@ https://ntrs.nasa.gov/search.jsp?R=19860003272 2020-03-20T15:49:14+00:00Z

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



OIS,

'.A

,
]
!
A

(EB6-10008 4aSA-CB-176267) EVALUATION OF N86-12740

SPACE SAR AS A LAND-COVEE CLASSIFICATION
Pisal Report (Kansas Univ. Center for
Research, Irc.) 123 p HC AC6/MF AO1 Unclas

CSCL 02B 63,43 00004

The University of Xansas Center for Research, INC.
4
2291 Irving Hill Drive-Campus West Lawrznce, Kansas 66045




THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.

2291 Irving Hill Drive—Campus West Telephone: (912) 864-3441
Lawrence. Kansas 66045-2060

EVALUATION OF SPACE SAR AS A
LAND-COVER CLASSIFIER

Original photography may be purchased
from EROS Data Center .
Sioux Palle, 8D, 87198 .~

B. Brisco
F. T. Ulaby
T. H. Lee Williams

Remote Sensing Laboratory
RSL Technical Report 6.5=-1

Supported by:
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
JOHNSON SPACE CENTER
Houston, Texas 77058
Grant No. NCC9-7




TABLE OF CONTENTS
Page

MSTRACT ..‘.‘00......'....0.....0....Cl.....“'.'..l"..'l...t111

LlsT w FIMES....................n......n................... i‘,’

LlSTWTmLEs‘.'............0.....0'..0.....0....0..0........' Vi

CHAPTER ]
1.1
1.2
1.3

CHAPTER 2

2.2
2.3
2.4
2.5
2.6
CHAPTER 3
3.1
3.2
3.3
3.4

3.5

3.6

l"TRwucho“.....0..000.'....0........0.000.‘.!..0..1
Genera]........'..'0...0........I.'.O.l......0.0.0..1
Microwave Remote Sensingeceececscecessccocrssnonseosed

The Multidimensional Approach to
Ke'“ote Sensing....l.......‘.00..0.....0.!0.0.!...'3

Scope of the Investigation.eeeeesesecssocacccscsnsesd
BACKGROUND INFORMATION AND LITERATURE REVIEW........7
INtroduction.eeeeecesceceaseccrssocssssseosscsascesel
Interpretation of Radar Imagery.ceescesosscecsccceesd
Land-Cover Mapping with Radar..ceseeecesssosscasansll
Forest-Cover Mapping with Radar..eeeeccessescssasesld
Agricultural Discrimination with Radar...ceeeeeeessl9
SUMMATIrY eoecscesoovoscssessesssavsssssccssssassarscssseeld
LAND-COVER MAPPING IN OKLAHOMA........coooeeeessesslD
Introduction.eeeecesessccscscacencsccasssssscacssesld
Image Uata and Test-Site DeSCriptionN.ceecceceseesaslb
M2thNdOT0gY ceseesssossossssssssssssascssscsscaneseesdd
Pixel ClassificationS.eeescecessceccsscsvescsnssessdd

Spatial Averaging and Mul“isensor
c]assification ..'.I.l.....t.‘.ll..'............046

Su"'nary'....l.......ll.......‘0.0..0.."".........52

B CRRNE Y- W S

h




i
|
i
|
I
I
[
[
[
[

R W W pm P

CHAPTER 4
a.1
4.2
a.3
4.4
4.5
4.6
4.7

CHAPTER 5
5.1
5.2
5.3
5.4
5.5

CHAPTER 6

CROP CLASSIFICATION IN KANSAS....ccoovvocsscncsseesdd
INtroduCtioN.eseeessossecsessoscscscessscsssssoessedd
Image Data and Test-Site Description.cececcceecesssdd
MGthOdOlOgY eeeveseacesssessncsosssssscscssvsacssaseadl
Single-Channel ClassificatioN.sescecscaceossencsesseb?
Multichannel SAR Classification.ceeecsseccssesencessl
Multisensor Classificaiion.ceceececocnccccsoacannssl?
SUMNANY s coeesscosocessccscscscsrssesscsassssssnscscesll
FOREST MAPPING WITH RADAR...cccovvcosssscossccossssBl
INEroduCtion.seeseecesecsvscscsssssssescsesssncssnesBl
Test-Site and Forest DescriptionS.eececescecesssessBl
Data ANGlyST1S.eeeeecssscessossesesscssacscssescosesedd
Results and DisCuSSiONeececeevssesaccssssssssssssssd?

Sumna"y..bb.O‘....O....‘..O..'...‘O..OO‘.‘00.0“‘.101

comLuDlm REMRKS'......’..0.‘..0.....‘.0'."0..‘103

REFEREmES....DQl....O...0..'.l............‘...000..".I.‘...l.lo?

i

> o . P
ks L WP
- ST SRR v




- : -y T e > N - -
LA W e AR S

Abstract

Over the last two decades, the use of microwaves for remote
sensing has fincreased dramatically, and investigations have been
conducted into the use of radar remote-sensing techniques for a
wide variety of land and ocean applications. The studies reported
herein involve multidimensional approaches to the mapping of land
cover, crops, and forests. Dimensionality was achieved by
(1) using data from sensors such as Landsat to augment Seasat and
Snuttle Imaging Radar (SIR) data, (2) using different image
features such as tone and texture, and (3) acquiring multidate
data. Seasat, Shuttle Imaging Radar (SIR-A), and Landsat data
were used both individually and in combination to map land cover
in Oklahoma. The results indicated that radar wvas the best single
sensor (72% accuracy) and produced the best sensor combination
(97.5% accuracy) for discriminating among five Tland-cover
categories. Multidate Seasat data and a single date of Landsat
coverage were then used in a crop-classification study of western
Kansas. The highest accuracy for a single channel was achieved
using a Seasat scene, which produced a classification accuracy of
67%., Classification accuracy increased to approximately 75% when
either a multidate Seasat combination or Landsat data in a
multisensor combination was used. The tonal and textural elements
of SIR-A data were then used both alone and in combination to
classify forests into five categories. Tone outperformed texture
as a one-dimensional classifier, producing an accuracy Jr 75%
compared to the 55% to 60% accuracy obtained using textural
measures. By combining tone and texture in a multidimensional
classifier, accuracies exceeding 90% were achieved. Thus, in all
studies, multidimensional approaches improved the classification
accuracy achieved using radar data.
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CHAPT i )
INTRODUL T ION

1.1 General

Remote sensing, which is the scierce of acquiring information
about an object without physical contact with that object, fis
beiny 1increasingly utflized as a tool 1{in the management of
renewable resources. The dat) produced by remote-sensing systems
allow thematic finventories to be produced in a cost-effective and
timely manner. In addition, the synoptic perspective provided by
satellite systeme offers regional coverage unavailable
nheretofore., F .' these reascns, remote sensing will become an even
more prevalent and important too! for resource management in the
coming years.

Remote-sensing systems; operate in various parts of the
electromagnetic (EM) spectrum, with the visible, infrared (IR),
and microwave portions of the spectrum being those most commonly
used. Varfous camera systems, equipped with film sensitive to
either the visible or the near-IR wavelengths and deploysed aboard
aircraft, served as early "sensors" and provided the impetus
necessary for the development of more sophisticated sensors. The
photoyraphy produced by these early remote-sensinyg systems proved
to be very useful for tasks such as crop identification, forest
inventory, and yeologic mapping. This in turn led to the
development of multispectral scanners (MSS), thermal infrared
(TIR) systems, and microwave remote sensors. With the launchinyg

of the Landsat series of satellites in 1972, the era of space
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remote <ensing was inaugurated. Today, a wide variety of yround-
based, aircraft, and satellite remote-sensinyg systems operating in
the visible, IR, and microwave reyions of the EM spectrum provide

data for civilian use.

1.2 MWicrowave Remote Sensing

Microwave remote-sensing systems are relatively new, having
been in use only since the early 1960s (Ulaby et al,, 1981). Over
the last two decades, active microwave systens such as radars and
scatterometers, and passive systems such as radfometers, have been
developed and tested for varfous applicatifons. Initfally, most
imaying radars were deployed aboard afrcraft; however, in 1978,
Seasat, the first satellite-borne radar, was launched.
Unfortunately, Seasa: had a fairly short lifetime--only nine
months. Since 1979, the only synthetic-aperture radar (SAR)
systems to be deployed in space have been those included in the
Shuttle Imaging Radar experiments, SIR-A and SIR-'}.

Nevertheless, SAR systems continue to be of interest as
effective remote sensors and as such are the focus of this
investigation, There are several advantages in using radar
systems for remote-sensing purposes: one {s that they pravide
their own energy and thus are independent of solar illumination;
another is their so-called all-weather capability, which results
from the radar's ability to penetrate cloud cover as a result of
the long wavelengths employed. This cloud-piercing capability
operates independently of weather conditions and thus allows the

collcction of data during critical time periods. The 1long
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wavelenyths used by these sensors also interact with the eartn's
surface features and thus provide {nformation that s
complementary to sensors operating {n the visible and IR
regions, Moreover, significant penetration into some land-cover
types, such as crops and forests, occurs, which provides
information about both the vegetation canopy and the soil beneath
it.

The sensor parameters of a SAR system--frequency, incidence
angle (the anyle between the vertical direction and the look
direction), and polarization--can also be chanyed according %o the
specific application involved. For example, shorter wavelengths
and shallower incidence anygles, sdch as X-band (2.4 - 3.8 cm) at
50°, provide information primarily about the plant canopy; whereas
longer wavelengths and steeper anyles, such as C-band data (3.8 -
7.5 cm) at 10°, provide information about the soil background.

A microwave system can provide data both as a primary sensor
and as a backup to conventional MSS systems. In areas
characterized by high cloud cover and/or poor solar illumination,
such as arctic, coastal, and tropical regions, radar systems can
be of great importance because of the difficulty of obtaining
optical measurements under such :conditions. Although data from
microwave systems are not as well understood as optical data,
further research and experimentation should make the utilization

of microwave data more effective.

1.3 The Multidimensional Approach to Remote Sensing

One of the advantages of using satellite remcte-sensing
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systems to identify and wmonitor renewable resources is that such
systems have the ability to ohtain data repeatedly throughout the
year. It has lonyg been recoynized that multitemporal data can
reduce ambiguities in the interpretation of remotely sensed data
(Goodman, 1999). This is especially true in land-cover mapping,
as a rasult of the dynamic temporal patterns of the earth's
surface features. For example, when using optical systems, corn
and soybeans may be i1ndistinguishable frow each other early in the
yrowing season; however, they may beccme identifiable later, as
the corn ripens and develops it3 characteristic golden coior,.

It is also possible to increase the specific information
content of radar data by using different system confiyurations.
Three fundamental system parameters--frequency, incidence angle,
and polarization--can be varied to obtain data from different
surface features. Ulaby (1982) provides an overview of the radar
signatures of terrain and discusses the influence of varyiny
system parameters on the radar energy backscattered by different
terrain elements.

Another approach to 1increasing the information content
av:'lable for a particular task is to use sensors designed to
respond to different portions of the EM spectrum. For example,
multisensor approaches have been investigated both for crop-
classification purposes (Ahern et al., 1978; Ulaby et al., 1982)
and for land-cover =lassification (Wu, 1980), and it has been
shown that classification accuracies tend to 1increase when
multisensor data are used. This is bacause two surface features

may be confused in the microwave region but separable in the
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optical reyion--for example, forest cover and urbs— areas, which
are separable optically but may be confused with each other when
microwave data are used.

In most remote-sensing applications, 1image tone 1is the
feature most commonly wused for 1image interpretation, Image
texture, the spatial distribution of the image tone in a target
area of interest, 1fs aiso a wuseful feature and can be of
considerable value in the c¢nalysis of radar data (Beryer, 1970;
Lowry et al., 1Y78; Shanmuyan et al., 198la). Although digital
classifications based on imaye texture are not now readily
available, tney promise to increase both information content and
classification accuracy. Haralick (1979) provides a review of
poth the statistical and the structural approaches to image
texture,

Multidimensional data sets offer yreat potential for varicus
remote-sensing applications. Furthermore, the dimensions can be
increased by acquiring multitemporal data, varying the sensor
paraneters, using sensors designed to respond to different
portions of the EM spectrum, and using a combinatior of image tone

and texture.

1.4 Scope of the Investigation

This study focuses on the use of satellite SAR data for
mappinyg land-cover types. The investigation comprises three
tasks. In the first, land cover in Oklahoma is mapped at the
primary level (see Anderson et al., 1976), using image tone to

interpret Seasat, SIR-A, and Landsat data. The second task
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involves the classitication of crop types in western Kansas using
image tone from /wititemporal Seasat data auygmented with one date
of Landsat data. In the third task, image tone and texture fin
SIR-A data for forest types from five different forest biomes are
analyzed to determine the suitability of satellite SAR data for
mapping forest types. The thiree studies are reported in
Chapters 3, 4, and b5, following a yeneral literature review in
Chapter 2. The results of the studies are then used to assess the
use of satellite SAR data for land-cover classification purposes
and the relative merits of the different multidimensional
approaches,

There has been a paucity of rusearch concerning the use of
satellite SAR data, partly because data are not generally
available and partly because of the nature of the data that are
available. For example, the satellite SAR systems that have been
launched to date have been designed for applications other than
mapping and monitoriny renewable resources. As a result, the
approach used 1in this investigation 1is one of empirical
observation and subsequent explanation, rather than of theoretical
model development and testing. The results of these three studies
will allow the development of workiny hypotheses on land-cover
mapping using satellite SAR data, both alone and in combination
with satellite MSS data. The scene will then be set for the
initiation of further research into and development of operational
models. This will in turn bring the use of SAR data closer to the
operational level and thereby increase the number of applications

to which remote sensing can be applied.




CHAPTER 2
BACKGROUND INFORMATION AND LITERATURE REVIEW

2.1 Introduction

Since the mid-196uUs, imaging radar systems have veen
providing imagery for a variety of natural-resource, land-use, and
environmental studies (Estes and Simonett, 1975). Although plan-
position-indicator (PPI) and B-scan airborne radars have been
available since the wmiddle of World War II, it is the side-looking
airborne radar (SLAR) systems that are used for these types of
investigations today (Moore, 1975). The PPl and B-scan radars
produce displays that are essentially binary in intensity by
representing the presence or absence of objects responsible for
the backscattering of microwave energy. Imaging radars, on the
other hand, medsure the strength of the backscattered signal and
therefore provide more information than the original PPl and B-
scan radars. Furthermore, the technigues required to interpret
the imagery from these new radars is difrferent from the PPI and
B-scan systems, so experimentation is needed to determine how
these types of data can be most effectively used. As Moore (1978)
points out, microwave systems of various types have been used in a
wide variety of land and ocean applications.

Before the operational use of radar data becomes a reality,
appropriate methodology must be developed. Two basic approaches
have been used to develop methodology and to obtain a better
understanding of microwave interactions with the earth's surface

features. One approach involves the collection of imagery from
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aircraft and spdcecraft and the subsequent interpretation of the
data acquired for the target(s) of interest. In this approach,
imayge tone and texture are the key elements of interpretation.
Another approach makes use of yround-based radar systems that
provide point radar backscattering (¢°) measurements that are
subsequently analyzed wusing both statistical and graphical
techniques. Bradley and Ulaby (1980) have shown correlations
ranging from .8 to .92 in a comparison of ground-based versus
airborne ¢° measurements.

This chapter presents an overview of radar remote sensing as
it is used for mapping and monitoring land use, forestry, and
agriculture. Emphasis will be placed on results reported in the
literature, based on radar imagery, for these applications,
A brief introduction to radar-image interpretation will be
included, and the differences between visible/infrared techniques
and radar methods noted. Significant ground-based studies will be

included where appropriate,

2.2 Interpretation of Radar Imagery

Side-looking radars produce a continuous image strip that
resembles a grainy aerial photograph taken from a great altitude
(Estes and Simonett, 1975). However, the microwave region of the
EM spectrum responds to different target and system parameters
than do the other regions. Estes and Simonett (1975) suggest that
the following factors influence the appearance and
interpretability of radar images: (1) system yeometry, including

flight parameters, (2) resolution in ground range, (3) resolution
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in azimuth, (4) areal resolution, (5) number of {ndependent
samples, and (6) backscattering cross section per u.it solid angle
directed toward the radar receiver, rhe last factor determines
the brightness of any given resolution cell and s a function of
the dielectric and geometric properties of the target being imaged
(Ulaby, 1975). The backscattering governs the tone of the image,
and the spatial distribution of the tone in any given field of
interest represents image texture.

As with visible and infrared images, tone is a key element in
imaye interpretation, Nonetheless, texture {s a useful
discriminant in the interpretation of radar {imagery as well
(Beryer, 197u; Lowry et al., 1978; Shanmugam et al., 198la).
Other elements of imayge interpretation described by Estes and
Simonett (197%), such as shape, size, and location, are also
useful in the interpretation of radar imagery. Thus, the elements
of image interpretation and the techniques utilized in radar-image
analysis are similar to those used in the interpretation of
visible and IR data, with differences in system parameters and
target interactions taken into consideration. Moreover, different
emphases are placed on the interpretation of tone and texture
duriny the analysis of radar imayery; for example, texture is used
to discriminate targets imayed with microwaves, whereas tone is
used to analyze MSS and visible data.

Some examples of imaga-interpretation techniques that have
been applied to radar imagery follow. Ellermeier et al. (1967)
describe tnhe use of color ennancement and level slicing for both

agricultural and natural veygetation discrimination, In their
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study, electrical analogs of the scanned images were fed finto
three (red, blue, and green) electron guns and displayed on the
cathode-ray tube of a color television set. Various combinations
of imayes 1in varying colors could then be reproduced to aid in
image interpretation. Coiner (1972) proposes the use of imaye-
interpretation keys to support the analysis of SLAR imagery. For
example, a dichotomous key using image tone and texture was
developed to discriminate crop types appearing on images of Garden
City, Kansas. A similar approach was used by B8risco and Protz
(198U) to identify corn fields using multidate, multichannel,
radar data. The results of both studies 1ndicate that this
approach is feasible for radar-image interpretation., Larson et
al. (1975) present the use of multichannel analysis techniques
familiar in multispectral scanner (MSS) data analyses. These
techniyues include image ratioing, subtraction, level slicing,
maximum-1ikelihood classification, and Euclidean distance-
clustering. Their results were promising and indicated that these
techniques can be applied to microwave data.

In the preceding examples, digital-analysis techniques
employed tone, for the most part, as the element of
discrimination. The use of texture was incorporated into manual
interpretations using dichotomous keys and a subjective evaluation
of texture (i.e., smooth, medium, or rough texture). The value of
texture as an element in the internretation of radar imagery has
long been recoynized (Berger, 1970; Coiner, 1972; Lowry et al.,
1978). Ulaby et al. (1982) compared within-field and between-

field coefficients of variation for several cover types, using
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Landsat imayes and Ku-band scatterometer data. They concluded
that the radar data exhibit larger within-field and between-field
vairiations than the Land:at data. Thus, improvements in machine
classification can be expected as techniques are developed tu
incorporate a digital measure of texture into the discriminatior
procedure (Shanmugam et al., 1981; Brisco and Protz, 1982).

Since it was found that classification techniques similar to
those being applied to varicis forms of MSS data could be applied
to radar data, research was initiated into combining these types
of data for analysis. Harris and Graham (1976) present imayges
formed from a combination of Landsat and radar data. Zobrist et
al. (1979) present integrated Landsat, Seasat and other geodata
sources, thus illustrating that the technigue can be used for
virtually any digital data which can be registered to a common
spatial framework., In the following sections, radar remote
sensing for land-use, forestry, and agricultural work will be
presented, with the aim of {llustrating the advantages of

the techique.

2.7 Land-Cover Mapping with Radar

With the increasing demands being placed on natural resources
by a rapidly expanding population and the concemitant necessity of
maintaining environmental quality, there is a need for an orderly
grouping of various areas of the earth's surface (Gimbarzousky,
1978). Land-use and land-cover maps have become ever more
jimportant as a source for such information, Anderson et al.

(1976) provide a framework for a national land-use and land-cover
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classification system for use with remote sensor data.

Some early studies showed *that accurate land-use/land-cover
classification at different levels can be achieved using radar
finagery (Lewis, 1968; Lewis et al., 1969; and Bryan, 1975), Orake
(1977) pointed out, however, that the United States Geological
Survey (USWS) system presented by Anderson et al. (1976) must be
adapted before it will accept radar data readily. They suggest
that there is a lack of compatibility between the system and the
data because of the nature of radar imagery compared to that of
the optical imagery for which the classification system was
developed. As a result, Nrake (1977) presents an alternate
classification systemn for use with radar imagery.

Henderson (1975) used Westinghouse K-band radar {magery for
small-scale (1:250,000 or smaller) land-use mapping and found that
the majority of the land-use regions identified on the basis of
the imagery corresponded to land-use regions establisued by other
methods. Where differences occurred, finer distinctions in land-
use  were apparently generated from the radar image
interpretation, This study further indicated that radar imagery
is a useful tool in small-scale land-use mapping but suggested
that additional testing is needed to verify the utility of the
method. In another study using similar data, Henderson (1979)
reported that land use in the northeastern and midwestern United
States was identifiaple at Level [ detail without much
difficulty. He concluded that the paramount factor affecting
detectability and identification was the presence of forest

vegetation. Trees and forest canopy concealed drainage features,
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topoyraphic variations, transportation arteries, etc,, which
nindered land-use classification, The problem of concealment was
yreater in the Northeast than the Midwest because of the laryer
field patterns and more homoyeneous land use and cover types found
in these regions,

Airborne SAR imagery obtained over two test areas in
southwestern Manitona (Canada) was used successfully for land-
use/land-cover mapping by Rubec and Cihlar (1980). They enmployed
a four-channel SAR systen developed by the Environmental Research
Institute of Michigan to collect imagery and found that the most
extensive information appeared on the X-band imayes. However, they
suggested that a combination of X- and L-band data be used for
maximum interpretation success. lsing imagery collected by the
same system over Halifax County and comparing it with other
remote-sensiny data including Seasat SAR, Prout (1920) found that
the ERIM SAR data could pe used for mapping urban areas, improved
pasture and crops, water, and transportation. Prout reported that
the Seasat SAR data could not readily classify any of these land-
use/land-cover categories. The results of the Landsat
interpretation were slightly better than those of the Seasat S$AR,
whereas the best results were obtained using conventional aerial
photography. Prout (1980) concluded that each remotely sensed
data source contributed some information toward the mappiny of
land-use categories, and when used in various comtinations, the
information was complementary and reduced the time necessary for

the detection and identification of land-use features.
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Hencerson et al, (1Y8U) invsstigated the detectability of
urban land-cover types usinyg digitally processed Seasat SAR
finagery of the Uenver, Colorado area. They employed and compared
both traditional manual-interpretation techniques (utilizing imagye
tone and texture as well as other elements of interpretation) and
digital level-slicing using the Image 10U computer to determine
the separability of urban-area land-cover types. In general,
level-slicing and color codiny the raw data tended to reduce both
the level and type of information available when compared to
visual observation, However, the extent of urban, built-up land
was more easily detected using this method. In conclusion, they
reported a readily definable rural-urban fringe; however, a
precise Level [ or Level I[I land-cover classification was not
possible. High-density housing was separable from both low-
density housing and parks, but reflectance values were often look-
angle dependent, and confusion between water and veyetation
responses also posed problems. Nevertneless, the authors
concluded that continued research into reducing image noise and
choosing an optimal scale for recognizing land-use patterns inay
improve the utility of a spaceborne-SAR system for use in urban
analysis,

Another area of res.urch that promises to improve the utility
of satellite radar systems for land-cover mapping is the merging
of microwave data with MSS data. Wu (1980) reyistered Seasat SAR
with Landsat MSS data and used conventional multichannel spectral
pattern-recognition techniques for land-cover classification., He

reported further subdivision in the classification of forested
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wetlands and improvement in discriminating man-made taryets (1i.e.,
urban and inert classes) with the combined data, when compdred to

Landsat data alone,

2.4 Forest-Cover Mapping with Radar

Forest reserves worldwide are rapidly diminishing as an

expandiny population increases fits demand for wood products to be
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used in buflding and heatiny. Simultaneously, forests are

continually being cleared to fincrease agricultural productivity

e

and to provide living space. As a result, with the launch of

e |

Landsat, the first remote-sensiny satellite, in July 1972, many

researchers began studying the potential of remotely sensed data

. e d

for use in forest inventorying (Beaipsen, 1978). The results were

n

promising, and remote-sensiny techniques have now been implemented
in the mappiny and management of the forest resources in Canada |
(Honer, 1978),
Morain and Simonett (1966), in an eu.rly study of vegetation
analysis using radar imagery, concluded that the influence of i

vegetation upon rigar returns was observable in all of the areas I

of the United States that were investigated. By using tonal and

textural comparisons of K-band f{imagery combined with basic

geoyraphic knowledge of the study area, it was possible to

(1) prepare reconnaissance veyetation maps, (2) delimit vegetation
zones as they vary with elevation, (3) trace patterns of previous

forest fires, (4) delimit altitudinal timber lines, and

monospecific stands. In a follow-up study, Morain and Simonett
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? [ (b) identify species by inference in areas characterized by near-
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(1967) used electronic techniques to discriminate patterns of
vegatation distribution, The techniqyues included the use of tri-
color {mage combinations, the yeneration of probabhility-density
functions to quantify varfations in gray-scale level between
types, and the employment of density slices to help distinguish
among veyetation types., These merhods were found effective in the
discrimtnation of pine, fir, hardwood forests, and juniper
woodlands because subtle differences 1indistinguishable to the
unaided eye were drouyht to the attention of the interpreter. The
studies demonstrated tne potential of SLAR imagery for forest-
cover mapping.

Une of the first and most ambitious uses of SLAR for forest
mapping was undertaken 1in Brazil by the Goodyear Corporation,
using a K-band SAR system (Azevedo, 1971)., Project RADAM (RADar
AMazon) produced yeoloyic, geomorphologic, hydrologic, vegetation-
cover, soil-type, and land-use-potential maps of the Amazon River
Basin. Because the high incidence of cloud cover in the region,
as well as its remoteness, made aerial photography difficult,
radar imagery helped to produce some of the first vegetation-cover
maps of the reyion. Viksne et al. (1970) point ovut that because
K-band radar does not penetrate the forest canopy, it ailows the
evaluation of various vegetation tvpes on the basis of their
radar-return characteristics. These authors described the use of
K-band SLAR for veyetation mapping in Panama, a project similar to
the RADAM project.

Waite and Maclonald (1971) suggest that the i-significant

penetration into vegetation at K-band allows interpretations of
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vartations i{in the density of plant comnunities to be made.
However, they also report that for defo!fated veyetation, the
K-band frequency may penetrate a forest canopy -iynificantly and
thus allow differences 1in underlying soil moisture to be
observed. They also report using the depolarized return signal to
differentiate both yross vegetation differences and sofl-moisture
variations. B8ush et al. (1976) describe ground-based, 1 - 18-GHz
microwave observations of deciduous trees during the spring and
autumn, The data suggest that trees act as a volume-scattering
taryet and that of 1is substantially larger in the spring than in
the fall, These results further indicate that penetration varies
seasonally and thus must be taken 1into consideration when
performing interpretations of veyetative cover,

Morain (1970) presents tnree levels of vegetation information
obtainable from the analysis of radar data: (1) geoyraphic
pattern, (2) yross structure and physiognomy, and (3) type
identification, Interpretation relies on converying evidence
derived from principles of geoyraphy, biology, and ecology,
combined with the interpreter's understandinyg of radar reflection
from vegetation. Usinyg such an approach, Hardy (1972) was able to
Jsroduce a seven-category v.yetation map of Yellowstone Park using
the Westinghouse AN/APQ-97 SLAR system. Both authors report that
tone and texture are key elements in radar-image interpretation,
but that continued development of methodoloyy is required before
the operational use of radar for vegetation mapping is feasible.

Intera (1980), in a presentation of the final results of the

Airdorne SAR Project (a component of the Canadian SURSAT program),
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presents the experiments of several investigators researching the
utility of radar for monitoring and mapping forests, These
studies 1indicate that radar may be used either alone, on some
occasions, or to provide gacillary data to MSS sensors monitoring
aspects of the forest environment such as regeneration, insect
infestation, and environmental disturbances resulting from human
activity; interpretiny broad age and heiyht classes; and providing
1nput to the production of vegetation-type maps. The studies used
the ERIM dual-polarized SAR system and, in general, concluded that
tone and texture for both the like- and cross-polarized images of
the X-band and L-band freguencies provided information about the
forest environment., Knowlton and Hoffer (198U) also investigated
the use of tne ERIM SAR system for forest-cover mapping. They
qualitatively evaluated the tone and texture of the dua’-polarized
X-band imayges for their value in identifying various forest-cover
types. The results showed a yreater tonal contrast overall on the
HH image than on the HV image but also showed that both channels
provided 1information on certain forest-cover features. These
autiors qualitatively evaluated image texture in their study but
did not report any uses of this image-interpretation element in
their conclusions. Knowlton and Hoffer (1980) suggest future
research 1investigating spatial pattern recognition (ECHO) using
these data to classify forest anu cher cover types, since some
differences in image texture were observed.

[t nas been demonstrated that SAR data can provide valuable
input for monitoring and mapping the forest environment. Texture

is a key element, and the digital analysis of this image
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characteristic must be developed before automatic classifications
of high quality will be possible. This development, coupled with
a better procedure for registering other data sets--for example
MSS and topoyraphical data--may well result in the operational use

of radar for forest reconnaisance.

2.5 Agricultural Discrimination with Radar

The monitoring and mapping of ayricultural land is perhaps
aven more critical than the inventorying of land use and forest
cover, since man relies heavily on ayricultural production to fornm
his food base. The need for improved world crop statistics and
for the development of an information system capable of providing
such data is reviewed hy King (1979). Remote-sensing techniques
can provide timely and valuable data fo~ such a system, as Bauer
(1975) points out., Althouyh accurate crop identification using
multitemporal MSS data is becoming an established procedure (Lacie
Symposium, 1978) a problem with interrupted coverage due to
weather conditions exists, Radar may help solve this problenm
because of its all-weather cdapability and because of the active
nature of its operation (Ulaby, 1981). Although agricultural
discrimination involves both soil-moisture and crop-type
implications, this discussion will focus on the latter. Batlivala
and Ulaby (1976b) and Ulaby et al. (198lb) provide excellent
accounts of monitoring soil moisture with radar. The results of
these studies indicate that a C-band dual-polarized radar using
incidence angles in the neighborhood of 10 deyrees provides the

hbest data for estimating soil-moisture conditions.
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Early research investigating the crop-identification ability
of radar demonstrated that crop type largely influences radar
return; thus, discrimination is possible (Simonett et al., 1967,
Schwarz and Caspall, 1968; and Haralick et al., 1970). These
differences were attributed to variations in plant yeometry and
moisture content between crop types, which subsequently caused
different tonal and textural patterns on the K-band imagery.
Analysis technigques 1included manual-interpretation keys, the
diyital classificacion of tone, color enhancement, ana density
slicing., The results were promising and led to continued research
into the use of radar for crop discrimination.

The raddar return from a yiven target is a function of both
system and tarygyet parameters and their interaction. In gyeneral,
the system pdarameters of importance are frequency, incidence
angle, and pclarization, whereas geometiric and dieleciric
characteristics are the most important target parameters. These
parameters and their relationship with o° are discussed in some
detail by Ulaby and Moore (!973) and Ulaby (1975). Cihlar (1979)
provides a review of active microwave remote sensing of
aygricultural targets and describes significant research results
relatiny to the investigation of taryget and system parameters,
their interaction and their effects on o°.

As a result of the promising results of the early studies, a
well-developed research proyram has been established at the
University of Kansas to investigate the crop discriminating
ability of radar. Ground-based radar systems have been developed

and employed for these studies because of the paucity of
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calibrated airborne radars (Ulaby, 1981). Bradley and Ulaby
(1980) have demonstrated hiygyh correlations with airborne and
Jround-based data, which allows the use of the results obtained -
from truck-mounted Microwave Active Spectrometer (MAS) systems in ;
interpreting airborne radar data.

These studies have investigated the relationship of ¢°, which

represents 1image tone, to various system and target parameters. '

The results have helped both to identify and to increase our ‘
understanding of the relationships between ¢° and crop type |
(Ulaby, 197%), row-direction effects (Batlivala «nd Ulaby, 1976b;
Ulaby and Bare, 1979), plant moisture (Ulaby and Busn, 1975,
1976), growth stdge (Bush and Ulaby, 1975), and diurnal
fluctuations (Ulaby and Batlivala, 1976). Using the relationships

established by these investigations, the feasibility of using

radar data for crop classification were evaluated (Bush and Ulaby,

1977a, 1977b; Ulapy and Burns, 1977). The results were also used

SR TET R L T T

to identify operational system parameters for a future spaceborne
radar system (Bush and Ulaoy, 1977c; Ulaby et al., 1977). A later
study demonstrated that a year-to-year consistency in crop
classification of approximately 90% correct prediction could be
achieved with ground-based ¢° values (Ulaby et al., 1979).

Studies conducted by European investigators have also

R S 5 abhe et aniin i oh bl S

substantiated these findings (de Loor and Jurriens, 1971, 1974).
As mentioned above, comparatively few studies have been
conducted using airborne platforms. Batlivala and Ulaby (1975)

investiyated the use of L-band dual-polarized radar imagery for

%;

crop discrimination. They reported a 65.5% correct classification
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with L-HH data for corn, soybeans, woods, and pasture usiny imagye
tone., When the L-HV data was wused with the HH data,
classification accuracy rose to 74%., Brisco and FProtz (1980)
reported corn classifization accuracies exceeding 90% using the
ERIM four-channel radar system but an overall accuracy of only
about 50% for hay-pasture and yrain fields (Brisco and Protz,
1982). Parashar et al. (1979) also used the ERIM system to
investiyate the radar discrimination of crops. They reported that
the multichannel data provided more {information for crop
discrimination than either channel alone., They could readily
detect differences between harvested and unnarvested crops but
found a high deygree of confusion amonyg the nuwerous crop types
considered. Hoth Brisco and Protz (1980, 1982) and Parashar et
al, (1Y79) wused image tone and texture in their manual
interpretations., Imaye texture could not be readily used in the
digital analysis, wnich resulted in  comparably  poorer
classifications wusing automatic technigues. Shanmugam et al.
(1983) investigated the use of airborne multidate/multifrequency
radar data over a test site near Colby, Kansas. They reported an
overall accuracy of about 90% for corn, pasture, and bare ground
using C- and L-band multidate scatterometer data, with ¢° values
representing tone.

The results of these investigations are encouraging and
demonstrate the potential of radar as a crop classifier. The use
of multidate radar data, combined with MSS data, promises even
better results in the future (Ahern et al., 1978; Eyton et al.,

1979; Ulapy et al., 1982). Althouyh the methodology for the
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operational use of radar data in a crop-information system is as
yet not established (King, 1979), future research and development
should produr : the necessary technigues. Texture has been used
extensively in tne past for visual radar fnterpretations, and the
methodoloyy for automatic extraction of spatial information is
peiny developed. This, combined with multitemporal, multisensor
data, should allow the operational wuse of radar for crop

discrimination in the future,

2.6 Summary

Since the mid-196Us, radar systems have been providing
imagery of a variety of natural-resource, land-use and
environmental studies. These systems offer several advantages
over alternate remote-sensing systems, but methodology needs to be
developed bhefore their operational use will become feasible, This
chapter summarized the use of radar for the remote sensing of
land-use, forest, and ayricuitural targets. Research papers were
surveyed and the results of the mdajor investigations in these
areas of study were presented. In each case, the results showed
that the use of radar for these applications is feasible.
However, the studies uniformly point out that suitable methodology
must be developed before the operational wuse of radar fis
possible. Two areas of research that appear promising for the
improved use of radar were discussed. It was found that the use
of inteyrated data sets and digital measures of image texture have
resulted in improvements in land-use mapping and crop

discrimination.
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[mage texture {s a valuable component of radar iinage
analysis, and the development of an automatic textural measure for
machine classification is expected to yreatly improve the utility
of radar data for agygricultural, forestry, and land-use mapping.
The combination of microwave data with data from other sensors
such as MSS, and with other geodata such as soil information, also
promises to improve greatly the utility of radar for
classification and mappinyg, as more information is provided by
these complementary data sources., The continued development of
radar remote-sensing techniques can be expected to produce an
operational methodoloyy for use with these types of data when

yeoscientific investigations are undertaken.
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CHAPTER 3
LAND-COVER MAPPING IN OKLAHOMA

3.1 |Introduction

At the time of this study, only two spaceborne microwave
systems, Seasat in 1978 and the Shuttle Imaying Radar-A (SIR-A) in
1981, had provided radar iwmayery of the earth's surface (Jordan,
1980; Elachi, 1982). Whereas Seasat's main operational thrust was
toward oceanographic applications, studies utilizing SIR-A data
nave concentrated on geology. As a result, comparatively little
research has been conducted on the utility of spaceborne
synthetic-aperture radar (SAR) data for monitoring and
inventorying the eartn's renewable resources. Nevertheless, the
imagery these two space~SAR systems have produced demonstrates
clearly the feasibility of (1) generating high-resolution radar
imagery usingy a satellite platform as a base and (2) extractiny
useful information from radar images for wuse in terrain
applications.

This study investigates tne use of spaceborne SAR data for
land-cover mappinyg. The land-cover classification accuracy
achievable with Seasat data was compared with that obtainable
usiny SIR-A data and Landsat MS. data. A supervised maximum-
likelinood classifier was used in thne analyses on buth a per-pixel
basis and on spatially averaged data. The image data were then
meryed in several wmultichannel combinations and reclassified in
order to determine the optimum combined-image data set for land-

cover classification.
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3.2 Image Data and Test-Site Uescription

In August of 1978, the Seasat satellite imaged an area in
Uklanoma on both the descending (August 20U, Rev, 774) and
ascending (August 21, Rev. 795) orbits, On November 13, 1981, the
SIR-A system acquired SAR 1imagery of Oklahoma (Data-Take 22,
Orbit 18). A portion of the imaged area was identical to the area
imaged previously by the Seasat satellite. The nominal scale of
the SAR data sets was 1:500,000, with a resolution of 25 i for the
Seasat data and 38 m for the SIR-A datda. Un the same day, an
aircraft flying at a low altitude obtained color and color-
infrared (CIR) photography (scale = 1:20,000) of a portion of the
area imagyed by the SIR-A radar for yground-truth purposes. A
Landsat scene from October 11, 1978 (Scene ID No. 3022U-16242)
also covered this area of Oklahoma. The overlapping regions of
the data sets determined the location of the study area
(Figure 3.1). Examples of these SAR images and band 7 of the
Landsat scene are presented in Figures 3.2 - 3.5. The Seasat and
Landsat imayes were initially acquired in digital form, whereas a
portion of the SIR-A imagery, corresponding tc the study area, was
digitized act Goddard Space Flight Center (GSFC). A diyitizing
aperture of 100 um was used, which approximated the original pixel
size of the SIR-A data such that no spatial averaging occurred in
the digitization process. A comparison of the system parameters
for the Seasat and SIR-A sensors is presented in Table 3.1.

Cover types for the classification analyses were selected on
the basis of color-infrared photoygraphy and a field visit. Five

land-cover types were chosen, consisting of cultivated (hay,
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Fig. 3.3. Seasat imagery (Aug. 20, Rev. 774) of the Ok)ahoma
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Fig. 3.4, Seasat imagery (Aug. 21, Rev. 795) of the Oklahoma
land-cover-classif cation study area.




Landsat band 7 image (Oct. 11, 1978) of the Oklahoma

land-cover classification study area.

Fig. 3.5.
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| TABLE 3.1
[ A Comparison of System Parameters {n the Seasat and . (
_ SIR-A Synthetic-Aperture Radar Systems :
[ Parameters Seasat SIR-A y
. Frequency 1.275 GHz 1.278 GH2
E Incidence Angle 20° 50° '
Polarization HH HH :
Resotution 25 m B m .
Number of Looks 4 6 1
Swathwidth 100 km 50 km :
, Orbital Altitude 800 km 245 km
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winter wheat, and pare sofl), forest, pasture, urban, and water
cateyories, An attempt was made to locate ten fields,
representing each land-cover category to be wused for the
supervised classification, by finspecting the CIR photography.
A subsequent check was made to ensure that these fields could be
identified on the satellite imagery. However, within the study
area, there were only five cultivated fields sufficiently larye to
allow data extraction, and only one body of water (Oologah lLake),
which was sampled at five locations. Thus, 40 fields, ten each of
the urban, forest, and pasture cateygories and five fields of the
water and cultivated cateygories, were used in the study. The ten
fields representing the urban cateygory were from the towns of
Chelsea, Cnouteau, and Pryor, Uklanoma. Oue to the smaller scale
of the Landsat data, some of the fields could not be delineated.
Thus, although 40 fields were used in the SAR analyses, only 32

were actually identified on the Landsat imagey.

3.3 Methodology

The corner-point coordinates for each of the 40 fields, taken
from inside the field's boundaries, were determined for each image
data set on the University of Kansas Remote Sensing Laboratory's
(RSL) image-analysis system, These data ware then extracted,
using RSL's Harris 230 computer facility, for subsequent maximum-
likelihood supervised classification analyses. There were at
least 10,000 pixels in each SAR data set. Maximum likelihood, or
Bayes' optimal classification 1is an intuitively satisfying

classification theory because it minimizes overall

33
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misclassification. Swain and UDavis (1978) provide an excellent

description of maximum-likelthood classification theory.

Per-Pixel Classifications

For each SAR ddata set, a 1UY% random sample of the pixels in ‘ i

@ach cateyory was wused to trafin the maximum=-likelihood

classifier. These training statistics were then applied to the
remaining 90% of the pixels., Cateyory-confusion tables and a
conon measure of cateyory separability known as the Normalized
Difference (ND), defined as the difference in the category means
divided by the sum of their standard deviations, were generated
for each classification performed. The pixels in each category
were then plotted as normalized probability density

distributions. These three results (hereafter called

= T

classification attributes) were then used to evaluate and compare

the overall weighted classification accuracies obtained for each

supervised classification. For the Landsat MSS data, bands 5 and

7 were used simultaneously for the per-pixel classification of the

32 identifiable fields.

Spatial Averaginy

Fading, represented by imayge speckle, is inherent in SAR data
as a result of the coherent nature of the propagated signal (Bush
and Ulaby, 19759). The effects of fading can be reduced by
averaging the number of independent observations, either in the
frequency domain or in the spatial domain. 10 investigate the

influence of fading on land-cover classification accuracy, the

34
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resolution of the SIR-A and Seasat (descendiny orbit) data was

SRS T

deyraded by averaginyg blocks of pixels in a stepwise manner, i.e.,

2 x 2 pixels, 3 x 2, 3 x 3, etc., and the spatially averaged data

,,g._f.;’n._r.

then reclassified. X

Per-Field Classifications ‘o

A1l image data sets (including Landsat) were then averaged

with a 6-pixel by 6-pixel filter, and the resultinyg data were used |
in a per-field supervised classification. Note that each field in
this case is actually a 6- x 6-pixel subfield formed by averaging

as many 6- x 6-pixel blocks from the original fields as

EREE 5 BT SN
- o s - ey

possible. This procedure produced at least 100 "fields" for each

SAR data set. In all of the classification analyses of spatially

PO & EEN T

averaged data, a 5U%-training, SU%-testing sample was employed.
Various multichannel/multisensor combinations were then

combined and classified wusing a 5U%-training, 50%-testiny

sample. However, this was done on a whole-field basis (rather ;;

than the 6- x 6-pixel "fields" described above), since there was

'f - no attempt to reyister the image data sets on a pixel basis

- because of differences in the resolutions and ygeometries of the

various sensors. The interpretation of the influence of spatial
averaying and multichannel combinations on land-cover

classification accuracy was based on a category-confusion table.

3.4 Pixel Classifications

{
The weighted overall classification accuracy obtained for the 5
3

testing sample of the Seasat (descending pass, Rev. 774) pixel

35
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data was 49.86%, Table 3.2 presents the category-confusion table
and separability measures for the supervised classification.
Pasture was the most accurately identified category (77%),
followed by the forest, water, urban, and cultivated categories.
The forest and urban pixels produced the brightest tones on the
imaye, whereas the pasture, water, and cultivated categories all
had low tonal values, The standardized probability density
distribution (Figure 3.6) illustrates the range of pixel values
for these categories on the descending Seasat imaye.

As the classification attributes presented in Fiyure 3.6 and
Table 3.2 indicate, the pixels in any yiven category have a larye
standard deviation and a low separability, resulting in the poor
classification accuracy of approximately 50%. The pasture
category, with a relatively small standard deviation (6.63) and
dark tonal levels, is the most accurately classified category.
Urban pixels are highly confused with forest pixels and to a
lesser extent with water and pasture pixels. Water pixels are
largely misclassified as pasture pixels and secondarily as forest
pixels., The cultivated pixels are never accurately classified,
since their range of tonal values is completely enveloped by the
pasture and water pixels.

The weighted overall classification accuracy obtained for the
ascending Seasat pass (Rev. 795) was 50.32%. This is very similar
to the results for the descending Seasat pass, althouygh
differences 1in category confusion related to orthogonal 1look
direction are present (Table 3.3, Figure 3.7). The tonal values

of the water pixels were brighter on the ascending pass as
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TABLE 3.2

Category Confusion Table and Separability Measures of the !
Supervised Maximum-Likelihood Classification for Seasat |
(Rev. 774) Pixel Data for the Categories Cultivated (C), :

Forest (F), Pasture (P), Urban (U), and Water (W) i

Category
< F 14 y L]
Mean 19.44 34.89 17.70 48,81 20,37
Std. Dev. 6.81 13.04 6.63 29.67 6.92
arabilit

C<F CP CU CMWM F-P FU F-W P-U P-WN UMW
0.78 0.13 0.81 0.07 0.87 0.33 0.73 0.8 0.20 0.78

Category Confusion Table

True Classified as Percent (%)
Category < 3 P 1 []
C 0.00 10.42 66 .59 0.00 22 .99
F 0.00 61.86 14 .90 4.09 19.15
P 0.00 6.99 76 .61 0.07 16 .33
u 0.00 58 .27 7.01 22 .84 11.88
W 0.00 12.n 38.32 0.00 79.66

Weighted Overall Classification Accuracy = 49.86%
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TABLE 3.3

Category Confusion Table and Separability Measures of the

Supervised Maximum-Likelihood Classification for Seasat

(Rev. 795) Pixel Data for the Categories Cultivated (C),
Forest (F), Pasture (P), Urban (U), and Mater (W)

Categor
C F P ] ¥

Mean 22718 447,89 19,83 39,01 34,33
Std. Dev. 7.11 15.10 6.87 15.07 11.42
Separability

C-F C-P c-u C-W F-P F-U F-M P-U P-W U-w
1,02 0,17 0.76 0.66 1.14 0.20 0.40 0.87 0.79 0.18

Category Confusion Table

True Classified as Percent (%)
Category c F P v L
c 0.00 3.01 78 .34 0.00 18 .65
F 0.00 65.73 10.52 0.00 23.74
P 0.00 2.08 66 .67 0.00 11.25
/] 0.13 50.20 20,53 0.00 29.13
W 0.00 31 .45 28.67 0.00 33.88

Weighted Overall Classification Accuracy = 50.32%
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compared to the descending pass such that they overlapped witnh the
urban and forest pixels rather than with the cultivated and
pasture pixeis. Furthermore, the urban pixels were not as brighc
on the ascendiny pass as they were on the descending pass. This
resulted in a decreased classification accuracy for urtan pixels
(= 23% to U%) and an increased classification accuracy for pasture
pixels (=x77% to 87%). The other cateyories yielded similar
classification accuracies.

The SIR-A pixel data resulted in a4 weighted overall
classification accuracy of 71.79%. This 1s a considerable
improvement over the results obtained with the Seasat data, and
upon examination of the classification attributes (Table 3.4,
Figure 3.8), it can be related to two causes. First, the pixels
in the water cateyory have a much lower return than they do on the
Seasdt imayes relative to other targyet classes, and thus they are
classified more accurately (i.e., from 34% to Y4%). Secondly, in
the SIR-A image, the forest and urban pixels are proportionately
much brighter than the pixels in the other categories when
compared to the Seasat images. This results in an timproved
classification accuracy of approximately 634 to Y54 for the forest
category. Cultivated pixels are entirely misclassified, opeing
most often identified as pasture or water pixels. Urban nixels
(1.93% accuracy) are almost entirely classified as forest pixels,
whereas pasture pixels are correctly identified 70% of the time,

which is close to the accuracy obtained on the descendiny

Seasat pass.
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TABLE 3.4

Category Confusion Table and Separability Measures for the SIR-A
Supervised Maximum-Likelthood Pixel Classification for the Categories
Cultivated (C), Forest (F), Pasture (P), Urban (U), and Water (W)

Category
¢ F P ') L
Mean 48,24 188 .82 59,53 198,18 32.31
Std, Nev. 12.27 51.58 21.76 62 .89 5.88
Separability

C-F c-p c-u C-M F-P F-U F-W P-U P-W U-W
2,20 0.27 2.00 0.8 1,79 0,08 2,72 1,66 0,91 2,41

Category Confusion Table

True Classified as Percent (%)
Category c E ] v ]
c 0.00 1.86 55.23 0.00 42 .91
F 0.00 95.18 3.43 1.39 0.00
P 0.00 6.58 70.16 0.00 23.26
U 0.00 95 .42 2.65 1.93 0.00
W 0.00 0.03 6.15 0.00 93.82

Weighted Overall Classification Accuracy = 71.79%
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Per-pixel supervised classification of data from Landsat
bands 5 and 7 produced a weiyhted overall classification accuracy
of 62,26% (Table 3.5), which is intermediate in accuracy between
that obtained with the Seasat and with the SIR-A data. Water fs
perfectly classified with the Landsat data, largely because of the
very low reflectance values on band 7, Pixels in the cultivated
category are accurately fidentified 92% of the time due to high
reflectances in bands 5 and 7. This {s a great improvement over
the SAR data, in which cultivated pixels were never accurately
fdantified. Pixels 1in the forest and urban categories are
identified with accuracies of 70.4 and 66.5%, respectively. There
is a high degree of confusion between forest, urban, and pasture
pixels, the latter being poorly classi/ied (accuracy = 28.1%).
Given that these cover types are composed of various combinations
of trees, yrass, and butldings, this result is not unexpected.

Microwave backscattering from terrain elements i1s a function
of the system parameters and of the dielectric and geometric
characteristics of the target. The general response of the land-
cover categories as observed on the SAR imayery is typical of
these types of targets at L-band frequencies. The orthogonal look
directions of the two Seasat 1images results in different
backscattering characteristics for the water and urban
categories. This difference 1in tone may be related to the
ortientation of residential street patterns, i.e., it may be
similar to the cardinal effect =2ported by Hardaway et al.
(1982). For the water category, the wind direction and resulting

surface roughness in relationship to look direction are the
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TABLE 3.5
Catogory Confusion Table for the Supervised Maximum-Likelihood Pixel

C'»esification of Landsat Data (Bands S and 7) for the Categories
Ciltivated (C), Forest (F), Pasture (P), Urban (U), and Water (W)

Category Confusion Table

[
1
{
[
I
I
I

True Classified as Percent (1)
Category c E [} v (]
C 92.2 0.0 2.9 4,0 0.0
F 0.0 70.4 4.1 25.6 0.0
P 3.0 29.1 28.1 39.7 0.0
U 0.0 15.0 18.5 66 .5 0.0
] 0.0 0.0 0.0 0.0 100.0

m

Weighted Overall Classification Accuracy = 62.26%

-
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probable causes of the difference in tone observed in the
two inages.

The effect of the different incidence anyles of the two SAR
systems (20° for Seasat versus 50° for CiR-A) also influences the
nature of the backscattering for the water cateyory. Water acts
as a specular reflector, and at the 50° SIR-A incidence angle, it
yields little backscattering, thus allowing accurate
discrimination (99X accuracy). At the 20° Seasat incidence ancgle,
however, water exhibits more backscattering, which 1is probably
attributable to wind-induced surface roughness. The increased
backscattering led to a brighter tone for the water pixels on the
Seasat 1images and thus increased confusion with the pasture and
forest categories. Another, although more subtle, difference
caused by the changing incidence anyle was the backscattering from
the forest and urban cover-types. In the Seasat imayes, more
noticeably on the descending pass, the urban pixels are relatively
brighter than the forest pixels. At a 50° incidence angle, the
nicrowaves may undergo more attenuatiorn in a forest canopy than in
urb-.n cover, which may explain the lower return characteristic of

forests.

3.5 Spatial Averayging and Multisensor Classification

Spatial averaging of the pixels within a field resulted in
increased classification accuracy (~10%) for both SIR-A data and
Seasat data (Rev., 774). The increase in accuracy is rapid at
first, until about 20 independent samples (N) are averayed, at

which point the increase in accuracy becomes  gyradual
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(Figure 2.9). The averaying of five pixels for the Seasat data,
which were processed at four looks, produces 2N independent
samples, whereas for the SIR-A data (six looks) it represents the
averaging of three to four pixels. The author attributes the
initial rapid increase in classification accuracy to a reduction
in fading and the more gradual increase at higher values of N to
the averaging of within-field variability as well as to a further
reduction in fading. Spatial averaging of the Landsat data with a
6 x 6 filter resulted in an increased classification accuracy of
only 4.1% (i.e., from 62.3% to 66.4%2). This is largely due to the
averaging of within-field variability, as the time-bandwidth
product of the Landsat data 1is large enough to make the
consequences of fading insignificant.

The multisensor combinations were cle,sified on a per-field
basis, since there was no attempt to register the different data
sets on a per-pixel basis. Oue to the fact that some fields were
either too small or could not be identified on the Landsat
imayery, only 32 of the original 40 fields were used in these
analyses. The results of the multisensor, supervised
classification are summarized in Figure 3.10. Note that the base
level in each multisensor classification in Figure 3.10 is the
accuracy achieved with a 6-pixel by 6-pixel, spatially averaged
data set.

Combining Landsaot bands 5 and 7 with eaci. SAR data set did
not improve classification accuracy as much as combining the two
Seasat data sets, nor as much as when the Seasat data were

combined with the SIR-A data. This was largely due to the
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Fig. 3.10. Summary of multisensor supervised land-cover
classification results for the Oklahoma study area.
Note that the lower level of each bar is the clas-
sification accuracy achieved with a six-pixel,
spatially averaged data set.
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confusion of forest with pasture fields that occurred when using
the combined MSS and SAR data. However, all multisensor
combinations produced higher classification accuracies than any
single channel, with the best results obtained by combining SAR
data obtained at different incidence angles.

The best weighted overall classification accuracy (97.5%) was
achieved by combining the two Seasat data sets with the SIR-A data
(Table 3.6). Note that the combination of the ascending Seasat
data with the SIR-A data results in a 96.8% classification
accuracy, with the addition of the descending Seasat data
improving the accuracy only 0.7%. When all three SAR data sets
were combined, all categories were classified with 100% accuracy,
with the exception of pasture fialds. Ten of the pasture fields
were confused with cultivated fields, resulting in a 90%
classification accuracy for the pasture category.

Previous research has demonstrated the complementary nature
of MSS data and SAR data (Ahern et al., 1978; Wu, 1980; Ulaby et
al., 1982). The per-pixel classifications reported in this study
also indicated that an MSS and SAR data combination would do very
well at discriminating these five cover types, since che highly
confused categories were different for the MSS data as compared to
the SAR data. In view of these results, further research needs to
be conducted to investigate the synergistic nature of satellite
MSS and SAR data. Further improvements in classification accuracy
can also be expected by wusing multitemporal data (Brisco and
Protz, 1980; Bush and Ulaby, 1978; Paris, 1982; Shanmugan et al.,

1983) and incorporating a machine measure of texture into the
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TABLE 3.6
Category Confusion Table for the Supervised Maximum-Likel{ihood

Classification of the Combined SIR-A Data and Seasat
Ascending and Descending Passes

Category Confusion Table

True Classified as Percent (%)
Category < E [] u ]
C 100.0 0.0 0.0 0.0 0.0
F 0.0 100.0 0.0 0.0 0.0
P 10.0 0.0 90.0 0.0 0.0
U 0.0 0.0 0.0 100.0 0.0
W 0.0 0.0 0.0 0.0 100.0

i
i
i
|
I
[
[
[
[

Weighted Overall Classification Accuracy = 97.99%
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classification algorithmn (Beryer, 1980; Haralick et al., 1970).
The SIR-A and Seasat sensors were designed for geologic and
oceanographic applications, respectively. Nonetheless, the
imagery of land surfaces produced by the SAR systems has
demonstrated the usefulness of space-radar data for other terrain
applications. The results presented above indicate that incidence
anyle significantly influences radar land-cover discrimination
capabilities when comparing SIR-A and Seasat data. As orbital SAR
data with varying incidence angles are acquired during the SIR-B
experiments, it is likely that further insight into the influence

of incidence anyle on microwave remote sensing will be gained.

3.6 Summary

Supervised maximum-likelihood <classifications of Seasat,
SIR-A, and Landsat (bands 5 and 7) pixel data demonstrated that
SIR-A data provided the most accurate discrimination (72%) of five
land-cover categories. The spatial averaging of the SAR data
improved classification accuracy significantly as a result of a
reduction in signal fading and because of the averaging of the
within-field variability. Some improvement 1in classification
accuracy was obtained by averaging the Landsat data. This was
attributed to reduced within-field variability. The results of
using various multisensor combinations indicated that the best
classification accuracy was achieved by combining SAR data
obtained at different incidence angles. The best multisensor
classification accuracy (97.5%) was achieved by combining

ascending and descendiny Seasat data sets with SIR-A data. Other

52




investigators have reported siynificant improvements using MSS
data combined with SAR data. As more space SAR data become
available, additional research should be conducted to inrvestigate
further the possibility of land-cover classification using

multiple sensors.
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CHAPTER 4
CROP CLASSIFICATION IN KANSAS

4.1 Introduction

In the previous chapter, Level [ land-cover classification
(Anderson et al., 1976) usin, satellite SAR and MSS data was
investigated. The results were very promising, indicating that
a satellite remote-sensing system may be capable of mapping land
cover at this level of classification. For many applications,
however, a more detailed level of discrimination is necessary.

[t has been suggested that remote sensiny offers great
potential for mapping and monitoring agricultural production
(Bauer, 1975). The first step in the process is the accurate
identification of the various crop types found in a particular
regyion. Toward this end, it has been shown that multitemporal
MSS data «can identify crops accurately (Lacie Symposium,
1978). However, the problem of interrupted coverage caused by
weather conditions still exists when using multispectral scanner
data, and the severity of the problem varies with location. As
a result, there is continuing interest in using the microwave
portion of the electromagnetic spectrum to alleviate this
difficulty.

Previous studies have determined that crop-type influences
radar return and that discrimination is therefore possible
(Simonett et al., 1967; Schwarz and Caspall, 1968; Haralick et
al., 1970). The variations 1in plant geometry and moisture

content characteristic of different <crop types lead *o
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differences 1n the backscattering coefficient, which allows
discrimination to occur. Section 2.4 provides a review >f the
research investiyatinyg crop discrimination with radar.

No studies have yet been conducted using satellite SAR data
for crop-discrimination purposes. Although the system
parameters of Seasat are not optimum for crop classification,
multitemporal data sets from Seasat are available and are
amenable to crop-discrimination research. This chapter presents
findings based on Seasat SAR data, both alone and in combination
with Landsat data, for crop classification. Multichannel
combinations consisting of multidate SAR data and multisensor
data were used for the maximum-likelihood classification of

corn, milo, and wheat.

4.2 Image Data and Test-Site Description

The Garden City area of western Kansas was imayed several
times during the 1978 gygrowing season by the Seasat SAR,
Digitally processed imayes from three dascending orbital tracks
were acquired over this site, The images were recorded on
September 22 (Rev., 1254), October 1 (Rev. 1383), and October 7
(Rev. 1469), 1978,

An analysis of the radiometric stability of these three
Seasat scenes revealed that the September 22 and October 7
images are equivalent, whereas the October 1 scene shows a
consistent gain bias that is 1.7 dB below the other two images
(Brisco et al., 1983). A Landsat CCT of an October 14 scene of

the same arra (# 30223-16911) was also obtained. The area at
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which these four images overlapped was used as the study area
(Figure 4.1),

The area south of the Arkansas River 1{s 1intensively
irrigated, largely by center-pivot sprinkler systems. Corn,
milo, and wheat are the crops most commonly grown in the region,
with occasional fields of Sudan grass, sugarbeets, and alfalfa
also present. An inventory of the field types occurring in the
area in 1978 was compiled from aerial photographs provided by
the Agricultural Stabilization and Conservation Service (ASCS)
(the ASCS acquires such images for crop-inventory purposes).

For several reasons, it was decided to limit the study to
center-pivot fields of corn, milo, and wheat. First, only these
crop types were represented by a sufficiently large number of
fields to be 1included 1in subsequent classification analyses.
Next, these three crops were the most important cash crops grown
in the region. Finally, the boundaries of the center-pivot
fields were distinct on the imagery, and thus confidence was
imparted to the registration of the image data to the field
inventory. The Seasat images used in the crop-classification
analyses are presented in Figures 4.2 through 4.4; band 5 from

the Landsat scene is depicted in Fiyure 4.5,

4.3 Methodology
Ten center-pivot fields each of corn, milo, and wheat were

identified on the 1imagery. The corner-point coordinates of
these 30 fields were then obtained for each image, using the VDI

image-analysis system. These data were then extracted from the
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Fig. 4.2, September 22 Seasat image of the Kansas crop-
classification study area.
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October 1 Seasat image of the Kansas crop-

classification study area.

Fig. 4.3.
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classification study area.
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Fig. 4.5. Landsat band 7 (October 14, 1978) image of the Kansas
crop-classification study area.
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image tapes and subjected to the M.C routine wused in the
analysis reported in Chapter 3.

Per-pixel classifications were first performed on each data
set using a 10%-training and 90%-testing s .+ .>., The imege data
were averaged, using a 6 x 6 window for the Seasat data and a
4 x 4 window for the Landsat data, and then reclassified using
the same training and testing sample sizes.

Next, the Landsat data files were rotated 90° to the left
to match the orientation of the Seasat images and to allow
registration of tnhe two data files. The data were also edited
as necessary to produce the same number of averaged pixels per
field. A1l multidate combinations of Seasat SAR data were
classitied using the MLC routine, and classifications of the
spatially Jdveraged data were performed on various combinations
of the Seasat and Landsat data. For the multichannel

classifications, a 20%-testing and 80%-training sample was used.

4.4 Single-Channz! Classification

The per-pixel classifications and the classifications
performed on the averaged data are presented in Table 4.1,
An improvement in classification accuracy of approximately 1lU%
was achieved by averaging the Seasat data, whereas little change
occurred in the Landsat classifications. For the Seasat data,
this is attributed to a reduction in fading, (Bush and Ulaby,
1975), whe'eas f¢r the Landsat data the time-bandwidth groduct
was la~ge enough to make the consequences of fadiny

insignificant. The Seasat data started as an average of four
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TABLE 4.1
l Category Confusion Tables for the Per-Pixel Classifications and *
for Classifications of the Averaged Data for Corn (C),
! Milo (M), and Wheat (W)
Pixel Averaged Data
True Classified as Classified as .
l Channel Category c M LJ _C M M
Sept. 22 Seasat
[ c 50.2 32.6 17.2 C 47.2 51,9 .9 i
f M 24,1 39.0 36.9 M 146 73.9 11.6 p
W 2.3 18 .4 79.2 W 0.0 19.2 80.3 4
f
t T.A* = 56.15 T.A. = 66,94 |
: c M M c MmO b
E Oct. 1 Seasat i
C 37.4 28.1 34.5 C 64.7 25.9 9.4
‘ M 31.6 31.4 36.9 M 49.4 43.3 7.3 ‘3
B W 9.0 16.6 74.4 W 15,9 19.4 64,7
T.A. = 47,27 T.A. = 57.34
i i
. C M L] C M W ;
Oct. 7 Seasat 3
r c 45.6 28.9 25.6 C 47.9 31.9 20.1
. M 20,9 38.3 40.8 M 11.1 50.7 38.2
W 5.6 21.9 72 .4 W 1.4 16,2 82.4 .
i
| T.A. = 52,01 T.A. = 60.55 |
- c M W c M W Ny
‘:
Landsat 5 ,
- c 77 .0 14.7 8.4 C 54 .2 14 .6 31.3 |
M 55.3 36.1 8.6 M 3,0 33.0 31.9
‘ [ L] 62.7 24.3 13.0 W 36.1 22,9 41.0
; T.A. = 42.50 T.A. = 43.06
: I c " W [» M W
) Landsat 7
. c 76 .3 12.5 11.2 C 81.3 6.2 12.5
! lg M 55.5 ?27.3 17.2 M 58.3 27.1 14 .6
W 54 .9 25.7 19.4 W 54 .2 19.4 26.4
¥ E T.A. = 41.60 T.A. = 44,91
é E * T.A. = Total Accuracy
63




looks, such that the 6 x 6 average represents 144 locks.

The Seasat data always produced higher classification
accuracies than the Landsat data. Of the three Seasat scenes,
the September 22 scene produced the highest classification
accuracy (67%), followed by the October 1 scene (57%). Wheat
was always the most accurately identified crop, followed by milo
on September 22 and Octuber 7, and corn on October 1. Landsat
band 5 produced a 43% correct classification, whereas a 45%
correct classification was achieved using band 7. Bands 4 and 6
were not included in the analysis because they are very highly
correlated with bands 5 and 7, respectively. When the Landsat
data were used, corn was the most accurately identified crop.
The statistics for the thrre crop types from all five channels
are presented 1in Table 4.2; Figure 4.6 1is a graphical
presentation of both the means and the standard deviations. The
figure, along with a yeneralized crop calendar (Figure 4.7), is
useful in explaining the classification results.

In late September and early October, the corn was being
harvested, wnereas miio was just reaching maturity. The winter-
wheat fields were harvested in late Ju e or early July and were
either lying fallow at that time of year or being replanted.
Thus, on the Seasat imagery, wheat fields are always dark in
tone, whereds corn and milo are brighter. This results in the
high confusion between corn and milo (see Figure 4.6), whereas
the wheat fields are more accurately discriminated. Ulaby et
al. (1979) also reported milo as being the worst-classified

crop; it was often misclassified as corn.
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Statistics for the Three Crop Types from all Five Channels
Used in the Classification Analyses

Channel

Seasat:

Seasat:

Seasat:

Landsat:

Landsat:

Sept, 22

Oct. 1

Oct. 7

Band 5

Band 7

TABLE 4.2

Statistic

Mean

Std. Dev.
M{nimum
Max {mum
Range

Mean

Std, Dev.
Minimum
Maximum
Range

Mean

Std. Dev.
Minimum
Maximum
Range

Mean

Std. Nev.
Minimum
Maximum
Range

Mean

Std. Dev.
Minimum
Max{imum
Range

65

Corn

41.10
9.19
24 .41
7¢.63
51.12

27 .54
6.30
16.75
51.17
34 .41

32.23
11.38
16.42
77.08
60.66

30.46

4.98
21.00
50.50
29.50

18.69

3.17
14.75
31.50
16.75

Milo
32.25

4.75
24 .06
43.78
24,72

24 .50
4.52
16.97
38.86
21.89

24.73
4.62
16.61
44.25
27 .64

34.53
10.02
16.75
54 ,50
37.75

22.30

5.50
15.00
33.50
18.50

Wheat

22.00

3.79
15.06
34.78
19,72

17.73
4.39
11.47
34.03
22 .56

18.81

4,47
12.31
36.92
24,61

32.27

7.71
21.00
50.00
29.00

20.91

4,43
13.75
30.75
17.00
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Fig. 4.7. Generalized crop calendar fc- the area of Kansas used in the crop-classification study.




Landsat band 5 responds to the chlorophyll content (levels)
of the plants, whereas band 7 responds to the plants' cell
structure. The milo was still somewhat green and turyid during
the time period of this study and thus produced higher
reflectances in band 7. Based on the Landsat data, corn was
likely to be the most accurately identified crop because of the
very low IR reflections resulting from plant senescence. Oue to
the withered state of the canopies, the soil background also may
have been important in the interpretation of reflectances in the
visible region. For example, the study area was dominated by
sandy soils, with relatively little variability in soil type,
which tended to decrease the differences in reflectance in the
visible region for these three crop types due to the similar
structure and composiction of the underlyinyg soils,

The accurate classification of corn using radar data has
been reported in at least two previous studies (Brisce and
Protz, 1980; Shanmuyan et al., 1983). However, these studies
made use of only two radar frequencies and did not include milo
as a category. The high confusion reported previously between
corn and milo 1s understandable given the similar physical
appearances and gyrowing seasons of the two crops. A more
detailed crop calendar for corn and milo is presented in
Table 4.3. On the images, the overlapping in maturity and
harvest dates increases the confusion between the two crops.
The large amount of vegetation biomass in either a corn field or
a milo field results in a large o° for these crops and thus

produces a bright return on the image. The wheat fields contain
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TABLE 4.3

Maturity and Harvest Dates for Corn and Milo;
Percent of Acreage by Specified Dates for the
Southwest Crop Reporting Unit of Kansas
(Average of 1973-1977)

September
o 2 30 10
Corn maturity 30 a5 75 90
Corn harvest 0 5 15 30
Milo maturity 10 20 45 75
Milo harvest - -- 5 15
69
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October

95
55
85
30
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little vegetation and thus have a low ¢° 1in the Seasat data;
consequently, they are accurately fdentified. However, if the
classifications are performed for the whole scene, large errors
of commission for wheat from areas such as grasslands and

heavily utilized pasture can be expected.

4.5 Multichannel SAR Classification

Multidate SAR classifications are presented in Table 4.4.
By using the data from September 22 in cnmbination with either
the data from October 1 or October 7, a classification accuracy
of approximately 75% was achieved, This represents an 8%
increase over the best single-channel classification accuracy
(67%) achieved using the September 22 data. Combining data from
the (ctober dates produced about the same accuracy (66%) as that
achieved usinyg the September 22 date alone. The three-date
combination performed similarly to a two-date combination that
included September 22, with an accuracy of 74.48%.

The two-date SAR combinations improved the wheat
classification accuracy in both cases. Corn classification
accuracy improved more for the September 22/0ctober 7
co. Yination, whereas the September 22/Uctober 1 combination
resulted in the yreatest improvement in the classification of
milo. Once again, the data in Figure 4.6 illustrate why these
improvements occurred. Wheat produced the lowest return in all
cases; thus, any two-date combination enhanced wheat
classification. The corn data of October 7 had a relatively

hiyher mean, compared <o milo, than the October 1 data; thus,
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TABLE 4.4

Category Confusion Tables for the Multidate SAR “
Classifications of Corn (C), M{lo (M), and Wheat (W)

Septemher 22/0October 1 September 22/0ctober 7
c M W c M L : |
c 52,3 46,1 1.6 c 60.9 38.3 0.8 |
M 8.6 82.8 8.6 M 13.3 78,2 12.5 ,
W 0.0 10,9 89.1 L 1.6 9.4 89,1
T.A* = 74,74 T.A, = 74,74
October 1/0ctober 7 September 22/0ctober 1/0ctober 7
C M W C M L)
c 53.1 43,0 3.9 c 66.4 32.8 B
M 19,5 68.0 12.5 M 17.2  80.5 2.3
W 4.7 18.8 76.6 | 6.3 17.2 76.6
T.A. = 65.89 T.A. = 74,48
*T.A. = Total Accuracy
71
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any two-date combination enharced corn c.assification, The
effect of adding the third date did nothing to enhance the
classification, because no new information was contributed,
therefore, the effect was similar to adding noise to the data
base,

It has lonyg been recognized that a multidate approach
enhances the discrimination of vegetation classes (Goodman,
1959), Analyses of other multitemporal radar data sets have
resulted in the same conclusion (Bush and Ulaby, 1977; Ulaby et
al., 1979; Brisco and Protz, 1980). However, to be most
effective, the .nultidate approach must consider the ddta-
acquisition period in relation to tne crop calendar, The Seasat
data used in this analysis were acquired during the harvest
period and thus were not optimun for multitemporal crop
classification. However, they are the only multitemporal
satellite SAR data available, and the results of the present
analysis indicate the degree of success that can be expected

when using this approach to radar crop classification,

4.6 Multisensor Classification

The category confusion that results from combining the best
Seasat date (September 22) with either Landsat band 5 or band 7
is presented in Table 4.5. The classification accuracy (76%) is
very similar to that obtained by combining two Seasat dates
(75%). As before, wheat 1is the more accurately classified
cateyory, and corn and milo are the most highly confused.

Adding one Landsat channel to the two-date Seasat combinations

72

AR
7

-~ =



TABLE 4.5

Category Confusion Tables for the Ciassifications of
September 22 Seasat Dasta with Landsat Band 5 or Band 7
for Corn (C), 1o (M), and Vheat (W)

September 22/Band 5 September 22/Banuy 7

f C M L] C ) W
( c 68.8 30.5 0.8 c 69.5 28.1 2.3
M 14,1 74,2 11.7 ] 13.3 65.6 21.1
W 0.0 14.8 85,2 W 0.8 6.3 93.0
T.A* = 76,08 T.A, = 76,04

*T.A. = Total Accuracy
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rhat produced the best accuracies in Section 4.4 yields similar
classification accuracies to those obtained using the three-date Ea'
Seasat combination (Table 4.6). ‘4

When the Seasat/Landsat combinations were used, corn was
the category that showed the most i{mprovement, This w-s

fndicated in the single-channel analyses described 1in '

N M e == .

Section 4.3, The lower reflections from corn on band 7, I}

combined with the brightest tones on the Seasat images, enabled : 4
[: the multisensor combination to 1improve corn discrimination. f
oM

[- However, some accuracy in miio identification was sacrificed, P
' ! 3

and hence the tota! classification accuracies of approximately

79% are quite similar.

—
. .

Further 1increases i~ the numcer of channels used in the

classification added 1little to the total <classification

L ERRAD

accuracies achieved. Table 4.7 shows the category-confusion

tables resulting from the four- and five-channel

- classifications. The best overall classification accuracy of

78% was achieved wusing either two Landsat and two Seasat

- “Jukmﬁo«!«ﬂw R ™t

channels or three Seasat channels with Landsat band 5. Wheat

"D

remained the most accurately <classified crop, with an

identification accuracy of approximately 90%. Corn was the next
most accurately identified crop, with accuracies exceeding 70%,

and in the case of Landsar bands 5 and 7 in combination with

Seasat images September 22 and October 1, an identification
accuracy of 84% was achieved. Milo was the crop most confused %
with other categories, with an 1identification accuracy of

approximately 70%. The five-channel classification performed
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TABLE 4.6

Category Confusion Tables for the Classifications

of September 22 and October | or October 7 Seasat -
Data with Landsat Ba..d 5 and Band 7. '

Categories are Corn (C), Milo (M), and Wheat (W). {

I
i
|
I
|
|
[
[
[
[

September 22/0ctober 1/8and S September 22/0ctober 7/Band 7 ,
c. n v LIS
c 30.5 19.5 0.0 c 74,2 24,2 1.6
M 40,6 48.4 10.9 M 21.1 63.5 9.4 !
1] 3.1 5.5 91.4 W 0.8 1.7 87.5
TAx = 73,44 T.A, = 77,08
September 22/0ctober 1/Band 5 September 22/0ctober 7/Band
C M L C M L
¢ 65.6 33.6 0.8 c 75.8 23.4 0.8
M 15.6 77.3 7.0 M 28.1 62.5 9.4
W 2.3 13.3 844 W 5.5 7.0 87.5
E T.A. = 75,78 T.A., = 75.26
n
i &
[ *T.A. = Total Accuracy
|
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TABLE 4.7

P

Category Confusion Tables for Four- and Five-Channel Multisensor

Classifications of Cor:

Sant. 22/0ct. 1/0ct. 7/Band 5 Sept. 22/0ct. 1/0ct. 7/Band 7
c M ¥ c M N
c 3.4 22.7 3.9 (o 70.3 28.1 1.6
M 16.4 71.1 12.5 M 19.5 68.8 11.7
W 0.0 10.2 89.8 W 3.1 7.8 89.1

TAX = 78.13

Sept. ZZIOEt. 1/0ct. 7/Band

c 84.4 14.8 0.8
M 5.8 60.2 14.1
W 0.8 9.4 89.8

T.A. = 78.13

(C), Milo (M), and Wheat (W)

T.A. = 76,04

Sept. 22/0ct. i/Oct. 7/ Band

TXO
N~

NN S
.

W~

Sept. 22/0ct. 1/0ct. 7/ Band 5/Band 7
C

x£EXO

*T.A. = Total Accuracy

< L] L]
71.3 28.8 0.0
21.3 66,3  12.5

5.0 6.3 88.8

T.A. = 75,47
76

L} ¥
25.0 0.8
73.4 3.9
0.2 87.5
T.A. = 78.39
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worse than the four-channel combinations, with a total accuracy

of 75%, This was attributed to the fifth channel's acting as

noise 1in the classification, because no new inTormation was
added to the discrimination,

Previous studies using multisensor combinations for crop
identification have shown an increase in classification accuracy
when radar and optical data are combined (Ahern e. al., 1978;
Eyton et al., 1980; Ulaby et ai., 1982). The present study has
demonstrated that both the multidate and multisensor approaches
increase the crop-classification accuracies achieved 'sing
MLC. The multidate approach works because of the dynamics of
radar backscattering for a given crop over the growing season,
The multisensor approach is successful because of the different
interaction mechanisms operating between electromagnetic energy
and the plant canopy. For example, radar responds to water
content and the yeometry of the vegetation biomass, whereas
band 7 is sensitive to chanyes in plant cell structure, which is
indirectly related to plant water content,

Une major limitation of this study was the time period
during which the image data were recorded. The late September,
early October time frame of the study was coincident with the
beginning of the corn and milo harvest. In all likelihood, the
high confusion between corn and milo reported above could be
reduced by acquiring data during other periods of the crop-
growth calen-ar. For example, it is possible that data taken
early in the growing season may be able to discriminate corn

from milo because corn is planted at an earlier date and there

77




will be developmental differences between the crops.

4.7 Summary
Satellite SAR and MSS data were used both alone and in

combination to classify corn, milo, and wheat. The best single-
channel classification accuracy (67%) was achieved usiny a
September 22 Seasat scene. The rlassification accuracy was
improved to approximately 7% by using either a multidate Seasat
combination or Landsat data in a multisensor combination., The
overall best classification accuracy of /8% was achieved with a
four-channel combination of either Landsat band 5 or band 7 with
the Seasat dates.

Table 4.8 presents a summary of many of the <crop-
classifiration studies performed using radar data. Although the
research described above is the first to use satellite radar
data in a multidimensional approach to crop-classification,
comparable classification accuracies have been achieved using
other methods. Due to the yreat mix of crop types and sensor
characteristics present in these studies, it was difficult to
compare results. Nonetheless, the results support the
usefulness of radar data as discriminators of crop types.

T¢ achieve classification accuracies either approaching or
exceeding 9U%, multidate and/or multisensor data are needed.
Results repo-ted 1in the literature to date verify this
observation. By evaluating the crop calendar and crop mix of
any particular geoyraphic region and using the knowledge gained

from previous studies, optimum dates for data acquisition can be
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l |
TASBLE 4.8 4
e
l Susmary of Crop-Classification Studies Perforwmed ''sing Radar Oata* :
3 {
I Sensor Parameters Classification
Authors Platform f P e Crop Types Accuracy Range (%) »
i
| Batlivala anq :
Ulaby Afrcraft L HH 60-75° Corn, soybeans, 65-74 i
(1979) Ky pasture, woods ‘
| 3ush and laby  Ground= KU HH  40-60° Corn, milo, soybeans 55-90
(1978) hased X HV wheat, al”alfa
vV
l Ahern et al, Aircraft KU  HH - Corn, alfalfa, barley 63-85
(.378) KV cut hay, ripe oats,
green pasture, grass,
clover and grass,
} green oats, standing
hay, brown pasture
Ulaby et al. Ground- KU HH ~- Alfalfa, bare, corn, 41-97
(1979) based X w wheat, milo,
HV soybeans
' Eyton et al., Ground- KU W - Corn, soybeans, 45-82
based X HV milo
Goodenouah Afrcraft X  H# 43¢ Potatoes, grains, 52-73 3
et al, L HV  2c pasture, fallow, .
(1980) forest }J
: f:
3 Shanmugan et al. Afrcraft c HH  10-90° Corn, wheat stubble, 57-98 X
(1981) L HV pasture, fallow ﬁ
Ulaby et al.  Alrcraft KU W 50°  Corn, wheat stubble, 61-71 N
(1982) pasture, fallow A
Brisco and Aircraft X HH  68° Corn, grain, hay- 72 v
Protz L HV pasture, roughland, ‘
(1982) woods :
Shanmugan et al, Aircraft c HH  10-50° Corn, pasture, bare 35-98
(1983) L KV sofl
Brisco et al. Aircraft X HH  60-65° Corn, woods, grain, 83
(1984) L HV other

*Fyll citations are given in the reference section.
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identified. This, in concert with appropriate sensor selection,

will allow accurate crop classifications to be made using 14

l remotely sensed data. o

o1 ™
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CHAPTER S
FOREST MAPPING WITH RADAR

5.1 Introduction

Glooal forest reserves are rapidly diminishing as a result of
the 1increased demand placed upon wood products by an expanding
population, Forests are also heing cleared to provide 1living
space and fncrease agricultural productivity to accommodate a
growing populace, especially in developing countries. Thus, it is
important to inventory and moniior forest resources on both a
regional and a global scale. Remote-sensing techniques have been
promoted as a tool useful in meetiny this need (Beaubien, 1978;
Honer, 1978).

An early study investigating the use of radar imagery for
vegetation mapping concluded that vegetation influences upon radar
returns were observable in all cases investigated (Morain and
Simonett, 1966). Indeed, shortly after this finding was reported,
ambitious vegetation-mepping projects were carried out in Brazil
(Azevedo, 1971) and Panama (Viksne et al., 1970). Recent studies
have 1investigated the use of radar imagery for more detailed
forest mapping and have included information even at the species
level (Knowlton and Hoffer, 1981; Krohn et al., 1983; Hoekman,
1984,. The results of these studies support the capabi’ity of
radar to discriminate among forest types in many, but not
all, cases.

In Chapters 3 and 4, the use of satellite SAR data both alone

and in combination with satellite MSS data was investigated for
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land-cover and crop-type classification. In these investigations,
image tone, represented by a digital number, was the classifying
feature. Results indicated that multidate and/or multisensor data
were necessary for accurate classification. According to other
studies, texture, another iimage feature, also can be very useful
in radar image interpretation (Berger, 19Y70; Lowry et al., 1978).

Texture is the spatial distribution of image yray tone for a
feature of interest. Although texture has been used successfully
to improve classification results with radar data for a variety of
applications (Haralick, 1979; Brisco and Protz, 1980; Shanmugan et
al.,, 1941), there nas been no consistent method of defining,
measuring, or using texture for interpretation and
classification, In his article on texture, Haralick (1979)
provides a review of the statistical and structural approaches to
the uses of texture. He identifies eight statistical approaches
to extracting textural infermation from an image: (1) the
autocorrelation function, (2) optical transforms, (3) digital
transforms, (4) texture edgeness, (5) the structural element,
(6) yray-tone cooccurrence, (7) run lengths, and (8) auto-
regressive models.

The present study investigates the use of SIR-A data for
forest-type classification. lmage tone and texture are used both
alone and in combination in a supervised maximum-1ikelihood
classification of broadleaf everygreen (8), broadleaf
deciduous (D), needleleaf everyreen (E), and mixed (broadleaf
deciduous and needleieaf ~vergreen) (M) forest  types.

A grassland-forest transition zone (G), Galeria forest, is also
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included as a class, This is a scrub forest like the Cerrados for-
est type,
5.2 Test-Site and Forest Descriptions

Five forest types were selected for the analyses based on
(L) SIR-A coverage and data availability for the type, and
(2) variety of forest canopy conditions represented. These
criteria resulted in the selection of the sites presented in
Figure 5.1. A description of these forests and the SIR-A data-
take numbers are listed in Table %.1. The system parameters for
SIR-A were presented in Sectiun 3.1,

The forest types chosen represent the range of cancpy
conditions expected in wooded areas. They range firom the lush,
inultistoried, many-specied canopy of the tropical forest to the
nearly monospecific pine forests of the southeastern United
States. The broadleaf deciduous and wmixed forests represent
intermediate canopy conditions in terms of diversity and
productivity., Finally, the Galeria forest of southeastern Brazil
represents the transition zone from woody vegetation to grassland,
and is characterized by a less dense canopy intermixed with open
areas. Figures 5.2 through 5.6 include examples of the five
forest classes considered in this analysis as well as the SIR-A

data for these forest types.

5.3 Data Analysis

The SIR-A imayery was digitized to 256 gray levels by the
Environmental Remote Sensing Center at the University of Wisconsin

on a scanning microdensitomater with a 25-um aperture, This
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selection of the forested regions.
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TABLE 5.1

Description of the Five Forest Tvpes and SIR-A Data-Take Numbers Used
A1) SIR-A Data Mere Acquired on Novewber 13, 1981.

in this Study.

l' Site Forest Type Symbo1 SIR-A Data Take
. 1) Amazon Basin Broadleaf evergreen: B 22
{ tropical rainforest
oy 2) Kentucky Broadleaf deciduous: n 20
. ! Nak-Ash-Maple
' ‘ 3) North Carolina Mixed: M 20
}f Nak-Pine
3 l, 4) Alabama Needleleaf evergreen: E 21
Pine
- Brasilia Galeria forest: G 22

| )
|

grassland, herbaceous
plants, and semi-
deciduous forest
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Fig. 5.3,

(a) SIR-A image of central Kentucky and (b) example
of the deciduous forest (D) category.
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Fig. 5.5. (a) SIR-A image of central Brazil and (b) exarple of
the broadleaf evergreen (E) category,
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3
ﬁ Fig. 5.6. (a) SIR-A image of southeastern Brazil and (b) example
of the Galeria forest (G) category.
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aperture size resulted in an average of 2 x 2 pixels being used
for each digital number (DN) value produced. Thus, the SIR-A data
were averaged to 24 looks (2 x 2 x 6) with an 80-m x 80-m
resolution cell., Fading was significantly reduced by this amount
of averaging (Bush and Ulaby, 1975%). The data were received in
the form of computer-compatible tapes.

The VDI image-analysis system was then used to identify the
corner-point coordinates for six 32- x 32-pixel windows for each
of the five forestry types. These data were then extracted for
subsequent analysis on the University of Kansas Honeywell computer
system. An 8-pixel by 8-pixel moving window was used to calculate

the local mean and two measures of texture: contrast and inverse

moment . Equations 5,1 through 5.3 were wused for these
calculations.
N
1 X
ja1 |
Mean: X = —. (5.1)
K L
Contrast: ] |i-j] (Pij) (5.2)
1,J
(py )
Inverse Moment: ) -—-AL-E— (5.3)
ilj '1'\]'
i#j

These textural calculations were based on the gray-tone co-
occurrence matrix. This is a matrix of relative frequencies, Pij'
with which two neighboring resolution cells separated by distance
D occur on the image, one with gray-level 1, and the other with
gray-level j. A1l angular relationships (0°, 45°, 90°, 135°) were

calculated and then averaged such that directionality did not
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enter the interpretation of the results. Haralick (1979) provides

a detailed description of this approach to texture calculation.

B S M TTRTCPR AL

Due to the random nature of vegetation distributions in natural

forests and the coarse resolution of the SIR-A data, a distance of '

1 between resolution cells, with no directionality, was chosen.
Thus, the preprocessing resulted in 30 data sets, six from

each forest type, with each having a 16 x 16 data set representing f

local mean, contrast, and inverse moment. Histograms of gray

™

level (local mean) and contrast were plotted.

These data were then subjected to supervised maximum=-

~

likelihood <classification (MLC) using a 20%-training and

80%-testing sample. This was performed separately for tone and

Poad

then texture as features. Each textural feature was then combined
with tone and the two-channel combinations were reclassified.
Finally, all three measures were used together in a three-channel

classification. All classifications were performed using the MLC

. algorithm used in previous cnapters,

I* 5.4 Results and Discussion |
* The histograms of gray level and contrast presented in T,
Figure' 5.7 and 5.8 allow a preliminary evaluation of the way in [

which these data will perform in classification analyses. The

gray-level histogram (Figure 5.7) indicates good separability for
the broadleaf evergreen and broadleaf deciduous forest types.

However, there appears to be high confusion amonyg the other three
using the textural measure of contrast (Figure 5.8), the other %

I forest categories. Althouygn the Galeria forest was separable
II 92
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four forest categories appeared to be highly confused when texture

alone was used.

When yray level was used in a single-channel classificatton,
an accuracy of 75% was achieved (Table 5.2). As indicated by the
histograms, broadleat evergreen and broadleaf deciduous forests
are nighly separable, with classification accuracies exceediny

95%. The needleleaf evergreen and mixed forest categories were

identified accurately 86% and 76% of the time, respectfvely. The
Galeria forest was very poorly classified (17.5%) and was confused
primarily with the mixed forest and then with the needleleaf
everyreen forest.

Both measures of texture--contrast and inverse moment--
oroduced similar classification accuracies (60% and 57%,
respectively; see Tables 5.3 and 5.4). In both classifications,
the Galeria forest was highly separable, yieldiny classification
accuracies exceedinyg 95%. This may have been due to the
patchiness of the canopy in this forest category, in which patches

of yrassland are intermixed with forested areas. The mixed

deciduous forest was identified correctly 76% of the time using

inverse moment, and with 65% accuracy using contrast. In bcth

cases, it was the needleleaf everygreen category that was most
often confused with the mixed deciduous category. The broadleaf ;
deciduous category was classified with 83% accuracy using contrast
as the discriminatory feature but only 49% using inverse moment,
The needleleaf evergreen and broadleaf evergreen categories were

3
poorly classified by both textural features. N
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TABLE 5.2

Superviced Maximum-Likelihood Classification of Gray Level
Into Forest Categories of Broadleaf Evergreen (B),
Broad\ead Deciduous (D), Mixed (M),

Needleleaf Evergreen (E),
and Galeria (G)

True Classified as (%)
(ategory 8 2 L] E ]
B 9.1 0.0 0.0 3.9 0.0
D 0.0 99.2 0.0 0.0 0.8
M 0.0 0.5 76.1 i1.0 12.4
E 2.0 0.0 12.1 85.9 0.0
6 0.0 4,2 51.3 26.9 17.5

Overall Accuracy = 74.96%

TABLE 5.3

Supervised Maximum-Likelihood Classification of Contrast
Into Forest Categories of Broadleaf Evergreen (B),
Broadlead Deciduous (D), Mixed (M),
Needleleaf Evergreen (E),
and Galeria (G)

True Classified as (%)
Category ] )] " £ [
B 19.6 35.5 24.3 18.2 2.2
D 0.7 82.8 1.9 14 .6 0.0
M 4.3 %.u 65.3 21.4 0.0
E 43.4 2.8 23.6 30.2 0.0
G 0.0 0.0 0.0 0.0 100.0

Overall Accuracy = 59,.59%
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TABLE 5.4

Supervised Maximum-Likelihood Classification of Inverse Moment :
Into Forest Categories of Broadieaf Evergreen (B), . .

Broadiead Deciduous (D), Mixed (M), Needleleaf Evergreen (E), :
ard Galceria (G) ‘-

True Classified as (%) L
Category 8 D ] E

8 33.6 33.3 14.7 17.8

0 12 .6 49.0 13.8 24,7

] 0.0 6.4 716 .2 14,2

E 2.8 79.3 39.3 27 .4

G 0.0 0.0 3.7 0.0 96.3

Overall Accuracy = 56.50%

TABLE 5.5

Supervised Maximum-Likelihood Classification of Gray Level and

Contrast into the Forest Categories Broadleaf Evergreen (B),

Broadlead Deciduous (D), Mixed (M), Needleleaf Evergreen (E),
and Galeria (G)

True Classified as (%)
Category 8 D L] E
B 95.3 0.0 0.0 3.5
D 0.0 99.7 0.3 0.0
M 0.0 0.0 86.7 13.3
E 2.4 0.0 12.1 85.5
6 0.0 0.0 0.0 0.0 100.0

Overall Accuracy = 93.44%
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The results of the one-dimensior:' <lassification indicate
that combining tonal and textural weasurgmenis into a multi-
dimensional classification may be profitable. This {s because it
was found that the mcst accurately identifiea categories vary with
the fmage feature being used in the classification., As the data
in Tables 5.5 through 5.7 reveal, this is indeed the case. The
broadleaf everyreen (B), deciduous (D), mixed (M), and needleleaf
evergreen (E) classes were separable using image tone as the
criterfon. Contrast enabled the separation of the Galeriu forest
(@) from the deciduous (D), and mixed (M) classes, whereas inverse
moment separatad the G from the M class.

The results /' quite similar for both the two-dimensional
and the three-dimensional classifications. Approximately 93% of
the ;ixels were accurately f{dentified, with the categories of
broadieaf deciduous, broadleaf everygreen, and Galeria forest
exhibiting accuracties exceeding 90%. The needleleaf evergreen and
mixed forest categories were identified correctly approximately
85% of the time,

At the 8U-meter resolution used in tnis study, each pixel
represents only a small number of trees, yet the number and
diversity of the trees varies with forest type. For example, a
pine forest is likely to contain more trees but fewer species per
pixel than a tropical rain forest, which will contain fewer but
laryer individual trees and more species. Nevertheless, an 80-m
resolution may be useful in forest-type classification, since the
vegetation-distribution differences between major forest types are

likely to be apparent at this scale. This is consistent with the
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TABLE 5.6

Supe, . ised Maximum-Likel{hood Classification of Gray Level and
Inverse Moment into Forest Categories of Broadieaf Evergreen (B),
Broadlead Deciduous (D), Mixed (M), Needleleaf Evergreen (E),

and Galeria (6)

True Classified as (%)
Cateqory 8 ' L}
B 92.8 0.0 0.0
D 0.0 99.8 0.2
M 0.0 0.1 84 .A
E 2.4 0.0 11.1
6 0.0 0.0 3.7

Overall Accuracy = 91.77%

TABLE 5.7

Supervised Maximum-Likelthood Classification of Gray Level,
Contrast, and Inverse Moment into the Forest Categories

3
7.1
0.0

12.7

85.6

n.,a

Broadleaf Evergreen (B), Broadlead Deciduius (D),

Mixed (M), Needleleaf Evergreen (E), and Galeria (G)

True Classified as (%)
Category 8 D n
8 93.7 0.0 0.0
D 0.0 99.8 0.2
M 0.0 0.1 85.7
E 3.4 0.0 11.4
] 0.0 0.0 0.0

Overall Accuracy = 92.89%
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5.5
0.0
14.2
R5.2
0.0

o

0.1
n.o
2.6
0.8

95.9
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100.0
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mesos-ale roughness Morain (1976) describes in his article on
radar-image {interpretation for veyetation analysis., He defines
microroughhess as gray-tone fluctuations due to frequency,
mesoscale roughness as the gross rouyhness envelope directly
related to imayge texture, and macroscale roughness as the cony’ex

image tone arising out of a combination of micro- and mesoscale

roughness superimposed upon slcping terrain,

The SIR-A data from the different sites may contain inherent
yray-tone shifts due to both lack of calibration and the presence
of signal-power fluctuations during data recording, Thus, a
single taryet may produce different yray tones on two different %
SIR-A data-takes. Moreover, the presence of gray-tone shifts can
critically affect tonal classification, although if the
sensitivity (film gamma) is the same, the shifts will have little
effect on textural classification., The SIR-A data were processed
by the Jet Propulsion Laboratory (JPL), and personnel there were

contacted concerning this difficulty, According to JPL, the

signal films were all processed with a gamma of 1, and all

subsequent image duplicates were processed with a jamma of 1.2, L

Thus, although gray-tone shifts may indeed be present, the
sensitivity of the imaye should be the same for each pass.
Other researchers have reported success 1in forest-type

classification, in some cases rangin- in detail to the species

level, using multiparameter radar data (Shuchman et al., 1978; f
Churchill and Keech, 1983; Knowlton 2  'offer, 1981; Hoekman,
1984). Krohn et al, (1983) also reported some success at B

discriminating upland from lowland forest types on the East Coast,
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using Seasat data, Graf and Rode (1982) reported moisture-
dependent effects in the backscattering from the branches and
jeaves of a fir treec., Bush et al. (1976) described temporal
variation in the canopy backscattering from a deciduous forest.
These observations lend further credence to the use of microwave
remote sensing in forest mapping and monitoring.

Further rescarch into and development of space-SAR technology
undoubtedly will hasten the operational use of radar data and will
ultimately allic foresters to berefit from the technology in
practical ways. Space-SAR data, both alone and in combination
with MSS data, will prove usefil for 2 wide variety of tasks from
simple mapping projects to more elaborate monitoring and disease-

control projects.

5.5 Summary

SIR-A data were classified into the forest cateyories
broadleaf evergreen (B), broadleaf deciduous (D), mixed (M),
needleleaf everyreen (E), and Galeria forest (G), using maximum-
likelihood techniques. Tone (gray level) outperformed textural
measures (inverse moment and contrast) as a one-dimensional
classifier, producing a classification accuracy of 75% compared to
55-60% for textural-feature classification. Tone was the most
useful discriminant for the B, D, M, and E forest categories.
The Galeria forest (G) was the most successfully discriminated
category on the basis of the textu-~al features. This success was
attributed to the patchiness of the canopy for the Galeria class

when compared to iine other classes., However, combining tone and
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texture into a multidimensional classification methc. resulted in
overall classification accuracies exceeding  90%. The
multidimensional approach also may be useful 1in other forest
research projects using SAR data, and tnis possibility should be

investigated,
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All three studies used a multidimensional approach to land-
cover classification. The available uncalibrated SAR data were
acquired durinyg less-than-optimum time periods, i.e., lace in the
yrowing season, and were gen.-ally accompanied by poor gro.nd-
truth information., These limitations reduced the scope of the
conclusions reached by this investigation. Furthermore, at the
time of this study, only twc spaceborne SARs had been used; as a
result, few data were available to support investigations of this
nature, Recently, SIR-B was carried aboard a Shuttle flight and
acquired the first space-SAR data with variable {ncidence
angles. Plans have also been made for a C- and L-band radar in
the near future, also to be carried aboard the Shuttle as part of
the SIR-C experiment, The European Space Agency (ESA) and
countries such as Canada and Japan also plan future space-SAR
systems., Thus, it appears that quality space-SAR data will become
available in the near future.

When timely, caliprated data become available, further
research should be carried out to increase both our understanding
and utilization of SAR data. For example, critical time periods
for data collection can be identified, depending upon the
application being investigated. Many of the results reported in
this manuscript, and in the literature in general, point to the
importance of phenological differences in the discrimination of
vegetation types. An excellent example of the importance of
phenoloygical differentiation is the success of radar operating at
L-band frequencies in discriminating corn from forests early in

the growing season; as the season progresses, however, the two
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cover types become confused.

Given an understanding of the temporal pattern of radar
backscattering, the complemcntary nature of the different
wavelengths (optical and microwave) should be studied further.
This will enable the efficient use of the data available for each
particular task., For example, only one frequency in each of the
radio bands and in the optical region may be needed to accurately
identify land use at a Level [ differentiation. However, for
Level [I characterization, many channels, selected from the range
of wavelenyths available, may be necessary.

Texture analysis is a promising approach to the utilization
of remote-sensiny data., As the algorithms tecome available for
incorporating texture measurements into digital classifications,
the information content available from radar data will undoubtedly
increase., Texture has been recognized as an important element in
radar-image interpretation but has been difficult to incorporate
into machine classification. Progress is being made in this area,
and the future appears promising.

The multidimensional approach is indicative of the direction
remote sensing must take in order to meet some of the goals for
which it is being evaluated. One must choose an approach that is
both cost-effective and meets the requirements of the particular
task being undertaken. A single-date acquisition and subsequent
digital classification using tone and/or texture may be sufficient
for some purposes--for example, mapping the extent of flooding
after severe storms. More complex problems, such as monitoring

agricultural productivity, will probably require multisensor data
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as well as multidate acquisitions, Diygital pre- and post-
processiny requirements will thus be ex*ensive, which will also
add significantly to both the cost and effort required. The
information produced must be of considerable value to warrant such
an undertaking.

One satellite system, Landsat-5, with its MSS and TM sensors,
is entering a new era as an operational system, Research is now
being conducted to bring microwave remote-sensing to a similar
status. With a truly operational SAR system in space, the number
and complexity of the tasks that can be accomplished by remote-
sensing technology will increase.

Land-cover classification will be possible at detailed levels
of discrimination, This will enable both the accurate
identification of and tabulation of land-use dynamics, which will
become increasingly important as population pressure increases.
Improved yield estimations and disease monitoring will also allow
better utilization of renewable resources. It thus appears that
remote sensing will be an indispensable tool for the resource

manager of the future.
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