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. MODEL ING OF CONVECTION PHENOMENA IN BRIDGMAN-STOCKBARGER CRYSTAL GROWTH
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ABSTRACT

Thermal convection phencmena in a vertically oriented Bridgman-Stockbarger apparatus
were modeled by computer simulations for different gravity conditions, ranging from
earth conditfons to extremely l1ow gravity, approximate space conditions. The model~
ing results were obtained by the application of a state-of-the-art, transient,
multi-dimensional, completely densimetrically coupled, discrete-element computation-
al model which was specifically developed for the simulation of flow, temperature,
and species concentration conditions in two-phase (solid-1iquid) systems. The compu-
tational model was applied to the simulation of the flow and the thermal conditions
associ ated with the convection phencmena in a modified Germanium=Silicon charge
enclosed 1n a stationary fused-silica ampoule. The results clearly indicated that
the gravitational field strength influences the characteristics of the coherent
vortical flow patterns, interface shape and position, maximum melt velocity, and
interfacial normal temperature gradient.

INTRODUCTION

It is well estrablished that melt convection exerts a strong influence on the
processes that control the growth of compound semiconductor crystals. In Bridgman
crystal growth, convection is driven by density differences in the melt which
continuously interact with the local gravitational field. The majority of the
problems encountered during attempts to produce homogeneous, defect-free crystals,
are attributed to the direct result of melt convection through its influence on the
heat and mass . transport during solidification. Consequently, measures are usually
taken to minimize convection and to enhance the possibility of crystal growth in a
diffusion dominant regime. The microgravity environment of space offers excellent
controlled laboratory conditions for studying the characteristics of the convection
phenomenon in crystal growth which {s simultaneously controlled by the density
differences in the melt and the gravitational force fieid.

The physicochemical characteristics of crystals grown in space under microgravity
conditions are usually quite different than their earth based counterparts grown
under otherwise similar conditions. These differences however cannot be explained on
the basis of the currently available mathematical models with analytic solutions
(e.g.,» Sukanek, 1982; Lehoczky and Szofran, 1982), because their inherent simplify~
ing assumptions usually tend to discard certain important details of the physical
phenomena which control crystal growth, Order of magnitude studies (e.g., Camel and
Favier, 1984) can also yield useful information, but again, generally lack the

.capabi11ty to consider the detailed consequences of the physical phenomena which are

necessary to explain the different results of the experiments. Relatively simple,
analytic or computational models which only consicer diffusion (e.g., Corieill and
Sekerka, 1979) are alsc usually inadequate in studies concerned with the understand-
ing of the physics of crystal growt“ -~oble~- *+a~ause they completely disregard the
presence of the convection phenomencr which can strengly influence the soifdification
process.

The overall objective is to provide the required state-of-the-art computational
modeling capability which can consider all the effects of the important physical
phenomena, including convecticn and diffusion transport, body forces induced by
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electromagnetic fields, Coriolis acceleration, and the acceleration due to transient
motion, both under earth and microgravity space conditions. An important part of the
overall objective is to understand the role of melt convection in crystal growth.
Considering the fact that melt convection has not been established to be universally
detrimental, a high level understanding of the physical phenomena can possibly
provide a means of controlling convection, and hence, optimizing or improving the
crystal growth process,

This study presents the results of the preliminary applications of the computational
model to the simulation of crystal growth in a stationary cylindrical ampoule,
under axially symmetric, thermally driven flow conditions, without any solutal
convection, and with the gravitational force aligned with the vertical ampoule axis.
The results are presented for sytematically varying gravitational field strength
conditions, and for typical furnace conditions, in order to illustrate the effects
of the gravity field on the crystal growth process in a relatively well controlled iR
Bridgman system.

SUMMARY OF DISCRETE=-ELEMENT COMPUTATIONAL MODEL

1
The discrete-element method (DEM) (e.g., Eraslan, 1974; Eraslan, Lin and Sharp, ?
1982; Eraslan and Lin, 1985; Eraslan 1985) directly utilizes the integral-forms of ¥ 1
the physical principies in the development of the spatially discretized canputation= z

al systems for the soluticns of the velocity, temperature and species mass=fraction
(concentration) conditions, by identically satisfying the conservation principle for
melt mass 1n each and every "element". Since, it does not require any consideration
of the continuum=1imit partial differential equations (i.e., continuity equation,
Navier=-Stokes equation, energy equation, etc.), associated with the formulations of
the conventional mathematical models, the DEM is conceptually and mathematically
different than the finite-di fference method (FDM) and the finite-element method
(FEM); and it is similar (only conceptually) to classical fluid-in-ceil (FLIC) and
integrated-finite-difference (box) direct numerical simulation methods [e.g.,
Gentry, Martin and Daly, 1966; Harlow and Amsden, 1969; Roache, 1972).

Composite-Space-Splitting Algorithm

The application of the three-dimensional DEM to the simulation of the convection and
diffusion phenomena in crystal growth considers a special discretization form, in
cylindrical coordinates (r,9,z), which utilizes four partially overlapping half-
elements, in the (r,8) plane, in each element. Two half-elements are used for the
computation of the r-component of velocity, and two half-elements are used for the
computation of the e-camponent of velocity, in each element. The three-~dimensional
method calculates (1) the melt free-surface elevation in N elements of the surface
layer, (2) the r-component of velocity in 2N half-elements, (3) the 6-component of
velocity in 2N half-elements, (4) the z-component of velocity on N enclosure surfa=-.
ces, (5) the pressure on N enclosure surfaces, (6) the temperature in N elements, 1
and (7) the species mass-fractions (concentrations) in N elements of the computa- i
tional region. The complete computational system of 7(seven) sets of spatially 3§
dicretized equations for elements (1=1,2,...,1; j=1,2,...+d; 2=1,2,...sL) can be %
represented as

oh . .
531’3 = [discrete-element equations for melt-surface elevation in the elements
of the surface layer (2=L)],
» 1 3
sfr,ii<,3,£ = [discrete-element equations for r-component of velocity in the 2(two)

hal f-elements of the internal layers],
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831,34, 2

= [d{screts-element sguations for 8-component of velocity in the 2(two)
hal f-elemsnts of the internal 1ayersl,

= [discrete-element equations for z-component of velocity at the
231,§,4%%  gnclosure surfaces, between the internal layers of the clements],

Pi gt " (discrete-element equations for pressure at the enclosure surfaces
i between the internal layers of the elementsl.

aT
551’5" = [discrete-element equations for temperature in the elementsl,

aC ,
3{3‘1’3’ﬂ = [discrete~element equations for species mass-fraction (concentration)

in the elements].

The discrete-element system is formulated by considering spatially discretized forms
of the phenometological parts, represented as (1) "flow" for melt mass transport in
the conservation of mass equation, (2) "conv" for "convection" transport in all
equations, (3) "forc" for "pressure force" and "body force" (including the "gravity
force" and the "Coriolis force") in ali momentum equations, (4) "visc" for "viscous
stress" in all momentum equations, (5) "cond,k" for "thermal conduction" in the

- — ) ] . ot ;:‘;.,,.Jm;\.;:L‘E;T.’..:.’Z.‘::z,,.,«ék

energy equation, (6) "diff,D" for "mass diffusion" in the species-mass-conservation
equations, and (7) "genr" for "ganeration" in the energy and species-mass-
conservation equations,

Composite~Time~Splitting Algorithm

Timewise numerical integration of the DEM model is based on a novel, explicit compu-
tational algorithm which uses the composite-time-splitting technique. The numerical
i1ntegration advances the solution in time by considering (1) a single-step, two-
time=level partfal algorithm for the calculations of "conv", the convection trans-
port terms, which guarantees the elimination of the first-order numerical dispersion
ef fects, and (2) a two-step, three-time-level partial algorithm for the calculations
of "forc", the force terms, "visc", "cond,:", diff,D", the nonconvective transport
terms, and "genr", the generation terms.

With the known solution set at the initial time t", the composite~time~splitting
algorithm of timewise numerical integration can be represented in the generalized
dif ference operator notation for the phenomenological parts.

At the intermediate time level o+ - ¢n +-ytAt“ :

(1) melt-surface elevation h,
n+s _ .n n + £?
hi 3 h f 'Y At [Afl w] i,§,L Ye A [W )AZ]l 3L (1) 1
u
(2) r-component of velocity V., ' K
n+3 =y n
riith, §,0 - Vryisg, i, T Ve at” [ o it 1,2
4+ n n n P
Y At [Aforcvr i, 5,2 * Yt:At l:Avisc\'r]
3
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n+s n n
V 831, ik, 2 vﬁ;i Jx3¢, 8 e at’ [Aconv OJL Jx¥, 8
n n A n n
t y ot [Aforc oJ1, a3, 2 * v ot [Aviscveli,j.t&g,z

(4) temperature T,

nts _ n AN n n
Ti:j,”' B Titj‘v‘q’ ¥ YtAt [A T]i- i L ¥ Y t [ cond, ET]i’j’z
n
¥ YcAt [a genrq]1 ANy

(5) mass-fr‘aétion (concentration) C of species-k:

n+ - en n n n
Ceit, .2 = Cia,5,0 T oYelt (agonvCilt, 0 ¥ Tt at” (83iee, 0834, 5,2

n
+
Tt At [Anpnx k]i jrr

(6) z-component of velocity V,,

n+ = yntis Rk n+s 1 3By, sant
z;i,j,8+% vz;i,j,£~% +[a flnwvz]i,j,£+ [<1+B) (at)Az]i,j,z

(7) pressure p,

nt+k - a0t n+i n+% n
Py, g, 03 p1,3,9.+1 [( 7T Az] L onv'2dt, 1,0

. n+s ndlg n
¥ [Aforcvz]i j,h [Avisc z]1,j 3

at the solutfon (final) time level t™'1 = t® + at®:
(1) melt=-surface elevation h,

n+l | n . ndds  ants n n+s;
hiTy = hi,; * ot [afya Mg L+ ot [Tﬁ'eT( )Az]1 i

(2) r=component of velocity Vr,

n+l o n+/ n
= +at” [a
Vr;it%,j,z Vr;ii%,j,l st [ conv r]i+1,3 L
n+/ n+ks n n+s n+k
+
+at” [Aforc r]i+%,3 st [Avisc r]1+4,3,2

e ——— . &
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(4)

(5)

(6)

(7

(8)
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(3) 6-component cf velocity Vg,

¥

n+l . yn n s n
Vot itke ~ Voit, e TP eonvVoly, jan,s

n r,.nth n+s n 0 n+s
+at [Aforcve]i,jt%.z *at cAviscveli,ji%,l

(4) temperature T,

n+l _ ¥n n p,o+s s n p,n+s nt+i
Ti,j,z Ti,j,l +at [Acoan]i,j, * at [Acond,eT]i,j,E

+ ath [An+% djn+%

genr “i,j,%
(5) mass-fraction (conoentration) £, of species-k:
cotl = ¢t o nbg o qnbs n ot o+
1,5, - Gty g,n T AY DaconCidi,g,e At Dogpe nCldi T s

n .. n¥s 2 gnts
*tat [Agenrck]i,j,z

(6) z-component of velocity V,,

n+l n+l n+% n+l 1 3By, 5+l
= + ~ )AL
vz;i,j,2+% z3l,3,8-% [Aflowvz]i,j,ﬁ [(]+B) (3t)A ]i.i,z

(7) pressure p,

3V
n+l _ .n+l zy =20+l n+l n
< = + [(== + v
Py 5ot = Proyawe P LGERZLT 0 Degnd¥ali g

+ n+l n+l " n+l n+l
[Aforc z]i,j,l ( viscvz i,j,2

Phenomenological Parts of the Difference Operators

The spatially discretized phenomenol ogical parts of the difference operators in
Egs. (1) through (14) are formulated, according to the composite-space-splitting

» of the composite-time-

algorithm of the DEM, at the two time levels, t" and ’cn*}/2

splitting algorithm.

Abbreviated forms zf the "flow" difference operator for the melt-su{face elevation
at the initial time Jevel t" and at the intermediate time level tn+4. respectively, §

can be represented as:

n n - .
{Aflowh]i’j = Eq. (15b), with n+} replaced by n,

e
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‘ 1 - a
flow ] A (] + Bn+35 ) [gﬁ;i"sﬁsjrb Gﬁ;“"hj’h
z,3,) B % 137

+ additional flow terms for melt mass transport]. (15b)

? Abbreviated forms of the "conv" difference operator for the r-component of velocity

at the inftial time level t" and at the intermediate time 1eve1-t"+k, respectively,
can be represented as:

. E .

: 22y 1t = Eq. (16b), with n+s replaced by n -
| [ conv r]r~k.j,£ q ' (16a) g :
| , -
‘ n+& n = | gt ye -t L]
; [ conv r]i-«s,j,l ;n-hﬁ (1 -B-n-{-,s ) t br3i }ﬁ)j 2 r;i-%,j,z r;i-%:,j,ﬂ.) lf ;
F "'ﬂ»j'p!' i- 55 2 g 4

L o on R ‘
GB r;i, i, vr;i,j,z Vr;i-k.j,z> | E

+ additional convective transport terms] (16b) ;
0
Abbraviated forms of the "forc" difference operator for the r—component of velocity ]
at the inftial time level t" and at the intermediate time level t" %. respectively, i
can be represented as:
AR n = Eq. : H by n, (17a) ;
ﬁmmvl_ 1%,5,2 Eq. (17b), with n¥s renlaced by i
3
] = 1 [A "H"l/ (p11+/ n+¥ ) y
forc rii-¥%,j, L Vn+% (1 + §n+% ) r;i=ls, j, 2 i-25, 3,2 pi-k jol 5|
1%, 3,2 1%, 3,2 it
- An+1 ~n+4 =n+%
r;i,j,2 (p i, 3,2 pi"’ﬂ 3R

+ additional pressure terms] + gz+% cose;;""5 *
n+s n+s _ ots gt ;

P iiok 5,0 Vaiick, 0 T Pziici, 3,2 0sik, e (170)

Abbreviated forms of the "visc" difference operator for the r-component of velocity

at the initial time level t" and at the intermediate time level tn 2, respectively,
can be represented as:

[a" n = Eq. (18b), with n+; replaced by n, (18a)

visc ri-%,j,2 3

"

W wae ;"
g i R . \b f a‘ 'ﬁ‘ § ?E'{E! ?4 o : 3 i &
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ng n+4 1
‘[Aviscvrli—iz,j,z ® -\;n-i-}s (1 + an-ﬁi )
i-%:.j.!u i”‘aj:"
., rants “nids _ ants “nts
[Ar;i-k,j»l orriiek, i,0 Ar;i.j,% % ieri, g8

8b -
,re’ % ,or’ % ,zx:)] (18b2 f

+ additional viscous stress terms (cb
The spatially discretized phenomenological parts of the difference operators in
Eqs. (1) through (14) for (1) the 3-component of velocity, (2) the pressure (from
the z-component of the momentum equation), (3) the temperature, and (4) the mags~
fraction (concentration) of species~k are also formulated, according to the “
n+i
?

composite-space-splitting algorithm of the DEM, at the twe time levels, t" and t
of the composite=-time-splitting algorithm.

The enclosure surface areas Ar' A8 and Az and the volumes v of the elements and

hal f-elements, used fn the formulations of the difference operators, Eqs. (l6a)
through (18b), are formulated according to the spatial discretization of the DEM in
cylindrical coordinates (r,8,z), {.e.,

= L SRS e
.

AN v o > g Y o R

b e

P

A, = raeaz, Ae = Araz, A, = rABAr, V = ragAraz . (19)
The DEM formulation of the computational model considers the mathematical system as
completely densimetrically coupied, in the sense that the density vartations, with
temperature and species mass-fractions, are retained expatly in all the terms of the
governing discrete-element equations. Therefore, the DEM model does not resort to
the use of the simplifying Boussinesq approximation (e.g.,» Eraslan, Lin and Sharp,
1982); but it considers the variations of the density in tarms of the generalized
compressibility fraction B defined as

e

P =0, (1 + %%:) =p, (1 # B) (20)

such that the directional flow rates across the enclosure surfaces of the elements
and half-elements explicitly include the local effects of compressibility, i.e.,

GB,r = rAGAZ Vr (1 +8); Gs,e
The general abbreviated forms of the "conv" difference operator, associated with
convective transport for the solution temperature T and species mass-fraction
(concentration) Ck’ at two time levels, can be expressed as

= Araz ve (1 +8); GB,z = pABAY vz(l + 8) (21)

n n - . ’
[AconvF]i,j,z = Eq. (22b), with n+; replaced by n, (22a)
n#s cqn - 1 n+s 1 - 0
[ACOHVF 1,j,8 ;n+% (] + Bn+% ) GBar§i'%’j:2 ri'%’jﬁz i)j’z)
1,5.2 1,5,2
n+¥ =n _en
+r8ar;i+%!j,2 ( i+%sj’2 Fi,jaz)
+ additional convective transport terms (F)] (22b)
7
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It 1s importart to point out that the specfal form of the convective transport term
formulated as the difference between the value of the flow variable at the enclosure
gurface and {ts computational value in the element or half-element, represents a new
{ntensive=~form (IF), which introduces more desirable stability characteristics to
the numerical solutiens.

Directional=-Transportive~Upwind=~Interpolation (DTUI)

The ganeral computational algorithm of the discrete-element method (DEM) incorpor-
ates the directional-transportive~upwind-interpolation (DTUI) technique which
represents a sacond-order formulation, based on (1) half-point velocity components

" at the enclosure surfaces of the elements and half-elements and (2) the specified
time step of numerical integration. The second~order upwind-differencing technique
evaluates the transported values of the {ntensive flow properties at specific
locations upstream of the enclosure surface as they move with the flow during the
specified time period, i.e.,

Pt gie ™ Mgt A T g T % Vg (23a)

T M gbi-k,j,z = 8ia,5,0 " %eht Vo159, (23b)

Ei_a,j,z = 51-%,j,2 vz, ;i-%,j,l ~apt Vo 123¢)
where, .

a, = 0.5 - 0.6 (depending on the stability characteristics). (24)

With the evaluated, directional-transportive-upwind locations, Egs. (23a), (23b) and
(23c), the computational algorithm uses the multi-dimensional-interpolation (MDI)
algorithm to evaluate the directional-transportive-upwind values of all the fluid
propertiess at the transport enclosure surface, by using the values of the fluid
properties in all the adjacent elements and/or hal f-elements.

As examples, the MDI forms of the DTUI values of the r-component of velocity and the
temperature or species mass-fraction (concentration) can be represented as

vr;i'%)j)g‘ N MDI [vr(ri"'/zsj’z, ei'lﬁ,j;g, zi‘l/zsj:z;
vl’;i";u,(i-l)-}}{;j’j’il;g"ztl)] (25a)
P, g,0 T MOIF g g O 500 Zimg 5,08 Fipionsg gen (5592

Discussions of Convergence (Consistency, Stability, Accuracy)

The composite~space~-time-splitting, with directional-transportive-upwind-

interpol ation and multi-dimensional-interpolation, (CSTS-DTUI-MDI) algorithm tends
to eliminate all the nonphysical contributions of the numerical dispersion (camputa=
tionally generated) effects to the transport. The application of the heuristic
stability technique (e.g., Roache, 1972) to the linear model systems, representing
the identical wave, convection and diffusion phenomena establishes that the
convergence of the (CSTS=-DTUI-MDI) algorithm to the partial differential equations

POERRRICTS - VLI
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(PDE) {s of accuracy order at? (ot square) in the time step for each of the
phenonenological terms, provided that all the required stability criteria,
{1) Courant-Friedrichs-Lewy (CFL), based on the surface wave speed for maximum melt
depth Dp? (2) Courant, based on the maximum velocity vmax in the melt, and

(3) Neumann, based on the maximum diffusivity e in the solid and/or in the melt,

max
are met, {.,e.s "
At (ga Dmax’
2 Min(Ar,ra6,Az) g1 (26a)
At vmax
TTR(Ar, A8 ,02) < ! (26b)
At maxie_ )
v (26¢)

[min(ar,ra6,42)2

It is important to point out that the stability of the CSTS-TDUI-MDI algorithm is
completely independent of all the considerations of the characteristic numbers,
including Prandtl, Schmidt, and Grashof numbers. The expanded 1imit of the

di screte-element system converges directly to the standard transient three-
dimensional PDE system, with the additional error terms that can be represented in
the form of higher-order-derivative (HOD) terms, i.e.,

continuity equation:
3 13 12 P
3£ Far (V) #5255 (V) + 57 (V)
artn

| mtn mén
=t HOD [ (dey ) F (20—, 2—, 22— ; mn = 2)]
2 't ar®e™ ar%z" 30™3z

2 , [, gmm min
+ At° HOD [ F ( —» , s min > 2)] (27)
arTe” ar®z® 30™az"

r-component of the Navier-Stokes (N-5) equation

a_ LA 13 SRy 24
at (p‘vr) roar (rerVr) + r 36 ("vevr) r VO * 9z (szVt)
e} o] a0
= _9p .13 41 v,er | 9,80, v,zr
ar T Y ar (rav,rr) r 98 r 3z
B gapcoseN,r te (Qcor,N,evz B Qcor,u,zve)
+ At HOD [ (3-y,) F ( AT i 3:+nn pomn = 2)V ]
-t ar®ae® 3rTaz® 30™az
) Jm R St
+at“ HOD [ F ( —— » /3 min > 2)V ]
ar®e™ arTaz" ae™az r
9
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Each of the remaining DEM equations also converges to the appropriate PDE with at?
order accuracy in the time step.

It {s important to point out that in all DEM equations, the selection of the value
of the parameter v, for determining the intermediate time level £L/20 g

Y. = 0.5 - 0.6 (depending on the stability characteristics). (29)

results 1n the elimination of the At~crder terms in Egs. (27), (28) and all other
PDE squations. Therefore, the CSTS=DTUD-MDI algorithm tends to eliminate all the
numer{cal dispersion effects in the solution of the DEM computational model; and
hence, it can be classified as a consistent and stible (i.,e., convergent) algorithm
with second-order convergent accuracy in time step At,

Consideration of the Solid and Melt Subregions and Modeling of the Phase Change at
the Interface

The DEM inodel utilizes the same computational algorithm for the calcuiations of the
solutions in both the melt and solid subregions of -the entire region of the charge,
by considering two different marker values for identifying each element as contain=~
fng either solid (marker = 0) or melt (marker = 1, as 1iquid), The computational
algorithm changes the marker value 1n an element only as 2 consequence of the
phase change conditions 1n +ie elsment, according to a kinetic phase~change
submodel. The phase chang# “henomenon (solidification or melting) is formulated by
considering the solfdification (melting) temperature and the phase diagram of the
charge, and the local temperature and species mass-fraction (concentration)
distributions along the solid-melt interface, which are controlled by the overall
heat transfer and mass transport conditions of the crystal growth experiment. The
special formulations of the DEM camputational model and the kinetic phase-change
submodel eliminate the need to consider different numerical solutions for the solid
and melt subregions, and more importantly, eliminate the need to match conditions at
the solid-melt interface as a moving boundary.

APPLICATION TO A TYPICAL BRIDGMAN=-STOCKBARGER EXPERIMENT

The outlined DEM computational model was applied t¢ the simulation of a typical
Bridgman ~Stockbarger crystal growth experiment for studying the convection pheno-
menon under varying gravitational field strength conditions.

Description of the Apparatus

An ampoule, insulated on both its top and bottom, is placed in the middle of a
furnace which has a large adiabatic zone (Fig. 1). The hot and ccld zones are
arranged such that parts of the ampoule wall can be maintained at approximately
constant temperature levels above and below the charge melting point. The ampoule is
made of fused silica, with 0,185 an thick walls, an outer diameter of 1.805 cm, and
an overall length of 7.6192 cm. The stationary ampoule contains a charge similar to
a Germanjum=-Silicon compound, except that the solutal coefficient of volume
expansion has been set equal to zero. Because the charge contracts upon solidifica-
tion, the top of the melt is not held in contact with the ampoule, 'but it is allowed
to behave as a free surface, which closely simulates the actual processing
conditions. Thermophysical properties of the system are also given in Fig. 1.
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interface equation 2
iy B, ™ 8y " 10'33e (8o = 9.8 m/s°)

2R gfavitational acceleration
Melt L = 7.6192 cm

ampoule length
v ‘ 5.88 (10-3)
r Prandtl number
-V R = 0,9525 cm

ampoule outside radius
Tc = 765°C
cooler temperature
Tg ™ 937°C
solidification temperature
T, = 10709C
heater temperature
= 5.0 (10-4)/°K
thermal coefficient of volume expansion
Ampoule g, ™ 0.1247 cm2/s

ampoule thermal diffusivity

!
e
2

|

A
V// "7/ /A

T, G € = 0,1870 cm2/s
; 2R ™ melt thermal diffusivity
Te Crystal e = 0.0815 cm2/s
1 - ¢ cryst&} ggermal diffusivity
Y p = 5.48 g/em
/////////7' charge density
v = 1,10 (10~3) cm?/s
2R — kinematic viscosity

Fig. 1. Schematic of a Bridgman-Stockbarger System and Thermophysical Properties.

Description of the Computer Simulations

In preliminary applizations of the general, transient, three-dimensional DEM

Camputational model to the described simulation of the Bridgman~Stockbarger crystal
growth experiment, it was assumed that the direction of the gravitational field was
aligned with the vertical axis of the ampoule. Furthermore, it was assumed that the

the axial symmetry conditions could be mainiained under all applied vertical gravi-
tational force fields.,

The computer simulations were startod with an arbitrary, but realistic, solid-melt
fnterface location and shape in the ampoule. For a specified gravitational field
strength, the transient computer simulations were continued until steady-state
conditions were attained toth for the location and shape of the interface, and for
the coherent recirculation patterns of the convection cells in the melt.

Discussion of Results
The gravitationual field strength was allowed to vary from 1.Oge to 10-899 in four

steps. The flow fields resulting from this systematic variation are presented in
Figs. 2=5 1n which orly half of the r-z plane is shown. The strongest circulation at
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§ any gravitational level 1s always in the largest cell which is adjacent to the wall

z . tn the vicinity of the heater zone. Cell circulation {s counterclockwise with the

: flow upvard along the wall, as denoted by the positive value &/ streamfunction y.
The center of any cell is the maximum value of y for that celi. Equal ¢ increments

; are then shown between the center of each cell and the zero value on the ampouie

| wall. Adjacent cells always rotate in opposite directions.

As gravity decreases, both the quantative and qualitative nature of the flow and
transport change. Four cells decrease to one and then increase again to two, but the
nature of the flow has changed 1n the process. The horizontally stratified cells of
Fig. 2 give way to the unicellular flow of Fig. 4 which in turn yields to the 1
vertical cell pattern of Fig. 5. This could have a substantial influence on the i
transport process 1f the transport equation is convection daminated. Semiconductor X
melts typically have Prandtl and Schmidt numbers on the order of 0.0l and 100.0, ,
respectively. Consequently, while rather vigorous convection will be necessary to 5
affect heat transport, species transport is altered at much lTower melt velocities.
f Thus, while the species distribution 1s nearly uniform within the cells of Fig. 2,
: species transport between cells is by diffusion making the horizontally stratified
; field considerably different than the vertical field. .

ot A, | rsgeeis e b

Figure 6, a plot of the interface for various gravity levels, shows that convection
has no influence on interface shape or location at intensities less than 10'498. At

higher levels the interface progressively moves Zownward into the cold zone and
changes shape. A recent publication (Carlson,Fripp, and Crouch, 1984) has shown that
changing the sign of the interface curvature radically alters the flow field. While
not shown, 1t has been calculated that the convective component of the energy

: transport is only 15% of the total transport at 1.099; 5% at 10-29e’ and

T e S B e

. approximately zero elsewhere,

Constitutional supercooling is important in multicomponent melts. Increasing fluid
motion increases the interfacial normal temperature gradient, as indicated in

Fige 7. The bulk fluid 1s more thoroughly mixed and hence a higher temperature
gradient appears near the {nterface. Again no influence is felt at gravitational

levels below 10-49e where conduction dominates. Fluid motion thus diminishes the
chances for constitutional supercooling to occur. o
|
CONCLUSIONS AND RECOMMENDATIONS !

The convection phenomenon in Bridgmann-Stockbarger experiments, under varying 5
gravitational force conditions, was simulated by using a computational model.. The
results of the preliminary applications of the computational model indicated that,
as expected, 1f gravitational force conditions can be reduced, the melt convection
phenomenon can also be reducsd significantly in the crystal growth experiment.

However, the preliminary applications did not consider various important effects
which exist under reduced gravity conditions, including (1) the effect of reduced
melt convection on the species mass transport in the charge, (2) the effect of
enhanced Coriolis acceleration (force), (3) the effect of enhanced surface tension,
and (4) the effects of sudden acceleration or deceleration, that could result from
orbital control requirements. Considering the cost of space projects, it is
important to take into account all these important effects in the design and
planning of the crystal growth experiments for future missions. Therefore, a state- ;
of-the-art, transient, three-dimensional computational model can be recommended as a ﬁ
cost-effective design tool for simulating crystal growth experiments under realistic j
and detafled microgravity conditions that would exist in actual orbital stations.
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