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Abstract

This Quarterly Report deals with the deployment maneuver of a single-axis,
vertical constellation with three masses. A new, easy to handle, computer code
that simulates the two-dimensional dynamics of the constellation has been irple-
mented. This computer code is used for designing control laws for the deploy-
ment maneuver that minimizes the acceleration level of the low-g platform during

the maneuver.
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1.0 INTRODUCTION

This is the first Quarterly Report submitted by SAO under contract NAS8-
36606, "Analytical Investigation of the Dynamics of Tethered Constellations in
Earth Orbit (Phase II)," Dr. Enrico Lorenzini, PI, and covers the period from 22

February 1985 through 21 June 198S5.
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2.0 TECHNICAL ACTIVITY DURING REPORTING PERIOD AND PROGRAM STATUS

2.1 Introductory Remarks

The results of the study performed under NASA contract NAS8-35497 on the
dynamics of tethered constellations in earth orbit were very encouraging for a
single-axis vertical constellation. In the three-mass configuration the middle
mass, if appropriately placed at the orbital center of the system, can be con-
veniently utilized as a low-g experiment platform. A preliminary estimation of
the acceleration level achievable was around 10°* g when the system began its
station-keeping phase from a rest condition and the J; term of the gravity field
was taken into account. The above referenced report dealt with the station-
keeping of the constellation only. No indications were provided on how to
deploy the system to the final, steady state configuration. This Quarterly
Report addresses problems related to deployment of a single-axis constellation
with three masses from the initlal, compact configuration to the final alignment

of the constellation with the local vertical at fully deployed tether length.

2.2 Two-Dimensional Equations Of Motion For A Single-Axis Vertical Constella-
tion With Three Masses

The SKYHOOK program was used to simulate the station-keeping phase of the
constellation in Phase I studies. Station-keeping is easier to model than de-
ployment so that a limited number of simulation runs were required. Deployment
of a three-mass constellation is a new topic that requires a longer and more
difficult effort. A complex computer code, like SKYHOOK, is therefore prohibi-

tively cumbersome for a parametric study like this. For this reason a more
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flexible and easy to handle mathematical model has been derived to study the

deployment dynamics of a single-axis constellation with three masses.

The model is two-dimensional. This provides a good approximation of the
deployment maneuver that is dominated by forces acting in the plane of the
orbit. The model assumes three point masses generically located in space (on
the orbital plane) connected by two massless tethers of known elastic character-

istics.

The center of mass of the system ls supposed to Fz on a circular or nearly
circular orbit but in any case the orbital motion is decoupled by the system
oscillation. Presently no aerodynamic forces are in the model but they could be
added easily. Aerodynamic forces, however, are not so important during deploy-
ment at 500 km altitude. Excessive complication of the model would be impracti-
cal since this model is developed in order to design a sultable deployment

strategy for verification by SKYHOOK.

The equations of motion were derived by using the Lagrangian formulation.
The Lagrangian coordinates were chosen, as shown in Figure (2.2.1), to give an
immediate representation of the system oscillations. They also have the advan-
tage of representing oscillatory modes that are, in some cases, very weakly
coupled and therefore suitable for consistent simplifications in order to

achieve analytical results.
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2.2.1 General Case -

The three masses are generically located on the plane of the orbit.
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With

reference to Figure (2.2.1), the position of the masses with respect to a refer-

ence frame centered

given by:
x3 = (Rals - Ry,
x3 = (Rsly — Ri&y)
x3 = (Ryly - Ri&y
z; = (Raly - Ryl
z3 = (Ryly - Rily)
z3 = (Rily - Ri¢,;

where:

Ry = my/Meoe

Equations (2.2.1) are valid for ¢

< {,

at the center of mass and

+ £,) siné

sinf + (R,

= t)) sin d

+ £;) cos¥
cos f -

(R,

- &) cos ¥

The potential energy of the system is given by:

—p soeelE

co-rotating with the system ls

Raecos @

Ry)ecos §

Raecos §

Rzesiné

Rjy)esiné

Riesiné (2.2.1)

which is applicable in most cases.



m3 (ballast)

z (local vertical)

[
//1Space Station)
Lagrangian coordinates:
8 = in-plane angle
€ = lateral defle-tion
21 = tether length of tether #1 a (orbit semi-major axis)

“3 = tether length of tether #2

V to the center of the Earth

Figure 2.2.1 Geometry and reference frame for a single-axis
tethered constellation with three masses.
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Vi=p)os m/r (2.2.2)

1
wvhich to the second order of approximation is as follows:

3 a 2
- _ b 23 _ 23 + x3 — 3z
v=- E ; ¢ mf1 o+ 2 = (2.2.3)

where u is the gravitational constant of the earth and a is the semi-major axis
of the orbit of the system center of mass. After considerable rearranging, the
potential energy can be expressed as:
V= - %W{mm[zaz — 2(Ryly - Ryly)*(3cos? -1)] +
+ R; (my; 4+ my) [e‘(3sin’0-—1)] +
+ m;[t: (3cos?d - 1) + 6L;R;ecos fsin 0] +

+ m,[t: (3cos?d - 1) - 6£3Rzecoc f sin 0]} (2.2.4)
where 1 is the mean orbital rate.
The kinetic energy of the system is glven by:

1 > 2
T = E;‘m‘lv‘l (2.2.5)

where:

[vi|' = [ + 0 (a - 20)] + [z + ax,] (2.2.6)
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After taking the derivative of equations (2.2.1) and substituting them into

equations (2.2.6) and (2.2.5) we finally get:
T = % {ﬂzoe[n’.’ - (Rad; - Red1)? - (Raly - Rily)? (4 - 0)2] +

+ Ra(m; + m,)[i’ + e + (0 - n)'] +

2

+ n.[li + 0, (§-0) - zm,(l,e-zte)] +

+ m,[ P+ 0 (0 - ) + 20R;(bye - t,é)]} (2.2.7)
The Lagrangian function is easily computed as:
L=T-V (2.2.8)
The equations of mution are given by:
d;‘t (a%:) - ‘%—1 - 0 (2.2.9)
where the Lagrangian coordinates are:

qQ =0; q1=¢ q=L4; q4= 10 (2.2.10)

The Q;'s are the generalized forces given by:

3

. 8F
Qj =? 1 By Ei (2.2.11)

In equation (2.2.11) E, are the forces acting on the masses and F; the radius
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i amE e e

vectors, respectively given by: %

Poomoxy T 424 k (2.2.12)

Fy = -Ty(cosf + ¢/lisinf)k - Ti(sind - ¢/lycosd)I

[T SR

F, = [(T, - Ty)cos b + (Ty/&y + Ti/&3) ¢ 8in 0]): + [(T;—‘I‘,) 8in 8§ — (Ty/&;, + Ty/l3) ccos D]I

il deadh i

F, = Ty(cos § - (/l,llnﬂ)i(' + Ty (8sinfd + €/¢, cos¥)I (2.2.13)

By substituting (2.2.12) and (2.2.13) into (2.2.11) we finally get the general-

P T

ized forces as follows:

Qe = 0
Qe = -e(Ty/ly + Ty/ly)

Qg = -T,

Qey, = -T, (2.2.14)

where T, and T; are th» tensions in the respective tethers. i

By substituting the above into the Lagrangian equations (2.2.9) and after :
performing the necessary derivations we finally get the equations of motion as

follows: :
my {6[[:-}- t;(R;t;—R;t;)] + 2‘1(‘ —ﬂ)[l;-’- (R;t; -R;l;)] +

+ 303, cos 0 sin 0], + 2Ryl - Ry2y)] - 30%¢,R;¢ cos (20)} +
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- n,{l[ti-t,(n,t.-n,t,)] + 26,0 -a)[&, + (Rydy -Ri4y)] +
+ 30%,cos 0 8in 0[l3+2(R,t,-R,t;)] + 303¢,R;¢ con(20)} +

+ R;(m;+m;)[¢’5 + 2¢é(d-0) -JQ’c’cosOsan] =0

Ra(m, +m,)[2 - €(§ - Q) - 30%c lin'&] +

L R;m‘.,[:m’conﬂlino (R,t,-R;t;)-ZQ(RJ,-RJ;)] - ’C(T;/[; * T)/t;) (2.2.15)

m,{l, + (Roly—Rydy) - 03 (3cos? - 1)[¢, + 2(Raty - Ry Ly)] -

— (6 -m[y + (Ryls - RyLy)] - 30%R ¢ cos 6 sin 6 - an,é} = Ty

ma{ls - (Rydy =R L)) =03 (3cos?f - 1)[(, — 2(Ryly - Rx‘x)] -
= (é - 0)’[[; + (R3¢, - R;t;)] + 3NR;ecos @ sinf + ZQR,G} = =T,

These equations of motion will be used to simulate the dynamics of the threec-
mass system during deployment as will be shown later in this report. After
further simplifications, relavant to particular cases, these equatcions can also

provide information on the dynami:s of the system without being numerlically

integratud.
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2.2.2 Case Of The Middle Mass At The System Center Of Mass -

In equations (2.2.15) the term Rjl; - R,{, is the distance (along the line
connecting m; and m;) of the middle mass m; from the system center of mass. If
the middle mass is maintained constantly at the center of mass by means of an
appropriate control law then the above mentioned term and its derivatives can be
eliminated in equation (2.2.15). The distances {; and {; can also be expressed
as a function of the overall tether length £. From equation (2.2.13), by re-
quiring that the component of f; along the line connecting m; and my; is zero, we

get T, = T = T so that equations (2.2.15) reduce to:

meq (22 § + 24 (6-0) + 30¥3cosfsinb] +

+ R; (m;+m3)[e’5 + 2¢é(6-0) —3ﬂ’c’cosﬂsin0] =0

Ri[€- € (6 -0)? - 30%sin?] = — €T/ (Lmeq) (2.2.16)

Meql £ - 072 (3 cos?0 - 1) — (6 —q)3L] -

- Rz (m; — my) [30’: cos fsinf + 20('] = = T/Meq

Equations (2.2.16) provide some useful information on the dynamics of the sys-
tem. The coupling among the rotational motion (equation in #) and the lateral
d~flection (equation in €) is strongly reduced by placing the middle mass m; at
the system center of mass. In particular if the initial lateral displacement is
zero it stays zero i1 spite of the system libration. This suggests, for exam-
ple, that the best way to deploy the constellation without overly perturbing the
low-g platform is to design a control law that keeps the middle mass at the

system center of mass throughout the entire deployment. At the end of the
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maneuver the mass m; can be moved to the orbital center (a few meters below the

c.m.) in order to minimize the vertical acceleration.

If we assume that the constellation is fully deployed, that # and § are

equal to zero so that the tension is approximately constant and is given by T =

3meg1?¢, then the ¢ equation in (2.2.16) reduces to: ;
Rié + D% (3—R;) = 0 (2.2.17)

From this extremely simple equation we can derive an analytic formula to compute

the free oscillation frequency of the lateral vibration of mass m; as follows:
£, = ;7 (3/Rz — 1)1/3Q (2.2.18)

As an example, for the constellation studied in Phase I, with: m; = 90600. kg,
m; = 4530 kg, m; = 9060. kg, 0 = 1.1068 x 10°? rad/sec (altitude = 500 km) we

get:
f = 1.45 hz ; T, = 688.4 sec (2.2.19)

Notice also that in the first approximation the lateral oscillation frequency
does not depend on the overall system length. This is because the tension is
directly proportional to ¢ while the angle between the tethers and the line
through the end masses m; and my is inversely proportional to it. The tether
length, therefore, cancels out when computing the horizontal component of the

force acting upon the middle mass.
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2.2 Numerical Integration Of The Two-Dimensional Equations Of Motion

A new software code called 3MASS has been implemented to simulate the dy-
namics of a 3-mass constellation by using the equations of motion previously
described. The computer program uses a fourth order Runge-Kutta integration
subroutine with variable step size. This integration has been successfully
tested in the past with a'similar mathematical model. Additional subroutines
called DEPLOY3 and STAKE3 model the tether control laws during the deployment
and the station-keeping maneuver respectively. All the geometrical and mass
properties and orbital characteristics of the constellation are read as input
parameters by the main program and passed to the integrator. The integration
subroutine, called DRKGS, calls the subroutine FCT which computes the deriva-
tives of the Lagrangian cooruinates. DEPLOY3 or STAKE3 are called by FCT and
after a successful integration step the output subroutine OUTP is called. OUTP
formats the output variables for the printout and it prepares the output file
for the plotter. Subroutine OUTP also stops the program in the case of oprogram

mal functions or the achievement of the desired final conditions.

Typical program malfunctions are: the in-plane angle is too large so that
the constellation attitude is close to the horizontal plane or the integration
step size becomes too small. This computer program is very efficient, at least
when the tethers are considered unstretchable. Normal maximum integration step
sizes are around 50 sec. These characteristics make it suitable for deriving

appropriate tether control laws for the deployment phase.

|
:

Dhs
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2.4 Deployment Maneuver

2.4.1 Control Laws -

Deriving a deployment control law depends on the control parameters avail-
able to the deployer and on the measurement accuracy of these parameters.
Knowledge of the in-plane and out-of-plane angular rate of the tether libration
is required for a very effective damping of librations. Simpler ccntrol laws
rely on the tether length and length rate or on length, length rate and tension.
They are respectively called rate control laws and tension control laws even if
the latter denomination is inaccurate. Rate control laws are easy to implement
and are very reliable. However, they do not damp librations: the decrease of
the libration amplitudes in this case is due to the conservation of angular
momentum while the tether length is being varied. The tether tension is, on the
contrary, related to libration angles and angular rates (well coupled to the in-
plane oscillation and very weakly to the out-of-plane) so that a tensicn control
law, if appropriately tuned to the tether longitudinal oscillation, provides a
good damping of the in-plane oscillation. A major drawback is that the tension
for short tether lengths is too low to be a reliable parameter to control. For
this reason rate control laws (with or without angular feedback) have to be used
for short tether lengths. In this study we used a rate control law for deploy-
ment mainly for two reasons: a) if low level acceleration can be achieved in
the middle mass, notwithstanding a residual oscillation of the system, then any
other control law will be more effective than this control law; b) a rate

control law constitutes the base for any other more refined control law.

The system starts with the three masses very close together, though not
coincident, orbiting in relative equilibrium. The lower mass, m;, is the space

station, the central mass, m;, 1s the low gravity facility, and the higher mass,

N T TR T

i

daabailih dane .
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my, is a ballast mass. Thereafter the natural length of each cf the twc tethers

is derived from a control law:

¢ = al 6 < L < £y (2.4.1)

-B(L-¢ty) lr < L < Uy

where the various parameters may be different for the two tethers. Here £ is
the deployed natural length, ¢; an initial length, £; a transition length at
which the reel begins decelerating, {sx the desired final length, and £, = fg +
o is the length which would result at infinite time, o being a small length
chosen so that the deployment takes finite time but the cutoff is not too
abrupt. The constant a = 0.75 @ sin (26.) is chosen by analogy to a single mass
deployment where it would result in an attitude angle during deployment equal to
fc; and B = alp/(Le-¢r) is such that the deployment velocity is continuous
through the transition. This control law may be solved explicitly to give the
deployed natural length as a function of time. Assuming the initial time is t =

0, we get
L (t) = t; ex 0 <t < tr (2.4.2)
Le— (Le— Lr)exp[— f(t — t1)] tr < t < tgg
where tr = (1/a) 1n(fr/f;) is the transition time and tgx = tr + (1/8) 1In[(&,-

Lr) /0)] is the turn off time.

The same time constant (tea = 1/a) is used for the two tethers in order to keep
the middle mass at the same location throughout the maneuver. The same consid-

eration applies to the time constant for the deceleration phase (te,s = 1/8).
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All the characteristic lengths, such as {;, €;, 0 are in the ratio &g /ls in

order to provide simultaneous transitions in the two tethers.

2.4.2 Simulation Results -

Numerous simulation runs have been performed after implementing the previ-
ously described control law in the new simulation program. Different values of
parameters, such as a, £p, o and £sx have been tested to obtain a set of parame-
ters that results in a well behaved deployment with a low level of acceleration

of the middle platform.

The dimensions and the masses used in these simulation runs are equal to
the values used in the final report of Phase I. Namely they are: m; = 90600.
kg, m; = 4530 kg, m3 = 9060. kg, {€gy = 909.09 m, £€gxs = 9090.9 m, orbital
altitude = 500 km. Notice that this mathematical model does not separate the
orbital center from the center of mass since the gravity field is apprcximated
to the second order. This does not detract from the model since during deploy-
ment the major perturbations on m; are due to the coupling of the lateral de-
flection with the libration and since this coupling is not substantially af-
fected by the third order term of the gravity field. The third order terms of
the gravity field affect the vertical acceleration components so that a mass
located at the system center of mass will actually experience a vertical accel-
eratlion different from zero. The conclusion is that the results of these simu-
lation runs are accurate for the horizontal acceleration component (the most
important during deployment) while the vertical component does not show the bias

dependent on the offset between the center of mass and the orbital center.
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The best set of cortrol parameters came out to be: L7y = 400. m, {&y; =
4000. m, o, = 15 m, 03 = 150 m, 1/a = 1874.14 sec (that implies . = 20°). The
deployment was completed in 5.1 hours while the simulation was stopped at 6
hours in order to plot part of a station-keeping (with no tether control). Two
sets of figures follow that show results of a successful (and improvable) de-
ployment maneuver. Figure (2.4.1 a,b) and Figure (2.4.2 a,b) show the tether
length and tether speed for tether No. 1 and No. 2 respectively (tether No. 2 is
called L3 to homogenize the notation in the equations of motion). Notice that
these quantities, as mentioned before, are in the ratio {£gq/fsks and notice
also the small discontinuity of the tether speed at the end of the deployment
due to the cut off of the exponential deceleration phase. The deployment is
initialized with £;; = 2 m and ¥;; = 20 m. This condition can be actually
realized with two deployment booms w... are extended at the beginning of the
maneuver. These initial tether lengths affect the duration of the maneuver by
expediting the initial phase of the deployment. Figure (2.4.3) shows the in-
plane angle # of the constellation vs. time. Because of the choice of the
Lagrangian coordinates (see Figure 2.2.1) Figure (2.4.3) must be read together
with Figure (2.4.4), which plots the lateral deflection of the middle mass. The
constellation's initial attitude is 20° consistent with the selected steady
state inclination angle during the first phase of deployment. For this reason
the in-plane angle 1is constant throughout the entire acceleration phase and
decreases to the final, residual osclillation amplitude during the deceleration
phase. The residual oscillation can be reduced to the steady-state value forced
by the J;, as shown in the final report of Phase I studies, by means of a tether
controlied station-keeping phase. It could also be reduced during the deploy-
ment deceleration phase by using a tension control law. This second level
improvement will be investigated in the next reporting period i1f desired by

NASA.
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Figure 2.4,2 Tether speed vs. time.
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Figure (2.4.4) shows that the lateral deflection ¢ of the middle mass stays
very small if the deployment is initialized with zero lateral deflection. This
is because the coupling between lateral oscillation and libration is very weak
when the middle platform is located at the system c.m. as mentioned before. Any
other location of mass m; creates larger lateral deflection and consequently a
higher acceleration level. Figure (2.4.5 a,b) show the respective trajectory of
the lower and upper mass. Negative numbers mean trajectory outwards from the
earth. Figure (2.4.6) shows the tension in tether 1 which is almost exactly
equal to the one in tether 2. Fligure (2.4.7) is the horizontal component of the
acceleration of mass m;. The horizontal acceleration component is smaller than
the accuracy of our computer in double precision (the middle mass initial lat-
eral deflecucion is equal to zero) and for this reason it must be considered only
as an order of magnitude. Vertical acceleration components and acceleration
modulus are not shown here because they are comparable to the horizontal compo-
nent. Notice also that the vertical component has no bias due to the center of

mass-orbital center offset as mentioned before.

It is also interesting to see what the dynamic response and the accelera-
tion level would be if the system starts the deployment with a small alignment
error. Some simulation runs were, therefore, performed starting the deployment
with different lateral deflections of the system. Results from a simulation run
with an initial lateral deflection ¢ = 0.05 m (2 inches) are shown in the
following figures. The oscillation amplitude of the lateral deflection stays
approximately the same throughout the entire simQIation as shown in Figure
(2.4.8). The damping of this type of oscillation deserves further study. Damp-

ing terms were not included in the control law thls time and it would be inter-
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esting to see how effective a tension control law could be in damping this
oscillation out. Figures (2.4.9), (2.4.10) and (2.4.11) show the horizontal
component, vertical component and modulus of the acceleration on the middle
mass. All of them are of the order of 10 * m/sec? (10?7 g) but these values ara
strictly dependent on the initial lateral deflection and in any case they should

be fine-tuned (and possibly improved) with the use of a tension control law.
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2.4.3 Concluding Remarks -

The simple rate control law derived in this study proved to be effective in
deploying a single-axis constellation with three masses. By using the same time
constant for tether 1 and tether 2 and simultaneous transitions from one phase
to another, the middle mass m; can be maintained at the center of mass of the
system. This strategy reduces the acceleration level induced on the middle
platform during deployment. When the deployment is over, the low-g platform can
be moved tc the orbital center of the system in order to reduce the vertical
component of the acceleration. In the system under investigation in this Quar-
terly Report the orbital center is only 1.2 m lower than the center of mass. It
is also important to minimize the initial lateral deflection of mass m; with
respect to the line through m; and m; in order to achieve a low acceleration

level.

Tenslion control laws should be investigated to reduce further the final
libration and most of all to understand how effective these control laws are in

abating the lateral oscillation of the system.

3.0 PROBLEMS ENCOUNTERED DURING REPORTING PERIOD.

None.

-



Page 30

4.0 ACTIVITY PLANNED FOR THE NEXT REPORTING PERIOD

During the next reporting period the analysis of the deployment phase of a
single-axis constellation with three masses will be further developed. Tension
control laws will be investigated. The effect of elastic tethers will be also
considered. The tether control law that proves itself most effective for de-
ployment will be verified by SKYHOOK or by a similar high fidelity model spe-

cialized to simulate the dynamics of three-mass constellations.

In addition to the above, the dynamics of the constellation when the middle
mass travels along the tether in between the two end masses will be studied with
the mathematical model derived during this reporting period. This model is
perfectly suitable for investigating the situation where the middle platform

travels along the tether.
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