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Abstract

Over the last two decades the use of microwaves for remote

E sensing has increased dramatically, and investigations have been

conducted into the use of radar remote-sensing techniques for a

wide variety of land and ocean applications. The studies reported

herein involve  mu 1 t i di mensi anal approaches to the mapping of land

cover, crops, and forests. Dimensionality was achieved by

(1) using data from sensors such as Landsat to augment Seasat and

Shuttle Imaging Radar (SIR) data, (2) using different image

features such as tone and texture, and (3) acquiring multidate

data. Seasat, Shuttle Imaging Radar (SIR-A), and Landsat data

were used both individually and in combination to map land cover

in Oklahoma. The results indicated that radar -vas the best single

sensor (72% accuracy) and produced the best sensor combination

(97.5% accuracy)	 for	 discriminating	 among	 five	 land-cover

categories. Multidate Seasat data and a single date of Landsat

w`
coverage were then used in a crop-classification study of western

Kansas. The highest accuracy for a single channel was achieved

using a Seasat scene, which produced a classification accuracy of

67%. Classification accuracy increased to approximately 75% when

either a multidate Seasat combination or Landsat data in a

multisensor combination was used. The tonal and textural elements

of SIR-A data were then used both alone and in combination to

classify forests into five categories. Tone outper 0ormed texture

as a one-dimensional classifier, producing an accuracy or 75%

compared to the 55% to 6U% accuracy obtained using textural

measures. By combining tone and texture in a multidimensional

classifier, accuracies exceeding 90% were achieved. Thus, in all

studies, multidimensional approaches improved the classification

accuracy achieved using radar data.
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'	 INTRODUCTION

1.1	 6en^ral

Remote sensing, which is the science of acquiring information

about	 an	 object	 without	 physical	 contact	 with	 that	 object,	 is

being	 increasingly	 utilized	 as	 a	 tool	 in	 the	 management	 of

renewable	 resources.	 The data produced by	 remote-sensing systems

t allow inventories	 inthematic	 to be produced	 a cost-effective and

timely manner.	 In addition,	 the synoptic	 pe rspective provided by

satellite	 systems	 offers	 regional	 coverage	 unavailable

heretofore.	 F-. , these reasons,	 remote sensing will 	 become an even

;,are	 prevalent	 and	 important	 tool	 for	 resource management	 in	 the

coming years.

Remote-sensiny	 systems	 operate	 in	 various	 parts	 of	 the

electromagnetic	 (EM)	 spectrum,	 with	 the	 visible,	 infrared	 (IR),

and microwave	 portions of tha spectrum being those most 	 commonly

used.	 Various	 camera	 systems,	 equipped	 with	 film	 sensitive	 to

either the visible or the near-IR wavelengths and deplored aboard

aircraft,	 served	 as	 early	 "sensors"	 and	 provided	 the	 impetus

necessary	 for the development of more sophisticated sensors. 	 The

photography produced by these early remote-sensiny systems proved

to	 be	 very	 useful	 for	 tasks	 such	 as	 crop	 identification,	 forest

inventory,	 and	 geologic	 mapping.	 lhis	 in	 turn	 led	 to	 the

development of multispectral scanners (MSS), thermal infrared
a

(TIR) systems, and microwave remote sensors. With the launching

of the Landsat series of satellites in 1972, the era of space

9
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remote sensing was inaugurated. Today, a wide variety of ground-

based, aircraft, and satellite remote-sensing systems operating in

the visible, IN, and microwave regions of the EM spectrum provide

data for civilian use.

1.2 Microwave Renate Sensing

Microwave remote-sensing systems are relatively new, having

been in use only since the early 1960s (Ulaby et al., 1981). Over

the last two decades, active microwave systems such as radars and

scatterometers, and passive systems such as radiometers, have been

developed and tested for various applications. 	 Initially, most

imaying radars were deployed aboard aircraft; however, in 1978,

Seasat,	 the	 first	 satellite-borne	 radar,	 was	 launched.

Unfortunately, Seasat had a fairly short lifetime--only nine

months.	 Since 1979, the only synthetic-aperture radar (SAR)

systems to be deployed in space have been those included in the

Shuttle Imaging Radar experiments, SIR-A and SIR-1.

Nevertheless, SAN systems continue to be of interest as

effective remote sensors and as such are the focus of this

investigation.	 There are several advantages in using radar

systems for remote-sensing purposes: 	 one is that they provide

their own energy and thus are independent of solar illumination;

another is their so-called all-weather capability, which results

from the radar's ability to penetrate cloud cover as a result of

the long wavelengths employed. 	 This cloud-piercing capability

operates independently of weather conditions and thus allows the

collection of data during critical time periods. 	 The long

,.....-^
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'iwavelengths used by these sensors also interact with the eartn's

surface	 features	 and	 thus	 provide	 information	 that	 is

complementary to sensors operating it the visible and IR

regions.	 Moreover, significant penetration into some land-cover

types, such as crops and forests, occurs, which provides

information about both the vegetation canopy and the soil beneath

it.

The sensor parameters of a SAR system--frequency, incidence

angle (the angle between the vertical direction and the look

direction), and polarization--can also be changed according to the

specific application involved.	 For example, shorter wavelengths

and shdllower incidence angles, s,ich as X-band (?.4 - 3.8 cm) at

50, provide information primarily about the plant canopy; whereas

longer wavelengths and steeper angles, such as C-band data (3.8 -

7.5 cm) at 1U°, provide information about the soil background.

A microwave system can provide data both as a primary sensor

and as a backup to conventional MSS systems.	 In areas

cnaracterized by high cloud cover and/or poor solar illumination,

such as arctic, coastal, and tropical regions, radar systems can

be of great importance because of the difficulty of obtaining

optical measurements under such :onditions. 	 Although data from

microwave systems are not as well understood as optical data,

further research and experimentation should make the utilization

of microwave data more effective.

1.3 The Multidimensional 11pproach to Rewrote Sensing

One of the advantages of using satellite re►ncte-sensing

t
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systems to identify and monitor renewable resources is that such

systems ha ve the ability to obtain data repeatedly throughout the	 ^►

year.	 It has long been recognized that multitemporal data can

reduce ambiguities in the interpretation of remutely sensed data

(Goodman, 19b9).	 This is especially true in land-cover mapping,

as a result of the dynamic temporal patterns of the earth's

surface features.	 For example, when using optical systems, corn

and soybeans way be indistinguishable fro g each other early in the	 1

growing season; however, they may become identifiable later, as	 j

the corn ripens and develops its characteristic golden color.

It is also possible to increase the sper + fic information

content of radar data by using different system configurations.

Three fundamental system parameters--frequency, incidence angle,

and polarization--can be varied to obtain data from different

surface features. Ulaby (1982) provides an overview of the radar

signatures of terrain and discusses the influence of varying

system parameters on the radar energy backscattered by different

terrain elements.

Another approach to increasing the information content

a :ilable for a particular task is to use sensors designed to

respond to different portions of the EM spectrum.	 For example,

multisensor approaches have been investigated both for crop-

classification purposes (Ahern et al., 1918; Ulaby et al., 1982)

and for land-cover -1 assification (Wu, 1980), and it has been

shown that classification accuracies tend to increase when

multisensor data are used. This is because two surface features

may be confused in the microwave region but separable in the

^n
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optical region--for example, forest cover and urba . areas, which

arP separable optically but may be confused with each other when

microwave data are used.

In most remote-sensing applications, image tone is the

feature most commonly used for image interpretation. 	 Image

texture, the spatial distribution of the image tone in a target

area of interest, is also a useful feature and can be of

considerable value in the enalysis of radar data (Beryer, 1970;

Lowry et al., 1978; Shanmugan et al., 1981a). 	 Although digital

classifications based on imaye texture are not now readily

available, they promise to increase both information content and

classification accuracy. 	 Haralick (1979) provides a review of

both the statistical and the structural approaches to image

texture.

Multidimensional data sets offer great potential for varic,L.3

remote-sensing applications.	 Furthermore, the dimensions can be

increased by acquiring multitemporal data, varying the sensor

parameters, using sensors designed to respond to different

portions of the EM spectrum, and using a combination of image tone

and texture.

1.4 Scope of the Investigation

This study focuses on the use of satellite SAR data for

snapping land-cover types.	 The investigation comprises three

tasks.	 In the first, land cover in Oklahoma is mapped at the

primary level (see Anderson et al., 1976), using ir!iage tone to

interpret Seasat, SIR-A, and Landsat data. 	 The second task

.5.
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involves the classification of crop types in western Kansas using

image tone from .iultitemporal Seasat data augmented with one date	
1

of Landsat data.	 In the third task, image tone and texture in

SIR-A data for forest types from five different forest biomes are

analyzed to determine the suitability of satellite SAR data for

mapping forest types. 	 The three studies are reported in

Chapters 3, 4, and b, following a general literature review in

Chapter 2. The results of the studies are then used to assess the

use of satellite SAR data for land-cover classification purposes

and the relative merits of the different multidimensional

approaches.

There has been a paucity of research concerning the use of

satellite SAR data, partly because data are not generally

available and partly because of the nature of the data that are

available. For example, the satellite SAR systems that have been

launched to date have been designed for applications other than

mapping and monitoring renewable resources. 	 As a result, the

approach used in this	 investigation	 is one of empirical

observation and subsequent explanation, rather than of theoretical

model development and testing. The results of these three studies

will allow the development of working hypotheses on land-cover

mapping using satellite SAR data, both alone and in combination

with satellite MSS data.	 The scene will then be set for the

initiation of further research into and development of operational 	 a
4

models. This will in turn bring the use of SAR data closer to the

operational level and thereby increase the number of applications

to which remote sensing can be applied.



CHAPTER 2

BACKGROUND INFORMATION AND LITERATURE REVIEW

2.1 Introduction

Since the mid-196Us, imaging radar systems have peen

providing imagery for a variety of natural-resource, land-use, and

environmental studies (Estes and Simonett, 1975). Although plan-

position-indicator (PPI) and B-scan airborne radars have been

available since the middle of World War II, it is the side-looking

airborne radar (SLAB) systems that are used for these types of

investigations today (Moore, 1975). 	 The PPI and B-scan radars

produce displays that are essentially binary in intensity by

representiny the presence or absence of objects responsible for

the backscattering of microwave energy. 	 Imaging radars, on the

other hand, measure the strength of the backscattered signal and

therefore provide more information than the original PPI and 8-

scan radars.	 Furthermore, the techniques required to interpret

the imagery from these new radars is different from the PPI and

B-scan systems, so experimentation is needed to determine how

these types of data can be most effectively used. As Moore (1978)

points out, microwave systems of various types have been used in a

wide variety of land and ocean applications.

Before the operational use of radar data becomes a reality,

appropriate methodology must be developed. Two basic approaches

have been used to develop methodology and to obtain a better

understanding of microwave interactions with the earth's surface

features.	 One approach involves the collection of imagery from

7
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aircraft and spacecraft and the subsequent interpretation of the

data acquired for the target(s) of interest. 	 In this approach,

image tone and texture are the key elements of interpretation.

Another approach makes use of ground-based radar systems that

provide point radar backscattering (v°) measurements that are

subsequently analyzed using both statistical and graphical

techniques.	 Bradley and Ulaby (1980) have shown correlations

ranging from .8 to .92 in a comparison of ground-based versus

airborne o° measurements.

This chapter presents an overview of radar remote sensing as

it is used for mapping and monitoring land use, forestry, and

agriculture.	 Emphasis will be placed on results reporteJ in the

literature, based on radar imagery, for these applications.

A brief introduction to radar-image interpretation will	 be

included, and the differences between visible/infrared techniques

and radar methods noted. Significant ground-based studies will be

included where appropriate.

2.2 Interpretation of Radar Imager

Side-looking radars produce a continuous image strip that

resembles a grainy aerial photograph taken from a great altitude

(Estes and Simonett, 1975). However, the microwave region of the

EM spectrum responds to different target and system parameters

than do the other regions. Estes and Simonett (1975) suggest that

the	 following	 factors	 influence	 the	 appearance	 and

interpretability of radar images: (1) system geometry,

flight parameters, (2) resolution in ground range, (3) r

8
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in azimuth, (4) areal resolution, (5) number of independent

samples, and (6) backscattering cross section per u-pit solid angle

directed toward the radar receiver. 	 r'he last factor determines

the brightness of any given resolution cell and is a function of

the dielectric and geometric properties of the target being imaged

(Ulaby, 1975). The backscattering governs the tone of the image,

and the spatial distribution o f the tone in any given field of

interest represents image texture.

As with visible and infrared images, tone is a key element in

image	 interpretation.	 Nonetheless,	 texture	 is	 a	 useful

discriminant in the interpretation of radar imagery as well

(Beryer, 197U; Lowry et al., 1978; Shanmugam et al., 1981a).

Other elements of imaye interpretation described by Estes and

Simonett (1975), such as shape, size, and location, are also

useful in the interpretation of radar imagery. Thus, the elements

of image interpretation and the techniques utilized in radar-image

analysis are similar to those used in the interpretation of

visible and IR data, with differences in system parameters and

target interactions taken into consideration. Moreover, different

emphases are placed on the interpretation of tone and texture

during the analysis of radar imagery; for example, texture is used

to discriminate targets imaged with microwaves, whereas tone is

used to analyze MSS and visible data.

Some examples of image-interpretation techniques that have

been applied to radar imagery follow. 	 Ellermeier et al. 1967PP	 y Y	 (	 )

describe the use of color enhancement and level slicing for both

agricultural and natural vegetation discrimination.	 In their

S.
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study, electrical analogs of the scanned images were fed into

three (red, blue, and green) electron guns and displayed on the

	

cathode-ray tube of a color television set. Various combinations
	 .I

of images in varying colors could then be reproduced to aid in

image interpretation. 	 Coiner (1972) proposes the use of image-

interpretation keys to support the analysis of SLAB imagery. For

example, a dichotomous key using image tone and texture was

developed to discriminate crop types appearing on images of Garden

City, Kansas.	 A similar approach was used by Brisco and Protz

(198U) to identify corn fields using multidate, multichannel,

radar data.	 The results of both studies indicate that this

approach is feasible for radar-image interpretation.	 Larson et

al. (1975) present the use of multichannel analysis techniques

familiar in multispectral scanner (MSS) data analyses. 	 These

techniques include image ratioing, subtraction, level slicing,

maximum-likelihood 	 classification,	 and	 Euclidean	 distance-

clustering. Their results were promising and inW'cated that these

techniques can be applied to microwave data.

	

In the preceding examples, 	 digital-analysis	 techniques
	

Iti .ii

employed tone,	 for the most part,	 as the element of

discrimination. The use of texture was incorporated into manual

interpretations using dichotomous keys and a subjective evaluation

of texture (i.e., smooth, medium, or rough texture). The value of

texture as an element in the interpretation of radar imagery has

long been recognized (Berger, 1970; Coiner, 1972; Lowry et al.,

1978).	 Ulaby et al. (1982) compared within-field and between-

field coefficients of variation for several cover types, using
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Landsat images and Ku-band scatterometer data. 	 They concluded

that the radar data exhibit larger within-field and between-field

variations than the Land;,at data. Thus, improvements in machine

classification can be expected as techniques are developed to

incorporate a digital measure of texture into the discrimination,

procedure (Shanmugam et al., 1981; 9risco and Protz, 1982).

Since it was found that classification techniques similar to

those being applied to varic is forms of MSS data could be applied

to radar data, research was initiated into combining these types

of data for analysis.	 Harris and Graham (1976) present images

formed from a combination of Landsat and radar data. Zobrist et

al. (1979) present integrated Landsat, Seasat and other geodata

sources, thus illustrating that the technique can be used for

virtually any digital data which can be registered to a common

spatial framework.	 In the following sections, radar remote

sensing for land-use, forestry, and agricultural work will be

presented, with the aim of illustrating the advantages of

the techiyue.

W Land-Cover yapping with Radar

With the increasing demands being placed on natural resources

by a rapidly expanding population and the concomitant necessity of

maintaining environmental quality, there is a need for an orderly

grouping of various areas of the earth's surface (Gimbarzousky,

1978).	 Land-use and land-cover maps have become ever more

important as a source for such information. 	 Anderson et al.

(1976) provide a framework for a national land-use and land-cover

1
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classification system for use with remote sensor data.

Some early studies showed that accurate land-use/land-cover

classification at different levels can be achieved using radar

imagery (Lewis, 1963; Lewis et al., 1969; and Bryan, 1975). Drake

(1977) pointed out, however, that the United States Geological

Survey (USGS) system presented by Anderson et al. (1976) must be

ada pted before it will accept radar data readily. 	 They suggest

that there is a lack of compatibility between the system and the

data because of the nature of radar imagery compared to that of

the optical imagery for which the classification system was

developed.	 As a result, Drake (1977) presents an alternate

classification system for use with radar imagery.

Henderson (1975) used Westinghouse K-band radar imagery for

small-scale (1:250,000 or smaller) land-use mapping and found that

the majority of the land-use regions identified on the basis of

the imagery corresponded to land-use regions establis ► ied by other

methods.	 Where differences occurred, finer distinctions in land-

use	 were	 apparently	 generated	 from	 the	 radar	 image

interpretation.	 This study further indicated that radar imagery

is a useful tool in small-scale land-use mapping but suggested

that additional testing is needed to verify the utility of the

method.	 In another study using similar data, Henderson (1979)

reported that land use in the northeastern and midwestern United

States was	 identifiable at Level	 I	 detail	 without much

difficulty.	 He concluded that the paramount factor affecting

detectability and identification was the presence of forest

vegetation. Trees and forest canopy concealed drainage features,

12



tupographic variations, transportation arteries, etc., which

'	 hindered land-use classification. The problem of concealment was

greater in the Northeast than the Midwest because of the larger

field patterns and more homogeneous land use and cover types found

in these regiuns.

Airborne	 SAR	 imagery	 obtained	 over	 two	 test	 areas	 in

lsouthwestern Manitoba	 (Canada)	 was	 used	 successfully	 for	 land-

use/land-cover mapping by Rubec and Cihlar 	 (1980).	 They employed

a	 four-channel	 SAR	 system developed by the Environmental	 Research

Institute	 of	 Michigan	 to	 collect	 imagery	 and	 fuund	 that	 the	 most

extensive information appeared on the X-band images. However, they

suggested	 that	 a	 combination	 of	 X-	 and	 L-band	 data	 be	 used	 for

maximum	 interpretation	 success.	 Using	 imagery	 collected	 by	 the

same	 system	 over	 Halifax	 County	 and	 comparing	 it	 with	 other

remote-sensing	 data	 including	 Seasat	 SAR,	 Prout	 (1980)	 found	 that

the ERIM SAR data could be used 	 for mapping urban areas, 	 improved

pasture and crops, water, and transportation. Prout reported that

the Seasat	 SAR data	 could	 not	 readily	 classify any of these land-

use/land-cover categories. The	 results of	 the	 Landsat

interpretation were	 slightly better than	 those of the Seasat	 SAR,

whereas	 the	 best results	 were	 obtained	 using conventional	 aerial

` photography. Prout	 (1980) concluded	 that	 each	 remotely	 sensed

data source contributed some information toward the mapping of

land-use categories, and when used in various combinations, the

information was complementary and reduced the time necessary for

the detection and identification of land-use features.

I
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Henderson et al. (198U) inv,sstigated the detectabi I i ty of

urban land-cover types using digitally processed Seasat SAR

imagery of the Uenver, Colorado area. They employed and compared

both traditional manual-interpretation techniques (utilizing image

tone and texture as well as other eleme n ts of interpretation) and

digital level-slicing using the Image IOU computer to determine

the separability of urban-area land-cover types.	 In general.

level-slicing and color coding the raw data tended to reduce both

the level and type of information available when compared to

visual observation.	 However, the extent of urban, built-up land

was more easily detected using this method. 	 In conclusion, they

reported a readily definable rural-urban fringe; however, a

precise Level I or Level II land-cover classification was not

possible.	 High-density housing was separable from both low-

density housing and Narks, but reflectance values were often look-

angle dependent, and confusion between water and vegetation

r	

responses also posed problems.	 Nevertneless, the authors

^.	 concluded that continued research into reducing image noise and

r- choosing	 an optimal	 scale for	 recognizing	 land-use	 patterns	 may

improve	 the utility	 of	 a spaceborne-SAR	 system	 for	 use	 in	 urban

analysis.

Another area of	 res,:% ,ch	 that promises to improve the utility

of	 satellite radar systems for ,	land-cover	 mappinj	 is	 the	 merging

o f microwave data with MSS data.	 Wu	 (1980)	 registered	 Seasat	 SAR

with Landsat MSS data and used	 conventional	 multichannel	 spectral

pattern-recognition techniques for land-cover classification. He

reported further subdivision in the classification of forested

A
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wetlands and improvement in discriminating man-made targets (i.e.,

urban and inert classes) with the combined data, when compared to

Landsat data alone.

2.4 Forest-Cover Mappiny with Radar

Forest reserves worldwide ire rapidly diminishing as an

expanding population increases its demand for wood products to be

used in building and heating. 	 Simultaneously, forests are

continually being cleared to increase agricultural productivity

and to provide living space.	 As a result, with the launch of

Landsat, the first remote-sensing satellite, in July 1912, many

researchers began studying the potential of remotely sensed data

for use in forest inventorying (Beaabien, 1978). The results were

promising, and remote-sensing techniques have now been implemented

in the mapping and management of the forest resources in Canada

I
(Honer, 1978).

Morain and Simonett (1966), in an early study of vegetation

;a
analysis using radar imagery, concluded that the influence of 	 j

ve getation upon riaar returns was observable in all of the areas 	 w*;^

of the United States that were investigated. By using tonal and

textural comparisons of K-band imagery combined with basic

geographic knowledge of the study area, it was possible to

(1) prepare reconnaissance vegetation maps, (2) delimit vegetation

zones as they vary with elevation, (3) trace patterns of previous

forest	 fires,	 (4)	 delimit	 attitudinal	 timber	 lines,	 and g

(5) identify species by inference in areas characterized by near-
s

monospecific stands.	 In a follow-up study, Morain and Simonett
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1941	 used	 electronic	 techniques	 to	 discriminate	 patterns	 of(	 )	 q	 p

vegetation	 distribution.	 The	 techniques	 included	 the use of	 tri-

color	 image	 combinations,	 the	 generation	 of	 probability-density

functions	 to	 quantify	 variations	 in	 gray-scale	 level	 between

types,	 and	 the	 employment	 of	 density	 slices	 to	 help	 distinguish

among vegetation types.	 These methods were found effective in the

discrimination	 of	 pine,	 fir,	 hardwood	 forests,	 and	 juniper

woodlands	 because	 subtle	 differences	 indistinguishable	 to	 the

unaided eye were brought to the attention of the interpreter.	 The

studies	 demonstrated	 the	 potential	 of	 SLAB	 imagery	 for	 forest-

cover mapping.

Une of the first and most ambitious uses of SLAR for forest

mapping was undertaken in Brazil by the Goodyear Corporation,

using a K-band SAR system (Azevedo, 1971). Project RADAM (RAUar

Amazon) produced geologic, geomorphologic, hydrologic, vegetation-

cover, soil-type, and land-use-potential maps of the Amazon River

Basin. Because the high incidence of cloud cover in the region,

as well as its remoteness, made aerial photography difficult,

radar imagery helped to produce some of the first vegetation-cover

maps of the region.	 Viksne et al. (197U) point uut that because

K-band radar does not penetrate the forest canopy, it allows the

evaluation of various vegetation types on the basis of their

radar-return characteristics. These authors described the use of

K-band SLAR for vegetation mapping in Panama, a project similar to

the RAUAM project.

Waite and MacDonald (1971) suggest that the i-.significant

penetration into vegetation at K-band allows interpretations of

16
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1
variations in the density of plant co+mnunities to be made.

'	 However, they also report that for defoliated vegetation, the

K-band frequency may penetrate a forest canopy Agnificantly and

'	 thus allow differences in underlying soil moisture to he

observed.	 They also report using the depolarized return signal	 to

differentiate both	 gross	 vegetation	 differences and soil-moisture

variations.	 Bush	 et	 al.	 (1976)	 describe	 ground-based,	 1	 -	 18-GHz

microwave	 observations	 of	 deciduous	 trees	 during	 the	 spring	 and

autumn.	 The	 data	 suggest	 that	 trees	 act	 as	 a	 volume-scattering

target	 and	 that o c	is	 substantially	 larger	 in	 the	 spring	 than	 in

the	 fall.	 These results	 further	 indicate	 that	 penetration	 varies

p seasonally	 and	 thus	 must	 be	 taken	 into	 consideration	 when

i performing interpretations of vegetative cover.

^• Morain	 (197b)	 presents	 tnree	 levels of vegetation 	 information

obtainable	 from	 the	 analysis	 of	 radar	 data:	 (1)	 geographic

pattern,	 (2)	 gross	 structure	 and	 physiognomy,	 and	 (3) type

identification.	 Interpretation	 relies	 on	 converging	 evidence

derived	 from	 principles	 of	 geography,	 biology,	 and	 ecology,

combined with	 the	 interpreter's understanding of radar reflection 

from vegetation.	 U in	 such an a	 roach	 Hard	 1972	 waomUsing	 pp	 y(	 )	 s able to

produce a	 seven-category vegetation map of Yellowstone Park using

the Westinghouse AN/APQ-97 SLAR system.	 Both authors report that

tune	 and	 texture	 are	 key elements	 in	 radar-image	 interpretation,

but	 that	 continued	 development	 of methodology	 is	 required	 before

the operational	 use of radar for vegetation mapping is feasible.

Intera	 (1980),	 in a	 presentatioi of	 the	 final	 results	 of the

Airborne SAR Project 	 ( a component of the Canadian SURSAT program),

17 `R
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presents the experiments of several investigi

utility of radar for monitoring and mapping rorests.	 inese

studies indicate that radar may be used either alone, on some

occasions, or to provide ancillary data to MSS sensors monitoring

aspects of the forest environment such as regeneration, insect

infestation, and environmental disturbances resulting from human

activity; interpreting broad aye and height classes; and providing

input to the production of vegetation-type maps. The studies used

the ERIM dual-polarized SAR system and, in general, concluded that

tone and texture for both the like- and cross-polarized images of

the X-band and L-band frequencies provided information about the

forest environment. Knowlton and Hoffer (198U) also investigated

the use of the ERN SAR system for forest-cover mapping. They

qualitatively evaluated the tone and texture of the dtia'-polarized

X-band images for their value in identifying various forest-cover

types. The results showed a greater tonal contrast overall on the

HH image than on the HV image but also showed that both channels

provided information on certain forest-cover features. 	 These

autljors qualitatively evaluated image texture in their study but

did not report any uses of this image-interpretation element in

their conclusioo,.	 Knowlton and Hoffer (1980) suggest future

research investigating spatial pattern recognition (ECHO) using

these data to classify forest anu Cher cover types, since some

differences in image texture were observed.

It has been demonstrated that SAR data can provide valuable

input for monitoring and mapping the forest environment. Texture

is a key element, and the digital analysis of this image
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characteristic must be developed before automatic classifications

'	 of high quality will be possible. This development, coupled with

a better procedure for registering other data sets--for example

ISS and topographical data--may well result in the operational use

'	 of radar for forest reconnaisance.

2.5	 Agricultural Discrimination with Radar

The	 monitoring	 and	 mapping	 of	 agricultural	 land	 is	 perhaps

more	 critical	 tnan	 the	 inventorying	 land	 furesteven	 of	 use	 and

cover,	 since man	 relies heavily on agricultural	 production to form

his	 food	 base.	 The	 need	 fur	 improved	 world	 crop	 statistics	 and

for the development 	 of an	 information	 system capable of providing

such	 data	 is	 reviewed	 by	 King	 (1979).	 Remote-sensing	 techniques

can	 provide	 timely	 and	 valuable data	 fo r	such a	 system,	 as Bauer

(1975)	 points	 out.	 Although	 accurate	 crop	 identification	 using

multitemporal	 MSS data is becoming an established procedure 	 (Lacie

i
6 	 r.

Symposium,	 1978)	 a	 problem	 with	 in t errupted	 coverage	 due	 to

weather	 conditions	 exists.	 Radar	 may	 help	 solve	 this	 problem

because	 of	 its	 all-weather	 capability	 and	 because	 of	 the	 active

' nature	 of	 its	 operation	 (Ulaby,	 1981).	 Although	 agricultural

L̀	 ~
. tdiscrimination	 involves	 both	 soil-moisture	 and	 crop -ty pep- YPe

r .A

implications,	 this discussion will	 focus	 on the	 latter.	 Batlivala

and	 Ulaby	 (1976b)	 and	 Ulaby	 et	 al.	 (1981b)	 provide	 excellent

accounts	 of	 monitoring	 soil	 moisture with	 radar.	 The	 results	 of

these	 studies	 indicate	 that	 a	 C-band	 dual-polarized	 radar	 using

incidence	 angles	 in	 the	 neighborhood	 of	 10 degrees	 provides	 the

f
best data	 for estimating soil-moisture conditions.
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Early research investigating the crop-identification ability

of radar demonstrated that crop type largely influences radar

return; thus, discrimination is possible (Simonett et al., 1967;

Schwarz and Caspall, 1968; and Haralick et al., 1970). 	 These

differences were attributed to variations in plant geometry and

moisture content between crop types, which subsequently caused

different tonal and textural patterns on the K-band imagery.

Analysis techniques included manual- I nterpretation keys, the

digital classification of tone, color enhancement, and density

slicing. The results were promising and led to continued research

into the use of eadar for crop discrimination.

The radar return from a given target is a function of both

system and target parameters and their interaction. 	 In general,

the system parameters of importance are frequency, incidence

angle,	 and	 polarization,	 whereas	 geometric	 and dieleci,ric

characteristics are the most important target parameters. These

parameters and their relationship with a° are discussed in some

detail by Ulaby and Moore ('.913) and Ulaby (1975). Cihlar (1979)

provides a review of active microwave remote sensing of

agricultural targets and describes significant research results

relating to the investigation of target and system parameters,

their interaction and their effects on aa. 	 P

As a result of the promising results of the early studies, a

well-developed research program has been established at the

University of Kansas to investigate the crop discriminating

ability of radar. Ground-based radar systems have been developed

and employed for these studies because of the paucity of

t
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calibrated	 airborne	 radars	 (Ulaby,	 1981).	 Bradley	 and	 Ulaby

' (198U)	 have	 demonstrated	 high	 correlations	 with	 airborne	 and

ground-based	 data,	 which	 allows	 the	 use	 of	 the	 results	 obtained

from truck-mounted Microwave Active Spectrometer 	 (MAS)	 systems	 in

interpreting airborne radar data.

These studies have investigated the relationship of a°, which

represents	 image	 tone,	 to	 various	 system	 and	 target	 parameters.

The	 results	 have	 helped	 both	 to	 identify	 and	 to	 increase	 our

understanding	 of	 the	 relationships	 between	 a°	 and	 crop	 type

(Ulaby,	 1975),	 row-direction	 effects	 (Hatlivala	 End	 Ulaby,	 1976b;

Ulaby	 Busn,	 1975,Ulaby	 and	 Bare,	 1979),	 plant	 moisture	 (and
s

1976),	 growth	 stage	 (Bush	 and	 Ulaby,	 1975),	 and	 diurnal

fluctuations	 (Ulaby	 and	 Batlivala,	 1976).	 Using	 the	 relationships

established	 by	 these	 investigations,	 the	 feasibility	 of	 using

i

radar data	 for crop classification were evaluated 	 (Bush and Ulaby,

1977a,	 1977b;	 Ulaoy	 and	 Burns,	 1977).	 The	 results	 were	 also used

to	 identify	 operational	 system parameters	 for a	 future spaceborne

1971).	 A	 laterradar system	 (Bush and Ulaby,	 1971c;	 Ulaby et	 al.,

study	 demonstrated	 that	 a	 year-to-year	 consistency	 in	 crop

i

classification	 of	 approximately	 9U%	 correct	 prediction	 could	 be

achieved	 with	 ground-based	 a°	 values	 (Ulaby	 et	 al.,	 1979).

Studies	 conducted	 by	 European	 investigators	 have	 also

substantiated these findings	 (de Loor and Jurriens,	 1971,	 1974).

As	 mentioned	 above,	 comparatively	 few	 studies	 have	 been

conducted	 using	 airborne	 platforms.	 Batlivala	 and	 Ulaby	 (1975)

investigated	 the	 use	 of	 L-band	 dual-polarized	 radar	 imagery	 for

crop discrimination.	 They reported a 65.5% correct classification

21I
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with L-HH data for curn, soybeans, woods, and pasture using image

tone.	 When the L-HV data was used with the HH data,

classification accuracy rose to 74%.	 Brisco and Protz (198U)

reported corn classification accuracies exceeding 90% using the

ER114 four-channel radar system but an overall accuracy of only

about 5Ut for hay-pasture and grain fields (Brisco and Protz,

1982).	 Parashar et al. (1979) also used the ERIM system to

investigate the radar discrimination of crops. They reported that

the multichannel	 data provided more information for crop

discriminatiun than either channel alone. 	 They could readily

detect differences between harvested and unharvested crops but

fuund a high degree of confusion among the numerous crop types

considered.	 both Brisco and Prutz (1980, 1962) and Parashar et

al.	 (1979)	 used	 image tone and texture in their manual

interpretations.	 Image texture could not be readily used in the

digital	 analysis,	 wnich	 resulted	 in	 comparably	 poorer

classifications using automatic techniques. 	 Shanmugarn et al.

(1983) investigated the use of airborne multidate/multifrequency

radar data over a test site near Colby, Kansas. They reported an

overall accuracy of about 90% for corn, pasture, and bare ground

using C- and L-band multidate scatterometer data. Wit" u l
^ values

representing tone.

The results of these investigations are encouraging and

demonstrate the potential of radar as a crop classifier. The use

of multidate radar data, combined with MSS data, promises even

better results in the future (Ahern et al., 1978; Eyton et al.,

1979; Ulaby et al., 1982). 	 Althouoh the methodology for the

c
r.

a

nJ

Al

i

P^

a

w



1

t

i

operational use of radar data in a crop-information system is as

yet not established (King, 1979), future research and development

should produe ; the necessary techniques. 	 Texture has been used

extensively in toe past for visual radar interpretations, and the

methodology for automatic extraction of spatial information is

being developed.	 This, combined with multitemporal, multisensor

data, should allow the operational use of radar for crop

discrimination in the future.

2.6 Summary

Since the mid-196Us, radar systems have been providing

imagery	 of	 a	 variety	 of	 natural-resource,	 land-use and

environmental studies.	 These systems offer several advantages

over alternate remote-sensing systems, but methodology needs to be

developed before their operat i onal use will become feasible. This

chapter summarized the use of radar for the remote sensing of

land-use, forest, and agricuitural targets. Research papers were

surveyed and the results of the major investigations in these

areas of study were presented. In each case, the results showed

that the use of radar for these applications is feasible.

However, the studies uniformly point out that suitable methodology

must be developed before the operational use of radar is

possible.	 Two areas of research that appear , p romising for the

improved use of radar were discussed.	 It was found that the use

of integrated data sets and digital measures of image texture have

resulted	 in	 improvements	 in	 land-use	 mapping	 and	 crop

discrimination.
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Image texture is a valuable component of radar image

analysis, and the development of an automatic textural measure for

machine classification is expected to greatly improve the utility
	 a

of radar data for agricultural, forestry, and land-use mapping.

The combination of microwave data with data from other sensors

such as MSS, and with other geodata such as soil information, also

promises	 to	 improve	 greatly	 the	 utility	 of	 radar	 for

classification and mapping, as more information is provided by

these complementary data sources. 	 The continued development of

radar remote-sensing techniques can be expected to produce an

operational methodology for use with these types of data when

geoscientific investigations Are undertaken.

24	 4
1



same~ +++^+-^....^...1,F...^,

CHAPTER 3

LAND-COYER NAPPING IN OKLAHOMA

3.1	 Introduction

At	 the	 time	 of	 this	 study,	 only	 two	 spaceborne	 microwave

systems,	 Seasat in 1918 and the Shuttle 	 Imaging Radar-A (SIR-A)	 in

1981,	 had	 provided	 radar	 imagery	 of	 the	 ear-th' S	 Sur fare	 (Jordan,

1980;	 Elachi,	 1982).	 Whereas	 Seasat's main operational	 thrust was

toward	 oceanographic	 applications,	 studies	 utilizing	 SIR-A	 data

nave	 concentrated	 on	 geology.	 As a	 result.	 comparatively	 little

i research	 has	 been	 conducted	 on	 the	 utility	 of	 spaceborne

synthetic-aperture 	 radar	 (SAR)	 data	 for	 monitoring	 and

inventor in	 the	 earth's	 renewable	 resources.	 Nevertheless.	 theY	 9

imagery these two space-SAR systems have produced demonstrates

clearly the feasibility of (1) generating high-resolution radar

C.	 imagery using a satellite platform as a base and (2) extracting

useful information from radar images for use in terrain

^•	 applications.

This study	 investigates	 the	 use	 of	 spaceborne	 SAR data	 for

land-cover mapping.	 The	 land-cover	 classification accuracy

i.
achievable with	 Seasat	 data	 was	 compared	 with	 that	 obtainable

using	 SIR-A	 data	 and	 Landsat	 MS:	 data.	 A	 supervised maximum-

likelinood was used in the analyses on bath aclassifier -pixelper

basis	 and on	 spatially	 averaged	 data.	 The	 image data were then

merged	 in several	 multichannel	 combinations	 and	 reclassified in

order to determine the optimum combined-image data set for land-

cover classification.

25
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3.2 Image Data and Test-Site Uescription

In August of 1978, the Seasat satellite imaged an area in

Uklahoma on both the descending (August 2U, Rev. 774) and

ascending (August 21, Rev. 795) orbits. Un November 13, 1981, the	 t

SIR-A system acquired SAR imagery of Oklahoma (Data-Take 22,

Orbit 18). A portion of the imaged area was identical to the area	 z

imaged previously by the Seasat satellite. The nominal scale of

the SAR data sets was 1:5UU,000, with a resolution of 25 in for the

Seasat data and 38 m for the SIR-A date. On the same day, an

aircraft flying at a low altitude obtained color and color-

infrared (CIR) photography (scale s 1:20,000) of a portion of the

area	 imaged	 by	 the	 SIR-A radar	 for ground-truth	 purposes.	 A

Landsat	 scene	 from	 October 11,	 1978 (Scene	 ID	 No.	 3U22U-16242)

also	 covered	 this	 area	 of	 Oklahoma. The	 overlapping	 regions	 of

the	 data	 sets	 determined the	 location	 of	 the	 study	 area

(Figure 3.1).	 Examples	 of these	 SAR images	 and	 band	 7	 of	 the

Landsat scene are presented in	 Figures 3.2	 -	 3.5.	 *fhe	 Seasat	 and

Landsat	 images were	 initially acquired in	 digital	 form,	 whereas	 a

portion of the SIR-A imagery, corresponding to the study area, was

digitized ac Goddard Space Flight Center (GSFC).	 A digitizing

aperture of 1UU um was used, which approximated the original pixel

size of the SIR-A data such that no spatial averaging occurred in

the digitization process. A comparison of the system parameters

for the Seasat and SIR-A sensors is presented in Table 3.1.

Cover types for the classification analyses were selected on

the basis of color-infrared photography and a field visit. Five 	 w

land-cover types were chosen, consisting of cultivated (hay,
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Fig. 3.2. SIR-A imagery (Nov. 13. 1982) of the Oklahoma land-cover

classification study area.
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Fig. 3.3. Seasat imagery (Aug. 20. Rev. 774) of the Oklahoma

land-.over classification study area.
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Fig. 3.5. Landsat band 7 image (Oct. 11. 1978) of the Oklahoma

land-cover classification study area.
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TABLE 3.1

A Comparison of System Parameters in the Seasat and
SIR-A Synthetic-Aperture Radar Systems

Parameters	 Seasat	 SIR-A

Frequency	 1.275 GHz
Incidence Angle	 200
Polarization	 HH
Resolution	 25 m
Number of Looks	 4
Swathwidth	 100 km

Orbital Altitude	 800 km

1.278 GNz
50°
HH
38 m
6
50 km
245 km
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winter wheat, and bare soil), forest, pasture, urban, and water

categories.	 An attempt was made to locate ten fields,

representing each land-cover category to be used for the
	 4

supervised classification, by inspecting the CiR photography.

A subsequent check was made to ensure that these fields could be

identified on the satellite imAgery. However, within the study

area, there were only five cultivated fields sufficiently large to

allow data extraction, and only one body of water (Oologah Lake),

which was sampled at five locations. Thus, 4U fields, ten each of

the urban, forest, and pasture categories and five fields of the

water and cultivated categories, were used in the study. The ten
	 a

9

fields representing the urban category were from the towits of

Chelsea, Cnouteau, and Pryor, Uklahoma. Due to the smaller scale

of the Landsat data, some of the fields could not be delineated.

Thus, although 4U fields were used in the SAR analyses, only 32

were actually identified on the Landsat imagery.

3.3 Methodology

The corner-point coordinates for each of the 4U fields, taken

from inside the field's boundaries, were determined for each image

data set on the University of Kansas Remote Sensing Laboratory's

(RSL) image-analysis system.	 These data were then extracted,

using RSL's Harris 230 computer facility, fur subsequent maximum-

likelihood supervised classification analyses. 	 There were at

least 10,000 pixels in each SAR data set. Maximum likelihood, or

Bayes'	 optimal	 classification is an intuitively satisfying

classification	 theory	 because	 it	 minimizes	 overall

33	 1
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misclassification.	 Swain and Davis (1978) provide an excellent

description of maximum-likelihood classification theory.

Per-Pixel Classifications

For each SAR data set, a WI random sample of the pixels in

each	 category was used	 to train	 the maximum-likelihood

classifier.	 These training statistics were then applied to the

remaining 9U% of the pixels.	 Cateyory-confusion tables and a

coomnon measure of category separability known as the Normalized

Difference (NO), defined as the difference in the category means

divided by the sum of their standard deviations, were generated

fur each classification performed.	 The pixels in each category

were	 then	 plotted	 as	 normalized	 probability	 density

distributions.	 These	 three	 results	 (hereafter	 called

classification attributes) were then used to evaluate and compare

the overall weighted classification accuracies obtained for each

supervised classification. For the Landsat MSS data, bands b and

7 were used simultaneously for the per-pixel classification of the

32 identifiable fields.

Spatial Averaging

Fading, represented by image speckle, is inherent in SAR data

,is a result of the coherent nature of the propagated signal (Bush

dnd Ulaoy, 1915).	 The effects of fading can be reduced by

averaging the number of independent observations, either in the

frequency domain or in the spatial domain.	 io investigate the

influence of fading on land-cover classification accuracy, the

3
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1
S resolution of the SIR-A and Seasat (descending orbit) data was

degraded by averaging blocks of pixels in a stepwise manner, i.e.,

L x 
	 pixels, 3 x Z, 3 x 3, etc., and the spatially averaged data

then reclassified.

n 	 Per-Field Classifications

All	 image data	 sets (including	 Landsat)	 were	 then averaged

with a 6-pixel by 6-pixel filter, and the resulting data were used

in	 a per-field supervised classification.	 Note that each field	 in

this case	 is	 actually a	 6- x 6-pixel	 subfield	 formed by averaging

as many	 6- x 6-pixel blocks	 from	 the	 original	 fields as

This procedure produced at	 least	 100 "fields" for each

r

possible.

SAR data	 set. In	 all,	of the classification analyses 	 of spatially

averaged data, a 50%-training, 5U%-testing sample was employed.

Various multichannel/multisensor combinations were then

1	
combined and classified	 using a	 50%-training,	 5U%-testing

sample.	 However, this was done on a whole-field basis (rather

than the 6- x 6-pixel "fields" described above), since there was

no attempt to register the image data sets on a pixel basis

because of differences in the resolutions and geometries of the

various sensors.	 The interpretation of the influence of spatial

averaging	 and	 multichannel	 combinations	 on	 land-cover

classification accuracy was based on a category-confusion table.

3.4 Pixel Classifications

The weighted overall classification accuracy obtained for the

testing sample of the Seasat (descending pass, Rev. 774) pixel

35
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data was 49.86%. Table 3.2 presents the category-confusion

and separability measures for the supervised classification.

Pasture was the most accurately identified category (77X),

followed by the forest, water, urban, and cultivated categories.

The forest and urban pixels produced the brightest tones on the

image, whereas the pasture, water, and cultivated categories all

had low tonal values.	 The standardized probability density

distribution (Figure 3.6) illustrates the range of pixel values

for these categories on the descending Seasat image.

As the classification attributes presented in Figure 3.6 and

Table 3.2 indicate, the pixels in any given category have a large

standard deviation and a low separability, resulting in the poor

classification accuracy of approximately 50%. 	 The pasture

category, with a relatively small standard deviation (6.63) and

dark tonal levels, is the most accurately classified category.

Urban pixels are highly confused with forest pixels and to a

lesser extent with water and pasture pixels. 	 Water pixels are

largely misclassified as pasture pixels and secondarily as forest

pixels.	 The cultivated pixels are never accurately classified,

since their range of tonal values is completely enveloped by the

pasture and water pixels.

The weighted overall classification accuracy obtained for the

ascending Seasat pass (Rev. 795) was 50.32%. This is very similar

to the results for the descending Seasat pass, although

differences in category confusion related to orthogonal look

direction are present (Table 3.3, Figure 3.1). 	 The tonal values

of the water pixels were brighter on the ascending pass as

a
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TABLE 3.2

Category Confusion Table and Separability Measures of the
Supervised Maximum-Likelihood Classification for Seasat
(Rev. 774) Pixel Data for the Categories Cultivated (C),

Forest (F), Pasture (P), Urban (U), and Water (W)

Category

C F	 P U W S

Mean 19.44 34.89	 17.7n 48.81 20.37

Std. Dev. . 6.81 13.04	 6.63 29.67 6.92

Separability
t

C-F	 C-P C-U	 C-W F-P	 F-U	 F-W P-U P-W	 U-W

0.78	 0.13 0.81	 0.07 0.87	 0.33	 0.73 0.86 0.20	 0.78

Category Confusion Table

^I

True Classified as Percent (x)
G

Category C F	 P U M

C 0.00 10.42	 66.59 0.00 22.99

F 0.00 61.86	 14.90 4.09 19.15

P 0.0n 6.99	 76.61 0.07 16.33 'S

U 0.00 58.27	 7.01 22.84 11.88

W 0.00 12.ni	 :8.32 0.00 29.66

Weighted Overall Classification Accuracy = 49.86%

37
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TABLE 3.3

Category Confusion Table and Separability Measures of the
Supervised Maximum-Likelihood Classification for Seasat
(Rev. 795) Pixel Data for the Categories Cultivated (C),

Forest (F), Pasture (P), Urban (U), and Water (W)

C	 -
Category

P	 U	 W
Mean	 22.18	 44..89	 19.83	 39.01	 34.33
Std. Dev.	 7.11	 15.10	 6.87	 15.07	 11.42

Separability

C-F	 C-P C-U	 C-W F-P	 F-U	 F-W P-U P-W	 U-W

1.02	 0.17 0.76	 0.66 1.14	 0.20	 0.40 0.87 0.79	 0.18

Category Confusion Table

True Classified as Percent (x)

Category C F	 P U W

C 0.00 3.01	 78.34 0.00 18.65

F 0.00 65.73	 10.52 0.00 23.74

P 0.00 2.08	 66.67 0.00 11.25

U 0.13 50.20	 20.53 0.00 29.13

W 0.00 .11.45	 28.67 0.00 33.88

Weighted Overall Classification Accuracy = 50.32%
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compared to the descending pass such that they overlapped with the

iurban and forest pixels rather than with the cultivated and

pasture pixeis.	 Furthermore,	 the urban pixels were	 not	 as bright

on	 the ascending pass as 	 they were on	 the descending pass.	 This

resulted	 in	 a	 decreased	 classification	 accuracy	 for	 urban	 pixels r

( n 	 23% to U%) and an	 increased classification accuracy for pasture

pixels	 (w77%	 to 87%).	 The	 other	 categories	 yielded	 similar

classification accuracies.

The	 SIR-A	 pixel	 data	 resulted	 in	 a	 weighted	 overall

4

I

classification	 accuracy	 of	 71.79%.	 This	 is	 a	 considerable

t
improvement	 over	 the	 results	 obtained	 with	 the	 Seasat	 data,	 and

f

upon	 examination	 of	 the	 classification	 attributes	 (Table	 3.4,

Figure	 3.8),	 it	 can	 be	 related	 to	 two	 causes.	 First,	 the pixels

in the water category have a much lower return than they do on the

Seasat	 images	 relative to other target 	 classes,	 and thus	 they	 are

classified	 more accurately	 (i.e.,	 from	 34% to	 94%).	 Secondly,	 in

the	 SIR-A	 image,	 the	 forest	 and	 urban	 pixels	 are	 proportionately

much	 brighter	 than	 the	 pixels	 in	 the	 other	 categories	 when j

compared	 to	 the	 Seasat	 images.	 This	 results	 in	 an	 improved !'

classification accuracy of approximately 63% to 951 for the forest

category.	 Cultivated	 pixels	 are	 entirely	 misclassified,	 oeing

most	 often	 identified	 as	 pasture	 or	 water	 pixels.	 Urban	 pixels

forest(1.93%	 accuracy)	 are almost	 entirely classified as 	 pixels,

whereas	 pasture	 pixels	 are correctly	 identified	 70% of	 the	 time,

which	 is	 close	 to	 the	 accuracy	 obtained	 on	 the	 descending

' Seasat pass.

3!
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TABLE 3.4

Category Confusion Table and Separability Measures for the SIR-A
Supervised Maximue-Likelihood Pixel Classification for the Categories
Cultivated (C). Forest (F). Pasture (P). Urban (U). and Hater (W)

Cat Wry

C F	 P U W

Mean 48.24 188.82	 59.53 198.18 32.31

Std . nev . 12.27 51.58	 21.76 62 .K9 5.88

Separability

C-F	 C-P C-U	 C-W F-P	 F-U	 F-W P-U P-W	 U-W

2.20	 0.27 2.00	 0.88 1.79	 0.09	 2.72 1.66 0.91	 ?.41

Category Confusion Table

True Classified as Percent (t)

Category C F	 P U W

C 0.00 1.86	 55.23 0.00 42.91

F 0.00 95.18	 3.43 1.39 0.00

P 0.00 6.58	 70.16 0.00 23.26

U 0.00 95.42	 2.65 1.93 0.00

W 0.00 0.03	 6.15 0.00 93.82

Weighted Overall Classification Accuracy - 71.79%

4
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Per-pixel supervised classification of data from Landsat

bands b and 7 produced a weighted overall classification accuracy

of 62.261 (Table 3.b), which is intermediate in accuracy between

that obtained with the Seasat and with the SIR-A data. Water is

perfectly classified with the Landsat data, largely because of the

very low reflectance values on band 7. Pixels in the cultivated

category are accurately identified 92% of the time due to high

reflectances in bands 5 and 7. This 1s a great improvement over

the SAR data, in which cultivated pixels were never accurately

identified.	 Pixels in the forest and urban categories are

identified with accuracies of NA and 66.5%, respectively. There

is a high degree of confusion between forest, urban, and pasture

pixels, the latter being poorly classiAed (accuracy - 28.1%).

Given that these cover types are composed of various combinations

of trees, grass, and buildings, this result is not unexpected.

Microwave backscattering frog, terrain elements is a function

of the system parameters and of the dielectric and geometric

characteristics of the target. The general response of the land-

cover categories as observed on the SAR imagery is typical of

these types of targets at L-band frequencies. The orthogonal look

directions of the two Seasat images results in different

backscattering	 characteristics	 for	 the	 water	 and	 urban

categories.	 This difference in tone may be related to the

orientation of residential street patterns, i.e., it may be

similar to the cardinal effect	 eported by HArdaway et al.

(1982). For the water category, the wind direction and resulting

surface roughness in relationship to look direction are the

s

4
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TABLE 3.5

Category Confusion Table for the Supervised Maxiwue-Likelihood Pixel
Cl aAsification of Landsat Data (Bands 5 and 7) for the Categories
C+,W vated (C). Forest (F). Pasture (P), Urban (U), and Water (W)

Category Confusion Table

True Classified as Percent (x)

Category C F	 P U W

C 92.2 0.0	 2.9 4.0 0.0

F 0.0 70.4	 4.1 25.6 0.0

P 3.0 29.1	 28.1 39.7 0.0

U 0.0 15.0	 18.5 66.5 0.0

W 0.0 0.0	 0.0 0.0 100.0

Weighted Od p rall Classification Accuracy n 62.26%
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' probable	 causes	 of	 the	 difference	 in	 tone	 observed	 in	 the

two images.

The effect	 of the different	 incidence angles of the	 two SAR

systems	 (209	for Seasat	 versus 5U° for 'iR-A)	 also influences the

nature of the backscattering 	 for the water category.	 Water acts

as a specular reflector,	 and at	 the 5U°	 SIR-A	 incidence angle,	 it

yields	 little	 backscattering,	 thus	 allowing	 accurate

discrimination	 (99% accuracy).	 At the 2U° Seasat	 incidence angle,

however,	 water	 exhibits	 more	 backscattering,	 which	 is	 probably

attributable	 to	 wind-induced	 surface	 roughness.	 The	 increased

backscattering	 led to a brighter tone	 for the water pixels on the

Seasat	 images	 and	 thus	 increased	 confusion	 with	 the	 pasture	 and

forest	 categories.	 Another,	 although	 more	 subtle,	 difference

caused by the changing incidence angle was the backscattering from

the	 forest	 and urban	 cover-types.	 In	 the Seasat	 images,	 more

noticeably on the descending pass, the urban pixels are	 relatively

brighter	 than the	 forest	 pixels.	 At	 a	 50 0 incidence	 angle,	 the

-.nicrowaves may undergo more attenuation in a forest canopy than in

urb-.n	 cover, which may explain 	 the	 lower	 return characteristic of

forests.

3.5 Spatial Averaging and Multisensor Classification

Spa t ial averaging of the pixels within a field resulted in

increased classification accuracy (-:10%) for both SIR-A data and

Seasat data (Rev. 774).	 The increase in accuracy is rapid at

first, until about 2U independent samples (N) are averaged, at

which	 point	 the	 increase	 in	 accuracy	 becomes	 gradual



I
'	 irrri► ^ i

i

 ?.9 .	 The averaging of five(Figure	 )	 g 9pixels for the Seasat datap

which were proc ygsed at four looks, produces 2 1) independent

samples, whereas for the SIR-A data (six looks) it represents the

averaging of three to four pixels. 	 The author attributes the

initial	 rapid	 increase	 in	 classification	 accuracy	 to	 a	 reduction

in	 fading	 and	 the more	 gradual	 increase at	 higher values of N to

the averaging	 of within-field	 variability	 as well	 as	 to a	 further

reduction in fading. 	 Spatial	 averaging of the Landsat data with a

6 x 6 filter	 resulted	 in	 an	 increased	 classification	 accuracy	 of

only 4.1%	 (i.e.,	 from 62.3% to 66.4X). 	 This	 is	 largely due to the

-field	 the	 time-bandwidthaveraging	 of	 withinvariability,	 as

product	 of	 the	 Landsat	 data	 is	 large	 enough	 to	 make	 the

consequences of fading	 insignificant.

The	 multisensor	 combinations	 were	 0	 ,sified	 on	 a	 per-field

basis,	 since	 there was	 no	 attempt	 to	 register	 the different	 data

sets on a	 per-pixel	 basis.	 Due to the fact	 that some fields were

either	 too	 small	 or	 could	 not	 be	 identified	 on	 the	 Landsat

imagery,	 32	 40 fields	 inonly	 of	 the	 original	 were	 used	 these

analyses.	 The	 results	 of	 the	 multisensor,	 supervised

classification	 are	 summarized	 in Figure 3.10.	 Note that	 the base

level	 in	 each	 multisensor	 classification	 in	 Figure	 3.10	 is	 the

accuracy	 achieved	 with	 a	 6-pixel	 by	 6-pixel,	 spatially	 averaged

data set.

Combining	 Landsat	 bands	 5	 and	 1	 with	 eac:.	 SAR	 data	 set	 did

not	 improve	 classification accuracy	 as much	 as	 combining	 the	 two

Seasat	 data	 sets,	 nor	 as	 much	 as	 when	 the	 Seasat	 data	 were

combined with the SIR-A data. 	 This was largely	 due to the
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0 Seasat-A (Ascending)
® seasat-A (Descending)

Londsat (5 a 7)
Seawt (D~I

SIR-A
97.5

02.3
00.3

•.•	 07.1
...	 dY 85.3

77.4	 • ' "'

J	 C0.4	 85.4 ..
a3.i e4.5	 ...

A
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f-75 f-89 f-75 f-75 f-100
P - 60 P-100 P- 80 p - 90 p - 90
u's 100 u -100 u -100 u -100 u -100
w-100 w-100 W -100 w-100 w -100

Fig. 3.1n. Summary of multisensor supervised land-cc
classification results for the Oklahoma s
Note that the lower level of each bar is
sification accuracy achieved with a six-F
spatially averaged data set.
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confusion	 of	 forest with	 pasture	 fields	 that	 occurred when	 using

the	 combined	 MSS	 and	 SAR	 data.	 However,	 all	 multisensor

combinations	 produced	 higher	 classification	 accuracies	 than	 any

single	 channel,	 with	 the	 best	 results	 obtained	 by	 combining	 SAR

data obtained at different	 incidence angles.

The best weighted overall 	 classification accuracy	 (97.5%) was

achieved by combining the two Seasat data sets with the SIR-A data

(Table 3.6).	 Note	 that	 the	 combination	 of	 the	 ascending	 Seasat

tdata with	 the	 SIR-A	 data	 in	 96.8%results	 a	 classification

accuracy,	 with	 the	 addition	 of	 the	 descending	 Seasat	 data

improving	 the	 accuracy	 only	 U.7%.	 When	 all	 three	 SAR	 data	 sets

L
were combined,	 all	 categories were classified with 	 100% accuracy,

with	 the exception	 of pasture	 fields.	 Ten	 of	 the pasture fields

were	 confused	 with	 cultivated	 fields,	 resulting	 in	 a	 90%

classification accuracy for the pasture category.

f Previous	 research	 has	 demonstrated	 the	 complementary	 nature

of MSS data	 and	 SAR	 data	 (Ahern et al.,	 1978;	 Wu,	 198U;	 Ulaby et

al.,	 1982).	 The	 per-pixel	 classifications	 reported	 in	 this	 study

also indicated that an MSS and SAR data combination would do very

well	 at	 discriminating	 these	 five	 cover	 types,	 sirc;e	 the	 highly

confused categories were different for the MSS data as compared to

the SAR data. In view of these results, further research needs to

be conducted to investigate the synergistic nature of satellite

MSS and SAR data. Further improvements in classification accuracy

can also be expected by using multitemporal data ( Brisco and

Protz, 1980; Bush and Ulaby, 1978; Paris, 1982; Shanmugan et al.,

1983) and incorporating a machine measure of texture into the

'	 5U



TABLE 3.6

Category Confusion Table for the Supervised Maximum-Likelihood
Classification of the Combined SIR-A Data and Seasat

Ascending and Descending Passes

Category Confusion Table

True Classified as Percent (x)

Category C F	 P U M

C 100.0 0.0	 0.0 0.0 0.0

F 0.0 100.0	 0.0 0.0 0.0

P 10.0 0.0	 90.0 0.0 0.0

U 0.0 0.0	 0.0 100.0 0.0

M 0.0 0.0	 0.0 0.0 100.0

Weighted Overall Classification Accuracy = 97.99%



classification algorithin (Berger, 198U; HaraIick et al., 197U).

The SIR-A and Seasat sensors were designed for geologic and

oceanographic applications, respectively.	 Nonetheless, the

imagery of land surfaces produced by the SAR systems has

demonstrated the usefulness of space-radar data for other terrain

applications. The results presented above indicate that incidence

angle significantly influences radar land-cover discrimination

capabilities when comparing SIR-A and Seasat data. As orbital SAR

data with varying incidence angles are acquired during the SIR-B

experiments, it is likely that further insight into the influence

of incidence angle on microwave remote sensing will be gained.

3.6 Suma rY

Supervised maximum-likelihood classifications of Seasat,

SIR-A, and Landsat (bands 5 and 7) pixel data demonstrated that

SIR-A data provided the most accurate discrimination (72%) of five

land-cover categories.	 The spatial averaging of the SAR data

improved classification accuracy significantly as a result of a

reduction in signal fading and because of the averaging of the

within-field variability. 	 Some improvement in classification

accuracy was obtained by averaging the Landsat data. 	 This was

attributed to reduced within-field variability. 	 The ,results of

using various multisensor combinations indicated that the best

classification accuracy was achieved by combining SAR data

obtained at different incidence angles.	 The best multisensor

classification accuracy	 (97.5%) was achieved by combining

ascending and descending Seasat data sets with SIR-A data. Other

52



have reported significant improvements using MSS

with SAR data.	 As more s pace SAR data become

itional research should be conducted to investigate

possibility of land-cover classification using

,s.
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CHAPTER 4

CROP CLASSIFICATION IN KANSAS

1	 4.1 Introduction
In the previous chapter, Level I land-cover classification

(Anderson et al., 1976) usin, satellite SAR and MSS data was

investigated.	 The results were very promising, indicating that

a satellite remote-sensing system may be capable of mapping land

cover at this level of classification.	 For many applications,

however, a more detailed level of discrimination is necessary.

It has been suggested that remote sensing offers great

putential for mapping and monitoring agricultural production

j	 (Bauer, 1975).	 The first step in the process is the accurate

identification of the various crop types found in a particular

j	

region.	 Toward this end, it has been shown that multitemporal

1.	 MSS data can identify crops accurately ( Lacie Symposium,

1978).	 However, the problem of interrupted coverage caused by

weather conditions still exists when using multispectral scanner

^-	 data, and the severity of the problem varies with location. As

a result, there is continuing interest in using the microwave

portion of the electromagnetic spectrum to alleviate this

difficulty.

Previous studies have determined that crop-type influences

radar reti;rn and that discrimination is therefore possible

(Simonett et al., 1967; Schwarz and Caspall, 1968; Haralick et

al., 197U).	 The variations in plant geometry and moisture

content	 characteristic of different crop types lead to
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differences in the backscattering coefficient, which allows

discrimination to occur. 	 Section 2.4 provides a review if the

research investigating crop discrimination with radar.

No studies have yet been conducted using satellite SAR data

for	 crop-discrimination purposes. Although	 the	 system

parameters	 of	 Seasat	 are not	 optimum for	 crop	 classification,

multitemporal	 data	 sets from	 Seasat are	 available	 and	 are

amenable to crop-discrimination research. This chapter presents

findings based on Seasat SAR data, both alone and in combination

with Landsat data, for crop classification. 	 Multichannel

combinations consisting of multidate SAR data and multiserrsor

data were used for the maximum-likelihood classification of

corn, milo, and wheat.

4.2 Image Data and Test-Site Description

The Garden City area of western Kansas was imaged several

times during the 1978 growing season by the Seasat SAR.

Digitally processed images from three ascending orbital tracks

were acquired over this site.	 The images were recorded on

September 22 (Rev. 1254), October 1 (Rev. 1383), and October 7

(Rev. 1469), 1978.

An analysis of the radiometric stability of these three

Seasat scenes revealed that the September 22 and October 7

images are equivalent, whereas the October 1 scene shows a

consistent gain bias that is 1.7 dB below the other two images

(Brisco et al., 1983). A Landsat CCT of an October 14 scene of

the same area	 30223-16911) was also obtained. 	 The area at

55
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The area south of the Arkanaaa 1%I Val	 13 1nuana Iva IY

irrigated, largely by center-pivot sprinkler systems. 	 Corn,

milo, and wheat are the crops most commonly grown in the region,

with occasional fields of Sudan grass, sugarbeets, and alfalfa

also present. An inventory of the field types occurring in the

area in 1978 was compiled from aerial photographs provided by

the Agricultural Stabilization and Conservation Service (ASCS)

(the ASCS acquires such images for crop-inventory purposes).

For several reasons, it was decided to limit the study to

center-pivot fields of corn, milo, and wheat. First, only these

crop types were represented by a sufficiently large number of

fields to be included in subsequent classification analyses.

Next, these three crops were the most important cash crops grown

in the region.	 Finally, the boundaries of the center-pivot

fields were distinct on the imagery, and thus confidence was

^-	 imparted to the registration of the image data to the field

inventory.	 The Seasat images used in the crop-classification

(	 analyses are presented in Figures 4.2 through 4.4; band 5 from

the Landsat scene is depicted in Figure 4.5.

4.3 Methodology

Ten center-pivot fields each of corn, milo, and wheat were

identified on the imagery.	 The corner-point coordinates of

tnese 30 fields were then obtained for each image, using the VDI

image-analysis system. These data were then extracted from the

n
which these four images overlapped

(Figure 4.0.
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Fig. 4.2. September 22 Seasat image of the Kansas crop-
classification study area.
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Fig. 4.3. October 1 Seasat image of the Kansas crop-
classification study area.
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Fig. 4.4. October 7 Seasat image of the Kansas crop-
classification study area.
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Fig. 4.5. Landsat band 7 October 14, 1978) image of the Kansas
crop-classification study area.
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image tapes and subjected to the Mi.0 routine used in the

analysis reported in Chapter 3.
a

Per-pixel classifications were first performed on each data

set using a 13-training and 90%-testing s .	 The image data

were averaged, using a 6 x b window for the Seasat data and a

4 x 4 window for the Landsat data, and then reclassified using

the same training and testing sample sizes.

Next, the Landsat data files were rotated 9U° to the left

to match the orientation of the Seasat images and to allow

registration of the two data files. The data were also edited

as necessary to produce the same number of averaged pixels per

field.	 All multidate combinations of Seasat SAR data were

' classitied	 using	 the	 MLC	 routine,	 and	 classifications	 of	 the

i
spatially	 ,averaged	 data	 were	 performed	 on	 various	 combinations

of	 the	 Seasat	 and	 Landsat	 data.	 For	 the	 multichannel

classifications, a 2U%-testing and 80%-training sample was used.

k

4.4	 Single-Channel Classification
I^

Tne	 per-pixel	 classifications	 and	 the	 classifications "«

i
performed	 on	 the	 averaged	 data	 are	 presented	 in	 Table 4.1.

C	 ^.
i

An improvement	 in	 classification	 accuracy	 of	 approximately	 1U%

was achieved by averaging the Seasat data, 	 whereas	 little change

occurred	 in	 the	 Landsat	 classifications. 	 For	 the	 Seasat	 data,

this	 is	 attributed	 to	 a	 reduction	 in	 fading,	 (Bush	 and	 Ulaby,

1975),	 whF-eas	 for	 the	 Landsat	 data	 the	 time-bandwidth	 product

i
was	 1^-qe	 enough	 to	 make	 the	 consequences	 of	 fading

insignificant.	 The Seasat data started as an average of four

i
r

i
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TABLE 4.1

Category Confusion Tables for the Per-Pixel Classifications and
for Classifications of the Averaged Data for Corn (C),

Milo (M), and Wheat (W)

Pi xel Averaged Data

True Classified as Classified as
Channel	 Category C M W C M W

Sept. 22 Seasat
C 50.2 32.6 17.2 C 47.2 51.9 .9
M 24.1 39.0 36.9 M 14.6 73.9 11.6
W 2.3 18.4 79.2 W 0.0 19.2 8n.8

T.A.*	 = 56.15 T.A. 66.94

C M W C M W 
Oct. 1 Seasat

C 37.4 28.1 34.5 C 64.7 25.9 9.4
M 31.6 31.4 36.9 M 49.4 43.3 7.3
W 9.0 16.6 74.4 W 15.9 19.4 64.7

T.A. 47.27 T.A.	 = 57.34

C M W C M W
Oct. 7 Seasat -- --

C 45.6 28.9 25.6 C 47.9 31.9 20.1
M 20.9 38.3 40.8 M 11.1 50.7 38.2
W 5.6 21.9 72.4 W 1.4 16.2 82.4

T.A. 52.01 T.A. 60.55

Landsat 5
C M W C M W

C 77.0 14.7 8.4 C 54.2 14.6 31.3
M 55.3 36.1 8.6 M 34.0 34.0 31.9
W 62.7 24.3 13.0 W 36.1 22.9 41.0

T.A. = 42.50 T.A.	 = 43.06

C 11 W C M W

Landsat 7

r	 ,4
C
M

76.3
55.5

12.5
27.3

11.2
17.2

C
M

81.3
58.3

6.
27.1

19.5
14.6

W 54.9 25.7 19.4 W 54.2 19.4 26.4

T.P.. =41.60 T.A. 44.91

* T.A. = Total	 Accuracy
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I

looks, such that the 6 x 6 average represents 144 looks.

The Seasat data always produced higher classification

accuracies than the Landsat data. Of the three Seasat scenes,

the	 September	 22	 scene	 produced	 the	 highest	 classification

accuracy	 (67%),	 followed	 by	 the	 October	 1	 scene	 (57%).	 Wheat

was always the most accurately 	 identified crop,	 followed by milo
r

on	 September	 22 and	 October	 7,	 and corn	 on	 October	 1.	 Landsat

band 5	 produced	 a	 43%	 correct	 classification,	 whereas	 a	 45%

correct classification was achieved using band 	 7.	 Bands 4 and 6

were	 not	 included	 in	 the analysis	 because	 they	 are	 very	 highly {

correlated	 with	 bands	 5	 and	 7,	 respectively.	 When	 the	 Landsat

data	 were	 used,	 corn	 was	 the	 most	 accurately	 identified	 crop.

The	 statistics	 for	 the	 thr:',e	 crop	 types	 from	 all	 five	 channels

are	 presented	 in	 Table	 4.2;	 Figure	 4.6	 is	 a	 graphical

presentation of both the means 	 and the standard deviations.	 The c

^

figure,	 along with	 a	 generalized	 crop	 calendar	 (Figure	 4.7),	 is

a

useful	 in explaining the classification	 results.

In	 late	 September	 and	 early	 October,	 the	 corn	 was	 being

harvested, whereas milo was just	 reaching maturity.	 The winter-
i	 t	 •	 f

wheat	 fields were	 harvested	 in	 late Ju a	 or early July and were

either	 lying	 fallow	 at	 that	 time	 of	 year	 or	 being	 replanted.

Thus,	 on	 the	 Seasat	 imagery,	 wheat	 fields	 are	 always	 dark	 in

tone,	 whereas	 corn	 and	 milo	 are	 brighter.	 This	 results	 in	 the

high	 confusion	 between	 corn	 and	 milo	 (see	 Figure	 4.6),	 whereas

the	 wheat	 fields	 are	 more	 accurately	 discriminated.	 Ulaby	 et

al.	 (1979)	 also	 reported	 milo	 as	 being	 the	 worst-classified

=1
crop;	 it was often misclassified as corn.

t
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TABLE 4.2

Statistics for the Three Crop Types from all Five Channels
Used in the Classification Analyses

Channel Statistic Corn Milo Wheat

Seasat: Sept. 22 Mean 41.10 32.25 22.00
Std. Dev. 9.19 4.75 3.79
Minimum 24.41 24.06 15.06
Maximum 15.53 48.78 34.78
Range 51.12 24.72 19.72

Seasat: Oct.	 1 Mean 27.54 24.50 17.73
Std. Dev. 6.30 4.52 4.39
Minimum 16.75 16.97 11.47
Maximum 51.17 38.86 34.03
Range 34.41 21.89 22.56

Seasat: Oct. 7 Mean 32.23 24.73 18.81
Std. Dev. 11.38 4.62 4.47
Minimum 16.42 16.61 12.31
Maximum 77.08 44.25 36.92
Range 60.66 27.64 24.61

Landsat: Band 5 Mean 30.46 34.53 32.27
Std. Dev. 4.98 10.02 7.71
Minimum 21.00 16.75 21.00
Maximum 50.50 54.50 50.00
Range 29.56 37.75 29.00

Landsat: Band 7 Mean 18.69 22.30 20.91
Std. Dev. 3.17 5.50 4.43
Minimum 14.75 15.00 13.75
Maximum 31.50 33.50 30.75
Range 16.75 18.50 17.00
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Landsat band 5 responds to the chlorophyll content (levels)

of the plants, whereas band 7 responds to the plants' cell

structure. The milo was still somewhat green and turgid during

the time period of this study and thus produced higher

reflectances in band 7. 	 Based on the Landsat data, Zorn was

likely to be the most accurately identified crop because of the

very low IR reflections resulting from plant senescence. Due to

the withered state of the canopies, the soil background also may

have been important in the interpretation of reflectances in the

visible region.	 For example, the study area was dominated by

sandy soils, with relatively little variability in soil type,

which tended to decrease the differences in reflectance in the

visible region for these three crop types due to the similar

structure and composition of the underlying soils.

The accurate classification of corn using radar data has

been reported in at least two previous studies (Brisce and

Prutz, 1980; Shanmugan et al., 1983).	 However, these studies

made use of only two radar frequencies and did not include milo

as a category. The high confusion reported previously between

corn and milo is understandable given the similar physical

appearances and growing seasons of the two crops.	 A more

detailed crop calendar for corn and milo is presented in

Table 4.3.	 On the images, the overlapping in maturity and

harvest dates increases the confusion between the two crops.

The large amount of vegetation biomass in either a corn field or

a milo field results in a large o° for these crops and thus

produces a bright return on the image. The wheat fields contain

^ I
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TABLE 4.3

Maturity and Harvest Oates for Corn and Milo;
Percent of Acreage by Specified Oates for the

Southwest Crop Reporting Unit of Kansas
(Average of 1973-1977)

r

September	 October

	

10	 7.0	 30	 10	 20	 30

Corn maturity	 30	 45	 75	 90	 95	 100
4

Corn harvest	 0	 5	 15	 30	 55	 70

Milo maturity	 10	 20	 45	 75	 85	 95

Milo harvest	 --	 --	 5	 15	 30	 50

r	 c
t;

t

r

n l:.
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^ I
little vegetation and thus have a low a° in the Seasat data;

consequently, they are accurately identified. 	 However, if the

classifications are performed for the whole scene, large errors

of commission for wheat from areas such as grasslands and

heavily utilized pasture can be expected.

4.5 Multichannel SAR Classification

Multidate SAR classifications are presented in Table 4.4.

	

by using the data from September 22 in combination with either 	 s
t

the data from October 1 or October 7, a classification accuracy

of approximately 75% was achieved.	 This represents an 8%	 E

increase over the best single-channel classification accuracy

(67%) achieved using the September 22 data. Combining data from
4

the October dates produced about the same accuracy (66%) as that

achieved using the September 22 date alone. 	 The three-date
f

combination performed similarly to a two-date combination that

included September 22, with an accuracy of 74.48%.

The	 two-date	 SAR	 combinations	 improved	 the	 wheat

classification accuracy in both cases.	 Corn classification

accuracy improved more for the September 22/October 7

co. )ination, whereas the September 22/October 1 combination

resulted in the greatest improvement in the classification of

mi1o.	 Once again, the data in Figure 4.6 illustrate why these

improvements occurred. Wheat produced the lowest return in all

cases;	 thus,	 any	 two-date	 combination	 enhanced	 wheat

classification.	 Tne corn data of October 7 had a relatively

higher mean, compared '.o milo, than the October 1 data; thus,



TABLE 4.4

Category Confusion Tables for the Multidate SAR
Classifications of Corn (C), Milo (M), and Wheat (W)

i
i

September 22/October 1
C M M

C	 52.3 46.1 1.6
M	 8.6 82.8 8.6
W	 0.0 10.9 89.1

T.A.* n 	 74.74

September 22/October 7
C	 M	 W

C	 60.9	 38.3	 n . 8
M	 13.3	 74.2	 12.5
W	 1.6	 9.4	 89.1

T.A. . 74.74

October 1/October 7
C M W

C	 53.1 43.0 3.9
M	 19.5 68.0 12.5
W	 4.7 18.8 76.6

T.A.=65.89

September 22/October 1/October 7
C M W

C	 66.4 32.8 .8
M	 17.2 80.5 2.3
W	 6.3 17.2 76.6

T.A.	 = 74.48

*T.A. = Total Accuracy
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any two-date cornbinatlon enhanced corn c^assificatton.	 The

effect of adding the third date did nothiny to enhance ttie
i

^,	 cla^slfication, because no new information was contributed,

therefore.	 the	 effect	 was	 si ►ntlar	 to	 adding	 noise	 to	 the	 data

E	
^ tease.

^^
^.

It	 has	 Tony	 been	 recoynized	 that	 a	 multidate	 approach
I

enhances	 the	 discrimination	 of	 vegetation	 classes	 (Goodman. ^

1959).	 Analyses	 of	 other	 multitemporal	 radar	 data	 sets	 have
'^' 4^

resulted	 in	 the	 same conclusion	 (hush	 and	 Ulaby,	 1977;	 Ulaby et p

al.,	 1979;	 Brisro	 and	 Protz,	 l ydU).	 However.	 to	 be	 most
E

effective.	 the	 .nultidat^	 approach	 must	 consider	 the	 data-

acquisition	 period	 in	 relation	 to	 the crop	 calendar.	 The Seasat

data	 used	 in	 this	 analysis	 were	 acquired	 during	 the	 harvest

period	 and	 thus	 were	 not	 optimur^	 for	 multitemporal	 crop

^.
classification.	 However,	 they	 are	 the	 only	 multiternporal

satellite	 SAR	 data	 available,	 and	 the	 results	 of	 the	 present

analysis	 indicate	 the	 deyree	 of	 success	 that	 can	 be	 expected

when usin	 this a proach to radar crop classification.9	 P „^

4.6	 Multisensor Classification
k

Th^:^	 confusion	 that	 results	 from combininy	 the	 best'F ` cateyory

Seasat	 date	 (September 22) 	 with either	 Landsat	 band 5 or band	 7

is	 presented	 in	 Table	 4.5.	 The classification	 accuracy	 (76ir)	 is

very	 similar	 to	 that	 obtained	 by	 combininy	 two	 Seasat	 dates

(7b^).	 As	 before,	 wheat	 is	 the	 more	 accurately	 classified

cateyory,	 and	 corn	 and	 milo	 are	 the	 most	 hiyhly	 confused.

Adding one Landsat channel	 to the two-date Seasat combinations

^^
^^,

7 2 ,^

^.
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TIIBIC 4.5

Catayory Contusion Tables for tha CiassiticatlonY of
i	 Sptt+^bor 22 Ssasat Oats M1th Landsat BarM S or Band 1

for Corn (C). M110 (M), and M►aat (M)

Septaaber ^/Band 5 Septe^ber 22/band 1
C M M C !1 M

C	 68.8 30.5 0.8 C	 69.5 7.A .1 2.3

M	 14.1 74.?. 11.7 M	 13.3 65.6 21.1

M	 0.0 14.8 85.2 M	 n,8 6.3 q3.0

T.A.* 76.04 T.A.	 n 7r;,04

*T.A. n Total Accuracy

k

t
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*.hat produced the best accuracies in Section 4.4 yields similar 	 j

classification accuracies to those obtained using the three-date 	 .^

Seasat combination (Table 4.6). 	 ,

When the SeasatlLandsat combinations were used, corn was

the category that showed the most improvement. 	 This w^s

r.

r.

c

i

fndicated	 in	 the	 single-channel	 analyses	 described	 in

Section 4.3.	 The	 lower	 reflections	 from	 corn	 on	 band	 1, ^,

cumoined witn the brightest	 tones on the Seasat	 images,	 enabled

the	 multisensor	 combination	 to	 irnprov^	 corn	 discrimination.

However,	 Borne	 accuracy	 in	 mi^o	 identification	 was	 sacrificed, r

and	 hence	 the	 total	 classification	 accuracies	 of	 approximately

7 yi; are quite	 similar.
r

Further	 increases	 it	 the	 numcer	 of	 channels	 used	 in	 the

classification	 added	 little	 to	 the	 total	 classification

accuracies	 achieved.	 Table	 4.7	 shows	 the	 category-cunfusion
i

tables	 resulting	 from	 the	 four-	 and	 five-channel

^:lassifications.	 The	 best	 overall	 classification	 accuracy	 of

78io	 was	 achieved	 using	 either	 two	 Landsat	 and	 two	 Seasat

channels	 or	 thres	 Seasat	 channels	 with	 Landsat	 band	 5.	 Wheat

ri

^.

remained	 the	 most	 accurately	 classified	 crop,	 with	 an y'

id^antification accuracy of approximately 90^. 	 Corn was the next

most	 accurately	 identified	 crop,	 with	 accuracies exceeding	 lUX,

and	 in	 the	 case	 of	 Landsat	 bands	 5	 and	 7	 in	 combination	 with

Seasat	 images	 September	 22	 and	 October	 1,	 an	 identification

accuracy	 of 84i; was	 achieved.	 Milo was the crop most	 confused

with	 other	 Categories,	 with	 an	 identification	 accuracy	 of 1

approximately lU^. The five-channel classification performed

t	 74	

^"'^,.
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TABLE 4.6

Category Contusion Tables for the Classifications
of September 22 and October ! or October 7 SPasat

Oata Math Landsat 8a..d 5 and Band 7.
Categories are Corn (C), Milo (M), and Wheat (W).

September 22/October 1/band 5
C M W

C	 an .5 19.5 0.0
M	 40.6 48.4 10.9
u	 3.1 5.5 91.4

T.A.* 73.44

September 22/October 7/Band 7
C M W

C	 74.2 24.?. 1.6
M	 21.1 69.5 9.4
W	 0.8 ! 1.7 81.5

T.A. 77.08

September 22/October 1/Band 5
C M W

L	 65.6 33.6 0.8
M	 15.6 77.3 7.0
W	 2.3 :3.3 84.4

T.A. 15.78

September 22/October 7/Band 7
C M W

C	 75.8 23.4 0.8
M	 28.1 62.5 9.4
W	 5.5 7.0 81.5

T.A. 75.26

*T.A.	 Total Accuracy

i
f

iE

1
75
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TABLE 4.7

Category Confusion Tables for Four- and Five-Channel Multisensor
Classlticatlons of Cori (C). Milo (M), and Ulheat (W)

5^! t . 22/Oct . 1/Oct . 7/Band 5
C M M

C	 73.4 22.1 3.9
M	 16.4 71.1 I2.5
W	 0.0 10 , 2 89.8

T.A.* 78.13

Sept. 22/Oct. 1/Oct. 7/Band 7
C M W

C	 10.3 28.1 1.6
M	 19.5 68.8 11.7
M	 3.1 7.8 89.1

T.A.	 = 16.04

Sept. 22/Oct.
C

C	 84.4
M	 25.8
N	 0.8

1/Oct .
N

14.8
60.2
9.4

T.A.

7/Band 5
M

0.8
14.1
89.8

n 18.13

Sept . 22/Oct . 1/Oct . 7/ Band `,'
C M M

C	 74.2 25.0 0.8
M	 22.7 13.4 3.9
N	 2.3 10 .?_ 87.5

T.A. = 78.39

Sept. 22/Oct. 1/Oct. 7/ Band 5/Band 7
C M M

C	 11.3 28.8 0.0
M	 21.3 66.3 12.5
W	 5.0 6.3 88.8

T.A.	 = 75.47

*T.A. = Total Accuracy

76
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worse than the four-channel combinations, with a total accuracy

of 75ir.	 This was attributed to the fifth channel's acting as

	

noise in the classification, because no new im`urmation was 	 ^

added to the discrimination.

Previous studies using rnultisensor combinations for crop

identification have shown an increase in classification accuracy

when radar and optical data are combined (Ahern e^^ al., 1978;

Eyton et al., 1 y80; Ulaby et ai., 1982). The present study has

demonstrated that both the rnultidate and multisensor approaches

increase the crop-classification accuracies achiaved ^,;ing

14LC.	 The multidate approach works because of the dynamics of

radar backscatteriny for a given crop over the growing season.

The multisensor approach is successful because of the different

interaction mechanisms operating between electromagnetic energy

and the plant canopy. 	 For example, radar responds to water

content and the yeor^etry of the vegetation bfornass, whereas

band 7 is sensitive to changes in plant cell structure, which is

indirectly related to plant water content.

(ine major limitation of this study was the time period
^.

during which the image data were recorded. The late September,

early October t^Te fra.^ne of the study was coincident w"_" the

beyinniny of the corn and milo harvest.	 In all likelihood, the

hiyf: confusion between corn and milo reported above could be

reduced by acyu^riny data during other periods of the crop-

growth calen^:ar.	 For example, it is possible that data taken

early in the growing season may be able to discriminate corn
i

	

from milu because corn is planted at an earlier date and there	 g

1?̂;
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will be developmental differences between the crops.

4.7 Sum^a ry

Satellite SAR and MSS data were used both alone and in

combination to classify corn, milo, and wheat. The best single-

channel classification accuracy (67X) was achieved usiny a

September 22 Seasat scene. 	 The ^'assification accuracy was

improved to approximately l yX by using either a multidate Seasat

combination or Landsat data in a multisensor combination. 	 The

overall best classification accuracy of 7iSX was achieved with a

four-channel combination of either Landsat band 5 or band 7 with

the Seasat dates.

Table 4.8 presents a summary of many of the crop-

classifi^ation studies performed using radar data. Although the

rFCsearch described above is the first to use satellite radar

data in a rnultiaimensional approach to crop-classification,

comparable classification accuracies have been achieved usiny

other r<rethods.	 Uue to the yreat rnix of crop types and sensor

characteristics present in these studies, it •das difficult to

compare	 results.	 Nonetheless,	 the results support the

usefulness of radar data as discriminators of crup types.

Tc achieve classification accuracies either approaching or

exceeding 9UX, multidate and/or multisensor data are needed.

ttesults repo^ted in the literature to date verify this

observation.	 By evaluating the crop calend.;r and crop mix of

any particular geoyraphic region and usiny the knowledye gained

frorn previous studies, optimum dates for data acquisition can be

78
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TABLE 4.8

Suwaaary of Crop-Classification Stud/ts Pertoraied 'king

Authors
Sensor

Plattorw
Paraweters
t	 P e

Ciassittcation
Crop Types	 Accuracy Range (t)

Batlivala	 and
Ulaby Aircraft L HH 60-75° Corn, soybeans, 65-14
(1915) H^ pasture, woods

gush and Ulany Ground- KU HH 40-60° Corn, m11o, soybeans 35-9^
(1978) based X HV wheet, alfalfa

VV

Ahern et	 al. Aircraft KU HH -- Corn, alfalfa, barley 53-85
(:.978) HV cut hay,	 ripe oats,

green pasture, grass,
clover and grass,
green oars, standing
hay, brown pasture

Utaby	 et	 a'.. Ground- KU HH -- Alfalfa, bare, corn, 4I-91
(1979) based X VV wheat, milo,

HV soybeans

Eyton	 et	 a^l. Ground- KU VV -- Corn, soybeans, 45-82
based X HV milo

Goodenough Aircraft X HN ^3° Potatoes, grains, 52-73
e!	 al. L HV e'^" pasture,	 tallow,
(1980) forest

Shanmugan et al. Aircraft C HH 10-90° Corn, wheat stubble, 57-98
(1981) L HV pasture, fallow

Ulaby et al. Aircraft KU VV 50° Corn, wheat stubble, 61.71
(1982) pasture,	 fallow

Brisco and Aircraft X HH 68° Corn, grain, hay- 72
Protz L HV pasture, roughland,
(1982) woods

Shanmugan et al. Aircraft C HH 10-50° Corn, pasture, bare 35-98
(1983) l HV soil

Brisco et	 al. Aircraft X HH 60-65° Corn, woods, grain, 83
(1984) L HV other

!^

*Full citations are given in the reference section.
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identified. This, in concert with approNriate sensor selection,

will allow accurate crop classifications to be made using

remotely sensed data.
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FOREST MI^PPIN6 MITN RADAR

5.1 Introduction

Global forest reserves are rapidly diminishiny as a result of

the increased demand placed upon wood products by an expandiny

population.	 Forests a ye also being cleared to provide liviny

space and increase agricultural productivity to accommodate a

growing populace, especially in developing countries. Thus, it is

important to inventory and moniior forest resources on b^^th a

reyional and a global scale. Remote-sensiny techniques have been

promoted as a tool useful in meeting this need (Beaubien, 1918;

Honer, 1978).

An early study investigating the use of radar imagery for

vegetation mappiny concluded that vegetation influences uaon radar

returns were observable in all cases investigated (Morain and

Simonett, 1966). Indeed, shortly after this finding was reported,

ambitious vegetation-mappiny projects were carried out in Brazil

(Acevedo, 1911) and Panama (Viksne et al., 1910). Recent studies

have investigated the use of radar imagery for more detailed

forest mapping and have included information even at the species

level (Knowlton and Hoffer, 1981; Krohn et al., 1983; Hoekman,

1984}.	 The results of these studies support the capabi:ity of

radar to discriminate among forest types in many, but not

all, cases.

In Chapters 3 and 4, the use of satellite SAR data both alone

and in combination with satellite MSS data was investigated for

i

y.. ,

ti
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^k 1	 nd-	 r	 n	 r	 -	 classification.	 In these invests	 ationsa	 cove	 a d c op type	 g	 ,

image	 tone,	 represented by a	 digital	 number, was	 the classifying

' feature.	 Results	 indicated that rnultidate and/or multisensor data

were	 necessary	 for	 accurate	 classification.	 According	 to	 other

k

studies,	 texture,	 another	 image	 feature,	 also can	 be	 very	 useful

in radar image interpretation	 (Berger,	 1970; Lowry et al.,	 1978).

Texture	 is the spatial	 distribution of	 imaya gray tone	 for a

feature of	 interest.	 Although texture has been used successfully

to improve classification results with radar data	 for a variety of

” applications	 (Haralick,	 1 y 79;	 Brisco and Protz,	 1980;	 Shanmugan et
(.

al.,	 19+31),	 there	 nas	 been	 no	 consistent	 method	 of	 defining,

rneasuriny,	 or	 using	 texture	 for	 interpretation	 and

^y

^• classification.	 In	 his	 article	 on	 texture,	 Haralick	 (1979)

Nrovides	 a	 review of the statistical 	 and structural	 approaches to

the	 uses	 of	 texture.	 He	 identifies	 eight	 statistical	 approaches

r-
^ to	 extracting	 textural	 information	 from	 an	 image:	 (1) the

autocorrelation	 function,	 (2)	 optical	 transforms,	 (3)	 digital

i. transforms,	 (4) texture	 edyeness,	 (5)	 the	 structural	 element,

(6)	 gray-tone	 cooccurrence,	 (7)	 run	 lengths,	 and	 (8)	 auto-

' regressive models.

The	 present	 study	 investigates	 the	 use	 of	 Slit-N	 data	 for

forest-type classification. 	 Image tone and texture are used both

alone	 and	 in	 combination	 in	 a	 supervised	 maximum-likelihood

classification	 of	 broadleaf	 evergreen	 (B),	 broadleaf

"t),deciduous	 (D),	 needleleaf	 evergreen	 (and	 mixed	 (broadleaf

deciduous	 and	 needlerraf	 ,•-ergreen)	 (M)	 forest	 types.

A grassland-forest	 transition	 zone	 (G),	 Galeria	 forest,	 is	 also

82
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included as a class. This is a scrub forest like the Cerrados for-

est type.

5.2 Test-Site and Forest Descriptions

Five forest types were selected for the analyses based on

(1) SIit-A coveraye and data availabilit,v for the type, and

(2) variety of forest canopy conditions represented. These

criteria resulted in the selection of the sites presented in

Fiyure 5.1. A description of these forests and the SIR-A data-

take numbers are listed in fable 5.1. The system parameters for

SItt-A were presented in Sectiun 3.1.

The forest types chosen represent the ranye of canopy

conditions expected in wooded areas. They ranye from the lush

multistoried man -s ecied cano 	 of the tro foal forest to theY P	 PY	 P

nearly monospecific pine forests of the southeastern United

Slates.	 The broadleaf deciduous and mixed forests represent 	 +

intermediate canopy conditions in terms of diversity and
}

aroductivity.	 Finally. the Galeria forest of southeastern Brazil	 i

represents the transition zone from woody veyetation to grassland.

and is characterized by 3 less dense canopy intermixed with open 	 ^
',` ,

areas.	 Figures 5.2 through 5.6 include examples of the five 	 ^'
i

forest classes considered in this analyst, as well as the SIR-A

data for these forest types.

5.3 Data l+nalysi s,

The SIR -A imayery was diyitized to 256 yray levels by the

Environmental Remote Sensing Center at the University of Wisconsin

on a scanniny microdensitrnnater with a 25 -gym aperture. This

j
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Fig. 5.1. Geographic l^, cations of the five areas used in the

selection of the forested regions.



1

k

TABLE 5.1

Description of the Five Forest TNpes and SIR-A Data-Take NumAers Used
in this Study. All SIR-A Data Mere Acquired on November 13. 1981.

Site Forest Type Symbol SIR-A Data Take

1) Amazon Basin Broadleaf evergreen: R 22
tropical	 rainforest

2) Kentucky Broadleaf deciduous: 0 20
yak-Ash-Maple

3) North Carolina Mixed: M 20
flak-Pine

4) Alabama Needleleaf evergreen: E 21
Pine

5) arasilia Galeria	 forest: G 22
grassland, herbaceous
plants,	 and semi-
deciduous forest
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Fig. 5.2. (a) SIR-A image of North Carolina and (b) example of
the mixed forest (M) category.
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Fig, 5.3. (a) SYR-A Image of central Kentucky and (b) example
of the deciduous forest (^) category.
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Fig. 5.4. (a) SIR-A image of Alabama and (b) example of the
coniferous fores^ (C) category.
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Fig. 5.5. (a) SIR-A image of central Brazil and (b) exar,^ple of
the broadleaf evergreen (E) categoryt
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Fig. 5.6,. (a) SIR-A image of southeastern Brazil and (b) example
of the ^aleria forest (G) category.
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ayerture size resulted in an average of l x 2 pixels being used

for each digital number (DN) value produced. Thus, the 5IR-A data

were averaged to 24 looks (2 x 2 x 6) with an 8U-m x 80-m

resolution cell. Fading was significantly reduced by this amount

of averaging (Bush and Ulaby, 1975).	 The data were received in

the form of computer-compatible tapes.

The VDI image-analysis system was then used to identify the

corner-point coordinates for six 32- x 32-pixel windows for each

of the five forestry types. These data were then extracted for

subsequent analysis on the University of Kansas Honeywell computer

s,^stem. An 8-pixel by 8-Nixel moving window was used to calculate

the local mean and two measures of texture: contrast and inverse

moment.	 Equations 5.1 through 5.3 were used for these

calculations.

N

Xi
Mean : R a i—A--	 ( 5.1)

Contrast:	 ^	 ^i-j^k(Pij)^'	 (5.2)i, j
( P ice)

(5.3)
^i-j^k

ations were based on the gray-tone co-

a matrix of relative frequencies, Pij,

resolution cells separated by distance

with gray-level i, and the other with

F	 gray -level j. All angular relationships ( U°, 45°, 9U°, 135°) were

}
calculated and then averaged such that directionality did not

w

'^4

Inverse Moment:	 ^,
i,j
i* j

These textural calcul

occurrence matrix. This is

with which two neighboring

D occur on the image, one
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enter the interpretation of the results. Haralick (1979) provides

a detailed description of this approach to texture calculation.

Due to the random nature of veyetation distributions in natural

forests and the coarse resolution of the SIR -A data, a distance of

1 between resolution cells, with no directionality, was chosen.

Thus, the preprocessiny resulted in 30 data sets, s,ix from

each forest type, with each having a 16 x 16 data set representing

local mean, contrast, and inverse moment.	 Histograms of yray

level (local mean) and contrast were plotted.

These data were then subjected to supervised maximum-

liKelihood	 classification	 (MLC)	 using	 a	 20%-training	 and

!30%-testing sample. 	 This was performed separately for tone and

then texture as features. Each textural feature was then combined

t	
with tone and the two-channel combinations were reclassified.

Finally, all three measures were used together in a three-channel

	

C ,	 classification. All classifications were performed using the MLC

	

^.	 algorithm used in previous chapters.

5.4 Results and Discussion

The hi stoyrarns of yray level and contrast preser ;*.ed i n

	

Î  ^	 Fiyure' 5.7 and 5.d allow a preliminary evaluation of the way in

which these data will perform in classification analyses.	 The

	

^,	 yray - level histogram ( Fiyure 5.7) indicates good separability for

the broadleaf evergreen and broadleaf deciduous forest types.

However, there appears to be high cunfusion among the other three

forest categories.	 Althouyn the Galeria forest was separable

using the textural measure of contrast (Fiyure 5.8), the other

is

AI

^	 ;f
I

^'^.._
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tour forest categories appeared to be hiyhly confused when texture
i

alone was used.

When gray level was used in a single-channel classification,

an accuracy nt 75% was achieved (Table 5.2). As indicated by the
	

,^

hisi:oyrams, broadlea^r evergreen and broadleaf deciduous forests

are hiyhly separable, with classification accuracies exceediny

95%.	 The needleleaf everyreen end mixed forest c^teyories were

identified accurately 8G% and 76% of the time, respectively. The

Galeria forest was very poorly classified (17.5%) and was confused

primarily with the mixed forest and then with the needleleaf

everyreen forest.

Both measures of texture--contrast and inverse mornent--

^roduced	 similar	 classification	 accuracies	 (60%	 and	 51%,

respectively; see Tables 5.3 and 5.4). 	 In both classifications,

the Galeria forest was hiyhly separable, yieldiny classification 	 r
t

accuracies exceediny 95%. 	 This may have been due to the	 r

patchiness of the canopy in this forest category, in which patches
	

e

of yrassland are intermixed with forested areas. 	 The mixed

deciduous forest was identified correctly 76% of the time using
	

+. ;
y.

inverse moment, and with 65% accuracy using contrast. 	 In both

cases, it was the needleleaf everyreen category that was most

often confused with the rnixed deciduous category. The broadleaf

deciduous cateyory was classified with 83% accuracy using contrast

as the discriminatory feature but only 49% using inverse moment.

The needleleaf evergreen and broadleaf evergreen categories were

poorly classified by both textural features.

.,.
+'!i	 yip* ^;•s



TABLE 5.2

Supervised Mhxisaw^-Likelihood Classiticat^
Into Forest Cate9orle^ of Broadleaf Ei

Broadlead Oeclduous (D), Mixed
Needleleat Evergreen (E),

and 6aleria (G)

i
i

^*
+,^..

True Classified as (><)
f^ B D	 M E G

B 96.1 0.0	 0.0 3.9 0.0

0 0.0 99.2	 0.0 0.0 0.8

M 0.0 0.5	 16.1 11.0 12.4

E 2.0 0.0	 12.1 85.9 0.0

G 0.0 4.?.	 51.3 26.9 17.5

Overall Accuracy	 74.969

TABLE 5 ^ 3

Supervised Maximum-Likelihood Classification of Contrast
[nto Forest Categories of Broadleaf Evergreen (B),

Broadlead Deciduous (0), Mixed (M),
Needleleaf Evergreen (E),

and Galeria (G)

True Classified as (x)

Catego^ B 0	 M E G

B 19.6 35.5	 24.3 18.2 2.2

D 0.1 82.8	 1.9 14.6 0.0

M 4.3 9.^	 ^i5.3 21.4 0.0

E 43.4 2.8	 23.6 30.2 0.0

G 0.0 0.0	 0.0 0.0 100.0

Overall Accuracy 59.59`
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Classitled as (x)

M E G

0.0 3.5 1.?.

0.3 O.n 0.0

86.7 13.3 ^.0

12.1 X35.5 t'^ .0

0.0 0.0 11)0.0

^,_.	 ,

TABLE 5.4

Supervised Maxiexe#-Likelihood Classification of Inverse Moeent
Into Forest GateSories of Broadleaf Evergreen (B),

Broadlead Oaciduous (D), Mixed (M), Needleleat Evergreen (E),
ar^d Galoria (G)

True

Category B D

B 33.6 33.3

D 12.6 49.0

M 0.0 6.4

E 2„8 29.3

G 0.0 0.0

Overall Accuracy 56.50X

Classitted as (X)

M E G

14.7 17.8 0.6

13.8 2a .7 O.n

76.2 14,2 3.3

39.3 27,4 1.1

3.7 0.0 96.3

TABLE 5.5

Supervised Maxiaiuw-likelihood Classification of Gray Level and
Contrast into the Forest Categories Broadleat Evergreen (B),
Broadlead Deciduous (D), Mixed (M), Needteleat Evergreen (E),

and 6aleria (G)

True

Category B D

B 95.3 0.0

D 0.0 99.7

M 0.(1 0.0

E 2.4 0.0

G 0.0 0.0

Overall Accuracy 93.44X

x

t
^;

°i
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The results of the one-dlrnensior^:^ :lassificetion indicate

that combining tonal and textural ^;3easuremen^a into a multi-

dimensianal classification may be profitable. This is because it

was found that the most accurately identified categories vary with

the image feature betny used to the classi f ication. As the data

in Tables 5.5 through y .7 reveal, this is indeed the case. The	 3

broadleaf evergreen (B), deciduous (D), nixed (M), and needlelnaf

evergreen (E) classES were separable using image to^ie as the

criterion. Contrast enabled the separation of the Galeri^ forest

(G) from the deciduous ( p ), and mixed (M) classes, whereas inverse

moment separated the V from the M class.

The results ^^^: quite similar for both the two-dimensional

and the three-dimensional cla.,sifications. 	 Approximately 93X of

the ^^ixels were accurately identified, with the categories of

broadleaf deciduous, broadleaf evergreen, and Galeria forest	 ^

exhib!Miny accuracies exceedin, 90X. The needleleaf evergreen and

mixed forest categories were identified correctly approximately

i
85X of the time.	 ^

At the 8U-meter resolution used in tnis study, each pixel

represents only a small number of trees, yet the number and

diversity of the trees varies with forest type. For example, a

pine forest is likely to contain more trees but fewer species per

pixel than a tropical rain forest, which will contain fewer but
a

larger individual trees and more species	 Nevertheless, an 8U-m

a
resolution may be usefiul in forest-type classification, since the

vegetation-distribution differences between major forest types are

likely to be apparent at this scale. This is consistent with the

f^	
t

it _#
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TABLE 5.b

Supe^.ised M^xiwu^-Likelihood Classification of bray Level and
Inverse Moeent into Forest Categories of Broadleaf Evergreen (B),
Broadlead Oeclduous (D), Mixed (M), Naedleleaf Evergreen (E),

and 6alerla (6)

.^

True Classified as (X)

Category B D	 M E

B 92.8 0.0	 0.^ 1.1

D 0.0 99.8	 0.2 0.0

M 0.0 0.1	 A4 .F 12.1

E 2.4 O.0	 11 .1 R5.6

6 O,o o,0	 3.7 n,a

Overall Accuracy	 91.771E

TABLE 5.7

Supervised Maxie-Likelihood Classification of Gray Level,
Contrast, and Inverse Mount into the Forest Categories

Broadleaf Evergreen (B), 8roadlead Deciduous (D),
Mixed (M), Needleleat Evergreen (E), and Galeria (G)

True Classified as (X)

Cate	 r B D	 N

B 93.1 0.0	 o.n

D 0.0 99.8	 0.2

M 0.0 0.1	 85.'

E 3.4 0.0	 11 .4

6 0.0 0.0	 0.0

Overall Accuracy 92.891
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mesoscale roughness Morain (19761 describes in his art'cle on

radar-imaye interpretation for veyetatton analysis. 	 He defines

,.
wlcrorough^iess as gray-tons fluctuations due to frequency,

wesoscale roughness as the yross rouyhness Qnvelope directly

related to imaye texture, and macroscale roughness as the con^,^;ax

image tone arising out of a combination of micro- and mesoscale	 '

roughness superimposed upon slc,^ing terrain.

The	 SIR-A data	 from the different sites may contain	 Inherent

yray-tone shifts due to both	 lack of calibration and the presence

of	 slynal-power	 fluctuations	 during	 data	 recording.	 Thus,	 a

' single	 target	 may	 produce	 different	 yray	 tones	 on	 two	 different

('

i

SIR-A data-takes.	 Moreover,	 the presence of gray-tone shifts can

critically	 affect	 tonal	 eiassification,	 although	 if	 the

^, sensitivity	 (film	 gamma)	 is	 the	 same,	 the	 shifts	 will	 have	 little

effect	 on	 textural	 classification.	 The SIR-A data were processed

^, by	 the Jet	 Propulsion	 laboratory	 (JPL),	 and	 personnel	 there were

^`

contacted	 concerning	 this	 difficulty.	 According	 to	 JPI.,	 the

slynal	 films	 ware	 all	 processed	 with	 a	 gamma	 of	 1,	 and	 all

^^ subsequent	 imaye	 duplicates	 were	 processed	 with	 a	 ^^amma	 of	 1.z.

Thus,	 although	 yray-tone	 shifts	 may	 indeAd	 be	 present,	 the

M
se^si^ivity of the ima^^e should be the same for each pass.

Other	 researchers	 have	 reported	 success	 in	 forest-type

classification,	 in	 sane	 cases	 ranUir.;;	 in	 detail	 to	 the	 species

level, using multiparameter radar • data (Shuchraan et al., 197A;

Churchill and Keech, 1983; Knowlton a •	 coffer, 1981; Hoekman,

1984).	 Krohn et al. (1983) also renort.ed some success at

discriminating upland from lowland forest types on the East Coast,

,^^..^..	 -..,....^.	 :^,^^^^-• ^_^^u^..^.._
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usiny Seasat data.	 Graf and Rode (1982) reported moisture-

dependent effects in the backscattering from the branches and

leaves of a fir tree.	 Bush et al. (1976) described temporal

variation in the canopy backscattering from a deciduous forest.

These observations lend further credence to the use of microwave

remote sensiny in forest mapping and monitoring.

Further resc^rch into and development of space-SAR technology

undoubtedly will hasten the operational use of radar data and will

ultimately allc	 foresters to bec^efit from the technology in

practical ways.	 Space-SAR data, both alone and in combination

with MSS data, will prove usef^^l for Z wide variety of tasks from

simple mapping projects to more elaborate monitoring and disease-

control projects.

5.5 Surma ry

SIR-A data were classified into the forest cateyories

broadleaf everyreen (8), broadleaf deciduous (D), mixed (M),

needleleaf everyreen (E), and Galeria forest (G), ^^sing maximum-

likelihood techniques.	 Tone (gray level) outperformed textural

measures (inverse moment and contrast) as a one-dirnensional

classifier, produciny a classification accuracy of 75^ compared to

55-60^ for textural-feature classification.	 Tone was the most

useful discriminant for the 8, D, M, and E forest categories.

the Galeria forest (G) was the most successfully discriminated

category on the basis of the textu^al features. This success was

attributed to the patchiness of the canopy for the Galeria class

when compared to i.^ie other classes. However, combining tone and

lUl



texture into a multidimensional classification meths;.. resulted in

overall	 classification	 accuracies	 Qxceeding	 90X.	 The

multidimensional approach also may be useful in other forest

research projects using SAR data. and this possibility should be

investlgate^i.
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All three studies used a nr^ltidimensional approach to land-

cover classification.	 The available uncalibrated SAR data were

acquired duriny less-than-optimum Lime periods, i.e., lace in the

growing season, and were gene:-ally accompanied by poor yro^md-

truth information.	 These limitations reduced the scope of the

conclusions reached by this investigation. 	 Furthermore, at the

time of this study, only two sFaceborne SARs had been used; as a

result, few data were available to support investigations of this

nature. Recently, SIR-B was carried aboard a Shuttle flight and

acquired the first space-SAR data with variable incidence

angles. Plans have also been made for a C- and L-band radar in

	

(^	 the near future, also to be carried aboard the Shuttle as part of

	

t^	 the SIR-C experiment.	 The European Space Agency ( ESA) and

nd a n also lan future s ace-SAR

	

t ^	 countries such as Canada a 	 J pa	 p	 p

systems. Thus, it appears that quality space - SAR data will become

available in the near future.

When timely, caliorated data become available, further

	

``	 research should be carried out to increase both our understanding

and utilization of SAR data. For example, critical time periods

for data collection can be identified, depending upon the

	

'r ^	 application being investigated. Many of the results reported in

this manuscript, and in the literature in general, point to the
r

	

', ^	 importance of phenological differences in the discrimination of

vegetation types.	 An excellent example of the importance of

phenoloyical differentiation is the success of radar operating at

L-band frequencies in discriminating corn from forests early in

the growing season; as the season progresses, however, the two

t

t

*^

y	 i

I04	 ^
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cover types become confused.

Given an understanding of the temporal pattern of radar ^^

backscattering, the complemcntar^ nature of the different	 a
r

wavelenyths (optical and microwave) should be studied further.

This will enable the efficient use of the data available for each

particular task. For example, only one frequency in each of the

radio bands and in the optical region may be needed to accurately

identify land use at a level I differentiation. 	 However, for

level II characterization, many channels, selected from the range

of wavelenyths available, may be necessary.

Texture analysis is a promising approach to the utilization

of remote-sensing data.	 As the algorithms become available for

ineorporatiny texture measurements into digital classifications,

the information content available from radar data will undoubtedly

increase. Texture has been recognized as an important element in

radar-image interpretation but has been difficult to incorporate

into machine classification. Progress is being made in this area,

and the future appears promising.

The multidimensional approach is indicative of the direction

remote sensing must take in order to meet some of the goals for

which it is being evaluated. Une must choose an approach that is

both cost-effective and meets the requirements of the particular

task being undertaken. A single-date acquisition and subsequent

digital classification using tone and/or texture may be sufficient

for Borne purposes--for example, mapping the extent of flooding

after severe storms.	 More complex problems, such as monitoring

agricultural productivity, will probably require rnultisensor data

.. ^t
	 rp„

.^



as	 well	 as	 multidate	 acquisitions.	 Oiyital pre-	 and post-

, processiny	 requirements	 will	 thus	 be	 ex`ensive, which	 will also

add	 significantl,+	 to	 both	 t1^e	 cost	 and	 effort required. The

information produced must be of considerable value to warrant such

an undertaking.

One satellite system, Landsat-5, with its MSS and TM sensors,

is enteriny a new era as an operational system. Research is now

being conducted to bring microwave remote-sensing to a similar

status. With a truly operational SAR system in space, the number

and complexity of the tasks that can be accomplished by remote-

sensing technoloyy will increase.

land-cover classification will be possible at detailed levels

of discrimination.	 This will	 enable both	 the accurate

identification of and tabulation of land-use dynamics, which will

become increasingly important as population pressure increases.

Improved yield estimations and disease monitoring will also allow

better utilization of renewable resources.	 It thus appears that

remote sensiny will be an indispensable tool for the resource

manayer of the future.
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