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SUMMARY

A failure in an aircraft control element must be accommodated in near real time

by the pilot and/or automatic control system in order to prevent a possible tragic
accident. A first step in this accommodation is the detection and identification of
the failure. This report presents the results of an evaluation of the Generalized

_ Likelihood Ratio (GLR) technique for the detection and identification of control
element failures in transport aircraft.

The GLR technique utilizes the innovations from a Kalman Filter, which estimates
the aircraft states, as inputs to the GLR algorithm. Under the assumption that the
failure is a step or impulse vector function in state Space, the algorithm computes
the likelihood of a failure having occurred and an estimate of the failure vector.
Two such algorithms, one for full GLR and one for constrained GLR, were evaluated
using a digital computer linear simulation of the longitudinal dynamics of a B-737
aircraft. The full GLR algorithm assumes that the failure vector can be any vector
in the state space, while the constrained GLR algorithm assumes that the failure
vector is from a finite set of vectors in state space. The simulation included
sensor errors and wind turbulence.

In the simulation runs all of the hard-over failures were detected by both the
full GLR algorithm and the constrained GLR algorithm. Soft failures, however, were
not detected with integration times up to 1.5 seconds. Results of the simulation
show that while the GLR technique has potential for detecting and identifying air-
craft control element failures, the effects of wind turbulence on the missed
detection/false alarm performance and the effects of Kalman Filter model errors are
significant problems that must be overcome.

INTRODUCTION

For certain anticipated failures in transport aircraft operations there are

established procedures for the pilot to follow. A typical example is the procedure

for handling an engine outage during takeoff. However, there are nearly an unlimited

number of additional unanticipated failure modes for which no appropriate emergency

procedures will be available. These unanticipated failures must be handled by the

pilot and/or the automatic control system in real time in order to prevent a possible

tragic accident.

In the case of a hard-over failure in a control element the pilot may have only

a matter of seconds to take corrective action before the aircraft reaches an

irrecoverable condition. In the case of a failure of lesser magnitude the pilot may
have more time to take corrective action, but the failure and hence the proper cor-
rective action may be difficult to identify. In either case the pilot may require
assistance from the aircraft systems to help him take the appropriate corrective
action in a timely manner.

A considerable amount of work has been done in the area of failure detection and

identification (FDI) in dynamic systems, and Willsky has provided a well-known survey
of many of the available FDI techniques (ref. I). Chow (ref. 2) and Willsky and Chow
(ref. 3) have examined the problem of generating residuals from the system



measurement data for use in decision making processes to detect and identify
failures. The detection of failures in sensors has been investigated by several
authors, including Motyka, et. al. (ref. 4), Deyst, et. al. (ref. 5), Caglayan
(ref. 6), and Friedland (ref. 7). Beard (ref. 8) and Jones (ref. 9) have developed
the theory behind the failure detection filter, and Messerole (ref. 10) has applied
the failure detection filter to the problem of detecting and identifying failures in
an F100 engine. Another FDI technique is the Generalized Likelihood Ratio (GLR).
The theory of the GLR has been investigated by Willsky and Jones (ref. 11), Chow,
et. al. (ref. 12), Bueno, et. al. (ref. 13), Bueno (ref. 14), MIT (ref° 15), Liu and
Jones (ref. 16), and Chang and Dunn (ref. 17). The GLR technique has been developed
in several versions, including full GLR, constrained GLR, and simplified GLR; these
versions differ in the a priori assumptions about the type of failure. The technique
has been exercised in a simplified simulation of the F-8 aircraft dynamics by Bueno
_nd others at MIT (refs. 12-15). Tylee (ref. 18) has examined the use of the GLR to
detect failures in a nuclear reactor.

This report presents the results of an evaluation of the capabilities of the
full GLR and constrained GLR techniques for the detection and identification of con-

trol element failures in a transport aircraft. This evaluation was conducted pri-
marily by implementing the GLR algorithms in a linear simulation of the longitudinal
dynamics of a B-737 aircraft and examining the performance of the technique in
detecting step failures in the elevator, throttle, stabilizer, or spoilers. The text
includes a brief description of the GLR technique, a presentation and discussion of
the results, and conclusions. The theory of the full GLR, the theory of the con-
strained GLR, the aircraft simulation, and the Kalman Filter are discussed in more
detail in appendices A, B, C, and D, respectively.

SYMBOLS

A system transition matrix

A• wind system transition matrixw

Axb,AZb acceleration in the x-, z-direction (body axes), ft/sec (sub-subscript sdenotes stability axes)

B control input matrix

B wind system plant noise input matrixw
z

b wing span, ft

b(.) measurement bias error

C(k;8) matrix defined by equations (_26) or (A45)

Cw transformation matrix relating W to w and Wk to wk

Cwo transformation matrix Cw evaluated at 8 = 0

D plant noise input matrix

Dco = DFc Fwo
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F covariance matrix of the wind system plant noise

F(k;@) matrix used in the computation of G(k;0) and defined by equations (A35)
or (A44)

f constrained failure vectorl

G(k; e) matrix relating the innovations response y(k) to a failure _ and defined
by equations (A34) or (A43)

_ G (s) filter transfer function

H observation matrix

h altitude, ft

I identity matrix

i index denoting the i-th failure vector from the set of constrained failure
vectors

K Kalman Filter gain matrix

k sample number

Lu, Lw turbulence scales in the x- and z-directions, respectively, ft

£(.), £(.;.,.), generalized log likelihood ratio, or log GLR
£(.;-,.,.)

P(k+11k) covariance matrix of the error in the estimate x(k+llk)

P(klk) covariance matrix of the error in the estimate x(klk)

p(•l •) conditional probability density function

Q covariance matrix of the plant noise wk in the Kalman Filter model

q perturbed inertial pitch rate, rad/sec

qw pitch rate due to wind, that is, rotation of the atmosphere about the
y-axis, rad/sec

R covariance matrix of the observation noise vk in the Kalman Filter model

• R covariance matrix of the Kalman Filter plant disturbance _F

R_ covariance matrix of the plant noise _ ;

R_ covariance matrix of the wind system plant noise _k

St =

Su(.), S (-), power spectral density of the x-, angle-of-attack, and pitch rate
S (-) components, respectively, of the wind turbulence
q
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t time, sec

tk time at k'th sample, sec

U trim inertial velocity in x-direction, ft/sec'0

u, uk control vector

Uk(,) components of control vector uk

u (0) steady state wind in the x-direction, ft/sec _s

u' perturbed inertial speed in the x-direction normalized by the trim

velocity Uo

u' normalized speed in the x-direction due to wind that is, normalized wind'W
velocity in the negative x-direction

Ug,'U's gust and steady state components, respectively, of U'w

V covariance matrix of the KalmanFi,lter innovations

V airspeed, ft/seca

vk observation, or sensor, noise vector

W, Wk wind system state vector

W(o) components of wind system state vector Wk

w, wk wind, or plant noise, vector

w (0) steady state wind in the z-direction, ft/sec'S

x, xk system state vector

Xk(°) component of system state vector xk

x(k+11k) estimate of x at time (sample _number) k + I given observations through
time k

x(klk) estimate of x at time (sample number) k given observations through
time k

xk Kalman Filter state vector

z, z k observation vector

Zk(.) component of the observation vector zk

e failure magnitude; perturbed inertial angle-of-attack, rad

a part of the angle-of-attack due to winds, radw

eg, _S gust and steady state components, respectively, o_ _w' rad
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trim value of the angle-of-attack, tado

7(k) vector of innovations from the Kalman Filter

ef = e failure magnitude

F disturbance transition matrix

FF Kalman Filter disturbance transition matrix

- Fw disturbance transition matrix for the wind input wk and defined by
equation (C55)

de perturbed elevator position, deg

perturbed stabilizer position, deg

6sp perturbed spoiler position, deg

6st perturbed stabilizer command, deg

6T perturbed thrust, klbs

_th perturbed throttle command, deg

6jk unit step function

_F Kalman Filter plant disturbance vector

q GLR'threshold

nk wind disturbance vector defined by equation (C56)

@ failure time, or sample number; perturbed pitch, rad

8o trim value of pitch, rad

A likelihood ratio

failure vector

l(.) components of the failure vector

_k wind system plant disturbance vector

• _u' _w RMS velocities of wind turbulence in the x- and z-directions, respectively,
ft/sec

T time, sec

system state transition matrix

_F Kalman Filter state transition matrix
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wind system state transition matrix

control transition matrix

_F Kalman Filter control transition matrix
i

spatial frequency, rad/ft

_ temporal frequency, rad/sec

Notation: _'

indicates assumed value or value computed using assumed values for the
independent parameters

^ indicates estimated value

F superscript F indicates that the variable is used in the Kalman Filter
formulation

T superscript T denotes transpose

E{o} expectation operator

I subscript I denotes that part of a vector attributed to system dynamics
with no failure

2 subscript 2 denotes that part of a vector attributed to a failure
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GLR TECHNIQUE

As a failure detection and identification technique the Generalized Likelihood
Ratio method processes the innovations from a Kalman Filter to compute the likelihood

ratio, that is, the ratio of the conditional probability of the innovations assuming
a system failure has occurred to the conditional probability of the innovations
assuming no failure has occurred. This ratio is then compared to a threshold value
to decide whether or not the system has failed.

The GLR technique assumes that a Kalman Filter is used to track, or estimate,
the states of the unfailed system, and that failures in the system are of the type
that can be described as a vector in state space that occurs as an impulse or a step
function at time 8. Although the technique is applicable to time-varying systems, a
time-invariant formulation is used if possible to simplify the computations. Mathe-
matically, such a system and failure are described by the state equations

Xk+l = @Xk + _uk + rwk + _ 6e,k+1 (I)

Zk+1 = HXk+1 + Vk+I (2)



where

xk is the state vector

uk is the control vector

wk is the vector of disturbances (plant noise)

zk is the vector of observations (measurement)

vk is the vector of observation noise

is the state transition matrix

is the control transition matrix

F is the disturbance transition matrix

H is the observation matrix

A failure in the system is described by the last term in equation (I), where _ is a
constant failure vector which describes the magnitude and direction in state space of
the failure, 6A _ 4 is a step (or impulse) function, and 8 is an unknown positive
integer denoting the time (sample number) of the failure.

If no failure has occurred, that is k < 8, then from Kalman Filter theory the
innovations from the filter are a zero mean, white, Gaussian random vector sequence.
In this case the probability of occurrence of the observations is described simply by
the multivariate Gaussian density with zero mean. In the case of a failure the
Kalman Filter'innovations are composed of a zero mean, white, Gaussian random vector
sequence plus a deterministic vector sequence G(k; 8)_ due to the failure. In this
case the probability of occurrence of the innovations is described by the multi-
variate Gaussian density with time-varying mean G(k;8)%. The matrix sequence G(k;@)
can be computed from the state equations.

The GLR technique computes the likelihood ratio from the two probabilities just
discussed and compares the ratio to the threshold to determine if a failure has
occurred. The GLR algorithms also compute maximum likelihood estimates of the
failure vector % and the failure time 8.

The constrained GLR technique differs from the full GLR in the assumptions made
regarding the failure vector. Whereas the full GLR allows the failure vector _ to
be any vector in the state space, constrained GLR restricts the failure vector to be

one of a set of vectors fi with a scalar multiplier, or magnitude, s. This
techniquecomputes a likelihood ratio for each possible vector fi for comparison

. with a threshold and computes maximum likelihood estimates of the failure magnitude
e and failure time 8.

EVALUATION OF THE GLR TECHNIQUE VIA SIMULATION

The Aircraft Simulation

To achieve the objective of obtaining a preliminary evaluation of the capability
of the failure detection filter to detect and identify failures in an aircraft
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control system, the filter was implementedin a digital computer linear simulationof
the longitudinaldynamics of a B-737 aircraft using a small perturbationmodel.
These dynamics are described in state space by the equation

Xk+I = _xk + _uk + Fwk + ekfi + nk (3)

The aircraft state vector is defined by

XkCl)I e

Xk(2)I u'

Xk(3)I
Xk = = (4)

XkC4)I q

Xk(5)I 6T

x_(6)l 6S

where

@ = pitch attitude

u' = normalized speed in the x-direction

u = angle-of-attack

q = pitch rate

6T = thrust '

6S = stabilizer position

The control vector is defined by

Uk(1)I _e

uk(2)I 6thI
uk = = (5) .

Uk(3)I 6stl

Uk(4)I 6sPl



where

6e = elevator command (= elevator position)

6th = throttle command

_st = stabilizer command

_p = spoiler command (= spoiler position)

The plant noise vectors wk and nk represent the winds and will be discussed
later. The state transition matrix _, the control transition matrix _, and the
disturbance transition matrix F were derived from the continuous time system
matrices A, B, and D, respectively. The system matrices A, B, and D were
computed from data supplied by the aircraft manufacturer for various aircraft trim
conditions. All of the results discussed in this report were obtained for the
aircraft trimmed for final approach on a 3 degree glideslope with the exception of a
few simulation runs to evaluate the effects of modeling errors.

To evaluate the performance of the failure detection filter four types of fail-
ures with three magnitudes for each type were simulated. These four types were step
failures in the elevator, throttle, stabilizer, and spoiler. The failure vectors
were derived from the control transition matrix for a step change of unity magnitude,
for example for an elevator position change of one degree. The three magnitudes were
chosen to represent a hard-over failure, a soft failure, and a failure of intermedi-
ate magnitude. The failure types and magnitudes are listed in table I. Of course,
the failure vectors change as the _-matrix changes with the aircraft trim conditions.

TABLE I.- FAILURE TYPES AND MAGNITUDES

Failure

Type Magnitude

Elevator 10°, 3°, I°
Throttle 40°, 12°, 4°.
Stabilizer -6°, 3°, -I °
Spoiler 8°, 3°, I°
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The Wind Simulation

To provide a realistic wind environment for evaluation of the GLR technique the
simulation included both turbulence, or gusts, and steady state winds. The gust
components in normalized x-velocity, angle-of-attack, and pitch rate were modeled
using the familiar Dryden spectra (ref. 20), which are

2o2L

Su(_ ) = u u (6)
1 + (L Q)2u

2L I + 3(L _)2
w w . w (7)

S_(n) - V2 [I.+ (T.a)212a w

Sq(_) = a 2 ° Se(_) (8)
1 + (4b_/_)

where

= spatial frequency, ft

b = wing span
= 93 ft

Va = aircraft airspeed, ft/sec
= 216 ft/sec in the landing configuration simulated

Lu,Lw = turbulence scales in the x- and z-directions, respectively
= 1750 ft

Ou,Ow = rms velocities of turbulence in the x- and z-directions, respectively,
ft/sec

After conversion from the frequency domain to the continuous time domain in
state space followed by conversion to discrete time, the state equations for the wind
system become

Wk+1 = _wWk + _k (9)
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where

Wk = 6-dimensional wind state vector with Wk(5) and Wk(6) being the steady
state components in angle-of-attack and normalized x-velocity,
respectively

= wind state transition matrix
4

_k = zero mean, white, Gaussian random vector sequence

6 In order to provide a thorough evaluation of the GLR technique, a wide range of
wind conditions were included in the simulation runs. RMS turbulence velocities

corresponding to medium and heavy clear air turbulence (CAT) and to thunderstorm
conditions were simulated together with steady state winds. Calm (no wind/
turbulence) conditions were also simulated. These conditions are summarized in
table II.

TABLE II.- WIND CONDITIONS USED IN THE SIMULATION

RMS gust Steady state
Turbulence velocity, ft/sec wind, ft/sec
conditions

au aw Us(0) Ws(0)

None 0 0 0 0
Medium 2.7 2.7 10 0

Heavy 7.0 7.0 10 0
Thunderstorm 21.0 21.0 10,39 0

The Measurements

To enhance the capability to solve the FDI problem it was desired to provide a
rather complete set of measurements for input to the Kalman Filter and hence to the
GLR algorithms. On the other hand, for the evaluation results to be credible, the
measurement set must be technologically feasible, if not typical, for a modern day
transport aircraft. The measurements selected for inclusion in the simulation are
pitch attitude, x- and z-accelerations, pitch rate, airspeed, altitude rate, and
angle-of-attack.
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The measurements formed a 7-dimensional measurement vector Zk defined by

_k (I_ --fl(e)-"

Zk(2)I f2(Axb)

Zk(3)I f3(Azb)

Zk = Zk(4)l = f4(q) (10)

Zk(5)I f5(Va)

Zk(6) f6(h)

Zk(7) f7(m)

The measurements Zk(1) - Zk(7) include errors such as noise, bias, scale factor,
and misalignment where appropriate. Numerical values for the errors are listed in
table C.I.

The Filter

A 10-state Kalman Filter was used to estimate the six aircraft states and the

four wind gust states and to provide the innovations for input to the GLR algorithms.
For computational simplicity a constant gain filter was utilized. The measurements
described in the previous paragraph were not all linear functions of the system (air-
craft + wind) states as required by the Kalman Filter formulation. To circumvent
this difficulty a pre-processor was used to transform the mesurement vector into a
vector of pseudo-measurements, or observations, which could be approximately repre-
sented as linear functions of the system states. A more detailed description of the
Kalman Filter and the pre-processor can be found in appendix D.

The time-invariant full GLR algorithms from equations (A39) through I(A52)of

appendix A were implemented in the simulation for evaluation. At each iteration of
the simulation the algorithms computed the likelihood ratio £(k;_) and the estimate
_(k;_) of the failure vector for each of the windows of the most recent 2 to 30
innovations. From this set of results the algorithm computed the maximum likelihood
estimates _(k) and _(k) of the failure time and the failure vector, that is, the
estimates of failure time and failure vector that corresponded to the largest
likelihood ratio.

The time-invariant constrained GLR algorithms from appendix B were also imple-
mented in the simulation for evaluation. At each iteration a series of computations "
similar to those for the full GLR were performed. Estimates _ of the failure

magnitude and _ of the failure vector index were computed rather than estimates of
the failure vector.

The simulation and the GLR algorithm computations were run at a sample rate of
20 iterations per second. Because the initial interest was in detecting and
identifying catastrophic type failures, a quick reaction time for the algorithm was
necessary. Thus, to evaluate algorithm performance only a few seconds of flight were
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required in a simulation run. With these constraints the aircraft could be flown
open loop with no control system and still not diverge significantly form its nominal
path before a failure was introduced. Therefore, to simplify the simulation the
aircraft was flown open loop for all of the results discussed in this report.

A total of 135 simulation runs were performed to exercise the GLR technique.
The results of these runs are presented and discussed in the next section.

RESULTS

Full GLR

Filter complexity and Kalman gain.- A series of 33 simulation runs were made to
evaluate the performance of the GLR technique as a function of Kalman Filter com-
plexity, or number of filter states. One of the filters was the 10-state filter
described in detail in appendix D. The second filter was a 12-state filter where the
two additional states were used to estimate the steady state winds. The third was a
6-state filter which estimated the aircraft states but no winds. Simulation runs
were made with each filter for each of the four intermediate level failures with both
medium and heavy CAT. Runs were also made with no failures introduced.

The rms estimation errors for the 10- and 12-state filters were similar, while
the errors for the 6-state filter were somewhat larger. The likelihood ratios for
the 10- and 12-state filters were very similar, but the GLR's for the the 6-state
filter were much larger, occasionally by nearly two orders of magnitude, even for the
no failure case. The larger estimation errors and the very large GLR for the no
failure case relative to the GLR's for the failure cases resulted in the 6-D filter

being dropped from consideration even though it was computationally simpler. The
10-D filter was chosen over the 12-D because it gave comparable performance and was

slightly simpler computationally. Furthermore the 12-state systemwas unobservable,
and some problems were experienced with matrix inversion of C(k - 8) because C was
nearly singular in some cases. The 10-state Kalman Filter and associated GLR
algorithms then were used to obtain the results to be discussed in the remainder of
this report.

The previous runs were made using Kalman Gains computed under the assumption of

heavy turbulence (ou = _w = 7 ft/sec) for the filter model of plant noise. To
evaluate the effect of filter gain on the performance of the GLR technique, a
different matrix of Kalman gains was computed assuming thunderstorm turbulence

(ou = ow = 21 ft/sec) for the plant noise model. Using the new gains five runs were
then made simulating heavy CAT and intermediate level failures. When compared with
similar previous runs using the old heavy turbulence gains, the resulting GLR's
showed only slight differences. Failures were detected in three out of 12 detection

° possibilities with the old gains and in two out of 12 with the new gains. Differ-
ences were concluded to be insignificant, and the old heavy turbulence filter gains
were used to obtain the remaining results.

m

Thresholds.- Three simulation runs of length 20 seconds each were made under

conditions of heavy clear air turbulence (_9 = _w = 7 ft/sec) with no failures intro-
duced into the system. Each run was made wlth a different seed number for the random
number generator such that each run generated a different sample function, or
sequence, for the wind turbulence and for the sensor noise. From the total of these
three runs the largest value computed for the likelihood ratio using a 10-sample
window of data was selected for the 10-sample threshold value.. Threshold values were
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similarlyobtained from the same runs for windows of 20 and 30 samples. Three
20 second runs were made rather than a single 60 second run because the aircraft
system tended to diverge too far from the trim conditions when operatingopen loop
for longer times.

This procedurewas repeatedunder conditionsof no turbulence to obtain a set of
thresholdvalues which could be used in evaluating the effects of wind turbulenceon
the performanceof the GLR technique.

It was realized that this procedurewould not establish a statisticallyreliable
thresholdvalue suitable for actual aircraft operation. However, the values thus
obtained were deemed reasonablefor purposes of comparing full GLR and constrained
GLR performanceand uncoveringpotentialproblems in using the GLR technique for
aircraft control system FDI.

Failure detectionperformance.-Forty-sixsimulation runs were made to evaluate
the performanceof the full GLR techniqueunder various combinationsOf failures,
turbulence standarddeviations,and steady state winds. The failures were all single
point; that is, there were no multiple failures. The likelihoodratios observed for
each run are shown in tables IIIa, IIIb, and IIIc for data windows of 10, 20, and
30 samples, respectively. Some of these ratios were still increasing when the simu-
lation was terminatedat 5 seconds.

These ratios were compared with the no turbulence threshold values to determine

which failures were detected. The results, which are summarized in table IV, show
that all failures were detected successfully with the exception of the I degree
elevator failure which was detected in only three of the six cases. These results
are very optimistic in that use of the no turbulence thresholds would produce a
totally unacceptable false alarm rate. However, the results are useful when compared
with later results to show the degradation in performance due to wind turbulence.

The same likelihood ratios were then compared with the thresholds obtained under
conditions of heavy clear air turbulence, and the resulting detection performance is
summarized in table V. Under these conditions, that is, when the threshold is set at
the maximum GLR value obtained in heavy CAT with no failure, all of the hard-over
failures were detected, regardless of the prevailing turbulence conditions. On the
other hand, no soft failures were detected, and intermediate failures were detected
in only eight of 54 opportunities. (There are three detection opportunities in each

run corresponding to the three data window lengths of 10, 20, and 30 samples.) Eight
of the runs were repeats of previous runs with new random noise sample functions for
the turbulence and sensor noise. Examination of table III reveals how the GLR varies
between the two random sample functions. From table V it can be seen that in three
cases the failure was detected with one of the sample functions but not the other.

The 44 instances in which failure detection occurred (not including thunder-
storms) were examined to determine the time delay between failure occurrence and
failure detection, that is, the time that it took after a failure for the GLR to
cross the threshold. The results, which are summarized in a histogram in figure I,
show that half of the detections occurred in less than I second. '

Time history plots of the actual system states from the simulation and of the
estimated states from the Kalman Filter are shown in figures 2(a) and 2(b) for the
case of no wind turbulence and a -I degree stabilizer failure. Since there is no

turbulence and no command input, the aircraft states remain essentially unperturbed
until the failure at t = 3 seconds. The action of the Kalman Filter in tracking, or
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estimating, the system states ^can also be seen in these curves. Plots of the failure
vector 1 and its estimate 1 produced by the GLR algorithm are shown in

figure 2(c), and the GLR is plotted in figure 2(d). Introduction of the failure at
3 seconds does not produce a significant change in the likelihood ratio, and the GLR
does not reach the threshold and hence does not detect a failure during the 5 second
run. The GLR is not calculated but is set to zero during the first 2 seconds of each
run to allow the filter time to settle.

Similar time history plots for the case of a -6 degree stabilizer failure with
no turbulence are shown in figure 3. Note the larger perturbations in the system
states for this case. In figure 3(d) the GLR is seen to cross the thresholds for the

10-, 20-, and 30-sample windows in the vicinity of 4.2 seconds and thus to declare at
that point that a failure has occurred.

Time history plots for the -6 degree stabilizer failure in the presence of heavy
CAT are shown in figure 4. NOtice in this case the significant perturbations of the
state prior to the failure and the tracking of these perturbations by the Kalman
Filter. The turbulence and the filter estimate of it can be seen in figure 4(b).
Once again the plot of the GLR in figure 4(d) shows detection of the failure in the
vicinity of 4 seconds. Note that the curve of the 30-sample GLR is the smoothest of
the three as would be expected.

Failure identification performance.- For the full GLR algorithm failure
identification consists of estimating the failure vector i. Curves of the failure

vector components and their estimates for the three stabilizer failure cases in
figures 2(c), 3(c), and 4(c) show step functions in the stabilizer position I(6) at
t = 3 seconds, the time of the failures. The other failure vector components,^ I(I)
through I(5), are insignificant at the scale of these curves. The estimate I(6)
is seen to approach the true value; however, in all three cases there are significant
errors in the_estimate I(5). Thus it appears that there are inaccuracies in the
failure identiflcatlon results. There are also problems in using the failure identi-

fication information even if it were accurate; that is to say, it is not clear how an
estimate 1 of the failure vector 1 would be used in restructuring the aircraft

control system after a failure is declared.

Model mismatch.- The results discussed to this point were all obtained assuming

a perfect knowledge of the aircraft system; that is, the aircraft model, or system
matrices, used in the Kalman Filter computations was identical to the simulated air-
craft. In actual practice, of course, knowledge of the system will never be perfect.
To evaluate the effects of inaccuracies in the model on GLR algorithm performance,
five runs were made in which the Kalman Filter model employed the same landing trim
conditions used in obtaining the previous results. For the aircraft simulaton,
however, take-off trim conditions were used. Model differences of this degree would
be encountered if the same model were employed throughout all phases of the flight.

" The likelihood ratios resulting from these runs are summarized in table VI. For
each of the four failures the likelihood ratios greatly exceeded the previously
established thresholds indicating failure detection. The problem, however, is that
the likelihood ratios for the no failure run also greatly exceeded the threshold
resulting in a false alarm. While no attempt was made to determine exactly what type
or magnitude of model errors could be tolerated without serious degradation in GLR
performance, this limited amount of data indicates that model inaccuracies are a
potential problem with the GLR technique. ....
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Constrained GLR

Thresholds.-Threshold values for the constrainedgeneralized likelihoodratios
(CGLR's)were found in a manner similar to those for the full GLR. Three simulation
runs of length 20 seconds each were made under conditions of heavy CAT with no
failures introducedinto the system. The only significantdifferencein the pro-
cedures for the constrainedGLR case and the full GLR case was that the constrained
GLR algorithm for this system produced four likelihoodratios rather than one.
Therefore, four thresholdswere required. The three simulation runs without failures
were searchedto determinethe largestvalue for each of the four CGLR's computed
with a 10-sampledata window. These values then were used as the 10-samplethres-
holds for the remainingsimulationruns. Thresholds for the 20- and 30-sampledata
window CGLR's were similarlydeterminedfrom the same runs.

Failuredetection performance.- Forty simulation runs were made with various
failures, turbulence levels, and steady state winds to evaluate the failure detection
performance of the constrained GLR technique. The likelihood ratios from these runs
were compared with the appropriate thresholds to ascertain if a failure ha_ been
detected. The results, which are summarized in table VII, show that 28 ou_ of 40
failures were detected. Broken down by length of the data window, the results show
that 24, 23, and 23 out of 40 failures were detected for the 30-, 20-, and 10-sample
windows, respectively. In terms of failure magnitudes, all of the 12 hardover
failures were detected, and none of the eight soft failures were detected. Of the
20 intermediate failures, 16 were detected by at least one of the data windows.

The mean detection times (time between failure and first detection) were 1.06,
0.73, and 0.53 seconds for the 30-, 20-, and 10-sample windows, respectively. A
histogram of the detection times is shown in figure 5. As might be expected the
10-sample window tended to produce quicker detection because of the shorter
integration _ime./

Time history plots for the case of a 40 degree throttle failure in the presence
of heavy CAT are shown in figure 6. The true and estimated aircraft states are
plotted in figure 6(a), and the increase in thrust due to the throttle failnre is
seen to begin at 3 seconds. In the GLR plot in figure 6(d) it can be seen that the

failure is detected at approximately 3.5 seconds, or 0.5 seconds after the failure,
when the GLR corresponding to a throttle failure crosses its threshold. Note that
none of the other GLR's cross their respective thresholds until nearly 5 seconds.

Failure identification performance.- For the Constrained GLR algorithm failure
identification consisted of estimating i, the failure vector index which defines the
failure direction, and u, the failure vector magnitude. For the 70 detection
opportunities in which^a failure was detected successfully, the failure vector was
correctly identified (i = i) 52 times for an accuracy of 74 percent. These results
are summarized in table VIII. Examination of these results shows that the 10-sample
window did not perform as well as the 20- and 30-sample windows in identifying the
failure.

Results of estimatingthe failuremagnitude are summarizedin table IX, which
shows the percent error in the estimate u for the cases where the failurewas
detected and correctlyidentified. The best accuracy occurred for the elevator
failure,while the accuracy for the throttle failure was particularlypoor.

For the 40 degree throttle failure discussed previously, examination of the
estimates of the failure index and magnitude in figure 6(c) reveal that the failure
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is correctly identified as soon as the failure is declared at 3.5 seconds. The
estimate of the magnitude is approximately 50 degrees at the time of detection, and
it improves to about 42 degrees after an additional 0.5 seconds.

Model mismatch.- Eight runs were made using a landing configuration model for
the filter and a takeoff model for the simulation to assess the effects of model
errors on CGLR algorithm failure detection performance. Just as was the case with

, the full GLR, the constrained GLR algorithm detected a failure in each of the five
runs which contained a simulated failure, including one with no turbulence. However,
even in the three runs with no failure introduced, including one without turbulence,
one or more of the CGLR's greatly exceeded its threshold resulting in a failure false
alarm. In fact, in all eight runs a failure was declared prior to 3 seconds.

CONCLUSIONS

The application of the Generalized Likelihood Ratio technique to the detection
and identification of control element failures in transport aircraft has been evalu-
ated using a linear digital simulation of a B-737 airplane. Hard-over failures in
the elevator, throttle, stabilizer, and spoiler were successfully detected by both
the full GLR algorithm and the constrained GLR algorithm. Some intermediate level
failures were detected, but no soft failures were detected with integration times up
to 1.5 seconds, that is, with data windows up to 30 samples long. One of the primary
reasons for the missed detections of the lower level failures was the necessity to
set the threshold level sufficiently high to avoid false alarms caused by wind turbu,
lence. Further degradation in performance was caused by mismatch, or inaccuracies,
in the Kalman Filter model.

From the results of the simulation runs, it is concluded that:

I. The GLR technique has potential application in the detection and identifi-
cation of aircraft control element failures.

2. False alarms/missed detections due to wind turbulence and performance degra-
dation due to system model inaccuracies are significant problems which must be
overcome before the GLR technique can be used in a practical system.
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APPENDIX A

DEVELOPMENT OF FULL GLR EQUATIONS

The development of the GLR equations in this appendix follows the development in
reference 11. This appendix is included for the purpose of completeness and to
include a few details not included in the reference. Furthermore, this development
will be for step changes, or failures, in the system state, whereas the development
in reference 11 was for impulse changes. The equations will be developed for a
general, time-varying, discrete dynamic system and then constrained to a time

invariant system. The application to the B-737 aircraft dynamics with its specific
failures is discussed in the main body of the report and in appendix D.

The System

Consider a linear, time-varying, discrete system described 5y the equations

x(k+1) = _(k+1,k)x(k) + _(k)u(k) + F(k) w(k) + l_8,k+1 (AI)

z(k+1) = H(k+1)x(k+l) + v(k+1) (A2)

where _(k+1,k) is the state transition matrix, _(k) is the control transition
matrix, F(k) is the disturbance transition matrix, H(k+1) is the observation
(measurement)'matrix, x(k) is an n-dimensional state vector, u(k) is an
r-dimensional command vector, w(k) is an m-dimensional disturbance (plant noise)
vector, v(k+1) is a p-dimensional vector of sensor noise, and z(k+1) is a
p-dimensional observation (measurement) vector. The vectors w(k) and v(k) are
zero mean, white, Gaussian sequences with covariance matrices Q(k) and R(k),
respectively, that is

E{w(k) wT(j) } = Q(k) 6jk (A3)

E{v(k) vT(j)} = R(k) 6jk (A4)

where 6jk is the unit impulse function.

A failure in the dynamic system is described by the last term in equation (At),
where l is a constant n-dimensional failure vector which describes the magnitude

and direction (in state space) of the failure, 6A k+1 is a unit step function,
and 8 is an unknown positive integer which denotes the time (sample number) of
failure.
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The Kalman Filter

Now consider a Kalman Filter designed to estimate the state of the system
described by equations (AI) through (A4), assuming no failures. The filter is
described by

x(k+11k) = ¢(k+1,k)x(klk) + _(k)u(k) (A5)

A ^

x(klk) = x(klk-1) + K(k) y(k) (A6)

A

where x(klk) and x(k+11k) are the estimates of the state at times k and k+1,
respectively, given measurements up to and including time k; @(k+1,k) and _(k)
are the state and command transition matrices, respectively; u(k) is the command
vector; K(k) is the nxp Kalman gain matrix; and y(k) is the p-dimensional vector
of filter innovations. The innovations are defined by

y(k) = z(k) - H(k)x (klk-1) (A7)

According to conventional Kalman Filter theory the variance of the innovations is
given by

V(k) = H(k) P(klk-1) HT(k) + R(k) (A8)

and the Kalman gain is given by

K(k) = P(klk-1) HT(k) V-1(k) (A9)

The estimation error covariance is propagated by the equations

P(klk) = [I - K(k) H(k)] P(klk-1) (At0)

P(k+l Ik) = ¢(k+1,k)P(k k) _T(k+1,k) + F(k)Q(k) FT(k) (All)

Response to Failure

Suppose now that a failure occurs at time 8. Since the system is linear, by
the principle of superposition the system dynamic response can be separated into two
parts: one part due only to the system dynamics with no failure, denoted by
subscript I, and a second part due only to the failure, denoted by subscript 2.
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x(k) = x 1(k) + x2(k) (A12)

z(k) --z1(k) + z2(k) (A13)

The response of the system to a step failure at time 8_ can be found by substituting
equations (A12) and (A13) into equations (At) and (A2).

x2(8) = I

x2(8+I) = #(0+1,8)I + I

x2(8+2) = ¢(8+2,8) I + €(8+I,8) I + l

k

x2(k) = I €(j,8)I k )@ (A14)
j=e

z2(k) = H(k)x2(k)

k

= H(k) I €(j,8)I k )e (A15)
9=8

In the same manner the Kalman Filter response can be separated into a part due
to all effects except the failure and a part due to the effects of the failure.

A

x(k) = xI (k) + ;2(k) (A16)

y(k) = -(1(k) + Y2(k) (A17)

>

The Kalman Filter response to a step failure is more tedious to develop than the
system response in equations (A14) and (A15). Assume for the moment that the filter
response can be expressed as

x2(klk) = F(k; @)l (A18)
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Y2(k) = G(k;@)l (A19)

Expressions for F(k;8) and G(k;8) will be developed later.

The Likelihood Ratio

The problem now is to determine from an examination of the filter innovations
whether or not a failure has occurred. This problem can be expressed as an

hypothesis testing problem, where the hypothesis HI assumes a failure, that is

H : k < 8
o

HI: k ) @

To decide between the hypotheses, form the likelihood ratio A(k), that is, the
ratio of the conditional probability of the occurrence of the innovation sequence

y(1), y(2), ..., y(k) assuming HI to the conditional probability of occurrence of
the same innovations sequence assuming Ho. The decision will be made by comparing
the resulting ratio A(k) to an as yet undefined threshold D.

H I

A(k n (A20)
<

H
o

Under the two hypotheses the filter innovations are
]

Ho: y(k) = Y1(k) (A21)

HI: y(k) = Yl(k) + G(k; 8)I (A22)

In order to formulate the likelihood ratio, probability distributions for @ and

y must be assumed. An alternate approach is to use the generalized likelihood ratio
in which the maximum likelihood estimates (MLE's) 8 and 1 are used for @ and
y, respectively.

" To find the MLE's 8 and I, we need the conditional probability density
function for the innovations assuming HI, @, and _. From the theory of Kalman
Filters, the innovations sequence Y1(I), Yi(2), ..., Yl(k) is a zero mean, white,
Gaussian random vector sequence. Therefore, the sequence y(1), y(2), ..., y(k) is
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a white, Gaussian random vector sequence with means G(I;8)I, G(2;O)I, ...., G(k;8)l,
respectively, and the corresponding conditional probability density function is

r ))k vCj)i-I12 -j=1=n exp [_(j)-G(j,_)_]Tv-I(j)[_Cj)-GCj,_)_(A23)

The MLE _ assuming 8 = _ is found by finding the maximum of the conditional
pdf. For convenienceuse the log pdf, and take the gradient with respect to _.

v_ [£n{p[-,¢1),..., "f(k)l"1,_,_J})

k

= - _ [-2GT(j;8) V-1(j)y(j) + 2GT(j;O)V-I(j)G(j;O) _] (A24)
j=l

Let the expression in equation (A24) equal zero, and solve for _.

_(k;@) = C-l(k;O) d(k;O) (A25)

where

k

C(k;O) = _ GT (j;O) V-I(j) a(j;O) (A26)
9=I

k

d(k;O) = _ GT (j;O) V-I(j) y(j) (A27)
9=I
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The conditional pdf assuming HI can now be rewritten as

(= _ ivcJ)l-1/ k -I
J=_ L ] exp j=1_ ?(j) V (j) y(j)

Similarly, the conditional pdf assuming H0 is

p[_€_,..., _Ck_l_]o

( )= _ --(2 )p/2 • exp [ T(j)V-I(j)y(j (A29)j=I 9=I

We are now in a position to write the generalized likelihood ratio A(k), or
more conveniently the log likelihood ratio £(k;8,7) as

After substituting for _(k;0) from equation (A25) the log likelihood ratio becomes

£(k;O,_) = dT(k;O) C-1(k;O)d(k;@) (A30)

a

The estimate _(k;O) in equation (A25) and the likelihood ratio £(k;0,_) in
. equation (A30)are functions of an assumed value 8. We must now find the MLE' 0 by

maximizing £(k;0,_) over @. This can be done by computing the estimate _(k;0)
and the likelihood ratio £(k;_,_) for all 0 and choosing @(k) as the value
of 8 which maximizes £(k;O, --I)

A

O(k) = arg max £(k;8,_) (A31)-g
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The MLE l(k) and the generalized log l_kelihood ratio £(k) are then

l(k) = _(k;8) (A32)

The GLR £(k) in equation (A33) is compared to a threshold, as in equation
(A20), to decide if a failure has occurred. If it has, then l(k) and 8(k) are
the maximum likelihood estimates of the failure vector and the failure time,
respectively.

Development of F(k;8) and G(k;8)

We now need to develope algorithms for computing F(k;@) and G(k;@), which
were previously used but not defined in the equations for the Kalman Filter response.
Assume that the response at time k-1 in equations (A18) and (A19) is correct. Then
the response at time k is

A

x2(klk-1) = ¢(k,k-1)F(k-1; 8)I

k

z2(k) = H(k) _ _(j,8)l
j=e

k

Y2(k) = H(k) [ _(j,8)l - ¢(k,k-1)F(k-1;@)l
j=@

= G(k; 8)I

k

•".G(k;8) = H(k) [ €(j,8) - ¢(k,k-1)F(k-1;@) k > @ (A34)
j=0

A

x2(klk) = ¢(k,k-1) F(k-1;@)l + K(k)G(k;@)l

•".F(k;8) = ¢(k,k-1)F(k-1;8) + K(k)G(k;8) k > @ (A35)

Equations (A34) and (A35) are recursive relationships for G(k;@) and F(k; 8).
A starting condition for computation can be found by considering the filter response
at time k = 8. A failure at time 8 has no effect on the predicted response
x(818-I). Therefore
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A

x2(olo-1) = o

z2(0) = H(8) I

y2 (8) = H(O)I

.'.G(0;8) = H(O) A36)

x2(ele) = K(e)H(e)x

.'.F(O;8) = K(O)H(O) (A37)

For k < O, the failure has no effect, and

G(k;O) = F(k;O) = 0 k < 8 (A38)

Time Invariant Systems

The algorithms in equations (A25) through (A27) and (A30) through (A38) consti-
tute quite a computational workload for real time operation. This workload can be
reduced significantly for the case of a time invariant system and a constant gain
Kalman Filter_ From equations (A34) and (A35) the filter response for this case is

G(k;0) = G(k-O)

0 k< O

= H k = O (A39)

k-O
H [ _(j) - #(1)F(k-1-8) k > O

j=0

, F(k;O) = F(k-0)

. 0 k<e

= KH k = O (A40)

#(1)F(k-1-O) + KG(k-O) k > O
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The matrices C(k;_) and d(k;8) now become

C(k;8) = C(k-8)

k

= _ GT(j-8) V -I G(j-8) (A41) a_

j--g

k

d(k;g) = _ GT(j -g) V-I Y(9) (A42)

j=g

The sequences of matrices G(k-8), F(k-@), and C(k-8) can all be calculated off-
line and stored. The matrix sequence d(k;8) must be calculated in real time since
it depends on the sequence of innovations.

Although the computational burden is lessened for a time invariant system, it is
still formidable. The biggest reason for this is that the formulation presented
above calls for the GLR and the estimates to be computed at each time k for all
possible failure times @ from zero to the present (time k). Thus, the number of
computations increases without limit as time passes. To limit the computational load
the algorithms can be defined to use only a window of data at any time; that is, only
the N most recent innovations y(k-N+1), y(k-N+2), ..., y(k) are used in the
calculations. The algorithms for the off-line quantities now become

4

G(k-8) = G(n) 0 ( n K N-1

H n=0

= n
S _ _(j) - _(1)F(n-1) n > 0 (A43)
j=0

F(k-_) = F(n) 0 ( n ( N-I

KH n = 0 (A44)

_(1)F(n-1) + KG(n) n > 0

C(k-_) = C(n) 0 _ n _ N-I

n

= [ GT(i) V-IG(i) (A45)
i=o

26



The computations that are done each sample time k become

k

d(k;@) = _ GT(j-@) V-I y(j) k-N+1 • e ( k (A46)

j=e

_(k;8) = C-1(k-8)d(k;@) k-N+1 < _ • k (A47)

_(k;_)=_(k;_)C(k-_)-dr(k;_)_(k;_)

- _T(k;O)d(k;8) k-N+1 • 8 g k (A48)

A

@(k) = arg max £(k;@) k-N+1 • e • k (A49)

_(k)= Y(k;e) A50)

£(k) = £(k;e) (A51)

A failure is declared if £(k) exceeds a threshold, that is

H
1

£(k) n (A52)
<
H
o
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APPENDIX B

DEVELOPMENT OF ALGORITHMS FOR CONSTRAINED GLR

The development of the algorithms for constrained GLR is very similar to the
d%velopment for the full GLR in appendix A. In this appendix we will concentrate on
_he differences between the two.

In the theory of the full GLR the failure vector _ can be any vector in the
state space. However, in constrained GLR theory it is hypothesized that only a set

_f L failure vectors fi are possible. Thus the state equations become

x(k+1) = _(k+1,k)x(k) + _(k)u(k) + F(k)w(k)

+ _fi _8,k+1 i = 1,2, ..., L (B1)

z(k+1) = H(k+l)x(k+1) + v(k+1) (B2)

where the fi are n-vectors representing L failure directions and e is a scalar
representing the failure magnitude. The other quantities are the same as for the
full GLR.

Filter Response

A Kalman Filter, designed for the no-failure case, is used to estimate the

system state. In the case of a step failure with failure vector fi at time 8, the
system and filter responses can again be separated into two parts: a response due to
all effects other than the failure and a response due to the failure. The system
response to the failure is

k •

x2(k) = [ _(j,@)fis i = I, ..., L (B3)
j=8 k > 8

k

z2(k) = H(k) [ _(j,@) f._ i = 1, .... L (B4)
9= 8 l k > 8

The response of the Kalman Filter to the failure is

A

x2(klk) = F(k;8) fie i = 1, ..., L (B5)

Y2(k) = G(k; 8) f.e i = 1, ..., L (B6)1
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where the matrices F(k;e) and G(k; 8) are computed as in equations (A35) and
(A34), respectively_ of appendix A.

The conditional pdf for the innovations sequence y(1), _(2), •.., y(k)

assuming HI (assuming a failure has occurred) is

j-1 L (2w)P<2---_exp -j:1[ [Y(J)- G(j;8)fl _]T

V-I(j) [y(j) - G(j;8) f_ _]} (B7)
• 1

The MLE _ of the failure magnitude assumming H1, @, and _ is obtained
by finding the maximum of the conditional pdf.

_-P-[y(_)...., _¢k)lH1,e,i, : 0

Solving for _ gives

f._Td (k;@)

f._Tc(k;e) f._
1 1

where C(k;@) and d(k;8) are defined in equations (A26) and (A27), respectively,
of appendix A.

The Likelihood Ratio

The generalized log likelihood ratio can be written as

1 1 1 1

dT(k;8) f.~ f.~Td (k;@)
= 1 i (B9)

f_c (k;_)f_
1 1
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Similarly to the procedure for full GLR, the estimate _(k;@,_) and the
likelihood ratio £(k;8,[,_) are calculated for each 1 and 8, and the MLE's of
8, i, and _ are those which maximize £(k; 8, _, _).

A

8,i = args max £(k;_,_,_) (BI0)
8,i

'_(k) = _(k; e,_.,) (ml)

£(k)= £(k;8,1,_) (B12)

Just as in the case of full GLR, the computations for the constrained GLR
simplify when the system is time invariant. Similarly, the computational workload is
further reduced by using only a window of th_ N most recent measurements. The
development of the algorithms for these more restrictive cases proceeds very
similarly to the development in appendix A and will not be repeated here.
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APPENDIX C

SIMULATION DESCRIPTION

The Aircraft

The system used to evaluate the GLR techniques was a discrete, linear, small
perturbation simulation of the longitudinal channel of a B-737 aircraft similar to
the simulation described by Halyo in reference 19. Much of the development in this

. appendix follows that by Halyo. The discrete system was derived from a continuous
time system described by the following state equations:

x(t) = Ax(t) + Bu(t) + Dw(t) (CI)

where the state vector x(t) is a 6-component vector defined as

8

Uw

x(t)= (c2)
q

and where the perturbed states are

@ = pitch

u' = normalized x-velocity

= angle-of-attack

q = pitch rate

6T = thrust

6S = stabilizer deflection

The thrust and stabilizer states were included to account for the engine spool
up/spool down time and for the time constant in the stabilizer actuator. The command
vector u(t) is defined by

u(t)= 6t

_j (c3)
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where

6e = elevator command (= elevator position)

_th = throttle command

6st = stabilizer command

6sp = spoiler command (= spoiler position)

The wind vector is defined by

w I

I

w(t) = ew I (c4)qw
-- ..J

where the wind components are

u' = normalized wind velocity in the negative x-directionw

aw = part of the angle-of-attack due to winds

qw = rotation of the atmosphere about the y-axis

Unless otherwise specified, the quantities are defined and the equations are written
in the aircraft's stability axes.

Values for the system matrices were obtained using a computer program (TCVOPL)
which computes the aerodynamic coefficients for aircraft trim conditions specified by
the program user. Exceptions to this procedure are the coefficients for the thrust
and stabilizer states. The engine thrust is modeled as

& = A55_T + B526th

(C5)
= -0.5 6T + 0.298 _th

The value 0.5 was approximated from engine data for the B-737.

The response of the stabilizer on the B-737 is very slow. In order to have
another control surface for restructurable controls, the time constant of the stabi-
lizer was artificially shortened to make the surface useful. The stabilizer _ynamics
were assumed to be

= A666S + B636st

(C6)

= -0.667 _ + 0.667 _st
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The Winds

The wind effects on the aircraft are simulatedby adding them to the other aero-
dynamic forces acting on the aircraft. As noted in equation (C4) the wind is com-
posed of x-velocity,angle-of-attack,and pitch rate components,and they include
both steady state winds and wind gusts, or turbulence.

The gust components are modeled using the familiar Dryden spectra (ref. 20),
which are defined by the following:

2_L
Su(_) = u u (C7)

1 + (L _)2u

O2L I + 3(L _)2

sa(_) =_w w . w (C8)
v2 [I+  )212a w

a

Sq(_) = 2 " S (n) (C9)
4bnI +
w

Sqe(_) = J
1 + j4bn S_(n) (C10)

-g

2 2
In equations (C7) through (CI0) o and o are the variances of the gust veloci-

u w

ties in the x- and z-axes, respectively, L u and Lw are the turbulence scales in

these axes, b is the aircraft wingspan, V a is the aircraft airspeed, and _ is
the spatial frequency of the turbulence, which is related to the temporal frequency

by

= _Va (CI1)

In order to use these spectra in the simulation, which generates random gusts as a
function of time, the spectra must be converted from functions of spatialr frequency
to functions of temporal frequency using the relationship

I
S(_) = _- S(_/Va) (C12)a
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Angle-of-attack component.- Upon conversion to a function of _ the spectral

density of _ becomes

_2Lww 1 + 3(Lw/Va)2J

sa(_)- v3 [_+ )2j]2 (c13)a (Lw/Va

which can be factored into

02Lw 1 + j_ (Lw/Va)_) 1 - j_ (Lw/Va)m

Sa(_) - V3a [1 + jCLw/Va)_]2 [1 - J(Lw/Va)(_]2 (C14)

Define a transfer function Gu(s) using the realizable part of the spectrum in
(C14).

I + _ (Lw/Va)S
Ge(s) =

[1 + (Lw/Va)S]2

(C15)

I + _ (Lw/Va)S
=

1 + 2(Lw/Va)S + (Lw/Va)2S2

A filter with this transfer function driven by white noise with a density of o2L/V 3
will produce random gusts with the spectral density specified by equation (C13)Wa_d a

2 2
with variance _V a.

Let us now turn our attention to obtaining a set of state equations which de-
scribe the filter specified by equations (C15). First convert the transfer function
to an equivalent scalar differential equation.

[Lwh2 2_.w _ Lw .
\Va/ % + V_a ag + ag = L _ + _

or

ivy2 fVa?2Va a

%+:--w%+Vw/_g--_w : . VwJ_ (°'_)
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Now let y = -_ and _I = -_ in equation (C16), and let

! WI = y= -_

WI = W2 + cI_I (C17)

" W2 = -2(Va/Lw)W2 - (Va/Lw)2W1 + c2_I

From equations (C17) find expressions for y and y.

= W2 + ci _I

(c18)

Y"= -2(Va/Lw)W2 - (Va/nw)2W1 + c2_1 + ci%1

Substitute these in equation (C16), and solve for cI and c2.

cI e /_ (Va/Lw)

(C19)

c2 = (I - 1_)(Va/Lw )2

Pitch component.- Upon conversion to a function of _ the power spectral
density of the pitch gusts becomes

2

Sq(_) = _ Se(_)
I + (4b/_V)2 2a

(c20)

= J_ Ge(J_) • -J_ G (-j_)
1 + j(4b/_Va) _ I - j(4b/_Va) _ e
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The wind gusts in pitch can besimulatedbypassi'ng angle-of-attack gusts, that is
the output of the' filter Ga(s), through afi1ter,witha transfer function Gq(s)
defined by

s
= -1-+--'-7"(4-ib'-/~W"'"'-a-:-)s- (C21)

To obtain a state variable representation of the filter, first find the scalar
differential equation equivalent 'of the transfer ·function Gq (s).

Let

Then

Therefore

4b • ••
~qg + ~ = Og = ....W1

a

lTV "lfJ

qg =- 4b
a

,w, + 4b
aW

3

.-w,

(C22)

(C23)

(C24)

(C2S)

X-axis component.- Upon conversion to a function of w the power spectral for
the gusts along the x-axis becomes

(C26)

2L iu u

v3
a
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The x-axis gusts can be obtained by passing white noise with density 2L _2/V3u u a
through a filter with transfer function Gu(S) defined by

I (C27)

Gu(S) = I + (Lu/Va)S

The corresponding scalar differential equation is

L

u _, + u' = _2 (C28)V g ga

or in terms of state variables

W4 = u'g

(C29)
V V

a W4 + aW4 = L L-- _2
u u

Steady state winds.- The steady state winds have an x-axis component and an
angle-of-attack component each of which is simulated as the output of a first order
differentia_ equation driven by white noise with a very small variance. This allows
the winds to vary slightly during a run. The desired steady state wind velocities
are used as the initial conditions. Mathematically the winds are described as
follows:

6's(t)= _3; U's(0)= Us(0)/U°

(C30)

Itl=  sC°l=ws /Uo

Wind state equations.- Equations (C17), (C25), (C29), and (C30) can be combined
to describe the total winds as follows:

" _ = AwW+ Bw_ (c311
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where

Wll

w21

W3 1
W =

w41
w51

w61

0 I 0 0 0 0

2 2
- (Va/Lw ) -(2Va/Lw) 0 0 0 0

(_Va/4b ) 0 -(_Va/4b ) 0 0 0
Aw= (c32)

0 0 0 -(Va/Lu) 0 0

0 0 0 0 0 0

0 0 0 0 0 0

4

61

62
6 = (C33)

63

64

m

(/_ Va/Lw ) 0 0 0

11 - I/_} • (Va/Lw) 0 0 0

0 0 0 0

BW = (C34)
0 (Va/Lu) 0 0

0 0 I 0

0 0 0 I
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The covariance matrix of the Gaussian vector _ is

F = E{_T}

m

--2 3
-,,(q-Lw/Va) 0 0 08

0 r2L_/v 3) 0 0" u u a
F = (C35)

" V3o o 1/ o
a

0 0 0 i/v3

In the foregoing formulation the wind gusts W1 through W4 were written in
aircraft body axes, and the steady state winds W5 and W6 were written in earth
axes. They must be transformed into stability axes. Furthermore, the gust and
steady state components must be added, and WI and W3 must be combined according
to equation (C2) in order to obtain proper wind forces acting on the aircraft. This

can all be accomplished with the transformation CW as follows:

w =CwW (c36)

where

w = w2 = = i_g + (C37)

12wJL qg

and

-sin _o 0 0 -cos eo -c°s(Oo - _o + O) sin(O o - =o + O)

CW = -cos a 0 0 0 sin e 0 -sin(O 0 - e 0 + O) -cos(O 0 - _o + O)

- (UVa/4b) 0 (WVa/4b) 0 0 0

(c38)
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Discr_t_ S_ta__teEquations

The state equations for the.airc_&f!tand_wind_ have been written as,functionsof
continuoustime, t_. These.equa_t'ionsneed to be_coverted,to functionsof discrete
time tk for use,,in a_digi_ta_lcomp,uter_s_±mulation,,Such:a_discretizationhas b_en
discussedby Ha_lyo(ref,.,_19_).

Consider the aircra_f,tcont_inuous_ime s_ta_eequat_ion_(CI). If the state is

known at time- tk,,the s_tatea.,_time tk._1!= tk,..-T:_ can;:be found_by integrationover:
the interval tk to tk+I. The resu_l,tis shown in_many tex_s (e..g.,,ref. 21) to be

x(tk+;1) = $(tk.1,tk)*(_tk)_. _. ._.+'- _tM+:1'_i(_12k_1,_T.)BU(T).dT"

+ ftk+_1 _(,_Ck+I,.T_)Dw_("T;)dT (C39)

tk_'

where

_(t,T) = eA(t-T')

To simplify the notation:.,let x.(!tk)be denoted.,by. xk,_and assume that the command.
u(t) is constant o_e_r the integ.ra.ltk_ 4.,t'< tk+,1. Then

Xk+ 1 = @(k + 1,k).xk @ ftk.1 _:.(_tk.,1,.T)dT BUk
tk.

+ tjk+1 _(tk+I,T)Dw(T)dT (C40)
tk

The integral ftk+1 @(tk+I,.I)dT can be expressed as
tk

_tk+I A(tk+I-T) Ark.I tk+ I -Ae dT.B = e _ e d_ B (C41)
tk tk
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If A has an inverse A-I, then

= ftk+l A(tk+1-_) Ark+ I tk+ I -AtA-1e d_ B = e f e d(AT)B

tk

-Atk1
Atk+ I -Atk+ I

= e - + e A-1B (C42)

= [_(k + 1,k) - I]A-IB

The aircraft state equation now becomes

tk+1 (C43)
Xk+1 = @xk + _uk + f @(tk+1,T)Dw(T) dT

tk

To evaluate the integral involving the wind W(T), we first convert the
continuous time wind state equation (C31) to discrete time.

Upon integration this becomes

Wk+l = @wWk + _k (C44)

where _W is the state transition matrix for the wind system.

= _w(k + I, k)

(C45)

Aw(tk+;-tk)
= e
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and

Halyo (ref,.19)':has_:_Shown,[_th_t!_k i__s_,a<G_ussia'n,whi'te:noise.vectorsequence'with
covariance .R_.

m :',,T'

•.T '.T
. -BITT.T

= i_ '._ ';'J_(T',T)BwE{!_:(:tk "+ T)'_T(:t + s)} .._w:_w(..,,s)dT ds.. !i0 _:0 :' _ _' 3

Since _(t) i_s,.a,wh'i'_e_no_"sepr_ess,, ,an_s_nce _he i_n._tervals(tk,tk + T) ,and
(tj,tj + T)do not _verlap ':_'orj#k,,

,!,.. E{_(t k + T)_T:(tj . :S):}= /_ O j :_k
__ (c48)
_F6(_ - .S.) j = 'k

Therefore,

R_(k,j) = R._jk (C_9)

'T
:T

_'0



The matrix CW, which transforms the continuous time wind variables W into the
variables w for use as the plant noise in the aircraft state equations, is still
valid for the discrete case. Thus

wk : CwWk (C51)

o

We now return to the evaluation of the integral in equation (C43) involving the
wind W(T). A change of variables produces

_tk+I T_(tk+1,T)Dw(T) aT = / @(T,s)Dw(_ + s) as (c52)
0

After substitution of equation (C36), integration of equation (C44) from 0 to T, and
substitution of equation (C46), the integral becomes

T T

: _(T,s)Dw(tk +s) ds = : #(T,s)DCw_w(S,0) ds Wk
0 0

T s

+ ] _(T,s)DCw _ _w(S,T)Bw_(tk + T)dTds0

(C53)

The aircraft state equation can now be written as

Xk+I = @xk + _uk + FwWk + nk (C54)

where

T

rw = f _(T,s)DCw_w(s,O)ds (css)
o

m

and

T s

nk = / _(T,s)DCW Of _(s,T)Bw_( _ + T) aT as (c56)0
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The sequence Dk is a Gaussian white noise vector sequence with covariance Rn.

T T

= I I _CT,s_DCw%_s,_IdsBw_Ctk._Ide
0 T

T T T

= f f f ,(T,s)DCwCwCS,_)dsBW_{_Ctk+ T)_Tct+ y)}
0 0 T ]

T fT #T(x,y)cTDT_T(T,x) dx dY dT• BW
Y

As we noted previously in equation (C48),

I 0 j # k
(tj = (C58)

E{_(tk + T)_T + Y)} F6(T - y) j : k

Therefore

Rn(j,k) = R_6jk (C59)

TIT SlRn= f f #(T,s)DCwCw(S,_)d BWF_
0

• cw o,x1 coT

This completes the discretization of the state equations necessary to simulate
the aircraft and winds.
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Measurements

Thus far we have described the simulation of the aircraft dynamics and of the

winds acting on the aircraft. For the purposes of the work discussed in this report
the simulation needs one additional element - simulation of the measurements, or air-

craft sensor outputs.

The measurements of interest are pitch attitude from a pitch gyro, x- and
z-accelerations from body mounted accelerometers, pitch rate from a pitch rate gyro,
airspeed and altitude rate from the air data computer, and angle-of-attack from an
angle-of-attack vane. A reasonably accurate simulation requires computation of the
true value of the quantity being measured and then the addition of appropriate
errors. For each measurement these errors include some, but not necessarily all, of
the following: bias, white noise, scale factor, and alignment. The true values and

errors are combined at each sample time tk to form a measurement vector zk.

_k (I)--]

zkC21I

zk = (C61)

(7) I

Pitch.- The pitch measurement includes additive noise and bias errors.

Zk(1) = e + Vk(1) + b(1) (C62)

where

e = pitch = Xk(1)

b(1) = 0.23°

Vk(1) = zero mean white Gaussian noise

• €0
Accelerations.- The x- and z-axis acceleration measurements include noise, bias,

- scale factor, and misalignment errors. The first step in obtaining a simulated mea-
surement is to compute the true value of the acceleration in stability coordinates,

and , from the equations of motion.
Axs Azs
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AXs UoI_'+ qUo tan s + g sin(eo + e - sO)
I

i

(C63)

Azs = Uo[U' tan s + (I + u')_/cos 2 s] - qUO - g cos(eO + 8 - sO)

where

g = acceleration due to gravity

Uo = trim inertial velocity along x

eo = trim pitch attitude

eO = trim angle-of-attack

8 = perturbed pitch = Xk(1)

u' = perturbed inertial velocity along x = Xk(2)

s = perturbed inertial angle of attack = Xk(3)

q = perturbed pitch rate = Xk(4)

At any time .tk values of xk are known from the aircraft state equation. The
quantities u' and _ are calculated using the coefficients from the continuous
time state equation.

J(C64)

= _[Ax k + Buk + DWk]

where

T
€^ : [0 1 0 0 0 0]

/

T
€. = [0 0 1 0 0 0]
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These stability axis accelerations are transformed into body axis accelerations, and
the effects of accelerometer misalignment are added as follows:

Axb = Axs coS(_o + a) - Azs sin(_° + a) 1

(C65)

- Azb = Axs sin(sO + a) + Azs cos(so + a)

where

a = accelerometer alignment error = 0.2°

Noise, bias, and scale factor errors are added to obtain the acceleration
measurements.

Zk(3) Azb

where

s = scale'factor error = .0025

b(2) = b(3) = bias = 0.32 ft/sec2

Vk(2),Vk(3) = zero mean Gaussian noise

E{v_(2) } = E{v_(3) } = (0.32 ft/sec2)2

Pitch rate.- The pitch rate measurement includes only a noise error.

Zk(4) = q + Vk(4) (C67)

where

" q = pitch rate = Xk(4)

. Vk(4) = zero mean Gaussian noise

Elv_(4)} = (.02 deg/sec) 2
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Air speed.-The air speed measurementincludes a multiplicativenoise error and
a bias.

Zk(5) = Va[1 + Vk(5) ] + b(5) (C68)

where

Va = Uo(1 + u' + _)/cos(u + _)

u' = normalized inertial velocity along x = Xk(2)

= normalized wind velocity along x = Wk(1)

a = angle-of-attack due to inertial velocity along z = Xk(3)

aW = angle-of-attack due to wind velocity along z = Wk(2)

b(5) = 3 kts

Vk(5) = zero mean Gaussian noise

E{v2(5) } = (0.02)2

Altitutde rate.- The altitude rate measurement includes only a noise error.

Zk_6) = h + Vk(6 ) (C69)

where

= Uo(I + u') Isis(@O + @ - %) - tan a cos(@O + 8 - no)]

Vk(6) = zero mean Gaussian noise

E{v_(6) } : (5 ft/sec)2

Angle-of-attack.- The angle-of-attack measurement includes bias and additive
noise errors.

Zk(7) = e + _ + Vk(7) + b(7) (C70)

where _ and 0_4 were previously defined, and Vk(7) is zero mean Gaussian noise.
The bias b(7) and noise error variance were estimated to be 0.25° and (0.4o)2,

respectively. I
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The measurement errors are summarized in table C_.

TABLE CI.- MEASUREMENT ERRORS

Error type

Measurement Noise
Scale

standard Bias factor Alignment
deviation

Pitch 0.23 ° 0.23° - -

Acceleration 0.32 ft 0.32 ft 0.0025 0.2°
2 2

sec sec

Pitch rate 0.02 deg _ _ _
sec

Air speed 0.02* 3.0 kts - -
ftAltitude rate 5 - - -
sec

Angle-of-attack 0.4° 0.25° - -

*multiplicative

Implementation

Implementation of these equations into the simulation requires evaluation of the

integrals in the expressions for FW, R_, and Rn in equations (C55), (C50), and
(C60), respectively. The integrals in equations (C55) and (C50) and the inner inte-
grals in equation (C60) were evaluated using a Langley software library subroutine
GLEGEN, which performs numerical integration using a Gauss-Legendre formula. The
outer integral in equation (C60) was evaluated using the library subroutine SIMP,
which performs numerical integration using Simpson's formula. In all cases, the
aircraft transition matrix was evaluated using the library subroutine CONEXP, which
computes the matrix exponential.

Random sequences.- The random sequences _k and _k have correlation matrices

R_ and R_ defined by equations (C50) and (C60), respectively. In general, these
matrices are not diagonal, and thus the components _k(1), _k(2), ..., _k(6) of the
vector _k are not independent as they were with the vector _(t) in the continuous
time case. This is also true of the components _k(1), nk(2), ..., nk(6) of nk.

At time tk the simulation generates a vector _k of six random numbers with

covariance matrix R_ using the following technique. Let x be a vector of zerow
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mean, independent, Gaussian random variables with unity variance. Then the correla-

tion matrix Rx is

Rx--{xxT}
(C71)

Let y be the vector of desired zero mean random variables Yl' Y2' "''' YN with
the covariance matrix Ry. Now let the desired random vector y be given by

y = Gx (C72)

where the transformation G is defined to produce the desired covariance of y, that
is

E{yyT} = E{GxxTG T}

= GE {xxT _ T (C73)

= GGT

Therefore

GGT = Ry (CV4)

If G is assumed to be triangular, one solution (of many) to equation (C7_) is given
by the following:

Yl = gl IXI

Y2 = g21xl + g22x2

• (c75)

YN = gNlXl + gN2x2 + "'° + gNNXN

50



Then

'{Y2Yl} = =gllg21
I

_ 2 2
E{y_} = R22 = g21 + g22 (C76)

This system of equations can be solved for the elements gij to give

g11 =R_11

gjl = %1/g11 2 ( j • N

i-I

gji = <Rji - m=1_gJmgim I < i < j (C77)

IR j-1 2 1 I/2gJJ = JJ - m=1[ gjmJ 2 • j • N

The same technique is used to generate the vector nk of random numbers with
covariance R_.

. Failures.- Failures in the control elements were simulated as steps or ramps in
the state variables according to

Xk+l = _Xk + _Uk + FwWk + nk + ekfi_k+l, 8 (C78)
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where

fi = _i

= i-th column of the control transition matrix.

and ek is chosen to be a step or ramp.

Because the acceleration measurements Zk(2) and Zk(3) contain terms which
include the continuous time control input matrix B as in equations (C64) through
(C66), any failure affecting these terms must be accOunted for in the simulated mea-
surements. For the four failures simulated, only the elevator and spoiler fa_ilures
affected the B-matrix and thus introduced failure effects directly into the measure"
ment equation via the expressions for u' and _. For a stuck actuator these
effects were simulated by adding terms to equation (C64) as follows:

(C79)

_-_{_+B_+_k.B(%_-ukCi_1}

where

Bi = i-th column of B

uk(i) = 9-th component of the control vector uk

The term Biek accounts for the failure and the term BiUk(i) accounts for the loss
of that control input.
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APPENDIX D

THE KALMAN FILTER

As described in appendices A and B, to perform the FDI computations the GLR
technique uses the innovations from a discrete time Kalman Filter, which estimates •
the system states. As discussed in the Results section of this report, a brief
investigation was conducted to evaluate the performance of the GLR algorithm as a
function of the number of states in the filter. From the results of this investiga-
tion it was decided for this work to have a 10-state Kalman Filter estimate the wind

gusts as well as the aircraft states. This appendix discusses the implementation of
this filter.

The System Model

The model of the system which the Kalman Filter is designed to estimate must
include the dynamics of the aircraft and of the wind. This is accomplished by

combining the aircraft dynamics in equation (C54) and the wind gust dynamics in
equation (C44) into one state equation as follows:

F F

where the combined system state vector is defined by

(I) Xk(1) 8

(2) _(2) u'

F(3) Xk(3) a

(4) _(4) q

Xk(5) Xk(5) 6T
F

Xk = = = (D2)

Xk(6) Xk(6) _S

" _(7) Wk(1) -ag

" <(8) Wk(2) *

(9) Wk(3) *

(10) Wk(4) -u'g
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The control vector for the combined system is the same as for the aircraft system and
is definedas in equation (C3) by

n w m _qq

%(1) 6e l i, !
' i

%(2) I
uk = -- (D3)

%(3) 6stl

%(4) 6spl

The plant disturbancevector (winds)is a combinationof the white Gaussian noise

vector sequence _ and the gust componentsof the white Gaussian noise sequence
[k. defined by equations (C56) and (C46),respectively.

m
q

nk(1)

nk(2)

_(3)

nk(4)

nk(5)
[k=

qk(6) (D4)

€x(1)

_k(2)

ck(s)

[k(4)

The combined system transition matrix is

m i

I

. I _w

+F= ---I---- (D5)
v

0

F
where @ is the aircraft system transitionmatrix defined by equation (C39), @w is
the upper left 4 × 4 sub-matrixof the wind system transitionmatrix defined by

5,4.



equation (C45), and _ is the first four columns of the matrix defined by equa-w
tion (C55), The combined control transition matrix is defined by

where _ is the aircraft control transitionmatrix defined by equation (C42). The
combineddisturbancetranstionmatrix is the identitymatrix.

FF = I (D7)

The plant noise covariance is modeled by

rl I (D9)

R [

{

where R and R" are the covariances of qk and _, respectively. R is

defined b_ equation (C60), and R_ is the upper left _ x 4 sub-matrix ofnthe matrix
defined by equation (C50).

For use in the Kalman Filter design the system measurements,or observations,
are modeled as linear combinationsof the system state plus additiveGaussian noise.

= HxF + F (DI0)
Yk+l k+% Vk+_

The actual measurements, as described in appendix C, are not linear functions of the
state in all cases. A pre-processor, to be described later, is used to convert the

measurements zk into a vector Yk of observations, or pseudo-measurements, which
can then be approximated as linear functions of the state.
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The Filter

The Kalman Filter is defined by the equations

x (k+11k) = (k]k) + _u k (D11)

x{klk) = x(klk-1) + K T(k) (D12)

b

where K is the Kalman gain. The innovations T(k) are related to the observations
by the following:

T(k)= Yk - Hx(klk-1) (D13)

A constant gain filter was used to greatly reduce the computationalworkload.
Constant gain could be used since the aircraft system matrices are constant,or very
slowly changing,for a given flight segment. The wind covariancemay vary more
rapidly,but since it is also not accuratelyknown, a constant value was used. The
filter gain K was computed using the subroutineASYMFIL from the linear control
system design softwarepackage ORACLS (ref. 22).

The Pre-Processor

As previously noted, the actual measurements zk are not all linear functions
of the state. A pre-processor was used to obtain from the measurements a set of

observations Yk which could be approximated by a linear model as in equation (DI0).
This pre-processor is described in the following paragraphs.

Pitch.- From equation (C62) the output of the pitch attitude gyro is

Zk(1) = e + Vk(1) + b(1)

In this case it suffices to let

Yk(1) = Zk(1) (D14)

and then Yk(1) can be modeled as

Yk(1) = 8 + Vk(1)

F(1 ) (D15)= (I) + vk
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Accelerations.- The outputs of the body mounted accelerometers are given by
equations (C63) through (C66). The first step in pre-processing these measurements
is to convert them to stability coordinates according to

F F
AF = Zk(2) cos e + _(3) sin axs o o

. (D16)

F F F
A = -Zk(2) sin _ + Zk(3) cos ezs o o

F
where u = trim angle-of-attack in the combined system modelo

Comparison of the stability axis accelerations in equations (D16) with those in (C65)
shows that

F
A = A + e
xs xs x

(D17)

AF = A + e
zs zs z

where ex is an error term due to accelerometer noise Vk(2) , bias error Fb(2),
scale factor error s, accelerometer alignment error a, and error (eo- Co) in the
trim angle-of-attack. From equations (C63) and (C64)

F T

= U £_=_CAxk + BuI._+ _DwI")+ qUO tan e + g sin (8 + 0 - e )
A
XS 0 0 0

(D18)
T

AF = U tan _ % (Axk + Buk + DWk) - g cos(e + 8 - u )zs o qUo- o o

T
+[€i+u'>UolCOs2 •% +Buk+Dwk)

Define the observations Yk(2) and Yk(3) as follows:

4

Yk(2) = U-_ [As - g sin ( o - BFUk
- O

(D19)

F [Azs + g cos ( o
U
o
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The pre-processor then calculates the observations Yk(2) and Yk(3) from the
measurements Zk(2 ) and Zk(3) using equations (D16) and (D19). From equa-
tions (D18) and (D19) these observations can be approximated as linear functions of
the states as follows:

T
Yk (2) - q tan e + £2[A_k + DFWk]

°+ Ig/U COS_0- F)sin 0 + Vk(2)

6 6

F(j) + 7. D (2,j) F (j+6)" 7 AF(2,j) xk co Xk
j=I j=I

T
Yk(3) _ -q + tan e • £2 [A_k + DFWk]

T F

+ [(1 + u')/cos 2 a] • £3[AF Xk + DFW k] + Vk(3)

F F+(g/O o) sinI0 - ao)sin 0

F Xk ( )"-x_(4) + (g/UoF) sinI8R - eo I I

6 6

+ I: ,,,<_,J>xF<<j>+ _:D <_,j>x_.<j+_>+v_<_> <0_,>co k
j=I j=1

where

= DFcF
Dco wo (D22)
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and

cF = cF Ico w e=0

m m

F F ( F F) sin(eoF - oF)- -sin _o 0 0 -cos eO -cos 8 - _o o

Co F). F F -sin e s° o= -cos eO 0 0 sin eO - -cos e -

F F
wv wva a

0 0 0 0 (D23)4b 4b

Pitch rate.- From equation (C64) the output of the pitch rate gyro is

Zk(4) = q + Vk(4)

It is sufficient to let

Yk!4) = Zk(4) (D24)

which case Yk(4)can be modeled as

F(4) (D25)Yk(4) = (4) + vk

Air speed.- From equation (C68) the air speed measurement is

Zk(5) = Va[1 Vk(5)] + b(5)

: o° [(I+u'+u')/cos(_+%)] •[I+vk(5)]+ b(S)" W

" Define the air speed observation as
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The observationcan be approximatedas a linear combinationof the states as follows:

IC + U' + xU)I
Yk(5) = os(_ + [I + Vk(5)] + b(5) IUo

-u' + u' + vF(5)w
k

6

j=1

Altitude rate.- From equation (C69) the altitude rate measurment is

Zk(6) = h + Vk(6)

= Uo(1 + u') [sin(80 + 8 - cO) - tan c cos(8o + @ - _o)]+ Vk(6)

Define the observation

which can be approximately modeled as

Yk(6) = (I + u')[sin(eF F F F) sin 8o- %)c°s e+ cosCe-%

- tan u cos[8F - _oF) cos 8 + tan _ sinIeF - F)sin 8]

.v,,,>jOoC0o-Oo

= U' sin(@Fo- _oF)+ cosl @ _ ao ) @ - _ + v (6)
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Angle-ofTattack.-Fromequation(C70)theoutputof theangle-of-attacksensor
_s

Zk(7) - a + %,+ vk(7) + b(7)

Define the observation

Yk(7) " Zk(7) (D30)

vhtch can be modeled by

yk(7) - a + % + v_(7)

6

-x_(3) + =_ICw°(2'J)xk(J+6)+Vk(7) (D31)

The pre-processor computes the obsrvations Yk from the measurements z k
a_ordlng to equations (D14), (D16), (D19), (D24), (D26), (D28),and (D30). These
observaUons.are the inputs to the Kalman Filter. For use in the filter algorithms
the observationscan now be expressedas in equation (DIO) with the observation
matrix deElned by equation (D32).
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TABLE III.a.- GLR VALUES FOR 30-SAMPLE WINDOW

Failure Turbulence

Thunder-
, Type Magnitude None Medium Heavy storm

, ,n,

Elevator 10° 3584 4256 5332
° 4080*

3° 162 144 119
130 131

I ° 64 54

Throttle 40° 2862 1656 7869
5953*

12° 431 345 305
450 688

4° 128 101

Stabilizer -6° 940 722 762 24010
1128 1894 20310*

3° 170 172 118

-I ° 86 70

Spoiler 8° 825 629 1176 38000
32870*

3° 178 152 443
222 417

1 ° 77 69

None 0 57 425 16630

*Used 10 ft/sec steady state wind in the x-direction. Other thunderstorm runs used
39 ft/sec.
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TABLE III.b.- GLR VALUES FOR 20-SAMPLE WINDOW

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm b

Elevator 10° 3106 4435 6071
4889*

3° 104 109 104

106 112

I° 46 40

Throttle 40 ° 2035 1330 11580

9435*

12 ° 297 227 255

312 488

4 ° 91 79

Stabilizer -6 ° , 757 526 686 26080
908 1540 22840*

3° 121 140 122

-1 ° 64 56

Spoiler 8 ° 573 470 1367 41900

37310*

3° 129 118 505
155 293

1° 58 52

None 0 42 321 20380

*Used 10 ft/sec steady state wind in the x-direction. Other thunderstorm runs used

39 ft/sec.

4
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TABLE III.c.- GLR VALUES FOR 10-SAMPLE WINDOW

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm

Elevator 10° 1971 3717 10180
9334*

3° 62 76 142
70 80

1° 27 33

Throttle 40° 1100 784 10870*
9241"

12 ° 165 135 154

168 263

4 ° 52 49

Stabilizer -6 ° 456 284 388 19320

522 884 17030*

3 ° 67 105 155

-I° 42 38

Spoiler 8° 302 269 804 30900
27670*

3° 77 74 360
85 169

1° 37 35

None 0 32 230 17030

*Used 10 ft/sec steady state wind in the x-direction. Other thunderstorm runs used
39 ft/sec.
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TABLE IV.- FULL GLR FAILURE DETECTION PERFORMANCE WITH
THRESHOLDS SET AT NO TURBULENCE LEVEL

Failure Turbulence ,

Thunder-
Type Magnitude None Medium Heavy storm "

Elevator 10° y/y/y y/y/x X/X/y
Y/Y/Y

3° YIYiY YIYIY YIYIY
Y/Y/Y Y/Y/Y.

I° Y/Y/n n/n/Y

Throttle 40 ° y/y/y y/y/y y/y/y

Y/Y/Y

12 ° Y/Y/Y Y/Y/Y Y/Y/Y

Y/Y/Y Y/Y/Y

4° Y/Y/Y Y/Y/Y

Stabilizer -6 ° y/y/y y/y/y y/y/y y/y/y

Y/Y/Y Y/Y/Y Y/Y/Y

3° Y/y/y Y/Y/Y Y/Y/Y

-I ° y/y/y Y/Y/Y

Spoiler 8° Y/y/y y/y/y y/y/y y/y/y
Y/Y/Y

3° Y/y/y Y/Y/Y Y/Y/Y
Y/Y/Y Y/Y/Y

1° Y/y/y Y/Y/Y

Y/Y/Y indicates detection using the 30-, 20-, and 10-sample windows.
n indicates failure not detected.
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TABLE V.- FULL GLR FAILUREDETECTIONPERFORMANCEWITH
THRESHOLDS SET AT HEAVY TURBULENCE LEVEL

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm

Elevator I0° Y/Y/Y Y/Y/Y Y/Y/y
YIYIY

3° nlnln nlnln nlnln
n/n/n n/n/n

1° n/n/n n/n/n

Throttle 40° XlY/y YIYIY yIy/y
YIYI

129 Yln/n nln/n nln/n
Y/n/n Y/Y/Y

4° n/n/n n/n/n

Stabilizer -6° yIy/y yIy/y y/y/y YIYIY
YIYIY YIYIY YIYIY

3° n/n/n n/n/n n/n/n

-I° nln/n nln/n

Spoiler 8° Y/Y/Y Y/X/Y y/y/y y/y/y
YIYIY

3° n/n/n n/n/n Y/Y/Y
n/n/n n/n/n

I° n/n/n n/n/n

Y/Y/Y indicates detection using the 30-, 20-, and 10-sample windows.
n indicates failure not detected.
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TABLE VI.- GLR VALUES FOR MISMATCHED FILTER MODEL

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm

Elevator 10° 12320
12830
11880

3o

1 °

Throttle 40° 13180
9951
5842

12°

4°

Stabilizer -6o 11110
8127

" 4716

3°

--I°

Spoiler 8° 12800
9826
5717

3°

I°

None 0 10860
7847
4593

30-sample window
20-sample window
10-sample window

7O



TABLE VII.- CONSTRAINED GLR FAILURE DETECTION PERFORMANCE WITH
_ THRESHOLDS SET AT HEAVY TURBULENCE LEVEL

Failure Turbulence

" Thunder-
Type Magnitude None Medium Heavy storm

Elevator 10° y/y/y y/y/x y/y/y

3° Y/Y/Y n/Y/Y n/Y/Y
n/Y/Y n/Y/Y.

I° n/n/n n/n/n

Throttle 40° y/y/y y/y/y y/y/y

12° n/n/n n/n/n n/n/n
Y/n/n Y/Y/Y

4° n/n/n n/n/n

Stabilizer -6° y/y/y y/y/y y/y/y

3° Y/Y/Y Y/Y/Y n/n/n

Y/Y/Y Y/Y/Y

-I ° n/n/n n/n/n

Spoiler 8° y/y/y y/y/y y/y/y

3° Y/n/n Y/n/n Y/Y/Y

Y/n/n Y/n/n

I° n/n/n n/n/n

Y/Y/Y indicatesdetectionusing the 30-, 20-, and 10-samplewindows.
n indicatesfailure not detected.
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TABLE VIII.- CONSTRAINED GLR FAILURE IDENTIFICATION PERFORMANCE:
FAILURE VECTOR CORRECTLY IDENTIFIED

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm -

Elevator 10° Y/Y/Y Y/Y/Y Y/Y/n

3° Y/Y/Y ./Y/Y ,/Y/Y
./Y/Y ./_/Y

I° ./,/, ./,/.

Throttle 40° Y/y/Y Y/y/y y/y/y

12° ./,/, ,/,/, ./,/,
Y/./, Y/Y/Y

4° ./,/. */*/*

Stabilizer -6° Y/Y/n Y/Y/n n/n/n

3° YIY/n YIYln ,I,I,
YIY/n YIY/n

-I° ,/,/, ,/,/,

Spoiler 8° Y/n/n Y/Y/n n/n/n

3° Yl,l. Yl.l, nlYln
YI.I. xl.l.

1° ,I,I. ,I,/,

Y/Y/Y indicates correct identification using the 30-, 20-, and 10-sample windows.
n indicates incorrect identification.
, indicates failure not detected.
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TABLE IX.- CONSTRAINED GLR FAILURE IDENTIFICATION PERFORMANCE: PERCENT
ERROR IN FAILURE MAGNITUDE ESTIMATE

i

Failure Turbulence

Type Magnitude None Medium Heavy Thunder-storm

" Elevator I0° -I .41# -2.21 -3.40
-2.58 -2.30 2.90

-0.99 -0.36 ,

3° -6.93 * * • ,

-9.13 -9.80 -7.47 -6.00 -4.43
-4.20 -3.77 6.60 -I .13 14.8

1 ° , ,

Throttle 40o 44.8 8.38 -288.0
92.0 54.5 -485.0
217.0 165.0 -990.0

12° * * 88.8 * 135.0
• * * * 214.0
• * * * 407.0

l
4 ° , ,

#For each case the percent errors are listed in order of decreasing data window

size; that is, the error for the 30-sample window islisted first, followed by the
errors for the 20- and 10-sample windows.
,Indicates failure not detected.

**Indicates failure not correctly identified.
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TABLE IX.- Concluded

Failure Turbulence

Thunder-
Type Magnitude None Medium Heavy storm

Stabilizer -6° -37.7# -50.2 **
-68.3 -87.2 **

** ** **

3° 4.80 -3.53 0.97 * 8.10
35.4 26.3 36.0 * 49.0
** ** ** * **

_1 ° * ,

Spoiler 8° -0.74 -2.14 **
** 2.23 **
** ** **

3° 22.4 20.1 27.5 ** 17.6
* * * 47.2 *
* * * ** *

1 ° * ,
t . ,

#For each case the percent errors are listed in order of decreasing data window
size; that is, the error for the 30-sample window is listed first, followed by the
errors for the 20- and 10-sample windows.
,Indicates failure not detected.

**Indicates failure not correctly identified.
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