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Abstract

We investigate high Reynolds number stationary 1instabilities in the
boundary layer on a rotating disc. The investigation demonstrates that in
addition to the inviscid mode found by Gregory, Stuart, and Walker (1955)
at high Reynolds numbers, there 1s a stationary short wavelength mode.
This mode has 1ts structure fixed by a balance between viscous and Coriolis
forces and cannot be described by an 1inviscid theory. The asymptotic
structure of the wavenumber and orientation of this mode is obtained, and a
similar analysis is given for the 1nviscid mode. The expansion procedure
provides the capacity of taking non—parallel effects into account 1in a
self-consistent manner., The results are compared to numerical calculations

and experimental observations.
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1. Introduction

In recent years there has been much interest 1in the manner 1in which
three-dimensional boundary layers become unstable., Much of this work has
been motivated by the need to understand the instability mechanisms which
are operational in the boundary layer on a swept wing. This research has
been directed towards the development of laminar flow airfoils and the
possible 1nstability of the flow to Gortler vortices and crossflow
vortices, while taking Tollmien-Schlichting waves into account. Thus, Hall
(1985) considered the Gortler vortex instability 1in a weakly three-
dimensional boundary layer and found that an asymptotically small spanwise
velocity component is sufficient to prevent the Gortler mechanism occurring
at finite Gortler numbers.

The crossflow mechanism has also been the subject of many
investigations (see, for example, Gregory, Stuart, and Walker (1955),
Cebec1i and Stewartson (1980), Malik, Wilkinson, and Orszag (198l), and Reed
(1985)). This instability mechanism occurs when the effective velocity
profile in an Orr-Sommerfeld approximation to the 1linear instability
equations has an inflection point where the velocity field vanishes. The
importance of such a profile was explained by the inviscid analysis of
Gregory, Stuart, and Walker (hereafter referred to as GSW) in the context
of the rotating disc problem.

The noteworthy feature of this profile 1is that it can support a
stationary vortex pattern relative to the disc. GSW showed that the normal
to the vortex boundaries made an angle ¢ of about 13° to the radius
vector. This was found to be 1n excellent agreement with thelr

experimental observations, but the number of vortices predicted by the



theory was found to be too large by a factor of about 4. The latter
discrepancy has been attributed to viscous effects, but the reason why the
angle ¢ should not also be significantly altered by such effects 1s not
clear. The asymptotic 1investigation of the GSW mode which we will give 1in
Section 3 will shed light on this question.

A recent parallel flow numerical investigation by Malik (1985) found
that the point at infinity of GSW in the wavenumber-Reynolds number plane
1s connected to a curve corresponding to stationary modes at finite
Reynolds number. However, the angle ¢ varies along the curve and the
critical Reynolds number corresponds to ¢ ~ 110, and there 1s also a lower
branch on which ¢ asymptotes to about 39° when the Reynolds number is
larger.

The first purpose of this paper 1s to set up a rational framework which
can take non—parallel effects into account at large Reynolds numbers. The
second aim is to provide an analytical method of producing the wavenumber-
Reynolds numbers dependence of the upper and lower branch modes. Since our
analysis 1s applicable to any three-dimensional boundary layer, our
calculations enable the 1likely stationary vortex patterns in such flows at
high Reynolds numbers to be predicted analytically. We will see that the
lower branch mode corresponds to the case when the effective velocity
profile has zero shear stress at the wall and the disturbance takes on a
triple deck structure. The development of an asymptotic theory will also
enable nonlinear effects to be investigated in a self-consistent manner.
Such an investigation is beyond the scope of the present paper but is
clearly necessary in order to explain why the upper branch mode is

apparently almost always the only one to be observed experimentally. The



asymptotic theory of the lower branch mode 1s also relevant to short
wavelength instabilities of Stokes layers. The procedure adopted in the
rest of the paper 1s as follows: 1n Section 2 we formulate the instability
equations; in Sections 3 and 4 we develop asymptotic theories for the upper

and lower branch modes. Finally, 1in Section 5 we draw some conclusions.

2, Formulation of the Problem

We consider the flow of a viscous fluid of kinematic viscosity v in
the region =z > O. The motion of the fluid 1s induced by the steady
rotation with angular velocity §Q of the plane 2z = 0 about the z axis.
We take cylindrical polar coordinate (r, 9, z) with r and =z having
been made dimensionless with respect to some reference length 2. The

Reynolds number R for the flow 1s defined by
R = — s (201)
and 1f the axes rotate with the plane, then the basic steady velocity field
is
- 1 - 1 -1 _ 1
u=u, = ln(ru(Rz /2), v(Rz /2), R /zw(Rz /2)). (2.2)

Here the functions u, v, and w are determined by

[T C R L e 0, (2.3a)

2u(v + 1)+ v w-3V"=0, (2.3b)



where the prime denotes differentiation with respect to

appropriate boundary conditions are

Uu=0,v=0,w=0,z=0

u-+0, v+~l, z + o

We now perturb the above flow by writing

u = EB + QQU((I‘,G,Z), V(r,e,z), W(r,e,z))

(2.3¢)

Ze The

(2.4)

(2.5)

where U, V, and W are small and steady. The expression (2.5) is then

substituted into the Navier-Stokes equations in the rotating frame and

linearized to give

- - Ju
z}U +ul - 2{v+1}V + W =

1 -
T S Ve MW &
{ru Tt vagt R W 3?}V +uV + 2{v+1}U + 1W =

2 93U \Y
v + =5 = - —7?} ,
r

+
2 38
r

w| =

(2.6a)

(2.6b)



9 . —3 -lHh—3 -l aw
frusz+vig+R “wju+Rr W
__9p 1
= -+ +tx {W},
where
L_az + 1 52 13 32
f ot T T2t vt 2o

ar r 296 dz

and P is the nondimensional pressure perturbation.

continuity then becomes

(%]
{am}

U, 13V, oW _
trtre et O

Q

r

(2.6c)

The equation of

(2.7)

Finally, we must solve (2.6), (2.7) subject to the no-slip condition at the

wall, whilst sufficiently far away from the wall we 1nsist that the

disturbance decays to zero. However, we shall see below that the length

scale for this decay to zero will depend on the type of disturbance under

consideration,

3. The Inviscid Modes

From the inviscid theory of GSW we expect these modes to have

wavelengths scaled on the boundary layer thickness. Thus, we must consider

-1
modes with a length scale of order R~ 2 1n the r

It 1s convenient to define the small parameter e by

_ gL/6

8 directions,



and then we write

. T

U =u(z) exp =5 { [ a(r,e)dr + 88(e)} (3.1)

€
together with similar expressions for V, W, and the pressure perturbation
P, The wavenumber o will, 1in general, be complex and 1s determined 1in
terms of € and B. However, we will restrict our attention to neutral
disturbances and find o and B such that the flow 1s neutrally stable at

the position r. We now expand a, B as

toea; b, (3.2a)

>3
[l

%

™
It

60 + eBl + 0., (3.2b)
The disturbance structure in the z direction 1s then fixed by the following
considerations. Firstly, from the results of GSW we anticipate that there
will be an 1nviscid zone of depth 0(53). In order to satisfy the no-slip
condition on the velocity at the wall, a viscous layer must exist. The
thickness of this layer is then found to be O(ea) by balancing the
convection and diffusion terms in the disturbance equations.

In the 1inviscid zone we expand u, v, w, and p 1n the form

w = uy(@) +oeu (D) + e, (3.3a)
v = vo(g) +ev () + e, (3.3b)
W= wo(c) toew (Z) + 00, (3.3¢)
P =py(g) + ep () + ,e0e, (3.3d)



where ¢ = ze-3. The above expansions are then substituted into (2.6),
(2,7) waith a_ replaced by 31 {a + ga, + ,eee } and with 3
: or or 3 Y0 1 ’ ’ 30
replaced by l? {BO + eBl + ,---,}. If we equate terms of order 6_4, we
£

obtain

1uu, + Wy u” = -1a; P (3.4a)

= - 1B,
1uv, + W VO = ==/ Py (3.4b)
luwy = = p (3.4¢)
iBv
iag uy + tow = 0, (3.4d)
where u = g ur + BO'V. If we eliminate ug, vy and the pressure from
the above equations, we find that wg satisfies
E[w" - Y2 w.] - " w, =0 (3.5)
0 00 0

(=} ]

with now acting as the “effective” or “equivalent” two—dimensional
2
2 B

velocity profile whilst Yo = % +-;— is the effective wavenumber., Thus,

wy satisifies Rayleigh®s equation and Yo is determined as an eigenvalue

when (3.5) is solved subject to

w. =0, z = 0,0, (3.6)

We further note that aO/BO 1s chosen such that u and u" vanish at the

same nonzero value of ¢ = z; in this case (3.5) has no singularity at

z = E: The eigenvalue problem was solved using central differences; we



obtained

Yo = 1.16, (3.7a)

a

Eg _ 4.26 , (3.7b)

0 T

T = l.46.
The eigenfunction wQ normalized with w6 =1 at ¢ =0 1s shown 1n
Figure 1.

Having calculated w; we can use (2.8), (2.9) to solve for ugs Vg

and pp; however, it suffices here to say that when ¢ + O

B, Vv
i{a u, + 0 0

0 % —} » - w0, (3.8)

Before proceeding to the next order in the inviscid zone, we calculate the

zeroth-order solution in the wall layer. If we write

then 1n the wall layer u expands as

and v, w are expanded in a similar manner. The disturbance velocity and

pressure now are written as



u = UO(E) + eUl(E) LS RN

v =Vo(E) + eV () + ,eee,
(3.9)
Wos e (E) + €0 W (E) + ,eee,

s

2
p = ePO(E) + e PI(E) + ,eee ,

After substituting the above expansions 1nto the disturbance equations

equating the dominant terms and performing some manipulations, we find that
B, V
0 0
+ .
a UO T satisfies

Bo Vol ™" ... - - Bo Vo]
ag U0 + - 1£[a0 ug T + BO VO] o, UO + =0 (3.10)
Bo Vo
and the solution of this equation which satisfies UO(O) + e 0, and
0
(3.8) is
B €
8 Y, w3 (0) (f)Ai(YS)dE
ila, U0 + = - — (3.11)
[ A (ys)dg
1
0
where
_ _ 1/3
Y = 1[a0 uy T+ B, VO]} . (3.12)

For large values of £ we can show that

w2 (0) AZ(O)
W~ wg £+ _9_;___£___ ,

Y é Al(s)ds

so that w; the order ¢ 1nviscid zone normal velocity component wmust
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satisfy

wa(O)A;(O)
Wyt ————, z » 0. (3.13)

Y g Al(s)ds

We now turn to the next order problem in the inviscid zone. Thus, we now
equate terms 0(5—3) in the 1inviscid zone disturbance equations, and we
obtain a set of equations similar to (3.4) with (uy, vy, wy, pg) replaced
by (ul, Vis Wi pl) but now having inhomogeneous terms. If we repeat the

manipulations carried out on (3.4) 1in order to get (3.5), we obtain

1 " Yo% 2
r

B, a i
+ {“1 -4 0} r{?' -1 “}wo. (3.14)

The second term on the right—hand side of (3.14) causes w; to have a

_ - - B~ B
G[w" 2 ] - " w, = ZU{éO ay + —9——l}w0

logarithmic singularly at g = E} this can be removed in the usual way by
introducing a critical layer at g = C. We can formally write down a

solution of (3.14) which satisfies wl(m) =0 in the form

w(z)(n) u

g n
a, B n = - = o
. {"1 % 1} WO(C)/ dn f 2o B@E® - S@)uas|
z © (3.15)

when ¢ 1s a constant with Z > T. The above solution 1s valid for g < E
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1f the path of 1integration is deformed appropriately into the complex plane

near ¢ = ¢. It can then be shown from (3.15) that

0) = 2 LS SO o D Bt O 1.0 SR (3.16)
Y1 % % 7 ( W (0) 8-~ T2 ( WOy "2’ .
r 0 0 B, 0
where
_( .2
I _fo w;,(8)do (3.17a)
_ 2 - : - :'n ‘_1'
T Bof %o [_—=2_—] (3.170)
0 u

where the path of integration in (3.17b) 1s deformed below the singularity

at ¢ =g. The matching condition (3.13) produces the eigenrelation,

rd L4 2
AZ A (w5(0)%) B, B a; a5 B
100 =2aa+1011+—£—01r1. (3.18)
) 071 r? ) 1 BO B2 2

Yy [ A.(s)ds 0

0 i
Our calculations showed that
I1 = 094, 12 = ,058 - .0291,

and using the well known values for A;O’ f Ai(s)ds, we obtained

0
By 8
0 "1 -1/3
"‘o°‘1‘“——r2—=‘1‘*'r / Yoo
—2901'_1/3-

———
I Q
—
1
124
[«
w0
p—
N
(o]
|



The above equations can be solved for a) Bl; however, 1t 1s more useful

to evaluate

S B B
2 2,2 _ 0 "1 |e
V/(! +B/r —YO+ (!,O a1+ 7 Y—+’noc’
Y 0
=116 - L8t 13 yeee, (3.19)
g1/6

which we interpret as the “effective” wavenumber of the disturbance.

We now define the wave angle ¢ by

ra a B, a
tan[l"#]: O+r—1- ! O€+,'°')
2 BO BO B2
0
-1/3
= 4,26 +2—9'£1-/6—+ Leve . (3.20)
R

Thus, we have calculated the first correction terms to the classical
results of GSW, The sign of the correction term 1n (3.20) has some

1mportant consequences which we will discuss 1n Section 5.

4, The Wall Modes

We have seen in the previous section that the “effective” velocity
profile for a three—dimensional disturbance with wavenumbers a and B8 1in
the r and 6 directions 1s qur + Bv. The 1nviscid modes are such that
aur + Bv and au'r + 8v" vanish simultaneously. It 1s easy to show that
lower branch disturbances having a triple deck structure of the type

discussed by Smith (1978) for Blasius flow can also exist. However, such



_13_

modes are necessarily time-dependent with o, B real 1f the effective wall
shear au’r + gv” does not vanish. Therefore, we choose to look for
stationary modes for which the effective wall shear vanishes at zeroth
order.,

It is easy to show that the appropriate triple-deck structure 1s based
on the small parameter ¢ now defined by

e = p1/16 (4.1)

and the lower, main, and upper decks are of thickness 89, 88, and €

respectively. The disturbances structure in the main and upper decks is
essentially the same as that found by Smith (1978) who investigated lower
branch disturbances to Blasius flow. The wavenumbers in the r and 8

. . -4 R
directions are now O0(e '); we therefore write

. r
U = U(z)exp iz { f a(r,e)dr + OB(E)},
€

together with similar expressions for V, W, and P. We define £, z, Z by

£ = Zg., r = E%; , z == (4.2a,b,c)
€ € €
The wavenumbers then expand as

+ eo e (4.33)

(4.3b)

™
il
™
o
-+
m
™
[
+
™
™
N
<+
..
.
.
.
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Here we have anticipated that the order ¢ terms are zero, and we agaln
seek a5 Bi’ etc. such that the flow 1s neutrally stable at the location

r. In the upper deck u =0, v = -1, and U expands as

U = 53 UO(Z) + 54 Ul(z) + ’ooo’

and V, W, and P have similar expansions. We found that the zeroth-

order equations to be solved in the upper deck are

8, P dp
o Bo _ 4B,
BoUp =% Por Bo Vo =% » Bo¥ =g >
g. V dw
0 0
1a0U0+1 +EE__O’

and the solution of this system which decays to zero when z + «» 1s

YA 2 a “Yn Z
P, = Ce 0 . U, -0 Ce 0 . (4.4a,b)
B
0
Y, 2z 1Y, Y, Z
c 0 _ 70 0
VO =7 e R WO = _B_ Ce , (4.4¢c,d)
0
where
/2 2, 2
Yo = Yoo * Byl

and C 1is an unknown function of r.

In the main deck the disturbance expands as
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1
U —-e-uo(;) + ul(c) + ,eee,
Vel o (2) + vi(z)  ,oee

c VO T Vl T ) ’

3 2
W=c¢ wo(z;) + € wl(c) t e,

P = e3 c + 82 Pl(r,) + ,eee,

where we have anticipated that P 1s independent of £ to order 53 and
therefore equal to C. Substituting into (2.6), (2.7) we find that ugs
Vg, Wy satisfy

1a0ruu0+180vu + ru” w, =0,

1o ru Yo + 1307v0 + rv” wg = 0,

and the solution of this system which matches with the upper deck solution

1s _
Cr Yo u”
u, = ———— (4.5a)
0 2 ’
Bo
Cr Yo v
Bo
Cr YO _ _
wy = - 32 (aO ru + 8, V). (4.5¢)
0

We note from (4.5¢) that wy 1n fact satisfies the no-slip condition

when ¢ + 0; however, unless u” and v° both vanish at ¢ = 0 the other
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velocity components are nonzero there, If we choose oy and BO such
that
— By —.
ay u (0) + =V (0) =0, (4.6)
an~ T BO Vo

which gives = 1,207, then ay uy + + 0 when ¢ » 0, It 1s

80 r

the 1mposition of the constraint (4.6) on the effective velocity profile
which enables us to find stationary disturbances. If we expand u, v for

small ¢ and write £ = g/e, we have

- — 2 — 2, - 3
u = euo g t+ ¢ ul E + u2 E + ,een (4.7a)
— — 2 - 2, = .3
v =evy & + ¢ Vi E VBTt e, (4.7b)
- _d0 - ¥ (0)
when u = — , v, = j ——=%3; for j = 1,2,eee , In order to match
3-1 ! j-1 3!

with the solution (4.5), written in terms of & wusing (4.7), we therefore

expand the lower deck disturbance in the form

U=__2__ uo+2€u1£ + oo +——€—+ Uo(g) +€Ul(£) + REX TN (4.83)
eB
o C - _ v_ (&)

VvV = — |V * stl E 4+ ooef + —-_Ef—'+ Vo(g) + evl(g) + Leee, (4.8b)
880

1Y eS c _ 2 6
W=- ——Ez———— (ao u; T + BO VI)E + eee] + ¢ Wl(E) t 00, (4.8¢)
0
P=cd B E) +een . (4.8d)



-17-~

We must now substitute the above expansions 1nto the disturbance
equations and solve for (U_;, V_;), (Ug, Vo), (U, Vi, Wp, Py), etc. From

the continuity equation we obtain immediately that

___0
Va1l (4.9a)
0
*0
Vo = - N Ug» (4.9b)
0
%0
where 3 satisfies (4.6)., From the radial momentum equation we obtain
0
B o, d2U_l
- 1[ra0 v, + 80 vl]g U_1 + — = 0, (4.10a)
dg
- ifra, T, +8. v.]el U +d2U°=-—w+[ T, +8. v,]e U
tlrag up T B vilE Uy 22 Tag Wy T olrag uy By VoI Yy
(4.10Db)
which must be solved subject to
Ty Cu,
0 0
U_l—- P) s U0=0, £ =0,
€8y
(4.11)
U—l’ U0 + 0, £ » o,
The function U_; 1s given by
Yy Yo T y(o /iAl/‘*Q
u . =- 2 R (4.12)

"l U(0,0)

2
Bo

where
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A= i{ao fGl + BO Vi}

(4.13)

— 1
and U(O, ¥2 A ﬂ‘g) is a parabolic cylinder function. The functions Uy,

Vo cannot be determined unil

Wi 1s calculated,

the latter function can

be found by considering the next order approximation to the radial and

azimuthal momentum equations.

iBO

If we multiply these equations by

respectively and add them we obtain:

10.0

and

(4.14)

d2 U B d2 U 218, U
. 1 + 0 1 + 2 P+ 2 v - 0 -1
Wo "2 T T 7 (7 Yo To T % '-1 T
dg dg
— _ 80 V1) 2 _ _
= 1{u0rul + By Vl} iag U} + —?————}g + 215{a0 ru; + B vl}w1
2
= 2oy rug + 8y Vol —5—Joy v +——0,
Bo
whilst the 2z momentum and continuity equations give
Fo
dg ’
i U+60Vl+dwl —erOC H+81v0-1 U —18
%0 "1 T 3 Z |%1 Y % Y-
8o
so that Pg = C. It 1s important to point out at this stage that the terms

proportional to

U_;» V.1 in (4.14) are due to Coriolis effects; thus the

structure of the neutral curve for stationary small wavenumber disturbances

depends both on viscous and Co

from (4.14) and (4.15) to give

riolis effects.

We can eliminate

U, Vi
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e w dw
1. 1{a, Tu; + 8, V }52 L 2ig{a, Tu; + By v, W
e 0 ™1 T Po V1t &I 0 T T Bp Vil¥W)

2
= Yo C* fag rug ¥ By Vol ——Qagu t v

2 r 1
By
218 ;Q =
0 0({— U0, v2s)
— Y, ¥48) 4,16
* L+ =% ~uco,0) ° (4.16)
u
0
where
1
s = A /4g. (4.16)
We write the solution of (4.16) in the form
Y, CE
R - - 0 -3/4}) 2
Wy == ifa) ruy + 8 vol =5+ 4 Yo CFy(s)
Bo
2. 8 15, F (s)
i ®o ol %o "2 2
+ = I GROI  EL (4.17)
0
where kl is a constant and Fy satisfies
Foo" — 2 F7 + 2sF. = 1 F.(0) = F.(w) = 0
1 S | 551 ’ 1 1 ’

whilst Fy; satisfies a similar equation with the right-hand side of the
differential equation replaced by U(0, v2s). In fact, it is straight-
forward to express Fi, Fy in terms of integrals involving parabolic
cylinder functions. It remains for us to satisfy U, = V| = 0 at g = 0;

from (4.15) and (4.17) we can show that this condition leads to the

ergenrelation:
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— —2
2 g g Y0 L, _ _
Yo I3 + = 1+ EZ I4 = 1A {al ru, + 8, VO}. (4.18)
0

Here the 1ntegrals I3, I, are given by

o

[ eu(0,68)ds

_0 _
L = =50,y — = 2%

o«

/ 6U(0,8)ds

I, = v = 457,

UZ(O,O)

and (4.18) can be solved to give

— )
Bp u v 1 1
- 00 ¢] fr _ -
Yo T, 1+ = )1, = 1.224 r , (4.19)
u
0
=2 \-1
v
2y3/2 1 + —9
0 )
{“1 B “o} _ Uo .
B, 2 ( 1 3
0 B - = Y
0 |V0 uol 2
= 2.312 ¢ O/4, (4.20)

We see at this stage that 1t 1s still not possible to find ay and Bl

independently; however, 1t follows from above that ¢ the angle between
the radius vector and the normal to the vortices is given by

1
tan[r/2 - ¢] = 1.207 + 2.1312 &2 = %+ ... (4.21)

’
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whilst the total wavenumber lZ /&2 + Bz/r2 1s given by
€
| [T 77 l.224 1 12
_4‘/a + 8 /r =—._4——-+ s o0 (4.22)
€ €

The above expansion procedure can be continued 1in principle to any order
and can take non-parallel effects into account in a self-consistent
manner. We stress that (4.21), (4.22) have been obtained by taking the
Coriolis effect into account; an Orr-Sommerfeld approximation to the full
equations gives 1ncorrect values for the second term in (4.21) and the
first term i1n (4.22), The sensitivity of the structure of the lower branch
modes to a combination of viscous and Coriolis forces means that, unlike
the upper branch modes, for a more general three-dimensional boundary layer
this class of modes might not even exist. Finally, we note that time-
dependent modes with a sufficiently slow time scale are also possible and

introduce a frequency into the eigenrelation (4.13).

5. Conclusion

The Reynolds number RA based on the boundary layer thickness, and the

local azimuthal velocity of the disc is given by

1/
= 2
R Rr .

The inviscid modes have local wavenumber kA defined by

1<A=./c;2+sz/r2 s
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where the appropriate length scale 1s the boundary layer thickness. On the

lower branch the local wavenumber kA 1s defined by

_ly
k, = R I jo? & g%/c? ,

so that (3.19), (4.22) are equivalent to

1/3 +

ky = 1.16 = 14.4 RZ yeee, (5.1)

and
_1

kA = 1,22 RA /2 + yeee (5.2)
respectively. Similarly (3.20), (4.21) become

tan[n/2 - ¢] = 4.26 + 29 RZ1/3 + o een, (5.3)
and

- yz
tan[n/2 - ¢] = 1.21 + 2.31 R, + ,eee ., (5.4)

Thus, if the neutral values are expressed 1n terms of R kA’ and ¢ have

X
no explicit dependence on the radial variable r.

In Figures 2 and 3 we have compared the above asymptotic predictions
with the numerical results of Malik (1985). The latter author solved the
parallel flow approximation to (2.6) obtained by setting 3/3r = 1a,

3/36 = 1B8. Such an approximation 1s valid only for R + « but to the

order shown 1n (5.1) - (5.4); our asymptotic results apply to the system

solved by Malik.
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We see in Figures 2 and 3 that there is satisfactory agreement between
the asymptotic theory and Malik”s results. Thus, the asymptotic approach
will be a useful tool 1in finding the structure of the possible statiomary
modes in other three-dimensional boundary layers rather than having to
solve the full parallel flow equations numerically. Similarly, the
asymptotic theory could be used to identify the stationary modes which are
likely to be 1mportant in a Navier-Stokes 1investigation of this problem,

It is interesting to question why the lower branch modes have not been
1nvestigated earlier. The reason appears to be that 1n most experimental
investigations of the disc problem, only the modes with ¢ ~ 13°  were
observed., However, there 1s some discussion of modes with ¢ ~ 20° 1in the
paper by Federov, Plavmik, and Prokhorov (1976). These modes were found to
exist closer to the center of the disc than the GSW modes and have a
different vertical structure, Thus, 1t would appear that the lower branch
modes perhaps bifurcate subcritically and therefore do not persist into the
region where the GSW modes occur., Obviously, only a weakly nonlinear
theory at 1least could settle this matter; however, it 1s 1interesting to
note that Allen and Stuart’ (1985) have pointed out the possible existence
of a subcritical mode with azimuthal wavenumber n = 2,

The upper branch asymptotic results are again consistent with the
results of Malik. The positive sign associated with the first correction
term in (5.3) has 1important consequences. Thus, 1f (3.3) and (5.4) are to

be connected at some finite Reynolds number the higher order terms in (5.3)

*
pers onal communication



-24—

must be negative. This means that for some range of RA’ the value of ¢
along the upper branch modes will stay close to the infinite value of about
13°, This is exactly what Malik found numerically and even at the critical
Reynolds number; ¢ is still close to 13°. The wavenumber, however, changes
much more along the wupper branch; this presumably explains why GSW
predicted ¢ so well but not the number of waves.

Finally, we turn to the relevance of the lower branch modes 1in other
boundary layer flows. At first sight we might think that our analysis is
directly applicable to a two—dimensional boundary having zero shear stress
at some position along the boundary. However, it is easily shown that the
structure given in Section 3 is only applicable to boundary layers having a
non—-zero third normal derivative of the streamwise velocity component.
This constraint effectively means that there are no neutral modes of the
type found in Section 4 for spatially varying two-dimensional boundary
layers. The Stokes layer velocity profile is another matter; at high
Reynolds numbers the flow varies slowly in time, and the modes discussed 1in
Section 4 are relevant to the times in a cycle when the shear stress
1nstantaneously vanishes at the oscillating wall during the fluid motion.

For three-dimensional boundary layers we expect that the lower branch
modes are directly relevant., Moreover, it 1is of course possible that 1in
such flows nonlinear effects might cause them to be more important than the
GSW modes in the development of crossflow vortices. This matter can, of

course, only be resolved by further calculations.
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Figure 1. The 1inviscid motion eigenfunction.
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Figure 2. Comparison between the results of Malik (1985) and the

asymptotic wavenumber predictions.
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Figure 3. Comparison between the results of Malik (1985) and the

asymptotic wave angle predictions.
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