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SECTION 1

INTRODUCTION

Recently, there has been much interest in the problem of restructur-
ing the control law of aircraft following the failure of control surfaces
or actuators (References 1,2,3). This interest is motivated in part by
two incidents involving commercial aircraft. In the case of Delta flight
1080 on April 12, 1977, the left elevator became stuck in the 19° up
position at takeoff (Reference 4). The pilot was able to compensate for
the failure, in part by manipulating thrust to control the pitch axis.
However, the pilot of the DC10 that crashed in Chicago (Reference 5) was
unable to recover from the left engine breaking loose and the resulting
retraction of the left wing's outboard leading edge slats. Simulations
indicate that the aircraft could have been flown if impending stall con-
ditions had been recognized and the proper corrective action taken.
Restructuring the control system on-line to counteract the effect of
these failures may be one solution to such problem situations. Although
the need for restructurable control has been demonstrated for state-of-
the-art aircraft systems, it can be expected to be most applicable to
future aircraft where redundant control surfaces will very likely be

extensively employed.

A feasible and practical restructurable control system requires the
correct and timely detection and isolation of the control system failure
so that the proper corrective action can be taken. The evaluation of
various failure detection and isolation (FDI) algorithms for application

in aircraft restructurable flight control systems is the focus of this



interim report. The work described was conducted by the Charles Stark
Draper Laboratory, Inc. (CSDL) for the NASA Langley Research Center under
contract NAS1-17556 entitled, "Evaluation of Failure Detection and Iden-
tification Techniques for Application in Aircraft Restructurable Control

Systems." The specific goals of this effort are twofold:

o To analyze and compare various failure detection and identifica-
tion techniques to determine their usefulness in detecting and
identifying failures in an aircraft flight control system, exclud-
ing sensor and flight control computer failures. 1Issues such as
the types of failures which can be detected, the degree of failure
that can be detected, the time delay between failure and detec-
tion, etc. are to be addressed. This evaluation should also
consider the maturity, reliability, false alarm performance,

robustness and computational burden of each technigue.

o To develop a system monitoring strateqgy to implement the failure
detection and identification techniques. This strategy should
identify the mix of sensors and analytic redundancy; that is, the
mix of direct measurement of failures versus the computation of

failures.

Three specific FDI algorithms were evaluated under this study: the
detection filter, the Generalized Likelihood Ratio test and the Orthogon-
al Series Generalized Likelihood Ratio test. The detection filter
(References 6,7,8) has the form of an observer, much like that of a Kal-
man filter. The feedback gain matrix is chosen so that each type of
failure produces a uniquely defined residual. The FDI system is there-
fore insensitive to the mode of the failure, be it bias, ramp, etc. A
shortcoming of the detection filter is that its application to time-

varying systems is limited.

Basic detection filter theory assumes a system with no direct
input-output coupling. This assumption is violated in the aircraft

application considered in this study due to the use of acceleration



measurements for detecting and isolating failures. With this ccupling,
residuals produced by control surface failures may only be constrained to
a known plane rather than to a single direction as in the case of the
basic detection filter. A detection filter design with such planar fail-
ure signatures is considered and the design issues associated with it
addressed. In addition, a modification to the basic detection filter, to
constrain the residual to a single known direction even with direct
input-output coupling, is also presented. The approach employed is to
use secondary filtering of the detection filter residuals to produce

unidirectional failure signals.

The Generalized Likelihood Ratio (GLR) test (Reference 9) is derived
based upon the assumption of a step failure. The magnitude of the
failure and its time of occurrence are estimated using maximum Likelihood
Estimation. These estimates are used to form a likelihood ratio which is

the test statistic.

The third algorithm investigated is the Orthogonal Series General-
ized Likelihood Ratio (OSGLR) test (Reference 10). This algorithm
assumes a failure in the form of a truncated series of orthonormal basis
functions. The coefficients of the series expansion are estimated using
maximum likelihood estimation and a generalized likelihood ratio is
formed using these estimates. The rationale for adopting this approach
is that most failures should be represented fairly well using a truncated
orthogonal series expansion and this algorithm should be more robust to

failure mode uncertainty than the conventional GLR test.

The three algorithms just described were evaluated by testing their
ability to detect and isolate control surface failures in a nonlinear
simulation of a C-130 transport aircraft. Elevator, rudder, aileron and

flap failures were investigated.

This report is organized as follows. Section 2 describes the C-130
aircraft and simulation used to evaluate the FDI algorithms under consid-

eration. Basic detection filter theory and its application to restruc-




turable control is addressed in Section 3, while the modified version of
the detection filter is discussed in Section 4. Both GLR tests are
evaluated and compared in Section 5. It was found during the course of
this study that failures of some aircraft controls are difficult to
distinguish because they have a similar effect on the dynamics of the
vehicle. Quantitative measures for evaluating the distinguishability of
failures are considered in Section 6. Section 7 is devoted to a compari-
son of the FDI algorithms considered based upon their ability to detect
and isolate failures in aircraft systems in general and the C-130 in
particular. Considerations in the development of a system monitoring
strategy in a transport aircraft are discussed in Section 8. The
material described in the report is summarized and the major conclusions
presented in Section 9. Appendix A includes a description of the method-
ology employed to develop the linear model of the C-130 aircraft required
for each of the FDI algorithms. The discrete time version of the

detection filter is briefly described in Appendix B.




SECTION 2

C-130 SIMULATION DESCRIPTION

2.1 Introduction

The FDI algorithms under consideration will be evaluated by
testing their ability to detect and isolate control surface and flap
failures that have occurred in a simulation of a Lockheed C-130 air-
craft. The C-130 aircraft is a military, medium- to long-range transport
propelled by four turboprop engines located on a high wing. The particu-
lar version of the C-130 aircraft used for this program has short takeoff
and landing (STOL) capability provided by trailing-edge double-slotted
flaps.

2.2 Simulation Description

The simulation of the C-130 aircraft uses the standard six
degree-of-freedom aircraft nonlinear equations of motion. The aero-
dynamic forces and moments are described by one-, two-, or three-
dimensional look~-up tables. These look-up tables are functions of angle
of attack, sideslip angle, thrust, flap deflection, or the control sur-
face deflections. Each of the four engines are assumed to provide the
same thrust. Actuator dynamics have been included; however, sensor

dynamics were not included.

The surfaces available for control of the aircraft are the
ailerons, flaps, rudder and elevator. The simulation allows for
independent motion of the left and right ailerons and the left and right

flaps so that failures of these individual surfaces could be simulated



and used along with rudder and elevator surface failures to evaluate the
performance of the FDI algorithms. Since aileron and flap failures are
similar in their effect on the dynamics of the vehicle, detecting and

isolating aileron and flap failures should provide an adequate test for

the various algorithms to be evaluated.

The eleven measurements available for detecting and isolating
failures are those typically available onboard aircraft. These measure-
ments are listed in Table 2.1, along with the six control inputs
described above and the ten states that describe the aircraft dynamics.
The measurements are generated in the simulation by superimposing
zero-mean Gaussian distributed noise on the output variables. The noise

statistics used for this study are shown in Table 2.2.

Wind turbulence is also incorporated in the simulation. The
turbulence velocity along each body axis is modeled by passing white
noise through shaping filters to produce signals with desired one-
dimensional power spectral densities. The Dryden form of the spectra,
defined in Reference 11, is modeled. This reference suggests an
intensity of 1.98 m/s (6.5 ft/s) for clear air turbulence at the altitude
of 304.8 m (1000 ft) used in this evaluation. However, this level
characterizes severe turbulence and a less severe level was selected for
initial evaluation. Therefore, an intensity of 0.3 m/s (1 ft/s) was used
to obtain the results presented in this report unless otherwise noted.
The turbulence scale lengths were the clear air values defined in Section

3.7+3.2 of Reference 11.

Each of the FDI algorithms evaluated requires a linear model of
the system. Appendix A includes a discription of the methodology
employed to develop the linear model of the C-130 aircraft for this

purpose.



Table 2.1. Inputs, Outputs, and States of the C-130 Aircraft

Inputs

Elevator
Right aileron
Left aileron
Right flap
Left flap
Rudder

Outputs

Airspeed
Acceleration at the cg along the y body axis
Acceleration at the cg along the z body axis
Angular velocity about the x body axis!
Angular velocity about the y body axis2
Angular velocity about the z body axis3
Roll

Pitch

Yaw

Altitude rate

Altitude

States

Airspeed

Sideslip angle

Angle of attack

Angular velocity about the x body axis!
Angular velocity about the y body axis?
Angular velocity about the z body axis3
Roll

Pitch

Yaw

Altitude

1 Will be referred to as body axis roll rate.
2 Will be referred to as body axis pitch rate.
3 Will be referred to as body axis yaw rate.



Table 2.2. Standard

Deviation of Sensor Noise

SENSOR STANDARD DEVIATION
Airspeed 3.35 m/s 11 ft/s
2 2
Accelerometers «3 m/s «98 ft/s

Roll Rate Gyro

Pitch and Yaw Rate Gyros
Attitude Gyros

Altitude Rate

Altitude

<0024 rad/s

«0007 rad/s

.01 radians
+«08 m/s

3.05 m

«1375 deg/s
«04 deg/s
«573 degrees
«25 ft/s

10 £t




SECTION 3

THE DETECTION FILTER

3.1 Detection Filter Review!

The evaluation of the basic detection filter is considered in this
section. A block diagram of a nonlinear system and its detection filter
is shown in Figure 3.1. For this study the actuator dynamics were
assumed to be modeled perfectly. Therefore, the control surface deflec-
tions of the nonlinear systenm, u(t), and the control surface deflections
input to the detection filter, u'(t), are equal unless an actuator fail-
ure has occurred. A linear model of the system in its nominal operating
condition is incorporated in the detection filter. Note that there is no
direct coupling between the inputs and the outputs. (Direct input-to-
output coupling will be considered in Section 3.2.) Any discrepancy
between the system sensor outputs and the simulation of those outputs
generated by the filter model is fed back to the filter input through the
gain matrix K. One of the requirements on the design of the detection
filter is that K be chosen to make the filter stable. Thus, as long as
the system remains in its nominal operating condition, any initial condi-
tion errors of the filter will die away and the filter will track the
behavior of the system. The output error, r(t), is in that case zero
except for disturbances, noises, or other real system effects not modeled

in the filter.

! Much of this detection filter description is taken from Reference 12.
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If one of the system components fails, the actuator models or the
filter no longer model the actuators, the system, or the sensors accu-
rately. It is clear, then, that the output error will be significantly
different from zero following the failure of a system component. This
would be true of any filter which models the nominal system; it would be
true, for example, of a Kalman filter which estimates the state of this
system. But the failure detection filter is designed under a different
set of constraints than other filters; it is designed to hold the output
error corresponding to any one component failure in one direction only.
Thus a component failure is detected by observing a significant magnitude
in the output error; the failed component is identified by observing the

direction of that significant error in the space of r(t).

Perhaps the most important advantage of this approach to FDI is that
the behavior described above does not depend in any way upon the mode of
the component failure. Many other forms of FDI are tuned to hypotheses
about the mode of component failures. But in most cases one cannot real-
istically expect to enumerate a comprehensive list of possible failure
modes and characterize somehow the behavior of the component following
each of those modes of failure. Although the specification of this kind
of information is, in principle, useful and may be expected to permit
more sensitive failure detection, the uncertainties involved in specify-
ing failure mode information may more than offset such a potential
advantage. No assumption with regard to the mode of failure will be made

in this section.

The theory of the failure detection filter, in its present state,
applies to a linear, time-invariant system. 1In its application to air-
craft the inherently nonlinear behavior of the vehicle will be linearized
and any discrepancy between the actual system and the model of it in the
filter will produce an output residual which contributes to the back-
ground against which the output due to failures must be detected. The

continuous-time development is presented in this section. As the

11



detection filter will actually be implemented in a digital computer, the

extension to discrete-time is stated in Appendix B.

3.1.1 System and Filter Models

The linear, continuous-time analytic model of the perturbations
about the operating point of the nonlinear system may be written in the

form

)
I

AX + Bu (3.1)

Here x is the state vector characterizing the system, u is the input or
control vector and y is the vector of measurements available from the
system sensors. This development will not consider the effect of noises
disturbing the system nor corrupting the measurements. Those effects
will be evaluated in a simulation of the system with its detection
filter. Note that the delta (A) notation for the linear state, input,
and measurement vectors used in Figure 3.1 has been dropped for conven-
ience. This notation change produces an ambiguity in that the same
symbols are used for both the nonlinear and linear state, input, and
measurement vectors. However, as detection filter theory is limited to
linear systems, the symbols should be understood as referring to the

linear state, input, and measurement vectors.

As seen in Figure 3.1, the detection filter state and residual

satisfy
X' = Ax' + Bu' + Kr (3.3)
r = y- _y-' (3.4)
where
X_' = C_’_‘_' (305)

12



This r is the accessible output error. Define in addition the full state

error
g = x-x' (3.6)

In the absence of failures, and supposing that the filter has an accurate

model of the system, this error satisfies the differential equation

9 = x-x

(A - KC)q (3.7)

One of the requirements on the design of the detection filter is that K

must be chosen to make (A - KC) stable. Thus even though the filter may
not be initialized to match the system initial conditions, the error will
die out and then x'(t) will track x(t). So a detection filter is a state

estimating filter, but that is not its primary purpose.

3.1.2 Model of a Failure

First consider an actuator failure. In Eq. (3.1) each element of
u relates to one actuator. Thus the corresponding column of B expresses
how that actuator drives the system state. Call the column of B corre-
sponding to the ith actuator Ei' If that actuator fails, ui(t) will not
behave as expected. This can be modeled by changing Eq. (3.1) to

I1Xe

= Ax + Bu' + Ein(t) (3.8)

where n(t) is an arbitrary scalar function of time expressing the differ-
ence between what the failed actuator is doing and what the nominal model
says it should be doing. 1If, for example, an actuator fails by sticking
in the zero position, then n(t) = - ui(t) where u{(t) is the expected
actuator position time history. The fact that n(t) is treated as an

arbitrary function is the mathematical expression of the fact, cited

13



previously, that we will not depend on any information about the mode of

component failures.

With the system behavior given by Eq. (3.8) and the detection
filter characterized by Eq. (3.3), the error in the presence of an

actuator failure obeys the differential equation

4 = (A-XC)g + bn(t) (3.9)

The output error is then

= Cq (3.10)

In addition to making the filter stable with favorable transient charac-
teristics, K is designed to restrict the response of Eq. (3.9) to a sub-
space of the full space of g, which has a projection through C to the
output space having one dimension only. This property is independent of
n(t) and depends only on the wvector Ei' which gives the direction in
state space in which the failed actuator drives the state error. The
component whose failure is to be detected is therefore characterized, for
the purpose of detection filter design, by Ei' It is called the event
vector for this particular failure. Any scalar multiple of Pi can be
used as its magnitude is of no consequence; it is the direction of Ei

that is important.

If it is possible to design a detection filter that restricts the
output error (residual) due to the failure event Pi to one dimension, the
direction of the residual will be CEi' Only if the Céi corresponding
to all the Bi assigned to one detection filter are linearly independent
can their output errors be restricted to single, orthogonal directions in
the output space or in any transformation of the output space. If the

Cbi are not linearly independent, one may wish to remove one or more bi



from the group to achieve independence. This limits the number of
failures which can be identified by one filter to the number of

independent measurements which are available.

However, there is one exception to the above. If any Bi as first

defined has the property

Cb,

b 0 (3.11)

then that event vector should be replaced by Ei, which is the first

vector in the sequence

bgk) = Akb. k = 1,2,00. (3.12)

for which

Cb(k) # 0 (3.13)

In the above discussion it was assumed that this redefinition of bi has
been made whenever necessary, and the resulting event vector was still

referred to as bi for convenience.

In the case of a sensor failure, for a sensor whose output is not
fed back through a controller to the system input, the modeling is very
similar but the effect is more complex. 1In the output expression,

Eq. (3.2), each element of y is one sensor output. The corresponding row
of C determines the linear combination of states which characterize that
measurement. If the ith sensor fails, the result is modeled as

Yy = Cx + Yin(t) (3.14)

where again n(t) is an arbitrary scalar function and vi is a vector whose
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elements are zero except for the ith which is 1. This represents an
arbitrary discrepancy between the sensor output after failure and the

nominal output. The filter error in this case obeys the relations

q (A - XC)g - k,n(t) (3.15)

"

r cg + Yin(t) (3.16)
The arbitrary function n(t) appears both at the input to the error dif-
ferential equation and in the output relation. The input direction, Ei'

is in this case the ith column of the detection filter gain matrix, XK.

As in the case of actuator failures, it may be possible to restrict
the residual produced by the Ein(t) term to a single direction. For the
sensor failure case, the direction would be CEi. However, in general,
this direction will not be the same as the direction vi which appear di-
rectly in the residual expression, Eq. (3.16). Thus the residual, in the
case of failures of sensors which do not feed back into the system
through a controller, can be restricted to a plane but not a line. This

plane is defined by the vectors CEi and Ve

Failures of sensors whose output is fed back through a controller to
the system input may be modeled in the same manner as actuator failures
(Eq. (3.8)). This is true also for significant changes in system
dynamics corresponding to changes in the elements of A or B. For these
cases, Ei is no longer necessarily a column of B but a general event
vector which appropriately models the failure. As in the case of actua-
tor failures, the residual produced by these failures may be restricted

to a line defined by Cbi.

3.2 The Effect of Explicit Coupling of Inputs to Outputs

The development of the detection filter to date, as discussed in
Section 3.1, has assumed that there is no direct coupling between the

inputs and the outputs. However, there is direct input-output coupling

16



due to the lateral and normal acceleration measurements available on-
board the C-130 aircraft chosen for use in this study. This coupling

results in a nonzero D matrix in the linearized system model:

X AX + Bu (3.17)

Yy Cx + Du (3.18)
The effect of this coupling on actuator failure signatures will be
presented here. Only actuator failures are considered since this is the

type of failure of interest in the Restructurable Controls Program.

Consider a failure in the ith actuator. The actual control
surface deflections, Eﬂt), can be expressed as the sum of the expected
control surface deflections input to the detection filter, u'(t), and the
difference in the actual and expected ith control surface deflection

n(t).

u(t) = u'(t) + gin(t) (3.19)

ei is a column vector with zeros in every row except for a one in the ith
row. As before, no assumption has been made with regard to the actual
form of n(t). A model of the effect of the failure on the system is

developed by substituting Eq. (3.19) into Egs. (3.17) and (3.18).

I1X e
]

Ax + Bu' + lgin(t) (3.20)

<
o

Cx + DB' + gin(t) (3.21)

Here, éi is the ith column of the D matrix. The differences between
the actuator failure model with input-output coupling and the model with-

out coupling are the two D matrix terms in the measurement equation.
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The detection filter is still of the form given in Egs. (3.3) and
(3.4). These equations are repeated here for reference.
X' = Ax' + Bu' + Kr (3.3)

= y - X.' (3.4)

However, the expression for y' now contains a nonzero D matrix term

y' = Cx' + Du' (3.22)

Given the system behavior in response to an actuator failure (Egs. (3.20)
and (3.21)) and the detection filter equations (Egs. (3.3), (3.4) and
(3.22)), the error dynamics of the filter are found to be

q(t) (A - kC)g(t) + (b, - Kd )n(t) (3.23)

E(t) Cq(t) + gin(t) (3.24)

These error dynamics are similar to the error dynamics produced by a
detection filter without input-output coupling in response to a failure
of a sensor whose output does not feedback into the system through a
controller. The unexpected control surface deflection appears both at
the input to the error differential equation and in the residual
equation. It may be possible to restrict the residual produced by

(Ei - Kgi)n(t) term to a single direction C(bi - Kdi). But as this
direction differs, in general, from the éi direction, which also appears
in the residual equation, the failure signature will be planar. This
plane is spanned by the vectors C(l_)i - Kgi) and gi. Notice that the
gain matrix K has an effect on the direction C(l_)i - Kgi) and therefore
on the resultant plane. A unidirectional residual would result if the

direction of C(bi - Kdi) could be aligned with di. However, aligning
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C(Ei - Kgi) with 91 would not allow the failure to be distinguishable in
this application as there are only two distinct directions of the columns
of D (there are only two measurements which produce nonzero entries in
the D matrix). Therefore, without basic modification of the detection
filter, the effect of input-output coupling is to cause actuator failure

signatures to be planar instead of unidirectional.

This result prompted a re-examination of the use of the acceleration
measurements. However, it was decided not to substitute angle of attack
and sideslip angle measurements for the acceleration measurements as the
acceleration measurements are of higher quality. This decision limited
the remaining options to two: testing a detection filter with the planar
signature property or modifying the detection filter to regain the
property of unidirectional actuator failure signatures. Both of these
options were developed and tested. The results of the planar signature
detection filter are shown in Section 3.5. The modification of the
detection filter and the results obtained using this filter will be

presented in Section 4.

3.3 Detection Filter Design

A detection filter is designed by calculating the gain matrix so
that actuator failures produce unidirectional residuals in the case of no
direct input-output coupling or planar signatures when there is direct
input-output coupling. This desired residual behavior may be produced
for a fully measured system (i.e., rank [C] equals the number of states)

by choosing K such that, for some },

A-KC = A1 (3.25)
As the measurement set chosen for this evaluation is such that the system
is fully measured, this design approach will be used. The filter eigen-

values can be seen to be the eigenvalues of (A - KC) by rewriting Eq.
(3.3).
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X' = (A - KO)X' + Bu' + K(y - Du') (3.26)

Thus the eigenvalue A should be chosen to give a stable filter that has

acceptable transient response characteristics.

3.3.1 Design Procedure

Using the previous approach, the following procedure can be used
to design a detection filter:

(1) Choose the measurement scaling.

(2) Select the filter eigenvalue A.

(3) Calculate the gain matrix.

(4) Set thresholds.
Each of these steps will now be discussed in more detail.

Measurement scaling was used to reduce the effect of noisy measure-
ments and enhance the contribution of higher guality measurements.
Scaling the measurements effectively changes the numerical values of the

standard deviation of the noise,

The next step is to choose the filter eigenvalue. One obvious
requirement is that the eigenvalue be chosen so the filter is stable. 1In
addition, it is desirable to make the filter fast, so as to reduce the
effect of modeling errors and to have short failure detection times.
However, a fast eigenvalue also reduces the magnitude of the residual
produced by a failure, making detection more difficult in a noisy envi-
ronment. If noise is a problem, though, it might be better to low-pass
filter the residual instead of making the filter slower. This supplemen-
tal noise filtering can be employed in such a way that the quick detec-
tion of a large failure is not sacrificed for the detection of smaller
failures. This is achieved by passing the residual through a bank of
parallel low-pass filters with different time constants. One such filter
would have a small time constant to allow for quick detection of large

failures while other filters would have larger time constants to allow
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for detection of moderate and small failures. The filter eigenvalue
chosen for this evaluation was approximately twice as fast as the fastest

eigenvalue of the system.

The final two steps are to calculate the gain matrix and to set
detection and isolation thresholds. The gain matrix calculation will be
discussed below. While selecting thresholds is an important aspect of
detection filter design, thresholds will not be selected in this study as

the algorithms will be evaluated qualitatively.

3.3.2 Gain Matrix Calculation

Given choices for scaling and the filter eigenvalue, actual calcu-
lation of the gain matrix to satisfy the equality shown in Eq. (3.25) is
still uncertain in this application because there are eleven measurements
and only ten states. K is underdetermined as there are ten more unknowns
than equations in satisfying Egq. (3.25). Recall that in order to be
guaranteed that Eq. (3.25) can be satisfied, the rank of C must be equal
to the number of states.2 Therefore, one measurement could be elimina-
ted such that the rank of C remains ten. In this case, the gain matrix K
would becompletely determined by constraining A - KC to be the diagonal
matrix AI. However, eliminating a measurement just to simplify the gain
matrix calculation seemed undesirable since information is thereby lost,
and this approach was not taken. In addition, the ten degrees of freedom
remaining in the gain matrix after Eq. (3.25) has been satisfied might be
useful in separating the failure signature directions C(gi - Kéi) if

their effect on these directions were known.

Two techniques for choosing K were explored: (1) the augmentation
of A - M and C each with one column prior to solution by matrix inver-
sion, and (2) the minimum norm column solution of K. The first technique
was used in a rather ad hoc manner since there is at present no system-

atic approach to constraining the degrees of freedom. The purpose of

2 Note that the rank of C cannot be greater than the number of states.
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augmenting C with a column, ¢, is to make the matrix invertible. This
places the restriction on the column ¢ that it be independent of the
columns of the matrix C. The matrix A - AI must be augmented with a
column a in order to have the multiplication by the inverted augmented C

matrix dimensionally correct. The solution for the gain matrix is then
K = [A- 2 sal [C:c] (3.27)

A detection filter designed using this approach is evaluated in the

following sections.

A second technique for obtaining the filter gain matrix is to use
the pseudo inverse or generalized inverse (Reference 13) of C, C*, to
calculate the gain matrix K whose columns are the minimum norm solutions

of the equality Eq. (3.25). Here, K can be calculated

K = (A - ar)ct (3.28)

Note that this technique avoids explicit assignment of the twenty
parameters in the augmentation approach. But imposing this minimum norm
constraint on the ten fundamental degrees of freedom ultimately also
lacks theoretical justification. A detection filter design using this

approach will also be examined in the following section.

3.4 Test for Planar Failures

As described in Section 3.2, the plane in which the signature for
a failure of the ith control surface lies for the detection filter is
determined by the vectors C(13i - Kgi) and 91' A possible failure detec-
tion and isolation test is to calculate the orthogonal projection onto a
particular failure plane. Then, the control surface associated with that
failure plane would be identified as failed if the magnitude of the

projection is greater than some threshold. If, however, one is willing
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to make a slightly restrictive assumption about the form of the surface
failure, it is possible to restrict the failure signature for a given
control surface to two segments of the plane. The assumption is that the
unexpected control input, n(t), be either always positive or always nega-
tive. The advantage of restricting the failure signatures to two plane
segments is the failures should be more distinguishable; the disadvantage
is that failures where n(t) is changing sign frequently may be difficult
to detect. The initial evaluation of the detection filter only
considered constant bias failures. For this subset of failures, n(t) was
either positive or negative. Therefore, the planar test discussed below
assumes that the failure signature for a given control surface is

restricted to either of two plane segments.

Before discussing this test, however, the two plane segments must
be defined. These failure signature plane segments can be determined by
examining Egs. (3.23) and (3.24). These equations for the state
estimation error and the observation residual are repeated here for

convenience.

q(t)

(A - XC)g(t) + (b, - K4, )n(t) (3.23)

r(t) cq(t) + 4,n(t) (3.24)

Consider first the case where n(t) is positive. As described in Section
3.2, the (Ei - Kgi)n(t) term in Eq. (3.23) would produce a unidirec-
tional residual along C(l_)i - Kgi), except for the presence of the addi-
tive gin(t) term in the residual equation. Therefore, the failure signa-
tures for n(t) positive will lie in the segment of the plane defined by
the vectors c(l_ai - Kgi) and éi (See Figure 3.2). For n(t) negative, the
residual directions produced by the failure will be the negative of the
vectors C(13i - Kgi) and 91' Therefore, the failure signatures for n(t)
negative will lie in the segment of the plane defined by the negative of

the vectors C(b, - K4,) and 4, .
-i -i -i
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~C(b; - Kd,)

Figure 3.2. Signature regions corresponding to the failure

of the ith control surface
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The test to detect and isolate planar failures in this evaluation
is the projection of the residual onto the two plane segments defined in
Figure 3.3. This test is similar to the test described for sensor
failures in Section 4.3.2 of Reference 8. The residual projection, in
the case when the orthogonal projection of the residual onto a particular
failure signature plane lies in either of the two plane segments, is
simply the orthogonal projection onto the plane or the negative of the
orthogonal projection. If the orthogonal projection lies outside these
two plane segments, the residual projection is the projection of the
residual or the negative of the projection onto the closest of the

normalized C(b, - Kd,), 4., -C(b, - Xd,), or -4..
=i =S - | -i -i -i

3.5 Detection Filter Results

To design and test the detection filter, a single cruise flight
condition at an altitude of 304.8 m (1000 ft) and an airspeed of 77.2
m/s (150 knots) was chosen. First, the specific choices made in
designing the detection filter will be discussed, and then the simulation

results produced by this filter will be presented.

As described previously in Section 3.3, the design of a detection

filter was broken into three steps:
(1) measurement scaling selection
(2) eigenvalue selection
(3) gain matrix calculation

The measurements were scaled to have the units shown in Table 3.1,
reducing the reliance of the detection filter on the airspeed and normal
acceleration measurements in detecting and isolating failures and accen-
tuating the contribution of the angular velocity and attitude measure-
ments. The normal acceleration measurement was seriously affected by the
turbulence while the angular velocity and attitude measurements were of
better quality than the other measurements. In addition, the airspeed

measurement was very noisy.
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Table 3.1.

Measurement Units for Unmodified

Detection Filter Evaluation

MEASUREMENT UNITS

Airspeed 7.6 m/s 25 ft/sec
Lateral Acceleration 0.3 m/s2 ft/sec2
Normal Acceleration 1.5 m/s 5 ft/sec2
Angular Velocity +«0175 rad/sec deg/sec
Attitude «0175 rad degrees
Altitude Rate 0.3 m/s ft/sec
Altitude 0.3 m ft




The detection filter eigenvalue was chosen to be approximately
twice as fast as the fastest eigenvalue of the system. Specifically, the
discrete~time eigenvalue chosen was 0.95. For the sample time of 20 ms
used in the simulation, .95 corresponds approximately to an eigenvalue of

-2.6 (a time constant of .4 s) in continuous-time domain.

Finally, the gain matrix may be calculated by either the augmenta-
tion of the C matrix or by using the pseudo-inverse of C. The detection
filter for which simulation results are presented was designed using the
augmentation approach. The ten degrees of freedom associated with the
underdetermination of the gain matrix were removed by eliminating the

effect of one measurement on the filter. In order to determine which

measurement to eliminate, detection filters were designed with each
eliminating the effect of a different measurement. The normal accelera-
tion measurement was chosen for suppression because this maximized the

signature plane separation. The normal acceleration measurement was

still used in the calculation of the residual and therefore in detecting

and isolating failures. However, the effect of the measurement on the

filter was eliminated by forcing the corresponding column of the gain

matrix to be zero.

This design produced elevator and rudder failure signature planes
that were orthogonal to each other and to all of the other failure
planes. However, the separation between the failure planes corresponding
to the ailerons and the flaps were much smaller. For the purpose of
defining a measure of separation between these planes, the eleven-
dimensional residual space may be reduced to a three-dimensional space,
since all but three components of the vectors which define these planes
are approximately zero., These three components are the normal accelera-
tion, body axis roll rate, and altitude rate components, and thus these
measurements will be most sensitive to these control surface failures.
In a three-dimensional space, the angle between signature planes is a

possible measure of separation and is the measure used here. The
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separation between the failure planes for the two ailerons was about
0.349 rad (20°); the separation between failure planes corresponding to
the aileron and the flap on the same wing was about 0.5235 rad (30°).
Given these results, it might be anticipated that this detection filter
should be able to detect and isolate elevator and rudder failures and be

able to detect but not isolate wing surface failures.

The pseudo-inverse approach to calculating the detection filter
gain matrix was also investigated. While the pseudo~inverse approach
produced directions of the columns of C(B - XKD) and D that were more
separated than the augmentation approach, the failure signature planes
were less distinct. Using the scaling presented in Table 3.1, the
pseudo-inverse design resulted in identical failure planes for the two
ailerons and about 0.349 rad (20°) separation between the failure planes
corresponding to the aileron and the flap on the same wing. The failure
plane segments for the two ailerons, while not overlapping as with other
scalings tried with the pseudo-inverse approach, are adjacent to each

other as shown in Figure 3.4, making isolation difficult.

As the detection filter designed using the augmentation approach
produced slightly better plane separation, this filter was chosen for
testing. The test cases for which results are presented in this section
are described in Table 3.2. The results presented are in terms of the
residual projected onto the two plane segments for each surface which was
defined earlier in this section. These results are shown in Figures 3.5
through 3.13. 1In addition, the residual projection values were averaged
from the time of failure until the end of the 40 s simulation run to
approximately determine the size of the bias in the residual projection
caused by the failure. These results are shown in Table 3.3. The
residuals were low-pass filtered with a time constant of 1.0 s to reduce

the effects of noise and turbulence.

Conclusions were made regarding the ability of the detection
filter to detect and isolate failures using results from the nine test

cases presented. FDI performance was assessed by comparing the magnitude
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of the residual projections onto the planar segments as a result of the
failures relative to the projections where a failure was not present.

The following major conclusions were drawn.

(1) The detection filter was able to detect and isolate at least
moderate elevator and rudder failures in the presence of
noise and minor turbulence (0.3 m/s or 1 ft/s). A 0.0349 rad
(2°) elevator bias failure test case is shown in Figure 3.7,
while the 0.0349 rad (2°) rudder bias failure case is shown

in Figure 3.9.

(2) The filter was able to detect but not isolate moderate wing
surface (aileron and flap) failures in the presence of dis
turbances. In the case of the right aileron failure shown
in Figure 3.10, the detection filter correctly indicated that
this surface had failed. However, the filter also indicated
incorrectly that the failure might have occurred in the right
flap or left aileron. A failure of the rudder has been elim-
inated as a possibility since it causes only a slight change
in the aileron and flap residual projections (Figure 3.9).

In the case of the right flap failure shown in
Figure 3.11, the filter correctly detected a right flap
failure but it also suggested that a right aileron failure

was possible,

This difficulty in isolating wing surface failures is more a
property of the system and the measurements chosen than the
detection filter itself, The effect of the flaps and the
ailerons were largely evident in the body axis roll rate and
less evident in the normal acceleration, body axis yaw rate,
and altitude rate measurements. However, the effects of the
flaps and ailerons on the latter three measurements were not
significant enough to be able to distinguish one aileron from

the other or an aileron and a flap on the same wing.

(3) Based on the time of response for the decision function to
reach a new steady state condition after a failure, the time

to detect elevator and wing surface failures would be
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(4)

(5)

approximately two seconds. The time required to detect a
moderate rudder failure would be approximately five seconds.
Detection times, in general, depend on the magnitude of the
failure, the thresholds selected, the eigenvalue of the
detection filter, and the time constant of the low-pass

filter used to suppress noise in the residual.

Turbulence significantly degrades the performance of the
detection filter. By comparing the no-failure cases shown in
Figures 3.5 and 3.6, severe turbulence (1.98 m/s or 6.5 ft/s)
can be seen to increase the likelihood of false alarms. In
addition, severe turbulence significantly degrades the
ability of the detection filter to even detect a moderate
elevator failure. This can be seen by comparing Figures 3.7

and 3.8.

Modeling errors also degrade detection filter performance.

In order to test this detection filter - which was designed
for a cruise flight condition at an altitude of 304.8 m
(1,000 ft) and an airspeed of 77.2 m/s (150 knots) - with
regard to modeling errors, test cases were generated for the
aircraft in a cruise flight condition at an altitude of
1524.0 m (5,000 ft) and an airspeed of 102.9 m/s (200

knots). The no-failure case shown in Figure 3.12 reveals a
bias in most of the decision functions. The major reason for
this bias is a nonzero body axis roll rate residual caused by
modeling errors. This bias is likely to increase the false
alarm rate and to degrade the filter's ability to detect wing
surface failures. The right aileron bias failure test case
at the off-nominal cruise condition is shown in Figure 3.13,.
One method of reducing the sensitivity of the detection
filter to modeling errors might be to estimate the bias
caused by mismodeling and appropriately compensate the

residual.
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3.6 Conclusions

The following general conclusions have been drawn from this phase

of the study.

(1)

(2)

(3)

(5)

The detection filter can be used to detect control surface

failures.

The detection filter can isolate failures of surfaces that
produce independent effects on the aircraft but may not be
able to isolate failures among surfaces that produce similar
effects on the aircraft. The detection filter was unable to
isolate wing surface (aileron and flap) failures. The main
reason for this result is that these surfaces have similar
effects on the aircraft dynamics. 1Isolation of failures will
be difficult whenever there are functionally redundant
control surfaces. If isolation of control surface failures
is required for restructuring of the control system,

additional software or hardware will be required.

The magnitude of the failures that can be detected depends on
the sensor noise, disturbances, and modeling errors. The
detection filter was especially sensitive to turbulence and
modeling errors. Moderate (-0.0349 rad (-2°) elevator,
aileron, rudder and 10% flap) failures could be detected in
minor turbulence. However, detecting moderate failures in
severe turbulence was much more difficult. While hardover
failures were not tested, they should be easily detected even
in severe turbulence. Modeling errors also degraded the
ability of the detection filter to detect moderate failures.

Detection of hard failure, though, should still be possible.

The failure detection and isolation times for the detection
filter depend on the magnitude of the failure, the
thresholds selected, the eigenvalue chosen for the detection

filter, and the time constant of the low-pass filter, if any,
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required to suppress noise in the residual. Approximately
two seconds would be required to detect a moderate failure
with the residual being low-pass filtered with a time
constant of one second. Approximately five seconds would be
required for a moderate rudder failure. Larger magnitude
failures could be detected faster as much less, if any,
filtering would be necessary. On the other hand, the
detection and isolation of small magnitude failures would
require heavy low-pass filtering for noise suppression which
would impact the failure detection time because of the

relatively long time required to reach steady state.

(6) Detection filter theory is mature for restructurable controls
application to linear, time-invariant systems with no input-
to~output coupling. This is not the case for systems with
input-to-output coupling for which actuator or control
surface failure signatures become planar instead of uni-
directional. Another effect of coupling is that scaling
now impacts detection filter performance and there is no
systematic method available to use it to improve perform-
ance. In addition, no systematic method is available to use
the degrees of freedom which exist by having more measure-
ments than states. Finally, there is no theory for applying

the detection filter to time-varying systems.

(7) There is limited experience in applying the detection filter
to systems. References 8 and 12 describe two of these appli-

cations.
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SECTION 4

A MODIFICATION TO THE DETECTION FILTER FOR
SYSTEMS WITH DIRECT INPUT-TO-OUTPUT COUPLING

4.1 Introduction

This section presents and evaluates a modification to the basic
detection filter. The basis and need for the consideration of the
modified detection filter arises from a limitation of the basic detection
filter when it is applied to the aircraft restructurable control systems
problem. Basic detection filter theory has been developed for systems
for which no direct input-output (control surface deflection to
measurement) coupling exists. In this case, the detection filter is
designed so that an actuator or a control surface failure produces a
unidirectional filter residual. This residual direction depends only on
the component (actuator or control surface) that has failed and is
independent of the mode of the failure (e.g., bias, ramp, etc.).
Therefore, failures are detected and isolated simply by observing the

magnitude and the direction of the residual.

However, direct input-output coupling arises with regard to the
restructurable controls problem because of acceleration measurements
present on aircraft. As acceleration measurements are common onboard
measurements and are, in general, of higher quality than angle of attack
and sideslip angle measurements, detection filter design with direct
input-to-output coupling was investigated instead of eliminating these
measurements. The previous section on the detection filter showed that,

with direct input-to-output coupling, the residual produced by an
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actuator or control surface failure could be, at best, constrained to a
plane using current detection filter design theory. Detection and isola-

tion of failures with planer signatures is possible but more difficult.

This section presents and evaluates a modification to the detec-
tion filter to restore the unidirectional residual property produced by
actuator or control surface failures when there is direct input-to-output
coupling. The approach employed is to use secondary filtering of the
detection filter residuals to produce unidirectional failure signatures.
As before, the evaluation was conducted using the C-130 aircraft simula-
tion. Failures were introduced into the simulation to assess the failure

detection and identification capability of this modification.

The modification is presented in Section 4.2. The results are
presented in Section 4.3, and Section 4.4 contains the conclusions of

this evaluation of the modification of the detection filter.

4.2 Modification of the Detection Filter

The effect of direct input-output coupling on actuator failure
signatures for the detection filter, discussed in Section 3.2, forms the
basis for the material in this section. Recall that without basic modi-
fication of the detection filter, the effect of input-output coupling is
to cause actuator failure signature to be planar instead of unidirection-
al. 1In the course of applying the detection filter to the restructurable
control problem, it was discovered that secondary filtering of the detec-
tion filter residual could lead to unidirectional failure signatures even
when there is direct coupling between inputs and measurements. Consider
the discrete-time transfer function between the unexpected input from the
ith actuator and the residual obtained by taking the z-transform of Eqgs.
(3.23) and (3.24).

r{(z) = [c{(zr - A + KkC) (b, - Kdi) + 4, In(z) (4.1)

Assuming that the detection filter gain matrix, K, is calculated to

satisfy the relationship
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A -K = AI (4.2)
where A is the selected detection filter eigenvalue, it follows that

C(b, - K4,)
-1 -1

E‘z) = [ z - A

+d. | n(z) (4.3)
-1

If the contribution gin(z) could be filtered with the same time constant
as in the detection filter, the failure signature would be unidirec-

tional, lying along C(lgi - Kgi) + 91'

The secondary filtering scheme, then, has several elements.
First, the components of the residual along the event vectors 91 are
separated from the residual. Then they are filtered using the detection
filter time constant. Finally, these filtered components are then added
to the other components, forming a new residual. It is this new residual

that is used for failure detection and isolation.

In order for the initial separation of the components along 91 to
be possible, all event vectors gi must be mutually independent, and each
must be independent of the hyperplane formed by the C(Ei - Kgi) vectors.
To obtain the components of the residual in the directions 91' first

write the residual

ra) = [olby - xa) | eee feleg = kdg)y ag]d] ] | ) | aea)
cz(k)
cg (k)

Here, C(gi - Kgi) has been normalized for each of the six actuators of
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th re t applicati ivi - 3 3
e presen pplication, giving C(}Bi Kgi)N, and §1N and QZN are the

distinct directions among the columns of the D matrix (two in this appli-

cation). The vector c(k) is obtained using

cx) = plr(x) (4.6)

where Pt is the pseudoinverse (generalized inverse) [Reference 13] of

P.

~

The magnitudes c7(k) and ca(k) of the components of r(k) along d1N

~

and d2N are passed through a secondary two-state filter:

g'(k) = AIg'(k-1) + c7(k-1) (4.7)

c8(k-1)

Substituting these filtered components for the unfiltered ones in c(k)

leads to

c k) = e, (k) (4.8)

cs(k)
q{(k)

qé(k)

Transforming this vector of components back into the original residual

space results in

_r_f(k) = ng(k) (4.9)
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Actuator failures may be detected and (simultaneously) isolated through

projection of Ef(k) onto each of the six signature vectors C(bi—Kdi)+ di'

In using the transformation P it has been assumed that r(k) lies
in the eight-dimensional space spanned by columns of P. Applying trans-
formations PT and P leads to suppression of noise in the residual that
is in directions orthogonal to the range of P. Because noise in these
directions only interferes with failure detection and isolation, this
suppression could be very beneficial.

The modified detection filter is shown in Figure 4.1. The

operators S and R, where

s = (4.10)

and
T T
R = ste - e,8, — egeg (4.11)
denote, respectively, the operations of forming the two-vector [c. c ]T

7 8

and of nulling out c, and Cg in c.

4.3 Modified Detection Filter Design

A number of modified detection filter designs were tested via
simulation to evaluate the concept. As with the unmodified detection
filter, all the designs assumed a nominal cruise condition of 77.2 m/sec
(150 knots) at an altitude of 304.8 m (1000 ft). The modified detection
filters were designed using the same approach as for the unmodified
detection filter because the modification consists simply of augmenting
the detection filter with secondary filtering of the residual. As the

secondary filtering is determined entirely by the linear model of the
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system, the gain matrix, and the detection filter eigenvalue, no design
of the secondary filtering is required. Detection filter design, as

presented in Section 3.3, consists of three steps:

(1) measurement scaling selection
(2) eigenvalue selection

(3) gain matrix calculation,

The selections which produced the best design are now described.

The measurements were scaled to have the units shown in Table
4.1, Note that these units differ from those selected for the unmodi-
fied detection filter in Table 3.1. The measurement units chosen reduce
the dominance of the acceleration measurements, which are highly affected
by turbulence, in detecting and isolating failures while increasing the
contribution of the higher quality angular velocity and attitude measure-
ments. Also, the airspeed residual was scaled to reduce the effect of

the noisy airspeed sensor on the filter.

Scaling the lateral acceleration measurement also reduced some
numerical errors produced by the secondary filtering. The idea of secon-
dary filtering is to filter the portion of the residual produced by
direct input-to-output coupling with the same time constant as the detec-
tion filter. Separating this portion of the residual from the total
residual is not numerically exact. Therefore, a portion of the residual
not associated with direct input-to-output coupling will be also fil-
tered, producing small yet significant errors. (In addition, errors
occur when some of the direct input-to-output contribution to the resid-
ual is not passed through the secondary filter. However, these errors

are too small to have a significant effect.)

The eigenvalue chosen was the same one chosen for the unmodified
detection filter. In discrete-time the eigenvalue chosen was 0.95. For
the sample time of 20 ms used in the simulation, the equivalent

continuous-time eigenvalue is -2.6.
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Table 4.1
Measurement Units for Modified Detection Filter Evaluation

MEASUREMENT UNITS

Airspeed 7.6 m/s 25 ft/s
Lateral Acceleration 0.6 m/s2 2 ft/s2
Normal Acceleration 1.5 m/s 5 ft/s2
Angular Velocity «0056 rad/s +«318 deg/s
Attitude «0175 rad deg
Altitude Rate 0.3 m/s ft/s
Altitude 0.3 m ft




The gain matrix was also calculated using the same method used in
producing the best design for the unmodified detection filter: the
augmentation of the C matrix approach. As before, the effect of the
normal acceleration measurement on the filter was suppressed by forcing
the corresponding column of the gain matrix to be zero. The normal
acceleration measurement was still used in the calculation of the resid-

ual and therefore in detecting and isolating failures.

4.4 Modified Detection Filter Results

The test cases used to evaluate the modified detection filter are
described in Table 4.2. These cases included the no-failure simulation
(Figure 4.2) and simulations of failures of elevator, right aileron, left
aileron, right flap, and rudder (Figures 4.3 through 4.7) in the presence
of low-level turbulence. To determine the effects of higher turbulence
intensity, data for the no-failure case and the -0.0349 rad (2°) elevator
bias failure case with a turbulence level of 0.3 m/s (6.5 ft/s) rather
than the nominal 0.3 m/s (1 ft/s) were also processed. These results are
shown in Figures 4.8 and 4.9, respectively. The cases described above
assumed the aircraft to be at the nominal cruise condition of 77.2 m/s
(150 knots) at an altitude of 304.8 m (1000 ft). The effect of modeling
errors was determined by processing data for the no-failure and right
aileron failure cases (Figures 4.10 and 4.11, respectively) at an
off-nominal cruise condition using the filter designed for the nominal
cruise flight condition. All failure onsets occurred at five seconds,
and sensor noise was also simulated. The residuals were not low-pass

filtered as they were for the unmodified detection filter, however.

Figure 4.2 shows the projection of the residual vector Ie onto
each of the unitized failure signature directions for the no-failure
case, Only the system noise and the unmodeled dynamics influence the
residual after the filter transients die away. Turbulence affects the

modified detection filter residual projections more than those of the
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unmodified filter because the modified filter relies more on the normal
acceleration measurement to detect elevator, aileron, and flap failures.
This is true despite the attempt to diminish the use of the normal
acceleration measurement and rely more on the roll rate measurement

through scaling of the measurements.

The residual projections become biased relative to the no-failure
residual projections about a second after the failure. The bias appears
to be approximately constant, which is a reflection of the unidirection-
ality of the failure signatures. 1In order to determine the size of the
bias, the residual projection values were averaged from the time of
failure until the end of 40 s simulation run. The results for the test
cases are shown in Table 4.3. With suitable thresholds for decision, it
is reasonable to expect that, for the case where the filter has a good
model, residual projection magnitude could be used to detect any of these
control surface failures at low turbulence levels. By comparing the mean
residual projections onto the expected failure directions, elevator and
rudder failures are clearly identified. Not unexpectedly, however,
isolating specific wing surface failures was more difficult. For both
aileron failure cases, the modified detection filter was able to isolate
the failure to the aileron or flap on the correct wing. This conclusion
was based on the mean residual projections for the aileron and flap on
the correct wing being larger than the other mean residual projections.
Based on the one flap failure case, isolating the failure to one of the
flaps might be possible. While unable to clearly isolate wing surface
failures, the modified detection filter was better able to distinguish

between the wing surfaces than the unmodified detection filter.

High-level turbulence significantly affects the filter residual
and therefore the residual projections. If thresholds were set to detect
failures with low-level turbulence, the high-level turbulence would
probably cause a failure to be indicated even in the no-failure case.
Yet, when compared to the high-turbulence no-failure case, the elevator
failure in high turbulence still has a detectable signature, although

a flap failure is also falsely indicational.
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When the filter model was less representative of the actual dynam-
ics, the effect of the mismodeling was to introduce a large bias in the
filter residual. This led to large residual projections, an indication
of failure - even in the no-failure case. But the residual was notice-
ably larger in the aileron failure case (the only failure tested at the
off-nominal cruise condition), and the projections were offset from those
of the no-failure case by approximately the same amounts as for the

corresponding cases tested at the nominal cruise condition.

In order to reduce the sensitivity of the modified detection
filter to both turbulence and modeling errors, dynamic thresholds or a
method of estimating the residual biases caused by disturbances and
modeling errors would be of benefit. If estimating these biases were
possible, the residual could be appropriately compensated and failures

could still be detected and isolated.

4.5 Conclusions

The modified detection filter has been presented and it has been
evaluated with regard to its ability to detect and isolate aircraft
control surface failures. The following conclusions and advantages and
disadvantages of the modification to the detection filter are based on
the results described in the last section. Comparisons with the

unmodified detection filter are also presented where appropriate.

(1) The modified detection filter can be used to give unidirec-
tional failure signatures in applications where there is
direct coupling of inputs to measurements. The modifications
required are minor. Unlike the unmodified detection filter
for this application, there are straightforward detection and
isolation tests based directly on mean residual projection

magnitude and direction.

(2) Noise orthogonal to the C(13i - Kgi) and 91 directions is

suppressed as a by-product of the secondary filtering,
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(3)

(4)

(5)

(6)

(7)

(8)

Small but significant residual errors can be caused by the
secondary filtering because separating the portion of the
residual produced by direct input-output coupling is not

numerically exact.

The modified detection filter can be used to detect control
surface failures in low level turbulence with no modeling
errors.

The modified detection filter will have difficulty in isolat-
ing failures that produce similar effects on the aircraft.
Both the unmodified and modified detection filters were not
able to isolate wing surface (aileron and flap) failures to a
specific wing surface, However, the modified detection
filter shows more promise of being able to distinguish

between these surfaces which produce similar effects.

The modified detection filter is sensitive to disturbances
such as turbulence and to modeling errors. Dynamic
thresholds or some method of estimating the no-failure
residual magnitudes could be of benefit in achieving adequate
levels of FDI performance. If this is possible, detecting
failures with turbulence and modeling errors would still be

achieved.

Based upon the time for the projection of the residual onto
the failure signature directions to significantly show the
effects of a failure, the failure detection and isolation
times for the modified detection filter in low turbulence
were on the order of a second, approximately the same as

those obtained for the unmodified filter.

As the modification is a new concept, it is not mature in

either theory or application.




(9)

Given our experience with both the unmodified and the

modified detection filter, it is our judgment that the

modified detection filter holds more promise for applications

with direct input-to-output coupling and therefore deserves

continued investigation.

A







SECTION 5

LIKELIHOOD RATIO TESTS

5.1 Introduction

Likelihood Ratio Tests are evaluated in this section with regard
to their ability to detect and isolate control system failures. Two
tests are evaluated: the Generalized Likelihood Ratio Test and the
orthogonal Series Generalized Likelihood Ratio Test. An analytical
development of each algorithm is presented. Simulation results, which

directly compare the FDI capability of both algorithms, are shown and

discussed. Most of the material contained in this section is taken from

Reference 10.

5.2 The GLR Test for Dynamic Systems

The details of the GLR test may be found in Reference 9. A
discrete-time system is assumed for the present discussion. In the
normal mode of operation (Ho), the state dynamics and measurement

equation are given by

x(k+1)

®(k)x(k) + B(k)u(k) + w(k) + g(k) (5.1)

y(k)

C(k)x(k) + D(k)u(k) + v(k) + h(k) (5.2)

g(k) and h(k) are bias vectors. w(k) and v(k) are independent,

zero-mean, white Gaussian sequences with covariances given by
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Elw(X)w" ()]

Q(k)cSkj (5.3)

Elv(X)v" (§)] ROK) g4 (5.4)

The GLR failure hypothesis is that

x(k+1)

0

¢(k)x(k) + B(k)u(k) + w(k) + g(k) + b(k)n(k,8)v (5.5)

y(k) C(k)x(k) + D(k)u(k) + v(k) + h(k) + d(k)n(k,8)v (5.6)

where b(k) and d(k) are known vectors that depend on the type of the
failure. For example, if an actuator failure is modeled, b(k) will be
the column of the matrix B(k) corresponding to that actuator, and d(k)
will be the corresponding column of D(k). If a sensor failure is model-

ed, b(k) will be the zero vector, and d(k) will be given by

di(k) = Gij, i = 1, 2, eese, M (5.7)

where j is the index corresponding to the failed sensor. n(k,8) is the
mode shape, or simply mode, of the failure, which occurs at time 6.

Generally, we have that
n(k,8) = o0, k < 8 (5.8)

For example, if a bias failure is assumed, then

n(k’ 9) = (5.9)

Finally, v is the magnitude of the failure.
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For the analysis that follows, the deterministic input and bias
terms in the state and measurement equations that are common to both
hypotheses may be eliminated, due to the linearity of the eguations.
Therefore, the no-failure hypothesis (Ho) and the failure hypothesis

(H1) are represented by

Hy: x(k+1) = o(k)x(k) + w(k) (5.10)
y(k) = c(x)x(k) + v(k) (5.11)
Hi: x(k+1) = &(k)x(k) + w(k) + b(k)n(k,0)v (5.12)
y(k) = c(k)x(k) + v(k) + d(k)n(k,8)v (5.13)

Suppose the data y(k) are observed over the observation interval

k <k <k (5.14)

For a given time of failure, 6, and magnitude of failure, v, the

Likelihood Ratio (LR) is given by

Ply(k ), Yk +1), oo, z(kf)|g1,e,v)

(5.15)
P(l(ko), _Y_(k0+1)' ee e, "Y"(kf)'HO)

A(kf, 8, v)

Because the y(k) are not independent from time step to time step, the
evaluation of the conditional probabilities is difficult. To evaluate
the LR, a Kalman filter is implemented, based on the normal mode (Hg)

system. The filter equations are

x~(k+1) = o(k)x* (k) (5.16)
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xH(k) = x~(k) + K(k)y(k)

(5.17)

where K(k) is the Kalman gain matrix, and y(k) is the residual, given by

ak) = y(k) - c(k)x~(k)
The Kalman gain matrix is given by
K(k) = P ()CTOM (k)
where P~(k) is the covariance of the estimation error
e"(x) = x(k) - x"(k)
and M(k) is the covariance of y(k), given by

M(k) = C(X)P (k)CT(k) + R(k)

The covariance is propagated by

P (k+1) s(x)pt (k) 8T (k) + Q(k)

pt(x) [I - K(k)C(k)IP (k)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

The LR may then be written in terms of the residual sequence Y(k) rather

than the measurement sequence. Because the residual sequence is (condi-

tionally) a white Gaussian sequence, the LR is easier to determine in

terms of y(k) than in terms of y(k).

Due to the linearity of the state eguation and the filter equa-

tions, the residual may be expressed under each hypothesis as
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HO: (k)

_Y_O(k) (5.24)

H1: x(k)

_Y_O(k) + g(k,0)v (5.25)

where -10(k) is a zero-mean, white Gaussian sequence with covariance

M(k). g(k,8) is the failure signature of a failure occurring at time 0.

g(k,0) is given by

g(k,8) = c(k)£(k,8) + d(k)n(k,) (5.26)

where f(k,0) is the influence of the failure mode n(k,0) on the state

estimation error. £(k,6) may be generated recursively by

£(k+1,0) = &(k)[I - K(k)C(k)I£(k, 8) + [b(k) - &(k)K(k)d(k)In(k,6)

(5.27)

with the initial condition

E(ko,e) = 0 (5.28)
It can be seen therefore that
£f(x,8) = 0, k<8 (5.29)
The LR is given by
Px(k))s Xky+1), oo, l(kf)|H1,e,v)
A(kf,e, V) i (5.30)

p(x(ky)r X(ko+1)y oo, l(kf)!HO)

Because the residual sequence is (conditionally) Gaussian and white, the

Log Likelihood Ratio (LLR) ratio has a particularly simple form:
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1.2
J?,(kf,G,v) = vx(kf,e) --i-vs(kf,e) (5.31)
where
ke o -1
x(k,8) = ] g (k,0)M ' (k)y(k) (5.32)
k=9
ke o -1
Stk,0) = [ g (k,00M  (k)g(k) (5.33)
k=0

Now, the generalized likelihood ratio is given by

k) = max z(kf,é,\“)) (5.34)
8,9

~
Performing the maximization over v first, we have that

x(kf,e)

————— (5.35)
s(kf,e)

v(kf,e)

Hence, the GLR test statistic is given by

1 xz(kf,é)
l(kf) = mx o —— (5.36)

0 S(kf,e)
As a matter of convenience, the GLR decision function is defined by

xz(kf,ﬁ)
DF(kf) = 2 l(kf) = max —————— (5.37)
8 s(kf,é)

A failure is detected when the decision function exceeds the detection
threshold.
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A closed-form solution to the above maximization does not exist
in general. Therefore, in order to implement the GLR, the statistic
kg, 6) must be computed for all possible times of failure, 6. As a
result, a bank of matched filters that grows linearly with time is
required. To avoid this unlimited growth in the amount of computation,
the assumed time of failure may be restricted, say, to be in the range
kg = N < 0 < kge Even so, the amount of computation required to

implement the GLR can be quite large, especially if N is large.

5.3 The Orthogonal Series GLR Test

The Generalized Likelihood Ratio methods of FDI tend to be
computationally burdensome. This complexity arises from the need to
estimate the random onset time of the failure, which generally requires
a nonlinear estimation structure. In addition, these methods may not be

robust to failure mode uncertainty.

An FDI algorithm that is robust to failure mode uncertainty is
the detection filter. Unfortunately, the applicability of the detection
filter is limited by a number of factors. One restriction is that the
theory is limited to linear time-invariant systems. Also, the detection
filter design process breaks down for systems where two or more failure
types are not "output separable," even though it should be possible to
detect and isolate failures for some such systems. Finally, little
guidance exists on how to choose the free parameters in the design

process, such as the filter eigenvalues.

In this section, an algorithm that addresses these problems, the
Orthogonal Series Generalized Likelihood Ratio (OSGLR) Test, is
proposed. As suggested by its name, the OSGLR test is indeed a GLR
test. The hypothesis upon which the test is based is that the failure
modes can be represented as truncated orthogonal series of time
functions. Because such a series can represent a broad class of failure

modes, the test should be robust to failure mode uncertainty. The test
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is not as computationally complex as other GLR methods, because the time
of failure does not enter the failure hypothesis explicitly. The only
unknowns in the failure hypothesis are the coefficients of the terms in
the orthogonal series. Because they enter the state and measurement
equations linearly, these unknowns can be estimated by relatively simple
linear schemes. 1In practice, the discrete-time case is likely to be
more useful, because it is more amenable to computer implementation.
However, continuous-time systems will be dealt with here because the

mathematics are less cumbersome.

5.3.1 OSGLR Hypotheses

We are interested in detecting failures in linear dynamic systems,

which under normal conditions are modeled by

dx(t) = A(t)x(t) + B(t)u(t) + w(t) (5.38)
dt
y(t) = c(t)x(t) + D(t)u(t) + v(t) (5.39)

w(t) and v(t) are independent, zero-mean, Gaussian processes with

autocorrelation functions given by

T
E[ﬂ_(t1 )w (tz)] Q(t1)6(t1—t2) (5.40)

T
Elv(t )y (t))] R(t1)6(t1-t2) (5.41)

When a failure occurs, either the state dynamics change or the
measurement equation changes. For example, if the ith actuator fails,
the actual input vector, u,(t), differs from the commanded input, u(t),

as follows:

u (t) = u(t) +Eqif(t) (5.42)
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where &qi is a g-dimensional unit vector in the ith coordinate direc-

tion, i.e., the elements of &qi are given by

(e .). S, .
—q1 J 1)

[ =1, 2, eee, q (5.43)

where Gij is the Kronecker delta. £(t) is the mode shape of the fail-
ure. For example, if the failure is a bias shift, then £(t) is a step
function of some magnitude at the time of the failure. Thus, the state

dynamics and measurement equations become

dx(t) = A(t)x(t) + B(t)u(t) + bj (£)E(t) + w(t) (5.44)
dt
2(£) = Cle)x(t) + D(t)ult) + d, (£)E(t) + v(t) (5.45)

where b;j (t) and d;(t) are the ith columns of B(t) and D(t), respec-

tively.

Similarly, a failure in the ith sensor can generally be repre-

sented in the measurement equation as

y(t) = c(t)x(t) + D(t)u(t) + gmi(t)f(t) + v(t) (5.46)

As in the case of an actuator failure, f(t) depends on the mode of the

failure. For example, if the output of the ith sensor is fixed at zero

(except for the additive noise), then

£(8) = - i (O)x(E) - dI(e)u(t) (5.47)

where cg(t) is the ith row of C(t). The situation is more complicated
for changes in the plant dynamics. Reference 10 should be consulted in

this regard.
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For most types of failures (actuator failures, sensor failures,
and some types of dynamics changes), the effect of the failure can be

captured in the state and measurement equations as

dx(t)
ac - = Ale)x(t) + B(t)u(t) + b(E)E(t) + w(t) (5.48)
y(t) = c(e)x(t) + dD(t)ult) + A(L)£(t) + v(t) (5.49)

The vectors b(t) and d(t) are known ahead of time for each type of fail-
ure, whereas the mode of the failure, f(t), is generally unknown a
priori. 1In the analysis that follows, the terms due to the input u(t) in
the state and measurement equations can be neglected, due to the linear-
ity of the equations and the fact that B(t), D(t), and u(t) are known.

It is important to remember, however, that these terms must be included
in any implementation of the OSGLR algorithm. Specifically, these terms
must be included in the Kalman filter that estimates x(t). The
discussion will be confined to the binary hypothesis testing case. That
is, we will assume that we are only trying to detect a single failure
type, rather than detect and isolate from a set of failure types. Later,

the results will be extended to include the isolation problem.

The OSGLR test will be derived in the following manner. The

fixed-length data test for data observed over the interval

t, <t <t

0 £

will be found. This fixed data test will then be suitably modified to
form a sequential test. The no-failure (Hp) and failure (Hy)

hypotheses are given by

dx(t)
Byt g = ABIX(®) + w(e) (5.50)
y(t) = clr)x(t) + v(t) (5.51)
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dx(t)
17 Tat

A(t)x(t) + w(t) + b(t)£(t) (5.52)

y(t) clr)x(t) + v(t) + d(t)f(¢) (5.53)
For both hypotheses Ejto) is a Gaussian random variable with zero mean

and covariance PO.

Because the failure mode shape f(t) has not been specified, the
hypothesis H; is not complete. In order that the test be robust to
failure mode uncertainty, it would be desirable to allow f(t) to be
completely arbitrary. However, this assumption does not lead to a

well-posed problem. Therefore, some further assumptions must be made.

The approach that will be taken here is to represent the mode
shape f(t) by a truncated series expansion with unknown coefficients.
The motivation is that if the basis functions of the expansion are chosen

properly, it should be possible to approximately represent a rich class

of failure modes. Therefore, it is assumed that f(t) can be expressed as
p
£(t) = ¥ a (0 (5.54)

where p is the number of basis functions, the aqij are unknown coeffi-
cients, and the ¢4;(t) are the basis functions. Eq. (5-54) can be

expressed more conveniently in vector form as
T
£(t) = 91(t)§1 (5.55)

The subscript "1" indicates that this is an intermediate representation.

Ultimately, we will be interested in a representation of the form
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£(8) = ¢t~ thalt)) (5.56)

It cannot be overemphasized that the representation of f£(t) in Eq. (5.55)
is meant to be an approximation. There is no reason to believe that an

actual failure mode will have this particular form.

Two important features of these hypotheses are that the failure
hypothesis does not include a parameter representing the time of failure,
and that the unknown parameters enter into the problem linearly. Hence,
nonlinear estimation will not be required. As will be seen, this signi-
ficantly reduces the amount of computation required relative to other GLR

methods.

5.3.2 Derivation of the OSGLR Algorithm

The OSGLR test is derived in several steps. First, the test is
derived based on the representation of £(t) given by Eq. (5.55). Next,
the test is converted to a form that corresponds to a second intermediate
representation of f(t). A special case of this representation is given
in Eq. (5.56). 1In the process, the test statistic is converted from an
integral representation to a differential equation representation. A

more complete derivation may be found in Reference 10.

To determine the form of the test, we proceed as follows. A Kal-
man filter based on the unfailed system statistics (Hg), is used to

generate the residual process Y(t). The filter equations are

dx(t) .

< = A(D)X(£) + K(t)x(t) (5.57)
() = 0 (5.58)

y(t) = y(t) - c(t)x(t) (5.59)
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K(t) = P(t)CT(B)R () (5.60)

——"'dgiﬂ = A(t)p(t) + P(t)AT(t) + o(t) - P(t)CT(t)R—1(t)c(t)P(t)
(5.61)
P(t)) = Py (5.62)

where_g(t) is the estimate of x(t), P(t) is the covariance of the estima-
tion error, and K(t) is the Kalman gain matrix. The process Yy(t) con-
tains exactly the same information as y(t), because each can be deter-
mined unambiguously from the other. However, y(t) is easier to work with
than y(t) because it is a white noise process, whereas y(t) is correlated

in time .

By the linearity of the Kalman filter and the system equations,

the residual can be decomposed as

vy = y () + X, (¢) (5.63)

where (t) is the residual process that results under H_., and Jh(t) is

Y
-0 0
the part of the residual due to the failure. Again, due to the linearity

of the filter and the systenm, Jh(t) can be expressed as

1,08 = G (t)a (5.64)

where the matrix G1(t) represents the influence of the vector of coef-
ficients 2q on the residuals, and remains to be determined. Therefore,

we can rewrite the two hypotheses as

Hp: x(8) = y (&), t<t<t (5.65)
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Hi: x(t) = y (&) + G1(t)§_1 ' t.<t<t (5.66)

1 0 f
where lb(t) is a zero-mean, Gaussian process with the autocorrelation

function
Blyy ()15t ] = R(E)8(t ~t,) (5.67)

Hence, the problem of deciding between HO and H1 has been reduced to the
problem of deciding whether or not a bias signal is present in the white

residual process.

It can be shown that the information vector, defined by

ke

Xt = [ e](trR (H)x(t)at (5.68)

%o

is a sufficient statistic, i.e., that it contains all the information
contained in the residual process regarding the hypotheses. Hence, it
can be used in place of the entire time history of the residuals to
determine whether a failure has occurred. Now, Z1(tf) is a Gaussian
random vector, because y(t) is a Gaussian random process. Hence, its
probability density is completely specified by its mean and covariance.
Under HO, the mean of x1(tf) is zero since the residual has a mean value
of zero. The covariance of x1(tf), known as the information matrix, is

given by

‘e

T -1
s, (k) = [ (BIR (£)G, (t)at (5.69)

%o

Under H1, lh(tf) has the same covariance, but its mean is given by
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E[x1(tf)lH1] = s (tp)a, (5.70)
The two hypotheses can be rewritten as

Hy: X, (t) ~N(Q,8, (t.)) (5.71)

Hyro X (k) - N(S (t)a,,s, (t)) (5.72)

The problem of deciding between HO and H1 has now been reduced to the
problem of deciding whether the Gaussian random vector lh(tf) has zero
mean Or nonzero mean. Because the hypothesis Hy is composite, an

appropriate test to use is the GLR test.

The GLR decision function is defined by
DF(t.) = x(t.)sT (t,)x. (t.) (5.73)
£0T 4 Re0° YrelX e .

Reference 10 contains a derivaton of the GLR test statistic. Then the

GLR test is given by

decide H1

DF(tf) z T (5.74)

decide H
ecide H,

 The threshold is written as T2 because the decision function is a posi-
tive definite form. Therefore, a negative threshold would yield a trivi-
al test that always decides that Hy is true. Also, writing the thresh-

old as T2 rather than T will simplify the results of later sections.

To complete the derivation of the test, we must determine Gi(t)‘

It can be shown (Reference 10) that G1(t) is given by
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G, () = CLOIF, (&) + d(£)gr (L) (5.75)

where
dF1(t) T
S — = [a®) - K(t)C(t)]F1(t) + [b(t) - K(t)d(t)]¢, (t)
(5.76)
and

The above equations specify the OSGLR test for the failure as
represented by Eq. (5.55). However, this representation has two weak-
nesses. First, because the basis functions ¢1i(t) were chosen
arbitrarily, they may be highly correlated. The second problem is that
the basis functions are defined relative to an absolute time scale,
rather than with respect to the terminal time, tg. For a number of
reasons, it is desirable to define the basis functions relative to the
time tg, in which case the basis functions are ¢i(tf-t) rather than
¢1i(t). For one thing, if the transformed basis functions are functions

of tg-t, then they will have the same shape on the time scale defined

relative to the end of the observation interval, tg. Also, if the

system is time-invariant, the OSGLR equations will then be time-invariant

in steady state,

Both of these problems can be remedied in the following way: A
new set of basis functions will be defined that is the original set of
basis functions orthogonalized over the interval [tg,tgl. This will
eliminate the first of the problems discussed above. The second problem
may be solved by judicious choice of the original set of basis
functions. The vector of basis functions ih(t) is transformed by

an invertible linear transformation P(t1), so that
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B,(tt) = Tt (v) (5.78)

The transformation T'(tg) is intended to orthogonalize the vector of
basis function gz(t) over the interval (tg,tgl, although it is not
necessary that it do so. Based on this new vector of basis functions, a
new information vector ljtf), information matrix S(tf), and influence
matrices G(tf) and F(tf) can be developed. These quantities are related
to )h(tf), S1(tf), G1(tf), and F1(tf) by the matrix P(tf). With the
help of these relationships, differential equations for these new

quantities can be derived. A useful definition is the following:

A . dI‘T(tf)
Aa(tf) = -T (tf)——d—t-;— (5.79)
The equations for the OSGLR algorithm then become
[} T T -1
at, x(t) = —A (e )x(t.) + Gt IR (e )y(t) (5.80)
with initial condition
x(to) = 0 (5.81)
L os(e) = - aT(e)s(t,) - S(E)A_(t,)
at, £ a f £ f'%a " f
+ Gt )R (t,)G(E,) (5.82)
£ £ f *
with initial condition
S(to) = 0 (5.83)
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- T
Gltg) = Clr)r(t)) + alte) g, (te,ty) (5.84)

d
EE; F(tf) = [A(tf) - K(tf)C(tf)]F(tf)

T
+ [Eﬁtf) - K(tf)gﬁtf)]gz(tf,tf) - F(tf)Aa(tf) (5.85)

with initial condition

F(to) = 0 (5.86)

Now suppose that the basis functions are required to be shift

invariant so that

Qz(t,tf) = <_p(tf - t) (5.87)

Note that with the basis functions in this form, the failure mode f(t)
has the form described in Eqe. (5.56). It can be shown that the vector of

basis functions_i(r) satisfies the differential equation

d

5?_2(1) = A¢$(T) (5.88)
where A¢ is a constant matrix, and Tt is a dummy variable defined by

t - t (5089)

A¢ is related to Aa(tf) by the equation

A, = ~AT (5.90)
a
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That is, A, is also a constant. T may be thought of as defining a
relative time scale that runs backward from the end of the observation
interval, tg. 1In some ways, the relative time Tt is more natural for
the failure detection problem than the absolute time t because it
represents time relative to the current time (tg), rather than relative

to some arbitrary fixed initial time.

Note that the basis functions affect the OSGLR equations only
through Aa(tf) and Qz(tf,tf). Therefore, if gz(tf,tf) is required to be
shift-invariant, the OSGLR equations will be functions only of the system
matrices, A¢, and 4(0). 1In other words, there is no need to specify the
underlying basis functions ¢1i(t) or the transformation P(tf). Since
there is little motivation for using a basis which is not shift-

invariant, this will be assumed to be true.

The OSGLR equations for continuous-time systems are summarized in

Table 5.1.

After a failure has been detected, action must be taken by the FDI
system to accommodate for the failure. Accommodation involves two
distinct actions. First, the failed component, which is usually a sensor
or an actuator, must be physically isolated from the system so that it
can do no more harm. This aspect of accommodation is problem specific,

and will not be discussed further here.

The other action the FDI system must take is to prepare to contin-
ue performing failure detection. A number of bookkeeping operations must
be performed, such as changing the system models to account for the loss
of the failed component, and reinitializing the information vector and
information matrix to zero for each of the remaining components. The
Kalman filter must be updated to account for the failure, so that
monitoring of the other components can continue. More specifically, the

filter estimate and covariance should be updated as follows:

X(t¥) = x(t7) + F(t)a(t) (5.91)
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Table 5-1. Summary of continuous-time OSGLR equations.

Estimation error influence matrix propagation:

————-dgf:t’ [A(t) - K(£)C(£)IF(t) + [b(t) - K(£)d(£)]4 (0) + F(t)A'fb
F(t) = 0

Residual influence matrix:

G(t) = CIEIF(E) + d(t) 4 (0)

Information vector propagation:

dx(t) T -1
T = Ad’x(t) + G ()R (t)y(t)
x(to) = 0

Information matrix propagation:

ds(t) _ T T -1
St = A¢S(t) + S(t)A¢ + G (t)R (t)Gc(t)
s(to) = 0

Decision Function:

DF(t) = x (£ (£)y(t)
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p(tT) = p(tT) + F(t)Pa(t)FT(t) (5.92)

- + . . . .
where t and t are the times just prior to t and just after t, respec-

tivelye.

5.3.3 OSGLR Performance Analysis

The performance of a failure detection and isolation (FDI) test
depends on three types of events: false alarms, the detection of fail-
ures, and the (correct or incorrect) isolation of failures. A complete
probabilistic description of these events, together with the distribution
of failures, is required in general to determine the performance of a

fault-tolerant system.

Unfortunately, it is generally quite difficult to evaluate the
performance of an FDI test analytically. In principle, the performance
of an FDI test could be determined by Monte Carlo simulation. However,
the probability of false alarm, missed detection, or incorrect isolation
is very small for an effective FDI test. The amount of simulation re-
quired to estimate these probabilities accurately by Monte Carlo methods

is therefore prohibitive.

In Reference 10, a partial solution to the problem of evaluating
the performance of the OSGLR test is given. The false-alarm performance
of the OSGLR test is considered and an asymptotic expression for the
steady-state false-alarm rate of the continuous-time OSGLR test is
derived. Based on this analysis, an asymptotic bound is derived for the
steady-state false-alarm rate of the discrete-time OSGLR test, and the

conditions under which this bound is valid are discussed.

The derivation of the aforementioned performance criteria for the
OSGLR algorithm are quite lengthy and complex. Therefore, only the
resultant expressions obtained are presented here. For the continuous

time case the false alarm rate, as a function of the threshold T, is
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-tria ]'1'P

A = ¢ e
2
r@ + )P

p 1
1-=+0=)}, 7+ (5.93)
T2 T4 '

-2 /5 {

where T is the gamma function.

The bound for the discrete time case is

-t (det ¢ )T° 2
e T P )
pe T+ 1) 2P T T

The conditions under which this bound is valid are discused in

Reference 10.

The asymptotic results obtained have been compared to exact
results obtained numerically. As a practical matter, numerical results
can be obtained only for the scalar case (p=1). Figure 5.1 shows the
relative error in these approximations as a function of the threshold,
T. (The relative error is defined by the error in the approximation
divided by the actual value of the eigenvalue.) As might be expected,
the two-term approximation is significantly better than the one-term
approximation. The error in the two-term approximation is less than 1%
for T larger than 4.0. Even the one-~term approximation is accurate to
within 5% for thresholds larger than 5.0. For practical purposes,

determining the false-alarm rate to within 1% is probably adequate.

5.4 Results

The OSGLR and GLR tests ware applied to the problem of detecting
failures in a C-130 transport aircraft. Simulation results are presented
which allow a comparison of the performance of these two algorithms. The
nominal flight condition is defined to be at an altitude of 304.8 m (1000

ft) with an airspeed of 77.2 m/s (150 knots). The turbulence level used
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had a standard deviation of ow = 6.5 ft/s, which corresponds to heavy
turbulence. The control surfaces are defined as per Table 5-2 for this

section of the report.

Table 5-2. C-130 control surface definition.

Input | Control Surface

1 elevator

2 right aileron
3 left aileron
4 rudder

5 right flap

6 left flap

Both tests were implemented in discrete time. The Kalman filter states
are those listed in Table 2.1 of Section 2.2. In addition, five addi-
tional states were included in the Kalman filter to model the effects of
turbulence. The measurements used are those described in Section 2.2.

The measurements were assumed to be taken at a rate of 50 Hz.

The basis functions of the OSGLR failure hypotheses were deter-
mined by trial and error, so that good performance was achieved for many
different failure modes. For each failure hypothesis, six basis func-
tions were used in the truncated series expansion. Six basis functions
were found to be adequate for all the failures simulated. The use of
more than six sometimes caused numerical problems. The basis functions
are the discrete-~time equivalent of the Laguerre functions, with time

constant

T = 3.0 s (5.95)
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That is, the basis functions are obtained by orthonormalizing the

(discrete~time) functions

wi(k) = kl-1zk, i= 1, 2, cee, 6 (5.96)

where

oAt/ (5.97)

where At = 0.02s is the sampling interval. Other basis functions, such
as the Legendre functions, were not tested. The results are not
sensitive to the choice of time constant, so long as it is of the same

order as the time scale over which the faiure is detected.

The assumed failure mode of each GLR failure hypothesis is a step
function (or bias) of unknown magnitude occurring at time 6. The failure
onset time 0 is constrained to the data window t - ty, < 6 < t, where
t, is the length of the window. The GLR test was implemented using two
different data windows: a 2 s (100 sample) window and a 5 s (250 sample)
window. Most of the results presented in this section are for the 2 s

data window.

The simulation results can be divided into two categories: those
based on the linearized models and those based on the nonlinear simula-
tion. For the most part, the simulation results presented are based on
the linearized models. The reasons for this are twofold. First, the
linear simulations demonstrate the characteristics of the OSGLR test
unobscured by nonlinear effects. Second, the linear simulation requires
considerably less computation than the nonlinear simulation. The
nonlinear simulation is used to show the effects of nonlinearities and to
generate test cases that are not easily generated using the linear

simulation.
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In order to determine the performance of the algorithms, a detec-
tion threshold must be set for each. Because no performance specifica-
tions have been given, the selection of the threshold is somewhat arbi-
trary. We will set the OSGLR threshold so that the resulting false-alarm
rate of each OSGLR detector is 10~4 per hour or less. Using the re-

sults for discrete-time systems presented in Section 5.3.2 leads to

The false~alarm rate is very sensitive to the selection of the
threshold. As a result, the threshold is not very sensitive to the
specification of the false-alarm rate. For example, if we require that
the false-alarm rate be decreased to 10~® per hour, then the threshold
must be increased to only T2 = 67.10. Thus, the results presented here
will not be sensitive to the exact value of the false-alarm rate

specification.

It is somewhat more difficult to determine the threshold for the
GLR test. In order to compare the GLR and OSGLR tests on a fair basis,
we should select the threshold for the GLR test so that each GLR detector
has the same false-alarm rate as the OSGLR detectors. Unfortunately, no
analytic expression for the false-alarm rate of the GLR test exists. The
false-alarm rate could be determined in principle by Monte Carlo simula-
tion. However, the amount of simulation that would be regquired would be
enormous, because of the very small rate at which false alarms occur,
Therefore, we will simply set the GLR detection threshold to the same
value as the OSGLR detection threshold.

5.4.1 Linear Simulation with No Failure

The C-130 linear simulation was used to generate Kalman filter
residuals for the unfailed system. The duration of the simulation was

50 s.
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Figure 5.2 shows the OSGLR detection decision functions for the
six actuators for this simulation., Several features in the figure are
noteworthy. First, since each of the decision functions can be shown to
be a central chi-squared random variable with six degrees of freedom, the
mean value of each decision function should be 6. This fact appears to

be verified by the figure.

Second, some of the decision functions have peak values that
approach 20. This is far below the detection threshold T2 = 56.86, as

would be expected for a simulation of such short duration.

The third noteworthy feature of Figure 5.2 is that the detection

decision functions corresponding to the ailerons and flaps (DF_, DF

14

DFS' and DF6) show a striking similarity. This is not unexpecied, is we
saw in previous sections that the failure of a given wing control surface
(aileron or flap) is not easily distinguishable from the failure of any
other wing control surface. This was due to the fact that these four
surfaces have similar effects on the dynamics of the aircraft. There-
fore, the OSGLR detectors for these surfaces are similar. Hence, the
OSGLR decision functions for these surfaces are similar, even when there

is no failure present. This is an effect that will be apparent in all of

the simulations, whether a wing control surface has failed or not.

Figure 5.3 shows the GLR detection decision functions for the same
simulation. For this case, the data window for the GLR test was 2 s long
(100 samples). The general character of the GLR decision functions is
somewhat different than that of the OSGLR decision functions. The de-
cision functions seem to be somewhat noisier and to have a smaller mean

value.,

However, there are also some similarities between Figures 5.3 and
5.2. First, the GLR decision functions for the wing control surfaces

(DF_, DF

2 ¢+ DF

3 57 and DFG) are all similar, although the similarity is not
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as great as was the case for the 0SGLR decision functions. Second, the
peak values of some of the GLR decision functions are close to 20, as was
the case with the OSGLR algorithm. From this we may conclude that the
assumption that the GLR and OSGLR detection thresholds are the same is

not unreasonable.

5.4.2 Elevator Bias Failure

In this case, a -0.01745 rad (~1°) bias of the elevator was
simulated, using the linear simulation. The failure occurred at time t =

10 s of a 50 s simulation.

Figure 5.4 shows the OSGLR detection decision functions for the
six control surfaces. The decision functions generally have the charac-
teristics that we expect. Immediately following the onset of the fail-
ure, the decision function corresponding to the elevator, DFy, in-
creases rapidly, indicating a failure of the elevator. To a lesser ex-
tent, the other decision functions increase as well, although they are
always much less than DFq. For the detection threshold selected,

detection occurs at t = 10.22 s, 0.22 s after the onset of the failure.

Several other features of the figure are noteworthy. First, the
four decision functions DF2, DF3, DF5, and DF6 are very nearly equal.
This is a characteristic that will be seen in all the simulations. It is
simply a reflection of the fact that the four OSGLR detectors for the
control surfaces on the wing are similar, because the effects of these
surfaces on the aircraft are similar. Second, note that the elevator
failure is easily isolated, because DFq is significantly larger than

the other decision functions.

Figure 5.5 shows the GLR detection decision functions for the same
simulation, using a 2 s (100 sample) data window. For the 2 s period
immediately following the failure, the GLR detection functions closely
resemble the OSGLR decision functions. The elevator decision function

increases rapidly, crossing the detection threshold at t = 10.12 s.
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It is not surprising that the GLR detection time is less than that
of the OSGLR test, because the GLR hypotheses can represent the failure
mode exactly, whereas the OSGLR hypotheses can only approximate the
failure mode. Also, the time scale of the basis functions is 1 = 3 s,
which is considerably longer than the time required to detect the fail-
ure. If the time scale is reduced to Tt = 0.5 s, then the detection time
for the OSGLR test is the same as for the GLR test. However, it was felt
that the longer time scale was desirable to allow for failures that take
longer to detect. Furthermore, the detection time of 0.22 s is probably

acceptable.

Despite the good performance of the GLR test, the algorithm does
display some undesirable characteristics. Note that at t = 12 s (2 s
after the onset of the failure), the decision functions suddenly level
off. This is due, of course, to the finite data window of the GLR test.
The GLR algorithm accumulates data for only the length of the data win-
dow, which is 2 s long in this case. After that time, information about

the failure is lost.

Furthermore, note that DF5 exceeds DF1 after t = 33.2 s. Had the
threshold been larger, or the failure been smaller, the GLR test could
have isolated the failure to the wrong component, namely, the right
flap. The reason for this behavior is again related to the data window.
After t = 12 s, the actual failure (a step failure at t = 10 s) is not
one of the failures considered by the GLR test. Therefore, the behavior

of the algorithm is unpredictable after t = 12 s,

The OSGLR test does not have the undesirable characteristics of
the GLR test discussed above. The OSGLR hypotheses can represent the
step failure, at least approximately, over a long time period, even
though the approximation is somewhat inaccurate for a very short time
period. Over a long time period, the OSGLR test continues to accumulate
information about the failure. As a result, the OSGLR test does not
display the characteristics of the GLR test which are associated with the

finite data window.
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5.4.3 Rudder Bias Failure

In this case, a 0.0349 rad (2°) bias of the rudder was simulated,
using the linear simulation. The failure occurs at time t = 10 s of a

50 s simulation.

Figure 5.6 shows the resulting OSGLR detection decision func-
tions. In many ways, this simulation resembles that of the elevator.
The decision function corresponding to the failed component, DFg,
increases rapidly following the onset of the failure. The other decision
functions increase also, but much more slowly than DF4. The failure is
detected at t = 13.06 s, 3.06 s after the beginning of the failure.
The conclusion which can be drawn is that rudder failures are easily
distinguishable from the other actuator failures. This is demonstrated
by the extremely large difference between DF4 and the other decision

functions.

Figure 5.7 shows the GLR detection decision functions for this
simulation, using a 2 s (100 sample) data window. After the onset of the
failure, the rudder decision function, DF4, increases quickly, indicat-
ing a failure of the rudder. The other five decision functions increase
little, if any. The failure is detected at t = 11.80 s, when DFyg ex-~-
ceeds the detection threshold. sShortly thereafter, at t = 12 s, DFy
abruptly changes character. At this time, DF4 levels off, except for
wide fluctuations due to noise. BAgain, this behavior is attributable to
the finite data window of the GIR test. Note that had the detection
threshold been only slightly larger, say, T2 = 75, then the detection
time would have been greatly increased, from 1.08 s to 7.08 s.

Note that the detection time for the OSGLR test is somewhat longer
than for the GLR test. The reason for this is as follows. The step
failure in the rudder causes rapid changes in the mean values of some of
the Kalman filter residuals. The OSGLR hypotheses are unable to
accurately represent the discontinuities in the residuals. Therefore,

some of the energy of the failure signature cannot be used by the OSGLR
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algorithm to detect the failure. On the other hand, the GLR hypotheses

can represent the failure signature exactly within the data window.

The overall performance of the OSGLR test for this case is
generally good. Although the detection time is slightly longer for the
OSGLR test than for the GLR test, the OSGLR algorithm appears to be more
robust than the GLR algorithm.

5.4.4 Right Aileron Bias Failure

In this case, the linear simulation was used to simulate a
0.0175 rad (1°) bias failure of the right aileron. The failure occurred

at time t = 10 s of a 50 s simulation.

Figure 5.8 shows the OSGLR detection decision functions for this
simulation. Immediately following the failure, these four decision
functions corresponding to the wing control surfaces (DFZ' DF3, DFS' and
DFg) begin to rise steadily. To the scale of the plot, these four de~
cision functions cannot be distinguished. The elevator decision function
(DF4) also rises steadily following the failure. On the plot, DF
appears to be close to the four decision functions of the ailerons and
flaps. On an absolute scale, however, this difference is large. Fi-
nally, the rudder decision function (DF4) also increases somewhat, al-
though not nearly so much as the other five decision functions. For the

detection threshold given, the detection occurs 0.56 s after the onset of

the failure.

In order to determine which of the four detection decision func-
tions of the wing control surfaces is largest following the failure,
(some of) the OSGLR isolation decision functions are plotted in Fig-

ure 5.9. The isolation decision function DFij is defined to be

DF, = DF, - DF, (5.96)
1 ]

and DF,_,_. Following the failure, all

Shown in the figure are DF 257 26

237 DF
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three of these isolation decision functions are positive, correctly
indicating that the right aileron is the surface that has failed. Also,

except for a brief period immediately following the failure,

DF26 > DF25 > DF23

These results imply that it is relatively easy to distinguish between
failures of the right aileron and the elevator or rudder, but
progressively more difficult to distinguish a right aileron failure from

the failure of the left flap, the right flap, and the left aileron.

Note that because the failure of the right aileron is barely
distinguishable from failures of the other three wing control surfaces,
it would be wise to use an isolation threshold for this system to prevent
incorrect isolations. We have not attempted to determine an isolation
threshold for this study. However, it is clear that an isolation thresh-
old that is large enough to be effective at preventing incorrect isola-
tions will cause a significant delay in the isolation of the failure,

perhaps 10 s or more.

Figure 5.10 shows the GLR detection decision functions for this
simulation. (Note the difference in scale from Figure 5.9.) In many
respects, Figure 5.10 resembles Figure 5.8. Immediately following the
failure, the aileron and flap decision functions increase rapidly. At
t = 12 s, however, the rate of increase of these decision functions
slows, due to the finite data window. To a lesser degree, the elevator
and rudder decision functions increase also. Detection occurs 0.48 s

after the failure.

Figure 5.11 shows the GLR isolation decision functions DF33,

DF25, and DF Note that the GLR isolation decision functions are

26°
somewhat smaller than the OSGLR isolation decision functions (cf Figure

5.9). Once again, this is because the finite data window limits the

amount of information that can be accumulated about the failure. Also
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note that even as late as 7.5 s after the failure, DFy3 is occasionally
negative, indicating that the failure is in the left aileron, rather than
the right aileron. Even at t =26 s, 16 s after the failure, DFy3 is
close to zero. Thus, the behavior of the OSGLR test seems to be more

robust for this case.

5.4.5 Rudder Ramp Failure

The failures simulated thus far have all been step bias failures.
This puts the GLR test at an advantage, since the GLR test assumes a bias
failure mode, whereas the OSGLR test assumes a more general failure mode
shape. To see how these tests perform with a different failure mode, a
ramp failure of the rudder was simulated, using the linear simulation.
The ramp begins at t = 10 s, and the ramp increases at a rate of

0.001745 rad/s (0.1 deg/s).

Figure 5.12 shows the resulting OSGLR decision functions. The
decision functions change very little until about t = 15 s. At that
time, the rudder decision function begins to increase, albeit slowly at
first. As the magnitude of the failure increases, DF4 increases more
rapidly. DF,4 crosses the detection threshold at t = 23.08 s, so that
the time to detection is 13.08 s. Meanwhile, the other five decision
functions increase only slightly until about t = 24 s, at which time
these decision functions begin to increase. Thus, this failure is easily

detected using the OSGLR test.

Figure 5.13 shows the GLR detection decision functions for this
simulation, using a 2 s (100 sample) data window. This figure is similar
to Figure 5.12, except that the decision functions are generally smaller
than for the OSGLR test. Also, DF4 seems to be quite a bit noisier.

The detection time for the GLR test is 18.88 s, which is significantly
longer than for the OSGLR test. The major reason for this is that the
data window is too short to allow enough data to be accumulated to detect

the failure.
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To demonstrate this last point, the GLR data window was increased
to 5 s (250 samples) (Figure 5.14). In this case, DF4 increases more
rapidly than with the 2 s data window. The detection time for this case
is 14.90 s, which compares favorably with the OSGLR test, although the
OSGLR test still performs slightly better than the GLR test in this case.

5.4.6 Nonlinear Simulation with No Failure

This simulation is similar to that of Section 5.4.1, except that
the nonlinear simulation was used instead of the linear simulation. In
this case, it was necessary to implement the Kalman filter in order to

generate the residuals.

Figure 5.15 shows the OSGLR detection decision functions for the
nonlinear simulation with no failures. Ideally, the decision functions
should resemble those of Figure 5.2. However, the decision functions in
this case are quite different. Specifically, the decision functions for
DF

the wing control surfaces (DFZ' DF and DF6) have peak values of

' r
approximately 500, which is a factzr of525 larger than the peaks seen in
Figure 5.2. This effect is due to the differences between the nonlinear
model and the linearized model generated from it. It was determined that
the greatest source of error is due to mismodeling of the aerodynamic
moments about the roll axis. This produces a bias in the estimate of
roll rate, which is small compared to the standard deviation of the
estimation error. However, this bias is integrated by the Kalman filter
to produce a very large bias in the estimate of the bank angle. This in
turn caused the residual associated with the bank angle measurement to

be significantly biased. Because the four wing control surfaces
primarily affect the roll axis, the decision functions associated with
these surfaces are the ones most affected by this modeling error. The
decision function associated with the elevator is also affected, because
elevator deflections cause a moment about the roll axis, due to coupling

between the longitudinal and the lateral dynamics. To a lesser extent,
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the rudder decision function is also affected, because the rudder can
produce motion in the roll axis. However, the rudder is not as effective
in producing rolling moments as the flaps, ailerons, or elevator (at this
flight condition). Therefore, the rudder decision function is not as

large as the others.

Figure 5.16 shows the GLR detection decision functions for the
same simulation. Again, a 2 s (100 sample point) data window was used.
As was the case with the OSGLR algorithm, the GLR decision functions are
larger for the nonlinear simulation than for the linear simulation. In
this case, the decision functions corresponding to the control surfaces
on the wing reach peak values of approximately 35. This is much lower
than the peak values of the OSGIR decision functions. There are two
reasons for this. First, the GLR data window is relatively short. The
energy in the residuals due to the biases in the estimation error is
correlated over a time period much longer than 2 s. Hence, we might
expect that a GLR detector with a longer data window would produce much
larger decision functions. 1In fact, this is the case, as shown by Fig-
ure 5.17, which shows the GLR detection decision functions using a 5 s
(250 sample) data window. (Note the difference in scale from Fig-
ure 5.16). In this case, the decision functions corresponding to the
control surfaces on the wings have peak values of approximately 75, which

is about twice as large as the peak values using a 2 s window.

The other reason that the GLR decision functions are smaller than
the OSGLR decision functions is more subtle. Essentially, each GLR or
OSGLR detector finds the failure input f(t) which generates a mean proc-
ess in the residuals that most closely matches the observed residual
process. However, the GLR algorithm considers (in this case) only step
failures, whereas the OSGLR algorithm considers more general failure
modes. Hence, the OSGLR algorithm can find among its hypotheses a fail-
ure input time history that matches the observed residuals more closely
than does any of the step failures considered by the GLR algorithm.
Thus, the same property of the OSGLR algorithm that makes it robust to

failure mode uncertainty also makes it more sensitive to modeling errors.
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5.4.7 Stuck Elevator

In this case, the nonlinear simulation was used to simulate a
stuck elevator. Such a failure might be caused, for example, by a jam of
a mechanical linkage. The elevator was struck at 6E = 0.,0977 rad
(0.56°). By comparison, the trim valve of the elevator deflection is
approximately 6E= 0.020 rad (1.15°). The failure occurred at time t = 10
s of a 50 s simulation. Figqure 5.18 shows the resulting error in the
elevator position, i.e., the difference between the actual elevator
position and the commanded elevator position. Note that the history of
the error does not fit into any easily characterized category, such as a

bias or ramp failure.

Figure 5.19 shows the resulting OSGLR detection decision func-
tions. The OSGLR test performs quite well in this case, despite the
complexity of the failure input. Approximately 1 s after the onset of
the failure, the elevator decision function, DF4y, increases rapidly,
indicating a failure. The other five decision functions also increase,
but they are always significantly smaller than DFy. For the threshold
selected earlier, the failure is detected at t = 11.94 s. (Note,
however, that this threshold would not be used unless the problem of

modeling errors had been addressed.)

Figure 5.20 shows the GILR detection decision functions for this
case, using a 2 s (100 sample) data window. For the 3 s immediately fol-
lowing the onset of the failure, the GLR decision functions resemble the
OSGLR decision functions. (cf. Figure 5.19.) DF; increases rapidly,
indicating a failure of the elevator. For the threshold selected, the
detection of the failure occurs at t = 12.14 s, 2.14 s after the onset of

the failure. This is not significantly different from the OSGLR test.

However, this result is somewhat misleading. Note that at about
t = 13 s, DFy begins to decrease for the GLR test, until at t = 15 s it
is at about the same value that it had before the failure. For a brief

time, the four decision functions corresponding to the control surfaces
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on the wing exceed DFj. At t = 16 s, DF4q again increases until

t = 18 s, where once again DFy decreases slightly. At about t = 19 s,

5
steadily and is always greater than the other decision functions.

DF_ exceeds DF1 slightly. Shortly thereafter, DF1 begins to increase

Also, note that if the detection threshold is increased (e.g., to
account for modeling errors), then the decision time is likely to in-
crease significantly. For example, if the threshold is set to T2 = 200,
then the time of the detection would be t = 22.52 s, 12.52 s after the
failure. On the other hand, the time to detection for the OSGLR test for

this threshold is only 6.82 s.

This behavior is caused by two separate effects. The first is the
relatively short (2 s) data window. Thus, when the failure input sub-
sides in the vicinity of t = 15 s (Figure 5.18), the GLR decision func-

tions also decrease.

The other reason for this behavior is that the actual failure mode
does not agree with any of the hypothesized failure modes of the GLR
algorithm. BAs a result, the results of the test are unpredictable. 1In
particular, DFy is sometimes less than the other decision functions.

As a result, we see that the GLR test is not robust. On the other hand,
the failure mode can be represented, at least approximately, by the OSGLR
failure hypotheses. As a result, the OSGLR test is robust to failure
mode uncertainty, and does not have the undesirable properties of the GLR

test displayed in Figure 5.20.

Finally, note that increasing the length of the GLR data window to
5 s (250 samples) improves the performance of the GLR test only slightly
(Figure 5.21)., Immediately following the failure, the behavior of the
decision functions is the same as for the GLR test with a 2 s data win-
dow. Following time t = 12.5 s, however, DF4 declines only slightly,
whereas DFS, DF2, DF3, and DF6 continue to increase. At about t =
17.5 s, these four decision functions all exceed DFy. It is not until

t = 19 s that DFy again is the maximum decision function. With the
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threshold T2 = 56.86, the detection time is 2.14 s, which compares
favorably with the OSGLR test. However, for the threshold T2 = 200,
the detection time is 9.79 s, which is somewhat longer than the detection

time for the OSGLR test with that threshold.

5.4.8 Summary

As measured by the time required to detect a failure, it would
appear that the performance of the OSGLR test is roughly comparable to
that of the GLR test. Table 5.3 summarizes the detection times of the
two tests for the control surface failures simulated. Generally, the
performance of the GLR tests is better when the failure mode simulated is
the same as one of those hypothesized in the GLR failure hypotheses. For
other failure modes, the OSGLR test performs better. Nevertheless, the

detection times are comparable for all of the failures.

However, the results presented in Table 5.3 are somewhat mislead-
ing. In almost all of the test cases, the GLR test exhibited nonrobust
behavior. This is caused by two features of the GLR test. First, in
order to make the GLR test computationally feasible, it is necessary to
restrict the hypothesized time of failure by using a data window. As a
result, if detection does not occur when the time of the failure is
within the data window, then information about the failure is lost.
Second, the GLR test assumes a particular failure mode. Consequently,
the behavior of the test is not predictable when a different failure mode

ocCcurs.
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Table 5.3. Summary of the detection performance of the OSGLR
and GLR tests.

Time to Detect Failure (s)

Failure Mode GLR
Simulated
OSGLR 2 s Data 5 s Data
Window Window
-0.01745 rad(-1.0°) 0.22 0.12 0.12

Elevator Bias

0.0349 rad(2.0°) 3.06 1.80 1.80
Rudder Bias

0.01745 rad(1.0°) 0.56 0.48 0.48
Right Aileron Bias

0.001745 rad/s 13.08 18.88 14.90
(0.1°/s)

Ramp Rudder

Stuck 1.94 2.14 2.14
Elevator

On the other hand, the OSGLR test does not exhibit these undesir-
able characteristics. The test can continue to accumulate information
about a failure for as long as the truncated series expansion of the
OSGLR failure hypothesis can adequately represent the failure. BAlso, the
series expansion can represent, at least approximately, many different
failure modes. Therefore, the OSGLR test is robust to failure mode

uncertainty, whereas the GLR test is not.

Furthermore, the OSGLR test requires far less computation than
does the GLR test, at least in this case. Table 5.4 summarizes the
computational requirements of the two tests. Each number in the table is
the ratio of the CPU time required to run a particular test to the length
of the simulation for which the test was implemented. The tests were

implemented in FORTRAN on a Digital Equipment Corporation VAX 11/780.
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For each test, six detectors were implemented,

corresponding to the six
control surfaces.,

The GLR test requires 18.5 or 46.2 times more computa-

tion than the 0OSGLR test, depending on whether a 2 s or 5 s data window
is used for the GLR test.

Table 5.4. Computational requirements of the OSGLR

and GLR algorithms.

Ratio of CPU Time to Simulation Time
OSGLR GLR

6 Basis 2 s Data 5 s Data

Functions Window Window

0.686 12.66 31.66

One disadvantage of the OSGLR test is that it appears to be more
sensitive to modeling errors than the GLR test.
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CHAPTER 6

DISTINGUISHABILITY OF FAILURES

6.1 Introduction

In some systems, the failure of one component may closely mimic
the effects of the failure of another component. In such systems, it
may be impossible to distinguish between different types of failures,
regardless of the FDI algorithm used. Therefore, quantitative measures
would be desirable to indicate to what extent the failures of different
components are distinguishable. The measures would serve two purposes:
First, they could be used to alert the system designer that a change in
the system is needed to achieve fault tolerance. Such a change could
be, for example, the addition of more sensors or the change in location
of an actuator. Second, the measures may be used to determine whether
the inability of a particular FpPI algorithm to isolate failures is a

deficiency of the algorithm or a property of the system.

In this section, two measures of distinguishability are proposed
(Reference 10). The first of these is interpreted as the distance
between two failure hypotheses, assuming that one failure mode is fixed
and that the other failure mode is allowed to take on its worst-case
value. Based on a geometric interpretation of this distance, a second
measure of distinguishability is defined, which is interpreted as the

angle between the hypotheses.
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6.2 Distance Measure

The distinguishability measure presented below will measure how
closely the failure of one component, say component j, can mimic the
failure of another component, component i, when the failure mode of
component i is given. If the failure mode of component j is thought of
as an unknown control, and "how closely" is interpreted as implying a
cost function, then this formulation could be expected to lead to some
sort of optimal control problem. As shown below, this is indeed the

case.

We will formulate the problem as follows: First, it is assumed
that the observation interval [t;, tgl is fixed. Next, the failure
mode of component i is specified to be some function, fj(t). For the
time being, it is assumed that the failure mode fj(t) is specified as
well. Note that for either failure, the onset time of the failure, 9,
may be anywhere in the interval [ty, tgl. Then the problem of de-
termining which component has failed is a binary hypothesis testing

problem, with hypotheses

dax(t)

H, : Fre = A(t)x(t) + w(t) + _t_)_i(t)fi(t) (6.1)
y(t) = c(v)x(t) + v(t) + gi(t)fi(t) (6.2)
dx(t)

H.: = A(t)x(t) + w(t) + b (t)f.(t) (6.3)

3 dt - - =] J
y(t) = c(er)x(t) + v(t) +_c_1_j(t)fj(t) (6.4)

Note that because the failure modes f;(t) and fj(t) are assumed
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known, these hypotheses are simple,
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The data {z(t), t0 <t S_tf} will be reduced to a sufficient
statistic which contains all the information about the two hypotheses.
To begin, the data are filtered using a Kalman filter based on the

unfailed (Ho) system equations -

dx(t)
Hy: =3¢ = A(t)x(t) + w(t) (6.5)
y(t) = c(t)x(t) + v(t) (6.6)

The hypotheses H; and Hj can then be written as

Hie y(t) = y,(8) + m, (t) (6.7)
Hj: x(t) = X(t) +£\_j(t) (6.8)

where y(t) is the Kalman filter residual, and lo(t) is a zero-mean, white
Gaussian process with intensity R(t). mj(t) and Eﬁ(t) are the means

in the residual y(t) under H; and Hj, respectively.
The sufficient statistic for this problem is given by
t

£ T -1
X = fto [m; () - m; (£)17R(£)y(¢) dt (6.9)

Because Y(t) is a Gaussian random process, ¥ is a Gaussian random vari=-

able. The mean of yx under H; is given by

X, = E[x|Hi]
t -1
= fto (mg(£) = m; (£)ITRT (£)m, (£) dt (6.10)
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Similarly, the mean of y under Hj is given by

X, = E[xIHj]

t
= [ o - n 1R (o, (8) ac (6.11)
0 3 =i =3

X XJ' j

The final expression for the variance is

t
s = ftf m,(8) - m (6)1T R7N(E)m, () - m (£)] At (6.13)
o -1 =3 =i

The variance of y under Hj is also given by S.

Thus, the problem of deciding whether Hi or Hj is true has been
reduced to that of deciding whether the Gaussian random variable X has
mean X or xj. The parameter that determines the performance that can be
achieved under these circumstances is the signal-to-noise ratio, defined

by

(x; = %)
2 - 54 (6.14)
S
But it can be shown that

Therefore,
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a = S (6016)

(6.17)

The distance d is simply the number of standard deviations that separate

the conditional means xq and xy.

Up to this point, it has been assumed that both failure modes
fi(t) and fj(t) are known. However, what we really want is to find the
failure mode fj(t) that most closely mimics the failure mode fi(t). In
other words, we want to find the distance between the hypotheses for the
worst-case fj(t). Therefore, the distinguishability measure

Aij(fi(')' tg) is defined by

Ai.(fi(-), tf) = min 4 (6.18)
] £, (t)
to<t<t,
or alternatively,
2 tf T -1
AV (£.(¢), £t) = min [0 Im () = m (£)] R (t)Im, (t) - m (t)] 4t
1ij i £ £ (t) t0 | —i - - §
|
bttt (6.19)

The problem of determining Aij has two interpretations. The
obvious interpretation is as an optimal control problem and the problem
may be recognized as being equivalent to the optimal linear quadratic
tracking problem. A less obvious interpretation is that the cost
function to be minimized is the same as that which is minimized to solve

the optimal least-squares filtering problem. In this case, fj(t) is
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interpreted as infinite variance noise driving the state e(t), rather

than as a control input.

6.3 Geometric Interpretation

In this section, a geometric interpretation of the distance meas-
ure aij will be provided. Based on that interpretation, a relative

measure of distinguishability will be defined.

Consider the continuous-time case. The set of square-integrable,

m-dimensional vector functions on the interval [tg, tgl is denoted

by L;[to' tf], or simply Lg. L; is a complete, infinite-dimensional
vector space. A valid inner product for Lz is defined by
tf T -1
<m (*), m (+)> = [~ m (t) R (t) m (t) dt (6.20)
— -2 t0 -1 -2

where R(t) is a symmetric, positive definite matrix. If the norm for

L; is defined by

||lmco || = <@, mea>'? (6.21)

then L; is a Hilbert space.

Given this background, the problem of determining Aij may be

succinctly stated as

py = min  ||n, - m|] (6.22)
J m, eV, 3
=3

where Vj is the subspace of L; that is the set of all valid Ej(°)'
By the orthogonal projection theorem, the minimizing Ej(’)' denoted by

mg(-), is the unique m§(-)svj such that

<m,(e¢) — m*(e), m,(¢)> = O for all m.(*) € V, (6.23)
-1 b - -] J
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In other words, Eg(-) is the projection of E&(') onto Vj' and the repre-

sentation error

m.(¢) - m¥(e) (6.24)
e -

is orthogonal to the subspace Vi In particular,

<m, () - E§(°)’ gﬁ(')> = 0 (6.25)

That is, the representation error is orthogonal to E;(')' This situa-
tion is represented graphically in Figure 6.1. In the figure, the vec-
2 is depicted as being spanned by &, 32,_33, whereas the
subspace Vj is spanned by Eq and e_. Aij is simply the length of the

tor space L

vector mi(o) - 2;(°). ?

Based on this geometric interpretation, a relative measure of
distinguishability, aij(fi(-), tf), will be defined as the angle between
Ei(-) and E§‘°)‘ Because the representation error is orthogonal to the

projection, %5 is given by

p |my () - mrca|

@,. = sin (6.26)
2 IRl
But by definition,
A, = Hm.(-) - m’.*(-)H (6.27)
ij - —j
Therefore,
i A,
a,. = sin ] (6.28)
ij m, ()
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As a practical matter, both o5 and Aij are useful measures
of the distinguishability of failures. As noted earlier, if Aij/2 is
small, say on the order of unity or less, then it will not be possible
to isolate a failure of component i or j (with failure mode f;( ) or
fj(-)) reliably. If Aij/z is small, but aij is large (say, greater than
0.349 rad or 20°), the problem is that the energy in the failure

signature m;(+) is small, not that the two failure types are similar.

On the other hand, if Aij/z is large, but 0 is small (say,
less than 0,.,08725 rad or 50°), then isolation should be possible, given
knowledge of £;(+) and fj(o), and given that the system model is
accurate. However, the isolation performance is likely to be sensitive
to failure mode uncertainty, modeling uncertainty, and of course to the

actual (sequential) FDI test used.

6.4 Results

The distinguishability measures just defined will be used to
determine the degree to which failures of the control surfaces for the

C-130 aircraft system are distinguishable from one another.

Recall that the distance between two hypotheses Hi and Hj’Aij’
and the angle between two hypotheses, aij' are functions of the (assumed)
failure mode of Hi' fi(t)° For the purposes of this section, only one
type of failure mode was assumed, namely, a step bias failure occurring
at time 8. Note that because the system is time-invariant and the Kalman
filter is (assumed to be) operating in steady state, the time origin may
be shifted arbitrarily. Therefore, the distinguishability measures are

functions of t - 9, the length of time since the onset of the failure.

Figure 6.2 shows the distinguishability measures A1j and M3
for a 0.01745 rad (1°) bias failure of the elevator. The subscripts i
and j refer to the vehicle control surfaces as defined by Table 5.2.
The five a1j's are greater than 0.61075 rad (35°) for 10 s after the
failure, and are larger than 0.61075 rad (35°) soon after the failure.

This indicates that on a relative basis, an elevator bias failure is
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easily distinguishable from the failure of any other control surface. On
an absolute basis, all the A1j's are larger than 21 by time t - 8 = 1

s, which is quite large. Therefore, we expect that for a well-designed
FDI test, failure detection and isolation of a 0.01745 rad (1°) bias

failure of the elevator should take less than 1 s.

Figure 6.3 shows the distinguishability measures for a 0.01745
rad (1°) bias failure of the rudder. Note that all the aAj's are
greater than 1.2564 rad (72°) for the entire time of the plot. That is,
the failure signature of a rudder failure is nearly perpendicular to any
failure signature that can be generated by any other control surface
failure. On the other hand, the A4j's are relatively small. At t - 8
= 2 s, the five A4j's are about 4.0, which is small. This is simply a
reflection of the fact that the signal-to-noise ratio (d2) of the
rudder failure (when tested against the hypothesis that no failure has
occurred) is small. The conclusion is that if a rudder failure is large
enough to be detected, then it will be easily distinguishable from

failures of the other control surfaces.

Figure 6.4 shows the distinguishability measures for a 0.01745
rad (1°) bias failure of the right aileron. This figure is quite
different from the previous two. 1In particular, the distinguishability
measures associated with the left aileron, the right flap, and the left
flap (corresponding to the subscripts 3, 5, and 6, respectively) are
small. Except for the first 1.0 s following the failure, e is less
than 0.26175 rad (15°), oyg is less than 0.1745 rad (10°), and a__ is

23
less than 0.08725 rad (5°). a and o all decrease as the time

23" %25’ 26
after failure, t - 6, increases. Therefore, a failure of the right
aileron is not very distinguishable from failures of another wing control

surface (flap or aileron) based on the relative measure 0y e

The failure that most closely resembles the right aileron failure
is, not surprisingly, a failure of the left aileron. As indicated by the

distance measure 093, a failure of the right aileron is barely distin-
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guishable from a failure of the left aileron. Even after 10 s, Ayq is
only 4.6, which is too small to ensure reliable isolation, even by a
well-designed FDI test. Of course, if the failure were larger than
0.01745 rad (1°) A23 would scale proportionally. Nevertheless, these
results indicate that aileron failures are difficult to isolate. This

was clearly evident in the simulation results.

Figure 6.5 shows the distinguishability measures for a 1 percent
bias failure of the right flap. This figure is qualitatively similar to
Figure 6.4. That is, the distinguishability measures associated with the
other three wing control surfaces (in this case, the left flap, and the
right and left ailerons) are small. In this case, the failure that most
resembles the right flap failure is a failure of the right aileron.
However, the failure of the right flap is somewhat more distinguishable
(as measured by og,) than was the failure of the right aileron (as
measured by u23). 10 s after the onset of a failure, a5y = 2.98,

whereas ag3 = 1.63.

The results presented in this section may be explained in terms of
the aircraft's dynamics. The elevator's primary effect is to produce a
moment about the pitch axis. The other control surfaces do not produce
significant moments about the pitch axis. Therefore, an elevator failure
is easily distinguished from failures of the other control surfaces.
Similarly, the rudder's primary effect is to produce a yawing moment,
whereas none of the other control surfaces produce significant moments
about the yaw axis. Therefore, rudder failures are easily distinguished

from other failures.

On the other hand, the primary effect of the ailerons is to pro-
duce a moment about the roll axis. Furthermore, even though their pur-
pose is to produce 1lift, flaps produce significant rolling moments when
operated differentially. In that regard, they behave very much like
ailerons. Therefore, it is not surprising that a failure of one of these
four control surfaces is not very distinguishable from failures of the

other three.
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Furthermore, the results concerning distinguishability are
consistent with the FDI simulation results presented for the detection
filter and likelihood ratio tests. They suggest that the ability to
detect and isolate failures is more a function of the physics of the

problem and less algorithm specific.
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SECTION 7

A COMPARISON OF FDI ALGORITHMS

7.1 Introduction

The purpose of this section is to make qualitative comparisons of
the FDI algorithms being evaluated for the Restructurable Control System
application. These comparisons are based on the test cases used to
evaluate each algorithm. Thresholds were not selected in all cases and a
general detection and isolation logic was not developed. Only a limited
number of flight conditions and environments were simulated. Yet we
believe that a sufficiently accurate picture of the capabilies of each
algorithm was obtained, allowing the algorithms to be qualitatively
compared. In comparing the four algorithms evaluated, the following

issues have been considered:

e Failure modes (bias, stuck, ramp, etc.) that can be detected.

. Type of failure (rudder, elevator, etc.) that can be detected
and isolated.

. Magnitude (or degree) of failures that can be detected.

. False alarm performance.

e Detection time (time delay between failure and detection).
. Computational burden

. Robustness

. Maturity

These issues will now be addressed individually.
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72 Failure Modes

Failure modes describe the behavior of the failed surface. Some
of the important failure modes for restructurable control applications
are stuck, hardover, and bias failures and the loss of part or all of a
surface. The ability of the algorithms to detect these and other failure
modes will be considered here. Note that bias failures were used most
extensively to test the algorithms in this evaluation. Therefore, the
ability of each algorithm to detect other failure modes was based on its

theoretical capabilities in certain instances.

The GLR test uses models of failure modes to detect failures. It
is therefore, most capable of detecting the modes that are modeled.
However, each mode modeled requires a separate bank of filters which
makes modeling even a small number of possible modes computationally
costly. The bias failure mode is the easiest mode to model that is
applicable to control surface failure detection and isolation. The
ability of the GLR test with only the bias failure mode modeled to detect
failure modes other than a bias was considered in Section 5.4.5. A
0.001745 rad/s (0.1 deg/s) rudder ramp failure was detected in 14.90 s

with a 5 s data window.

The OSGLR algorithm is similar to the GLR algorithm except that
the failure modes are represented by a truncated series expansion rather
than a fixed function. The series expansion chosen and the number of
terms used determine how well a particular failure mode can be represent-
ed. In addition, representing the high-frequency portion of the actuator
or control surface failure is not necessary as the plant is a low-pass
filter. Using the first six terms in the expansion, the OSGLR test was
able to detect bias failures. These same six terms should be adequate to
detect most other failure modes. This was demonstrated for a 0.001745

rad/s (0.1 deg/s) rudder ramp failure which was detected in 13.08 s.

One advantage of both the unmodified and the modified detection
filter is that all failure modes should be detectable as the residual

direction is independent of the failure mode, depending only on the
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surface which failed. However, for the unmodified detection filter the
planar test used to detect failures assumed that the failed control
surface was not oscillating about the desired control surface position.
Even with this restriction, the unmodified detection filter should still

be able to detect most failure modes.

7.3 Type of Failure

All four algorithms were able to detect elevator, rudder, right
and left aileron, and right and left flap failures. The left and right
elevators were assumed to move together as a unit. Elevator failures
could be isolated by all four algorithms as could rudder failures. How-
ever, isolating wing surface (aileron and flap) failures was difficult
for all of the algorithms. The modified detection filter seemed to
display some ability to distinguish between wing surfaces for moderate
failures (0.0349 rad (2°) aileron bias, 10% flap bias) in minor turbu-
lence. Based on the few test cases simulated, the modified detection
filter could isolate a wing surface failure to one of two possible
surfaces. The detection filter algorithm could eliminate one wing
surface from consideration at most. It was demonstrated that false
isolation could result with the GLR algorithm. Isolation to a specific
wing surface is possible with the OSGLR algorithm with a significant

delay of perhaps 10 s or more.

7.4 Magnitude of Failure

The magnitude of the failures that can be detected depends on the
sensor noise, disturbances, and modeling errors. The GLR and OSGLR
algorithms were able to detect moderate (0.01745 rad(1°) elevator, rudder
and aileron) bias failures in the presence of noise and severe turbulence
(Um = 1.98 m/s or 6.5 ft/s). The OSGLR algorithm appears to be more

sensitive to modelling errors than does the GLR algorithm.
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Turbulence and modeling errors significantly degraded the
ability of the detection filter to detect failures. Moderate (-0.0349
rad or ~2° elevator, aileron, and 10% flap) failures could be detected in
minor turbulence (Gw = 0.3 m/s or 1 ft/s). However, detecting moderate
failures in severe turbulence was more difficult. While hardover
failures were not tested, they should be easily detected even in severe
turbulence. Modeling errors also degraded the ability of the detection
filter to detect moderate failures. 1In fact, some moderate aileron
failures were no longer detectable. Detection of hard failures, though,

should still be possible.

The modified detection filter could also detect moderate failures
in minor turbulence. The detection of failures in severe turbulence or
with modeling errors would require dynamic thresholds or a method of
estimating the nominal no-failure residuals caused by severe turbulence

and modeling errors.

7.5 False Alarm Performance

False alarm rates for the GLR test and the detection filter can
only be determined via simulation because analytic estimates are not
available. Some analytic estimates which assume Gaussian noise, no
disturbances, and no mismodeling are available for the OSGLR algorithm.
Still, the false alarm rates for the OSGLR algorithm due to disturbances
and mismodeling would have to be determined by simulation. However,
determining even large false alarm rates using simulation is difficult
because of the limited number of conditions that can be tested and the

large computational burden.

Specific false alarm rates were not determined for all of the
algorithms. Thresholds were not selected in all cases and even if they
had been, the simulation test cases were of insufficient number to be

able to estimate any false alarm rates. Instead, the false alarm per-
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formance of each of the algorithms will be qualitatively assessed by its
sensitivity to noise, turbulence, and modeling errors. Algorithms that
are sensitive to these effects can be expected to have larger false alarm

rates than algorithms that are less sensitive.

The OSGLR and GLR algorithms were least sensitive to noise and
turbulence. This is true for two reasons: the system model incorporated
into these algorithms included a turbulence model, and a Kalman filter is
used to provide an estimate of the state. The OSGLR test was more

sensitive to modeling errors than the GLR test.

The unmodified detection filter is sensitive to turbulence and
modeling errors. The modified detection filter is sensitive to modelling
errors and very sensitive to turbulence. As mentioned previously, the
modified detection filter would require dynamic thresholds or a method of
estimating the nominal no-failure residuals caused by severe turbulence
and modeling errors to compensate for its sensitivity to these errors and

disturbances,

7.6 Detection Time

The failure detection times depend on the magnitude of the fail-
ure, the sensor noise, the disturbances present, and the thresholds
selected. While the detection times were comparable for all of the
algorithms, the GLR and OSGLR algorithms were tested in severe turbulence
as opposed to the detection filter algorithms which were tested in minor
turublence. Detection times for the GLR and OSGLR algorithms were on the
order of a half-second or less for .01745 rad (1°) elevator and right
aileron bias failures in severe turbulence for the thresholds

selected (cf. Table 5.3).

Higher thresholds would probably be required to provide adequate
false alarm performance. Even with higher thresholds, detection times
should be on the order of a second. If the same thresholds are used for

detecting rudder failures as for other control surface failures,
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detection times would be much longer since the rudder decision functions
are smaller than the other control surface decision functions for the
same magnitude failure. However, as the effects of mismodeling affect
the rudder decision functions less than the other decision functions,
smaller thresholds could be used, allowing the rudder detection times to

be on the same order.

Detection times for both the modified and unmodified detection
filters also depend on the filter eigenvalue chosen and the time constant
of the low-pass filter, if any, required to suppress noise in the resid-
ual. Thresholds were not chosen for the detection filter. The detection
times were estimated based on the time delay between failure onset and a
clear indication that a failure has occurred. For the unmodified
detection filter, approximately two seconds would be required to detect a
0.0349 rad (2°) elevator or right aileron failure in minor turbulence
with the residual being low-pass filtered with a time constant of one
second. A 0.0349 rad (2°) rudder failure would take a second longer.
Harder failures could be detected faster as much less, if any, filtering
would be necessary. On the other hand, the detection and isolation of
small magnitude failures would require heavy low-pass filtering for noise
suppression which would impact the failure detection time because of the
relatively long time required to reach steady state. Detection times for
the modified detection filter would be on the same order as for the

unmodified detection filter.

7.7 Computational Burden

The computational burden of all of the algorithms has not been
quantitatively determined. Yet, some approximate comparisons will be
made here. Each of the algorithms consists of a filter of the system to
generate a residual, some type of residual processing, and a test for
failures. The filter portion of each algorithm is computationally

equivalent. Therefore, the relative computational burden can be deter-
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mined by examining the computations required to process the residual and

to test for the failure.

The least additional computations are required by the unmodified
detection filter. The residual processing would likely consist of
several banks of low-pass filters to give the algorithm the ability to
quickly detect hard failures and still detect soft failures. To test for
a failure, the residual must be projected onto the failure signature

Plane segment for each control surface.

The modified detection filter requires slightly more computational
processing than the detection filter., The additional computations result
from the secondary filtering of the residual which restores the property
of a unidirectional residual in response to a control surface failure.
However, fewer computations are required to project the residual onto a

signature direction than onto plane segments.

The relative computational burden of the OSGLR algorithm is
primarily determined by the number of actuators or control surfaces and
by the number of terms in the series used to represent the possible fail-
ure modes. The residual is used to drive an additional filter for each
actuator to produce an information vector. The dimension of each of
these information vectors is the number of terms used in the series
expansion to represent the failure mode. The test for a failure in each
actuator or control surface is the information vector weighted by an
information matrix. For the time-invariant case considered here, the
information matrix is a constant matrix. For a large number of both
actuators and terms used in the series, the computational burden would be
very heavy. However, keeping only the first six terms of the series
expansion was found to be adequate in the present application. In addi-
tion, only six control surfaces were considered in this evaluation.
Still, for this case, the computational burden of the OSGLR algorithm is

at least 50% greater than the unmodified detection filter.
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The relative computational burden for the GLR algorithm is mainly
a function of the number of actuators, the number of failure modes
modeled, and the data window chosen. Each actuator requires N correla-
tion receivers for each failure mode modeled where N is the length of the
data window divided by the time step. For a half second window and a
0.02 second time step, 25 correlation receivers would be required per
actuator per failure mode. For six actuators and only modeling the bias
failure mode, 150 correlation receivers were required for this applica-
tion. With 150 correlation receivers, the GLR algorithm was more
computationally costly than the OSGLR algorithm. However, a half second
window was too short for adequate FDI performance. A realistic data
window of two seconds perhaps would make the GLR algorithm computational-
ly very expensive., Table 5.4 indicates that it requires approximately 18

times more computation than the 0SGLR test.

7.8 Robustness

As each of the algorithms considered here relies upon a linear
model of the system to detect and isolate failures, these algorithms will
be sensitive to modeling errors. The OSGLR test was shown to be more
sensitive to modelling errors than the GLR test in Section 5.4.6. The
unmodified detection filter was unable to detect a right aileron (0.0349
rad or 2° bias) failure with the aircraft flying at an off-nominal cruise
condition. Modeling errors caused the modified detection filter to

produce large residual projections.

Another source of modeling errors for the GLR and OSGLR algorithms
are the failure mode models incorporated into each of the algorithms.
The OSGLR algorithm is likely to be robust to actuator failure mode
modeling errors as the model is sufficiently general to represent most
modes adequately. However, the GLR algorithm required specific models of
failure modes such as bias failures. As only bias failures were modeled
in the present application, the GLR algorithm is likely to be less robust

to other failure modes than the other three algorithms.
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7.9 Maturity

The GLR algorithm is mature in both theory and in application.
The OSGLR algorithm is almost as mature in theory as the GLR algorithm.
However, as the OSGLR test is a recently developed FDI algorithm, there

is very little experience in applying it.

Detection filter theory is mature for restructurable controls appli-
cation to linear, time-invariant systems with no input-to-output
coupling. However, no theory exists for applying the detection filter to
time-varying systems. In addition, for systems with input-to-output
coupling, systematic methods of using the extra degrees of freedom in the
gain matrix calculation (which result from having more measurements than
states) and scaling to improve detection filter performance are needed.
Finally, there is limited experience in applying the detection filter

with only a couple of applications having been reported.

The modified detection filter, developed for this application,
needs additional investigation to be considered mature in both theory and
application. The problems of time-varying systems, improving performance
through scaling, and the extra degrees of freedom in the gain matrix
calculation mentioned above for the detection filter also apply to the

modified detection filter.

7.10 Conclusions

The eight issues addressed in this memorandum are summarized in
Table 7.1. The GLR and OSGLR algorithms performed the best, especially
in severe turbulence. However, the computational burden of the GLR
algorithm is heavy and its ability to isolate wing surface failure modes
is uncertain. BAn additional advantage of the OSGLR algorithm is that
analytic false alarm rate results are available. The most significant
advantage of the detection filter algorithms is their relatively low

computational processing requirements. If the sensitivity of the
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detection filter algorithms to turbulence could be reduced, their
performance might be comparable to the GLR and OSGLR algorithms.
However, until this is accomplished, the OSGLR algorithm is the most

promising of these four algorithms evaluated.
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SECTION 8

AUGMENTATION OF ANALYTIC FDI SCHEMES FOR IDENTIFYING FAILURES
IN FUNCTIONALLY REDUNDANT CONTROL SURFACES

8.1 Introduction

A second program task is to develop a system monitoring strategy
to implement the failure detection and isolation techniques which identi-
fies the mix of sensors and analytic redundancy required. Issues
associated with this second task are discussed in this section. It has
been shown that analytic FDI schemes can have difficulty in fully
isolating failures among control surfaces that are functionally
redundant. Thus, it was difficult to decide between flap and aileron as
the failed wing surface. The quantitative measures developed to
determine the maximum discrimination of such failures showed the inherent
difficulty. It can be expected then that any intentional maneuvering for
the purpose of isolating failures of such surfaces using analytic FDI

would be of only limited value, even if practical otherwise.

The value of actually isolating a failure of a surface that is
functionally redundant might be questioned to some degree. After
a surface fails, it is required that sufficient capability remain to end
the flight in an acceptable way. If there is sufficient capability (and
if this can be appropriately determined) then complete failure isolation
might be considered optional. But there could be reasons why isolation
to a specific surface would be preferred. It is likely that a failure
could be more quickly and appropriately compensated if it were fully
isolated. Moreover, full isolation might allow for more flexibility and

confidence in continuing a flight after a failure has occurred.
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v There should be thorough investigation of the merits of dispensing
with complete isolation when functional capability can be reasonably
assured. There has been some consideration of in-flight dynamics testing
(Reference 14) and at least a limited demonstration (Reference 15).
Pre-flight dynamic testing has been standard for military aircraft
(Reference 15). Dynamic testing could eventually provide information
quickly and accurately on functional capability of the aircraft while in
flight. In what follows, however, full isolation capability is taken as

the simpler and more desirable option.

A discussion of fault tolerance in current aircraft actuation
systems and of the role of analytic FDI schemes follows. Augmenting
analytic schemes with direct measurements of control surface position is

also considered.

8.2 Fault Tolerance in Current Aircraft Actuators

Direct duplication of actuation has been the practice for most
military and large commercial aircraft for quite some time. Whole
actuation channels may be duplicated several times. There have been
several methods devised for dealing with failures of elements in these
channels. The subsystems and channels must be substantially identical in
order to give the same control inputs and to enhance the performance of
the system. Some differences are inevitable because of tolerances, and
these must be taken into account so that disengagement of a channel will
occur only under genuine failure conditions. The performance of the
subsystems and channels is continuously adjusted, in a process called
equalization (Reference 16). As a part of equalization, inter-channel
differences are minimized through feedback. If a difference is too
great, then the failed channel is disengaged or bypassed. Frangible
elements (shear pins, for example) have also been used, allowing a jammed
actuator to be broken by the others. Thus, a large degree of actuator
FDI (and reconfiguration) already takes place on a local level, bkefore

the surface has actually been moved. This can be expected to continue.
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8.3 The Role of Analytic FDI

Analytic FDI schemes, such as those evaluated in this program,
look for control surface failure signatures in the whole-system
dynamics. That they detect failures at the system level (ultimately the
most important one) is what makes these schemes potentially of great
value. They can be considered most useful in the context of aircraft
actuator FDI in identifying failures that the lower-level FDI schemes
have missed. Such failures might include inaccuracy or breakdown of the
local schemes and actual physical damage to the control surface itself.
Outputs from the local automatic schemes might be of some use in
augmenting the analytic algorithms for the purpose of identifying certain
types of failures. However, it can be expected that this information
could be of limited value in detecting and isolating some significant

failures.

8.4 Augmentation of Analytic FDI Schemes with

Actuator Position Measurements

The concern here is with failures that manifest themselves in some
way in the system dynamics. It is reasonable to assume that the local
FDI scheme, having failed to identify and compensate, is not an
independent source of information to the overall FDI strategy. Such
"failures" as actuator bias, jamming, or inappropriate overall actuation

gain might be identifiable through use of surface position transducers.

Position sensors mounted on or near the control surface itself could
be considered to provide failure information on a level just below that
of the whole system. Information from these transducers can be expected
to be reasonably easy to obtain and use. Position transducers of the
synchro, potentiometer, and linear variable differential (LVDT) types
have been extensively used and are simple (Reference 17). To have these
position transducers be an independent source of information on any type
of failure, however, they should not be part of the actual flight control
loop.
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Since WWII, position transducers have provided feedback in
aircraft flight control systems (Reference 18). They have typically been
mounted on primary or secondary actuation output shafts. There, they
could be used for limiting and nulling control as actuator positioning
commands were satisfied. The currently favored Control Augmentation and
Fly-By-Wire flight control systems have as a primary characteristic that
the flight control loops are no longer closed using actuator position
information but using information from aircraft attitude and position
sensors (Reference 18). Depending upon the extent of their continued use
in the flight control system, actuator position sensors could serve as

more or less independent sources of FDI informatione.

Flight control systems in which control loops are closed using
aircraft dynamic information will automatically compensate for some
actuator failures, such as small surface bias errors. To identify larger
biases, comparing actuator position expected (using a reference model)
with that actually measured by position transducers might suffice to iso-
late a failed surface. Alternately, in a separate actuator positioning
flight control mode in secure flight conditions, commanding the surface
to move to some absolute position or to more a certain fixed amount could
suffice to detect and isolate biases or incorrect gains. If the surface
is jammed, FDI using outputs from position transducers is also possible,

using similar tests.

Employing an FDI scheme based on surface position measurements
involves additional hardware and perhaps the design of separate flight or
test modes. It should be stressed, too, that position transducers would
still be of only limited use in identifying certain types of failures,

such as actual control surface damage.

Position sensors could be used as a primary source of FDI informa-
tion, with position measurements obtained continually. Actuator position
information could also be used on some lower FDI decision level. If a

sensitive whole-system FDI scheme were available, however - and this
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would ideally be preferred - then direct surface position sensors could
be used in augmentation to provide information for complete failure
isolation, eliminating the uncertainties inherent in fully identifying
the failure of a functionally redundant surface. Only a limited number
of transducers might then be required, and limited use made of their
information. Use of position sensors to augment analytic FDI schemes
also implies that each scheme could serve as a limited check on the

other.

8.5 Conclusions

It has been shown that analytic FDI schemes can have difficulty in
isolating failures among functionally redundant control surfaces.
Complete isolation might not be needed if the presence of adequate
functional capability can be determined quickly and accurately. This
point deserves more investigation. Full isolation might lead to simpler
or better compensation for a failure, however. Then, depending upon the
type of usage of control surface position transducers in the flight
control system, they can be used to provide information for identifying
actuator failures. Analytic FDI schemes will always be of great value as
they detect failures based on whole-system dynamics. Where they cannot

fully isolate a failure, actuator position information could be useful.

Whether actuator position transducers can provide useful augmenta-
tion to analytic FDI schemes for the C-130 should be investigated. The
role that such transducers now have in the flight control system should
first be determined. Then, if they are not a primary part of the flight
control loop, selective addition of the sensors should be considered,
starting with the wing surfaces so that their failures can be fully

isolated,
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SECTION 9

SUMMARY AND CONCLUSIONS

This report has described work performed with regard to the eval-~
uation of FDI algorithms for application to aircraft restructurable
control systems. Three algorithms were evaluated: the detection filter,
the Generalized Likelihood Ratio test and the Orthogonal Series General-
ized Likelihood Ratio test. In addition, a modification to the detection
filter, to produce unidirectional failure residuals for systems with
direct input-output coupling, was also investigated. This modification
is relevant since the use of accelerometer measurements for FDI in
aircraft systems results in direct input-output coupling. The algorithms
were evaluated and compared using results from a nonlinear simulation of
a C-130 aircraft. The issue of the distinguishability of failures was
also addressed and measures defined which permit an a priori determina-
tion of the ability to do this for a specific system. Considerations in

the development of a system monitoring strateqy were also discussed.

The major conclusion which may be drawn from the results of this
study is that algorithmic failure detection and isolation may be feasible
for restructurable control applications. This conclusion must be quali-
fied by the results obtained during this study, which have been basically
limited to a single operating condition and to the investigation of a
small subset of the potential failures. 1In particular, failure detection
does not appear to be a problem. Each of the algorithms was able to
detect small elevator, rudder, aileron and flap failures for the C-130

aircraft in turbulence. The isolation of control surface failures was
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not a problem for elevator and rudder failures. However, difficulties
arose in the isolation of wing surface, i.e., aileron and flap,

failures. These failures have a similar effect on the responses of the
aircraft system. The OSGLR algorithm performed best in this regard and
the isolation of these failures was possible, although a relatively long
time was required to do this. It was difficult to isolate these failures
with the other algorithms, at best, and it was shown that false isolation
may occur with the GLR test. This conclusion highlights the potential
need to augment the analytic FDI algorithms with the direct measurement
of failures using, for example, position sensors for some of the control

surfaces.

The OSGLR algorithm performed best of those evaluated. The nature
of the algorithm and its basis upon a series expansion implies that most
failure modes should be detectable. All failure types investigated
during this study were detected and were isolated, although there was a
long time delay associated with the wing surface failures. Bias failures
on the order of a degree of surface deflection were detected in less than
a half a second for a system without modeling errors. The computational
burden associated with this algorithm is moderate relative to the others,
its false alarm rate can be analytically estimated and the theory
associated with it is mature. On the negative side, the robustness
properties of the OSGLR test are poor but so are those of the other
algorithms. In addition, the OSGLR algorithm has not been previously
applied to any system.

The GLR algorithm also performed well in the C-130 application.
The major drawbacks associated with it are its heavy computational burden
and the uncertainty associated with its ability to isolate wing surface
failures. The most significant advantage of the detection filter algor-
ithms is their relatively low computational processing requirements. If
the sensitivity of these algorithms to turbulence could be reduced, their

performance might be comparable to the GLR and OSGLR algorithms.
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APPENDIX A

C-130 LINEAR MODEL DEVELOPMENT

A.1 Introduction

Each of the FDI algorithms investigated under the Restructurable
Controls Program requires a linear model of the nonlinear system for
design or implementation. The linearization technique used to generate
linear models of the C-130 aircraft dynamics is described and some

comparisons of the linear model and the nonlinear system are presented.

A.2 Linearization Technique

The nonlinear system consists of dynamics which describe the
motion of the aircraft and output equations which describe the
measurements as functiong of the states and the controls. The nonlinear

dynamics can be functionally represented by
x = f(x,u) (A.1)
The output equations are of the form
y = g(x,u) (a.2)
The outputs of the linear model were chosen to be airspeed,
acceleration at the cg along the y and z body axes, angular velocity

about the body axes, attitude, and altitude. The inputs of the linear

model are a subset of the inputs for the nonlinear model. The inputs
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chosen for the linear model include the elevator, rudder, left and right
aileron, and left and right flap where each aileron and each flap is
allowed to move independently of the other aileron or flap. Elevator
trim tabs and engine throttle setting were not included as elevator trim
tab and engine failures were not considered. The states chosen for the
linear model differ slightly from the nonlinear system. Airspeed, angle
of attack, and sideslip angle were selected to be states of the linear
model instead of the velocities along each of the body axes. The reason
for choosing airspeed, angle of attack, and sideslip angle was that there
is a closer relationship between these three variables and the first
three measurements mentioned previously (airspeed and the acceleration

along the y and z body axes).

To develop a linear model, the nonlinear system is expanded in a

Taylor series about a nominal point (50,20), neglecting second and higher

order terms.

. of of
x = f(x ,u) +=(x,u )(x-x)+-"(x_,u)u-u) (A.3)
- ——0'-o & ~o'-o’ = o du —o'—o’ =
dg g
y = 9(x_,u) +-é-g_(§°,go)(_>g-§°) +—5£(50.1_1°)(11_-u) (n.4)

To put Eq. (A.3) and (A.4) in more standard form, define

Ax = x - x (A.5)
- - ~o
M = u-u (pr.6)
— - -0

_

|
B = a-‘l (x s ) (A-B)



) (a.9)
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Also, differentiate Eq. (AR.5), assuming the nominal point remains fixed.
Combining Eq. (A.3) through (A.11) results in the form

o= £( ) + AAX + BAu (A.11)

) + CAx + DA (A.12)

The A, B, C, and D matrices which describe the linear model can
either be calculated by analytically determining the partial derivatives
and then evaluating the partial derivates or by numerically approximating
the partial derivatives about the nominal point. As the C-130 nonlinear
dynamics contain many lookup tables as opposed to explicit functions of
the states and the controls, the partial derivatives were numerically
approximated in the following manner. Define X; to be the ith state,
fi(ELE) to be the nonlinear function which describes the derivative of
the ith state, and nj to be a column vector with unity in the ith row
and zero in the other rows. Let aj 4§ be the element in the ith row and

the jth column of the A matrix. Then aj 5 is numerically approximated
by

o, fi(_)_to + LIS ,30) - fi(go - nxy o )
a,, = —= (x,u) = P E (R.13)
ij x, -—o'—o 2x.
JP
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where xjp is a perturbation in jth state from the nominal. This
perturbation must be chosen to produce a good approximation to the

partial derivative. The B, C, and D matrices were calculated similarly.

A.3 Results

Figures A.1 and A.2 present simulation runs which compare the
linear and nonlinear system responses. The nominal point used to
generate the linear model is with the C-130 aircraft flying straight and
level with an airspeed of 77.2 m/s (150 knots) at an altitude of a
304.8 m (1000 ft). Figure A.1 investigates the quality of the A matrix
linearization by perturbing only the states. The nonlinear and linear
response for perturbations in airspeed, angle of attack, sideslip angle,
and the angular velocity of the vehicle expressed in the body coordinate
system are compared. The dynamics are well represented although the
linear and nonlinear models begin to diverge after about 60 s. There
are, however, nonlinear dynamics which are poorly represented. 1In the
nonlinear system, a perturbation in the lateral dynamics also excites the
longitudinal dynamics while the linear model is unable to represent this

cross-coupling because of the nonlinearities involved.

Figure A.2 presents comparisons of linear and nonlinear responses
for a perturbation in the rudder control input. Note the small changes
in most of the states and outputs. The quality of the linear response is
dependent on roll. Once roll becomes "large™, the cross-coupling between
the lateral and longitudinal dynamics causes the linear response to

diverge from the nonlinear response.
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APPENDIX B

THE DISCRETE-TIME DETECTION FILTER

As the detection filter was implemented on a digital computer, the
detection filter was designed as a discrete-time system. While detection
filter theory is not strictly valid for discrete-time systems, a satis-
factory design is possible if the sampling rate is sufficiently rapid.
This appendix will simply state the extension to discrete time. For more

detail and explanation, see Reference 8.

The first step in designing a discrete-time detection filter is to

describe the continuous linear model

X = Ax+Bu (B.1)

y = Cx+ (B.2)

S

as a discrete-time system. This is commonly done by converting the state
differential equation into a difference equation. This conversion

results in a discrete-time model of the form

x(k+1) = &x(k) + Tu(k) (B.3)

y(k) cx(k) + pu(k) (B.4)
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where x(k), u(k), and ¥(k) are the state, input, and measurement vectors
at sampling time tk. For constant sampling interval, At, the sampling
time may be expressed as tk = keAt where k = 0,1,2,3,¢ee« The matrix ¢
is referred to as the state transition matrix as it describes how the
state propagates independent the effect of the control inputs over the
sampling interval At. The input matrix, T, describes the effect of the
control vector on the state over the sampling interval. If u(t) only
changes at the sampling times tk’ then the state difference equation,
Eq. (B.3), exactly represents the state differential equation, Eq.
(B.1). However, if u(t) is changing over the sampling interval, Eq.

(B.3) only approximates Eq. (B.1). 1In this case, the sampling interval

At must be sufficiently small so that the assumption of u(t) being
constant over the sampling interval is valid. The sampling interval
chosen for design and implementation of the detection filter in this memo
was 20 milliseconds. With this sampling interval, the control input

vector u(t) should be approximately constant over the interval.

Given the discrete-time linear model, the detection filter proper-
ties and design are analogous to the continuous-time case presented in
Section 3. Only actuator failures for the case where there is input-
output coupling will be considered here. Consider a failure in the ith
actuator. Before, the actual control surface deflections, u(t), were
expressed as the sum of the expected control surface deflections input to
the detection filter, u(t), and the unexpected ith control surface de-
flection n(t). Now, u(t), u'(t), and n(t) will be assumed to be piece-
wise constant functions, only changing at sampling times t . Therefore,

k
the actual control surface deflection at tk is

u(k) = u'(k) + gin(k) (B.5)
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where u'(k) and n(k) are the expected control surface deflection to the
detection filter and the difference between the actual and expected ith
control surface deflection at sampling time tk' respectively. Again, e
is a column vector with zeros in every row except for a one in the ith

row. The discrete~time error dynamics produced by this failure are

glk+1) = (8 - kO)g(k) + (y, - Kd, In(k) (B.6)

r(k) = cg(x) + d;n(k) (B.7)

where g(k) and r(k) are the discrete filter state error and residual

respectively. Yi is the ith column of the T matrix.

If a detection filter can be designed for this system and if u(t),

u'(t), and n(t) only change at sampling times tk such that Eq. (B.5) is

satisfied, the (Ii - Kgi) term in Eq. (B.6) will produce a unidirectional
residual. The direction of the residual will be C(Ji - Kgi). Therefore,
the signature produced by a failure in the ith control surface can be
constrained to a plane spanned by C(Ii - K gi) and éi' This is
identical to the continuous-time results presented in Section 3.2 except
that the ith column of the continuous input matrix, Ei’ has been replaced
by the ith column of the discrete input matrix, Ii' However, u(t),
u'(t), and n(t) have been assumed to be piecewise constant functions
changing at the sampling times tk. As before, the sampling interval must
be sufficiently small so this assmption is valigd.

For a fully measured system, there are only two minor differences
in designing a discrete detection filter as compared to designing a

continuous detection filter (presented in Section 3.3).

(1) The filter eigenvalue must be chosen in discrete-time domain.

(2) The gain matrix K must be calculated to satisfy the
relationship

$-KC = A
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