, N) (91)
where Ai is the ith eigenvalue and Ei i1s the generalized coordinate
corresponding to the 1th mode of the system. From this relationship, it

is seen that the 1th

mode is controllable by the control surface only 1if
pi,is unequal to zero. The entire system is controllable only if all

modes are controllable.

Mode-observability of the System

The measured "output" of the system can be expressed in terms of

the system states as:

T
ty} = ey 17 (n} (92)
where [Cij] represents the system output matrix. In terms of the

transformed coordinates {Ei}, the output equation becomes:
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(v} = Le17 (e, 14&} = (€1 (&) (93)

where

[c] = [Eij]T[C] (94)

The matrix [C] i: called the mode-observability matrix for the system.
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Modal Control

Only a single control input, 60, controls the aerrclastic system;

let’s measure the system states and feedback a signal, f, defined as:

£(t) = {u}T(n} (95)
The matrix {pu} is a matrix of transducer outputs from each state. This
vector {u} is called the measurement vector. The signal f(t) can be

amplified by a proportional controller having a gain, K. In this case,

the controller is Go, so that we move the control surface an amount:

8, = K{u}'{n} (96)

Combining this with our equation of motion, we now have the following

problem.
{n} = [AJ{n} + R{B} {1} (n) (97)
Let
(Al = [A] + R{BHu}' (98)
Then
{nh = [agl{n} (99)

Depending upon the choice of K and {u}, the eigenvalues of [AT] will
differ from those of the original plant matrix {[A]. How one chooses K
and {u} depends upon the objective of the control. Let us suppose that
the objective is to modify a single eigenvalue of the original plant.
Let us have as our objective the changing of the jth eigenvalue,
Aj’ to a value Yj while leaving all other values of Ai (1 # j) of the

open-loop system unchanged. Here is one way that this may be done.

(Note that what follows is a greatly simplified approach to aeroelastic
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control.)
Let {u} = {rj}, the jth eigenvector of the transposed eigenvalue

problem. In this case

T
(Al = [A] + K{BHr } (101)
Now, post-multiply by the kth eigenvector (k # j) of the open—loop sys-

tem, {ek}, to get:

(Al{e,} = [AMe )} + R{BHr} (e, ) (102)

Because of eigenvector orthogonality, {rj}T{ek} = U, This leaves

(A ]{e,} = [Al{e,} (103)

Since, by definition, [A]{ek} = Ak{ek}, Eqn. 103 becomes:

[A;l{e,} = Me,} (k # j) (104)
This last result in Eqn. 104 means that, for this selection of {u}, the
eigenvectors and eigenvalues of the closed-loop system (represented by
AT) are identical to those of the uncontrolled, open loop system [A],

with the exception of the jth eigenvalue/eigenvector combination., Let’s

look at this latter combination.

If we now post-multiply Eqn. 101 by {ej} then

T
[AT]{ej} = [A]{ej} + K{B}{rj} {ej} (105)

or

[Apl{e } = [Al{e } + K{B} = A,{e,} + K{B} (106)

3

Equation 106 is valid because of orthonormality of the vectors {r

{e

j} and

} in Eqn. 105. This result implies that, due to feedback control, A

3 3

1s not an eigenvalue of [AT], nor is {ej} an eigenvector of [AT]'
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Since the vector {u} has been specified, the only unknown in the
control law is K, the gain. To determine the value of K necessary to
modify Ai by a certain amount, first remember that pj 1s the element of
the controllability matrix for the jth mode. It can be shown that, to
achieve our objective of eigenvalue modification, we can set the gain K

to be:

K = (o = A)/p, (107)

b
where pj is the element of the controllability matrix related to the jth

mode and p, is the new eigenvalue. Notice that the gain K may be com—

]
plex. This modification procedure 1s strictly valid only when changing

a real eigenvalue A, to a real value p,. If Xi is complex, we need to

. b h|
add an additional step.



