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DYNAMIC IDENTIFICATION FOR CONTROL OF LARGE SPACE STRUCTURES

BY
Samir R. Ibrahim*

SUMMARY

The final report for NSG 1649, Dynamic Identification for control of

Large Space Structures, consists of the following five journal articles:

(1)

(2)

(3)

(4)

(5)

"A Parametric Study of the Ibrahim Time Domain Modal Identification
Algorithm," The Shock and Vibration Bulletin, May 1981; S<# /2<°7
“Large Modal Survey Testing Using the Ibrahim Time Domain Identifica-
tion Technique," Journal of Spacecraft and Rockets, Vol. 19, No. 5,
Sept. - Oct. 1982, B/ A7 Y% ]

“Computation of Normal Modes from Identified Complex Modes," AIAA Jour-
nal, Vol. 21, No. 3, March 1983. ¥34 22/42>

“Dynamic Modeling of Structures from Measured Complex Modes," AIAA
Jdurnal Vol. 32, No. 6, June 1983. 5= 7 = 2 738

“Time Domain Quasi-Linear Identification of Nonlinear Dynamic Systems,"
ATAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics and Materials

Conference, Lake Tahoe, Nevada, May 2-4, 1983. TYA 36 Y9 5”

*Associate Professor, Department of Mechanical Engineering & Mechanics,
School of Engineering, 01d Dominion University, Norfolk, VA 23508.



Ve T T

- - R

Bulletin 51
(Part 3 of 3 Parts)

Reprinted From

THE

SHOCK AND VIBRATION
BULLETIN

Part 3
Analytical Methods, Dynamic
Analysis, Vehicle Systems

MAY 1981

A Publication of
THE SHOCK AND VIBRATION
INFORMATION CENTER
Naval Research l.aboratory, Washington, D.C.

Office of
The Under Secretary of Defense
for Research and Engineering

Approved for public release: distribution unlimited.



DYNAMIC ANALYSIS

2

A PARAMETRIC STUDY OF THE IBRAHIM TIME DOMAIN
MODAL IDENTIFICATION ALGORITHM

Richard S. Pappa
Structural Dynamics Branch
NASA Langley Research Center
Hampton, Virginia

and

Samir R.

Ibrahim

Department of Mechanical Engineering and Mechanics
0ld Dominion University
Norfolk, Virginia

user-selectable algorithm constants.

The accuracy of the Ibrahim Time Domain (ITD) identification algorithm in
extracting structural modal parameters from free-response functions has
been studied using computer-simulated data for 65 positions on an isotropic,
uniform~thickness plate, with mode shapes obtained by NASTRAN analysis.
Natural frequencies, damping factors, and response levels of the first

15 plate modes were arbitrarily assigned in forming the response functions,
to study identification results over ranges of modal parameter values and
Effects of superimposing various
levels of noise onto the functions were investigated in detail. A partic-
ularly interesting result is that no detrimental effects were observed
when the number of computational degrees-of-freedom allowed in the algo-
rithm was made many times larger than the minimum necessary for adequate
identification. This result suggests the use of a high number of degrees-
of-freedom when analyzing experimental data, for the simultaneous identifi-
cation of many modes in one computer run. Details of the procedure used
for these identifications are included.

INTRODUCTION

A fundamental problem in experi-
mental structural dynamics is the accu-
rate determination of parameters
characterizing the important vibration
modes of a test structure. These param-
eters--natural frequencies, damping
factors, and mode shapes--are used for
a variety of purposes, including:

1. trouble-shooting excessive
vibration or noise from mechan-
ical equipment;

2. dynamic analysis of portions
of a structure that are too
difficult to model analytically;

3. refinement or verification of
an analytical model; and

4. direct calculation of dynamic
loads or response levels that
a structure may experience
during operation.

An additional future use of experimen-
tally determined modal parameters, of
current research interest to NASA, is in
the active attitude control of large
space structures.

Obviously, the applications and
corresponding accuracies which are re-
quired of these data vary considerably.
Results adequate for one use may be un-
acceptable for another. In addition,
accuracy requirements for particular
applications may be difficult to quantify
and may be subject to error. Establish-
ing the adequacy of experimental modal
data still often includes a judgement
of whether the most accurate set of data,
within an allocated period of time, has
been obtained.

Before the widespread use of mini-
computers in the laboratory, modal test-
ing and analysis were conducted almost
exclusively with analog instrumentation.
As the advantages of digital computation
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because apparent, many data analysis
techniques that had been developed on the
analog systems were simply converted

to their digital counterparts. These
techniques are, in fact, still used today
in successfully measuring the dominant
modal patterns of "well-behaved" struc-
tures. Accompanying the conversion to
digital-based laboratory equipment was
an increased use of random force, as
opposed to sinusoidal force, for exciting
test structures. This trend was closely
related to the revolutionary switch in
the late 1960's to fast Fourier trans-
form (FFT) methods for rapidly computing
frequency-domain characteristics of ran-
dom response signals. Although many
structures are still tested with the
classical multiple-shaker, sine-dwell
approach, the majority of experimental
dynamists now select the faster random-
force methods for modal testing.

A standard step in the data-reduc-
tion phase of most modal test programs
is the computation of frequency-domain
characteristics of the measured struc-
tural responses. In controlled ground
vibration tests where the input force(s)
as well as the responses can be accurate-
ly measured, acceleration/force frequency
response functions are usually formed;
in cases where the input forces cannot be
measured, the response information alone
is used. Many single- and multi-degree-
of-freedom algorithms have been developed
to identify the structural modal param-
eters by curvefitting analytical expres-
sions to these data [l]. Single-degree-
of-freedom methods use a few data points
near each resonant frequency for quickly
estimating the modal parameters of one
mode at a time. Because in these tech-
niques it is assumed that the overall
response near each resonance is dominated
by the characteristics of a single mode,
however, the degree of modal coupling in
any frequency interval significantly
affects identification results. On the
other hand, multi-degree-of-freedom algo-
rithms, developed to identify the param-
eters of several modes simultaneously,
nearly always work well on data that can
be reasonably analyzed with single-degree-
of-freedom methods, but may differ appre-
ciably in more difficult cases.

Various aspects of using time-
‘domain response data rather than frequen-
cy-domain functions in the experimental
modal identification of structures excit-
ed by random forces(s) have been dis-
cussed previously by Ibrahim [2-6]. An
early multi-degree-of-freed time-domain
identification procedure rzﬁnzoquircd
numerical integration (assuming the
measurement of acceleration responses)
to obtain displacement and velocity time

histories at each response measurement
point, in addition to the measured ac-
celeration time histories. This approach
was later abandoned in favor of a more
straightforward method [3] in which any
one of displacement, velocity, or ac-
celeration free-response functions are
used in an eigenvalue solution scheme

to obtain the desired modal parameters.
This newer procedure is referred to in
this paper as the ITD ("Ibrahim Time
Domain”) algorithm. The term "free-
response” function is used throughout
this paper to denote any of three time
response forms which may be used in the
identification algorithm: actual free-
decays measured following random excita-
tion of a structure; unit-impulse-
response functions formed by inverse
Fourier transformation of frequency
response functions; or "random-decrement"
functions [4] computed from random
operating time histories.

The ITD algorithm has been used
to analyze test data from several struc-
tures(7,eg]. As now implemented, the
identification process is a "blind" tech
nique, requiring a minimal amount of
operator input to compute parameters
for many modes from a set of free-
response funct:ons. A large number of
structural modes, often 20 or more, are
identified in a single computer run. In
general, the parameters computed for the
dominant modes of these structures agreed
well with those obtained by other methods
Parameters for modes identified by the
ITD analyses, but not determined with
other analysis methods, however, lacked
verification and their accuracy was
rightfully questioned.

The work reported in this paper was
initiated to help interpret these experi-
mental results. For this study, compu-
ter-simulated free-response data, for
linear, multi-mode models with known
modal parameters, were processed with
the ITD algorithm. The identified para-
meters were used to quantify the ability
and accuracy of the identification pro-
cess, to look for anomalous numerical
behavior under severe identification
conditions, and to compare results for
ranges of the few user-selectable algo-
rithm constants. The modeling approach
consisted of constructing free-response
functions for 65 positions on an isotro-
pic, uniform-thickness rectangular plate
by the linear summation of the free-res-
ponses of the first 15 analytical modes.
The mode shapes were obtained from a
finite-element analysis, and modal fre-
quencies, damping factors, and response
levels were arbitrarily assigned for
each desired mcdal model. Various
levels of noise, calculated on an rms-



percentage basis, were superimposed
onto the free-response functions.

Technigques for obtaining distortion-
free sets of free-response functions
from experimental measurements, an
important phase in the modal identifi-
cation process when the ITD algorithm
is used, are not addressed in this paper

Somewhat new terminology is used in
describing the algorithm. To avoid con-
fusion in correlating the identifi-
cation results with the usage of the
free-response data in the procedure,
complete details of the technique are

included.

The methods used in con-

" structing the free-response functions
and in quantifying the accuracy of
identified mode shapes are described
in the following report sections. The
remainder of the report contains a sum-
mary of the identification results.
These data illustrate typical identifi-
cation accuracies over a wide range of
simulated modal models and user-selec-
table algorithm constants.
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LIST OF SYMBOLS

k'th complex eigenvalue of [A]

the "system" matrix

Transpose of [A]

a damping coefficient

damping factor (fraction of
critical damping) of k'th
mode

frequency corresponding to
k'th eigenvalue of [A

multiples of the frequency
1/(2(At)i)

"folding frequency" based

on (At);

measurement station index

time index

mode index

a spring constant

number of assumed modes

(= NDOF)

a mass

number of time samples cor-
responding to (At)3, (At)a,
and (At)3

number of response measuremerts
available

number of time samples in
each free-response function
(= NCOL)

time instant 3j

total time length of response
functions

free-response of station i
at time instant

time increment between the two
f}ipons. matrices, [¢] and

time increment in forming
"transformed stations"

time increment between data in
upper and lower halves of the
response matrices

(at) 3

At an arbitrary time increment

€ a small uncertainty in an
eigenvalue determination

Ox angular position of k'th
eigenvalue in the a-b plane

A characteristic value of mode k

[*] a matrix of complex exponen-
tials

Ok damping value of k'th mode

(= real part of characteris-
tic value) '

Ox2 damping value of k'th mode
using alternate method

[¢] response matrix whose rows
contain the free-response
functions

The [¢] matrix delayed (At);
complex eigenvector of mode k

feh

[¥] matrix whose columns are the
- system's eigenvectors
[¥] the [¥] matrix with responses

delayed (At))

(wg) damped natural frequency of
k'th mode (= imaginary part
of characteristic value)

(wn) undamped natural frequency of
k'th mode

Abbreviations

ITD Ibrahim Time Domain (technique)

MAR Modal Amplitude Ratio

MCF Modal Confidence Factor

MscCC Mode Shape Correlation Constant

NCOL Nugber of Columns in [¢] and

NST Number of (measurement)
Stations used in calculation
of OAMCF

OAMCF Overall Modal Confidence Factor

RMS Root-Mean-Square (value)

SF data Sampling Frequency

(= reciprocal of time interval
between data samples)

THEORY OF THE IDENTIFICATION TECHNIQUE

The Eigenvalue Solution Approach

The characteristic equation for a
classical single-degree-of-freedom struc-
tural system, governed during its free
response by

M +Cx+Kx=0 (1)

is . A2 M+ 1A C + K =0, and the general

solution form is x(t) = y eAt., For an

overdamped system, y and A are both

real-valued; for an underdamped system,

they are complex, occurring in conjugate
pairs.

In the more common underdamped case,
the roots of the characteristic egquation




are A =0 * i wg, where wy is the
damped natural frequency in radians/sec-

ond, wp = o2 + wg Z the undamped natu-
ral frequency, and { = 0/wp, the damping
factor or fraction of critical damping,
C/Ce.

For a linear multi-degree-of-free-
dom system with m excited modes, the
free response of the structure at any
(measurement) station i and instant of
time t can be expressed by the sum-
mation 3! the individual response of each
mode as:

:z: Yix . (2)

k=1

xi(t ) = xij

where i, and Ay are both complex
numbers, fn general. Note that the sum-
mation extends to 2m since there are
2m roots of the characteristic equation.

Free-response values for 2m sta-
tions and s instants of time, calcu-
lated using Eq. (2), can be arranged
into matrix form as:

[311 = S LU
X1 X322 e Xy

x2m,1 e x2n,l
- -
- -
Y11 Y12 e V3, 2m
Vo1 %22 °°c ¥2,2m
- . - x
“‘m'l cae Wm’zm
Aty At At
o1t Mf2 o Mt
ek, B ALt
o251 z‘z... o 2%
. u. (3)
sztl e .x2nts

or simply
(¢] = [¥] [a] (4)
(2m x s) = (2m x 2m) (2m x s)
Similarly, free-response values (At);
later in time than those in Eg. (2),

measured at the same stations, can be
expressed as:

Xy [tj + (ﬁt)l:l
S [ ]
A le: + (At)
= :E: b @ - A

k=1
A, (At) At
:E:[;ik e {] e X

=3 by e X (5)

or, in matrix form, for 2m stations and

S8 instants of time:
(8] = [¥] [A) (6)
(2m x g8) = (2m x 2m) (2m x s)

For s>= 2m, [¥] and [;] are

related through Egs. (4) and (6),
eliminating A]l, by:
[a] [¥] = [¥] (7

(2m x 2m) (2m x 2m) = (2m x 2m)

where
[e1T [a)T = (8] (8)

(s x 2m) (2m x 2m) = (s x 2m)

Since the columns of [¥] and [Q] are

kk(At)l
related from Eq. (5) by (W)
{¥}x, the complete system cah now be
placed in the form of a single eigenvalue
problem as:

A, (At)
(Al = e ® gy, (9)

The matrix [A] is referred to in this
paper as the "system matrix," and con-
tains information characterizing the
complete set of modal parameters of the
system.



The desired structural (damped)
natural frequencies and damping factors
are determined from the eigenvalues of

A, (At)

(wgly = 27 £, = TA%Tl' m-l(bk/.k)

1 2 2
S 1033 Py in(a,” + b, ")
(10)

%

(C/Cc)k -
‘Iak! + (“’d)k

The eigenvectors of [A] are the
desired (complex) structural mode
shapes, (w)k.

Equations (8) and (9) formthe
basics of the solution approach: free-
response functions are placed into the
rows of ¢ and ¢; [A]T is obtained
by a least-squares solution of Eq. (8);
and the complex eigenvalues and eigen-
vectors of [A] are then found, to
which the system's modal parameters
are directly related.

The dimension 'm' is referred
to throughout this paper as the "number
of allowed (computational) degrees-of-
freedom," NDOF. This term should not
be confused with the more widely used
meaning of "degrees-of-freedom" as
the number of independent spatial coor-
dinates necessary to define the motion
of a system. The "number of assumed
modes" or the "order of the math model"
are other descriptors that have been
used to denote this fundamental analysis
constant. The matrix dimension 's,'
the number of columns in [¢] amd [8]
(i.e., the number of time samples used
from each free-response function), is
referred to throughout as NCOL. The
matrices [¢] and [®] are referred
to as the two "response matrices."

Three distinct, user-selectable,
time shifts are used in positioning over-
lapping segments of the measured free-
response functions into the rows of the
response matrices. The fundamental time
increment between all data placed into
(¢] "and [#] is (At);. Two other
time shifts, denoted by (At)2 and
(4t) 3, will be discussed in the report
section entitled "Transformed Stations
and Modal Confidence Factors." The
number of consecutive time samples
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corresponding to each of the shifts
will be denoted hereafter by simply N3,
N2, and N3, respectively.

Figure 1 provides an example of
the placement of free-response data into
the two response matrices, assuming that
three response functions are available.
In this example, NDOF and NCOL are se-
lected equal to 7 and 30, and the three
data shifts, N;, N2, and N3, .are 3,
8, and 4. This figure should be used as
a reference in clarifying the definition
of each of these five primary user-
selectable analysis constants.

Solution Considerations

Equations (8) and (9) are forms
whose computer solution have been studied
in depth by numerical analysts. Eq. (8)
is an over-determined system of simulta-
neous linear equations, and Eq. (9) is
an algebraic eigenvalue problem, where
the (2m) eigenvalues of [A] are

xk(At)1
e and the corresponding eigen-
vectors are (w}k.

The "conventional transpose ap-
proach" of solving Eg. (8) consists of
pre-multiplying both sides by [¢] and
then solving for [A]T by any of several
methods for the solution of 2m simulta-
neous linear equations in 2m unknowns.
This is the approach used for the results
shown in this paper. In particular, pre-
multiplying Eq. (8) by [¢] results in:

([e] (o1 (a7 = ([e] [81T) (11)

Equation (11) was then solved by a stan-
dard Gaussian elimination subroutine
using an LU decomposition of the

([¢] [¢]T) matrix of coefficients.

Other methods are available for
solving Eq. (8) which do not require
the pre-multiplication of each side by
[¢], [8,9]. These methods have been
developed for the express purpose of in-
creasing the solution accuracy when the
matrix of coefficients, in this case
[¢]T, is ill-conditioned; the pre-
multiplication will increase any ill-
conditioning of the coefficient matrix.
A limited number of comparison identifi-
cations have been run using two other
computer subroutines available for the
solution of Eq. (8), namely:

1. by singular value decomposition
of the coefficient matrix using
Householder transformations,
obtaining the isometric matrix
[u] and orthogonal matrix [V],




such that [¢]T=[u]([Q](V]T, where
the singular values comprise the
diagonal matrix [Q]. The least-
squares solution is then formed
by [A]T=[V]([Qt][U]T[®])T, where
[Qt] contains the reciprocals of
the non-zero values of [Q].

2. by using Householder trans-
formations to perform the QR
decomposition of the coeffi-
cient matrix, where [Q] is
an orthogonal matrix and [R]
is an upper triangular matrix.
The least-squares solution is
then formed as [A)T=[R]"1([0;)T
(81T, where [Q] is partitioned
in the form [Q]=(Q3,Q2) with
(#17=[01] [R].

In all cases run using these other methods,
no changes in the computed modal param-
eters were observed to the precision used
in printing the results shown in this
paper. On the other hand, each of the
two methods described above required
considerably more computer memory to
implement using available FORTRAN sub-
routines than the conventional transpose
ag roach. In both cases, the [¢]T and
[ ET matrices--each of size (s x 2m)=--
needed to reside in core, whereas the
transpose method was implemented with
two matrices of order 2m each. For

a typical s/2m ratio of 3 used in many
of the identifications, selection of
either optional solution method required
a factor of 6 times more core storage.

The details of available tech-
niques for the solution of Eq. (8) are
compiled in several numerical analysis
textbooks [8,9]. A subroutine pack
containing a standardized set of computer
code for implementing these methods is
available [10].

The numerical techniques for solving
Eq. (9) are not as plentiful; the QR
method advocated by Wilkinson [8,11],
is the accepted approach for determining
the complete set of real and complex
eigenvalues and eigenvectors of [A],
a fully-populated general matrix with
real elements. This is the method used
to obtain all results presented in this
paper. A subroutine pack [12] con-.
taining standardized code for the com-
puter solution of eigenvalue problems
is also available.
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"Transformed Stations" and
"Modal Confidence Factors"

Two aspects of the practical imple-
mentation of the method described thus
far, which have been discussed in pre-
vious papers [2,3,5), are: (1) process-
ing data when the number of available
free-response measurements is less than
the number of rows in [¢] (equal to
twice the number of degrees-of-freedom
desired in the identification process),
and (2) distinguishing those eigenvalues
of [A] corresponding to the desired
structural modes from those eigenvalues
corresponding to "noise modes," computed
whenever NDOF is larger than the number
of structural modes contributing to the
responses.

When the number of response measure-
ments that are available, say pgo. is
less than the number of computational
degrees-of-freedom which are desired,
fewer than half the rows of [¢] are
filled by the original, unshifted,
response functions. Under these circum-
stances, "assumed" or "transformed"
stations [2] are created for the addi-
tional rows of both response matrices
by simply shifting the original functioms
placed in the first po rows by multi-
ples of a second user-selectable time
shift, (At)2: (At)2, 2(At),, 3(At) 3,
etc., until the upper halves of bot
matrices are filled. This process of
adding transformed stations does not
mathematically affect the eigenvalues of
the system matrix, [A], assuming perfect
identification. (If NDOF is selected
smaller than pgo, only NDOF of the
available response functions are used in
the analysis.)

The bottom halves of the two
response matrices are formed by duplicat-
ing the upper rows, but delaying an
additional user-selectable time shift,
(At) 3. The rationale for filling only
the upper halves of the matrices with
the available response functions (and
transformed stations) and filling the
bottom halves with a time-shifted form
of the upper halves is based on the cal-
culation of "Modal Confidence Factors,"
to be discussed next.

If two segments of a free-response
function obtained from the same measure-
ment station, but separated by an
arbitrary time interval AT, are placed
into different rows of the response
matrices, the elements in each computed
eigenvector of [A] corresponding to
these two rows, yjx and UTjx, will be
related (again assuming perfect identifi-
cation) by:




A AT
**ik - *1k e X (12)

for each linear structural mode k.

This fundamental property, Eq. (12),
and the time-shift relationship between
the data in the upper and lower halves
of the response matrices, (At)j, are
used in the calculation of "Modal
Confidence Factors," MCF [5], devised
to distinguish “noise modes" from the
desired structural modes. The (complex-
valued) MCF's for accurately identified
linear structural modes--one MCF cal-
culated for each of the first po ele-
ments in each ¢ uted (complex)
eigenvector of [A]--will cluster near
unity in amplitude and near 0° in phase;
those calculated for "noise modes"
will be randomly distributed in value.
To form the MCF's, the first pg ele-
ments in the lower halves of the com-
puted eigenvectors are compared with
‘"expected" values for these elements,
calculated using Eg. (12) by the product
of the corresponding p upper-half
eigenvector elements and the complex

A, (At)

exponentials, e k . where Aiyp are
the computed characteristic values. The
MCF is defined as the amplitude ratio and
phase difference between each of these
"expected" values and the corresponding
values computed by the eigenvalue
analysis. If the amplitude ratio is
-greater than 1.0, the reciprocal is
taken. The phase angle is normalized to
range between -180° and 180°. Obtain-
ing MCF values near 100% in amplitude
and 0° in phase is certainly a necessary
(but not sufficient) condition to indi-
cate that an accurate identification of
a linear structural mode of the system
has been made.

This process can be thought of as
the comparison of two sets of eigen-
vectors, corresponding to the same set
of eigenvalues, computed simultaneously
for the system using two different
segments of the available free-response
functions. An important user advantage
in obtaining both sets of eigenvectors
in one eigensolution is that no effort
is needed to "pair up" corresponding
eigenvectors if somewhat different
eigenvalues are computed for each set of
segments. A single eigenvalue set is
obtained using information derived from
both sets of data, and the two eigen-
vector sets are correctly compared in the
computer analysis with no user decisions
required.

An MCF is calculated in this manner
for each of the py stations, for each

identified complex eigenvalue. To com-
pact this information to a more manage-
able level, an "Overall MCF," OAMCF, is
calculated for each "mode" (that is, for
each computed complex eigenvalue) as the
percentage of pg stations whose MCF
values are at least 95% in amplitude and
within 10©° of 0.0 in phase. The OAMCF
parameter, introduced for this study, has
been found very effective in distinguish-
ing the desired structural modes from the
"noise modes," and is a fundamental part
of the identification results presented
in this paper. 1Its value has been found
to provide a good characterization of the
Po MCF's calculated for each mode and,
in general, a closer examination of the
individual station-by-station MCF data
was unnecessary.

The time shift (At), should not be
selected equal to either (At)] or
(At)2. If equal to (At)], all MCF's
will be computed as 100% in amplitude and
0° in phase, and be of no use. If
equal to (At),, and at least one_trans-
fgtm.d station has been used, [¢] and
[#] will each have two identical rows
and Eg. (8) cannot be solved. Setting
{At)3 equal to one-half the value of
(At)2 has been found satisfactory in
most cases. To clarify the relationship
between these time shifts, refer again
to Fig. 1, which shows a typical place-
ment of data into the response matrices
when three free-response functions are
used.

CONSTRUCTION OF THE SIMULATED
FREE-RESPONSE FUNCTIONS

Mode shapes used in constructing
the simulated free-response functions
were obtained from a NASTRAN finite-ele-
ment analysis of an isotropic, uniform-
thickness plate with 8 x 24 square ele-
ments. Data for 65 stations were obtain-
ed by using the analytical mode shape
data (for motion normal to the plate
only) from every other grid point in
both directions, including the outside
border. The first 15 modes of this
analysis were used in forming the
responses. For each desired modal model,
a damped natural frequency, damping
factor, and response amplitude were
arbitrarily selected for each mode. The
effects of randomizing the initial phase
angle for all stations of each mode and
of selecting other than 0° or 180° be-
tween the stations in a mode (i.e.,
complex modes) were studied for several
cases, and no changes in the identifi-
cation accuracy were noted. Thus, unless
otherwise stated, the contribution of
each mode in the responses was represent-
ed as a damped cosine function multiplied
by an appropriate (positive or negative)
mode shape amplitude constant.




That is, each free-response func-
tion was formed as

15 -oktj
"1"3) = 2 *1)‘ e col[(ud)ktﬂ
k=1
(13)

For this study, each simulated
free-response function consisted of
1000 data points calculated using
Eq. (13), at a sampling rate of 400
samples per second. Uniformly distri-
buted noise was added to these functions
on a function-by-function, rms-percentage
basis, with the rms value of each noise-
free function calculated using all 1000
available data points. The mode shapes
used in forming each modal model were
assigned to the 15 mode indices in the
order determined by the finite-element
analysis.

For ease in interpreting identifi-
cation results, the modal frequencies
were arbitrarily selected for all models
in this study (i.e., the natural fre-
quencies of the plate obtained from the
NASTRAN normal-mode analysis were not
used). Many of the simulated models
were formed by spacing the 15 modal fre-
quencies every 2 Hz from 10.0 to 38.0 Hz,
and setting the modal damping factors and
response amplitudes equal for each of the
modes. Each of these basic modal
models are characterized by a single
modal damping factor and noise per-
centage, and are referred to throughout
this paper for simplicity as "baseline
models."

EVALUATION OF IDENTIFICATION ACCURACY

The accuracy of all mode shape
identifications for this study has
been quantified by computing a "Mode
Shape Correlation Constant," MSCC,
between the identified mode shapes and
each of the 15 input mode shapes. The
constant is calculated in a manner
analogous to that of coherence, often
computed in time-series analysis work.
The functional form is that of the
square of the correlation coefficient
defined in basic statistics, computed
between two sequences of complex numbers.

Mathematically, if {y;} is a known
input (complex) mode shape, and {y3}
is an identified (complex) mode shape:

11v,)T (v )12

100
[vy)T (01" 100,17 (v)"1

MSCC =

(14)

where T denotes the transpose and
* the complex conjugate.

The MSCC between two mode shapes

"will always range from zero--for no

resemblence of the two shapes--to 100%-~
for perfect resemblence. Values inter-
mediate between 0.0 and 100.0 can be
interpreted as the amount of coherent
information in the two compared mode
shapes.

The accuracy of identified fre-

quency and damping parameters was
assessed by direct observation only.

RESULTS AND DISCUSSION

In processing a set of free-
response functions with the identifi-
cation algorithm, five primary user-
selectable constants must be chosen.
They are NDOF, NCOL, (At)1, (At)2,
and (At)3. Secondary considerationa
include the selections of data sampling
rate and analog or digital filtering
ranges, the particular stations to be
analyzed in one computer run, and the
absolute starting times of the free-
response data (i.e., whether any data
points are skipped at the beginning of
the functions). An optimum selection of
the analysis options is a function of
the characteristics of the data being
analyzed, and "cookbook" instructions
are difficult to develop. The results
to be shown in this section, however,
provide guidelines for their selection
and for judging the sensitivity of the
choices, and illustrate identification
accuracies which may be expected.

All results shown in this paper
were obtained using a vectorized version
of the code on Langley's CDC Cyber 203
(formerly Star-100) computer. Typical
CPU times for identification were 15 sec-
onds for NDOF = 65 and NCOL = 390, and
340 seconds for NDOF = 290 and NCOL =
968. The required computer time varied
approximately as the number of columns
used in [¢] and [8], NCOL, and as
the square of the number of allowed
computational degrees-of-freedom, NDOF.

_Some Baseline Model Results

Figure 2 shows the time- and fre-
quency~-domain responses at measurement
Station No. 1 (a corner of the plate)
for three of the baseline models analyzed
in the study. In Figs. 2(a) and 2(b),
the damping factor, C/Cg, of all 15
modes was set to 2%. The rms noise
levels in these two cases were 2% and
20%, respectively. Similarly, Fig. 2(c)
shows the response of Station No. 1 with
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all 15 modes assigned 5% damping and

10% noise. The dashed lines on the

time history plots designate the range
of points used from each function in ITD
analyses whose results will be pre~-
sented in Table I and Figs. 3 through 5.
The center and right-hand plots in

Fig. 2 show the guadrature (imaginary)
component and modulus, respectively, of
the Fourier transform of the correspond-
ing free-response function.

Table I contains MSCC values for
these three identifications calcu-
lated between each of the 15 input mode
shapes and each identified mode (whose
OAMCF was 2% or larger), rounded to the
nearest whole number. Also included
are t¢he identified frequencies in
Hertz, the identified damping factors in
percent, and the OAMCF for each mode.
The column to the right of the OAMCF
data contains the number of stations of
65, NST, that were used in calculating
the corresponding OAMCF value; only
those stations with non-negligible
modal response (at least 3% of “he max-
imum value of the mode) are included in
the calculation. This 3% criterion was
imposed on the calculation of OAMCF
because many of the selected 65 measure-
ment stations were located exactly on
mode shape node lines; the variance in
the calculated MCF data for these
stations was generally high, as to be
expected, because very small modal
amplitudes identified for these stations
were used in the calculations. Each of
these identifications were run using
NDOF of 65 and NCOL of 390. The other
50 "modes" obtained in each identifi-
cation were "noise modes," differentiated
by low (<2%) CAMCF values.

For these identifications, the user-
selectable time-shift constants, (At);,
(at) 2, and (At) 4, were set to 3/SF,
8/SF, and 4/SF, respectively, where SF
is the data sampling rate. The values
N} = 3, Np = 8, N3 = 4 were used in
obtaining all identification results
shown in this paper, unless otherwise
noted. (These are the values selected
for Fig. 1 in illustrating a typical
placement of free-response data into the
two response matrices.)

Figure 3 shows the 15 identified
(complex) mode shapes for the 2%-damping,
2%-noise baseline model, corresponding
to the data contained in Table I. These
identified mode shapes are indistinguish-
able from those used in constructing the
model. Note that the ITD algorithm
identifies complex mode shapes, consisting
of a magnitude and phase at each selected
measurement station: the identified
mode-shape phase angles are included
adjacent to each mode shape, assigned by

consecutive station number from the
center of the circle to the outer ring,
as depicted in the lower-right corner of
Fig. 3; the data for the accompanying
mode shape plots were obtained by the
product of the identified mode-shape
amplitudes and the cosine of the cor-
responding phase angle.

Figures 4 and 5 show the mode shapes
identified for the two other baseline
models whose results were presented in
Table I, also using NDOF of 65 and NCOL
of 390 in the analyses. As before, only
those "modes" with an OAMCF of at least
2% are shown. 1In Fig. 4, for the 2%~
damping, 20%-noise model, the identified
shapes are also indistinguishable from
the exact, input mode shapes, and the
phase~angle scatter averages only a few
degrees. Identification results for the
S%-damping, l0%-noise model, provided
in Fig. 5, show mode shapes that are
slightly distorted for modes 11 through
14, with significant phase angle scatter
in several of the modes. In interpret-
ing these results, however, the reader
is cautioned that more accurate identifi-
cations are obtainable for these models;
as shown later, allowing higher degrees-
of-freedom in the identification will
increase the accuracy to some degree.
These identifications all used NDOF of
65 and NCOL of 390, and the results
typify the effects of changing modal
damping and noise level while holding
all of the algorithm constants fixed.

Note in Table I that an MSCC of
100% was calculated for each of the
accurately identified mode shapes of the
2%-damping, 2%-noise baseline model,
shown in Fig. 3. Also of interest in
these MSCC results is the slight "blend-
ing" of the higher-numbered mode shapes
for the S5%-damping, 1l0%-noise model,
corresponding to the small distortions
seen in the plots in Fig. 5.

The Number of Allowed Degrees-of-Freedom

The number of computational degrees-
of-freedom allowed in the identification,
NDOF, should be selected equal to the
number of modes excited in the responses
if the free-response functions are
noise-free. For any deviation of the
response data from the exact analytical
form-~that is, some level of super-
imposed noise--more degrees-of-freedom
than this must be allowed for accurate
identification. It is somewhat intuitive
that better identification of the under-
lying deterministic modal data may result
when one allows for the calculation of
extra "noise modes," in addition to the
number of actual structural modes con-
tributing to the responses, to provide



an outlet in the assumed model for the
noise contribution.

To illustrate the effect of increas-
ing the allowed degrees-of-freedom,
identified modal frequencies for the
2%-damping baseline model, using values
of NDOF from 1 to 75, are plotted in
Figs. 6 and 7 for each of eight increas-
ing levels of superimposed noise. At
each value of NDOF, the identified fre-
quencies are denoted by vertical line
segments at the corresponding frequen-
cies, whose heights are proportional to
the OAMCF value computed for each mode.
As before, only those identified "modes"
with negligible OAMCF (less than 2%) are
not shown. When the individual seg-
ments align to form a solid, vertical
line, the OAMCF's are all 100% and the
identified modal frequency is invariant
with increasing NDOF. On examining
these eight plots, a consistent trend
in the requirement for increased
degrees-of-freedom to accurately iden-
tify all 15 frequencies, with increased
noise level, is noted. Another interest-
ing trend is that after an NDOF level
is attained for each noise level where
all 15 frequencies are accurate, increas-
ing NDOF above this value did not de-
grade the frequency identification
accuracy. These plots will be referred
to as "NDOF-frequency maps," and have
been found very useful in interpreting
experimental identification results.

The identifications at each NDOF level
in Figs. 6 and 7 were run using NCOL
of 300.

The lowest value of NDOF for accu-
rate identification has been found in
this study to be related to the signal-
to-noise ratios of the modal responses.
The considerable shifting of the fre-
quency "lines" in these NDOF-frequency
maps at low values of NDOF res:lts
largely from setting all 15 modal
response levels equal. When experi-
mental data are processed, the lowest
NDOF values for identification of each
made vary considerably more between
modes than the data shown in Figs. 6
and 7, due to different response levels,
and almost no line shifting occurs.

Typical accuracy at much higher
allowed degrees-of-freedom are included
in Table II for the 2%~damping, 20%-noise
baseline model with analyses at NDOF of
65, 200, 250, and 300. These iden-
tifications used all 1000 data points in
each of the 65 response functions; that
is, NCOL was made as large as possible
in each case. Although the parameters
for all 15 modes are of acceptable
accuracy for most applications at NDOF

of 200, it is interesting that the
accuracy (of the damping factors) con-
tinued to increase as NDOF was raised
beyond this point. Orly those "modes"
with an OAMCF of luss than 2% are ex-
cluded from these results; at NDOF of
300, for example, 285 additional

"noise modes" were computed, all of
which are differentiated by the OAMCF
parameter. Also very important is that
no anomalous identification problems

or numerical instabilities were observed
in this or any other identification con-
ducted in this study using such high
values of NDOF. These results suggest
that the ITD algorithm, used with a high
number of degrees-of-freedom, may accu-
rately identify all of the excited
structural modes, for large modal sur-
veys, in one computer run.

Note that the results shown in
Table II for NDOF of 65 were not as
accurate as those shown earlier in
Table I for analysis of the same 2%-damp-
ing, 20%-noise baseline model; the re-
sults in Table I were obtained using
NCOL of 390 and those in Table II with
NCOL of 993. The effects of the selec~-
tion of NCOL on identification accuracy
will be addressed in a later report
section.

The Selection of (At);

To help understand the effects of
the user-selectable algorithm constant
(At)1 (the time increment between cor-
responding data in the two response
matrices), note from Eq. (9) that the
computed eigenvalues of [A], ax + ibk,
are exponential functions of the product
of the system's characteristic values,
Ak, and (At)1l. The desired structural
modal frequencies and damping factors
are then calculated directly from these
eigenvalues by Egs. (10). Using these
relationships, loci of constant damping
factor are plotted in Fig. 8 in the com-
plex a-b plane, for £3 = wg/(2m)
ranging from 0 to 1/(2(At)1). A typical
eigenvalue of [A] is denoted by point
'k,' whose corresponding natural fre-
quency in radians/sec is simply the
angle Ok divided by (At)l. Since
equal damping values, Oy, lie on equal
radii in the a-~b plane, by Eq. (10),
the contours of constant damping factor
(equal to the damping value divided by
the undamped natural frequency) will con-
verge tc the point (1,0) for £4 =0
and separate from one another as fg§
increases. As C/C.o increases, the
contours lie inside one another, until,
at 120\. the locus is simply the positive
x-axis.

The frequency in Hertz correspond-
ing to 0 = m, denoted as fg, is the



point at which the identified fre-
quencies will "fold" because of the
circular nature of the exponential func-
tion--analogous to the well-known
"Nyquist folding-frequency" which results
from the circular nature of the discrete
Fourier Transform. That is, all iden-
tified frequencies will fall in the
range 0 to f,;, regardless of their
actual value; only those modal fre-

quencies no larger than £, will be
correctly calculated. The value of f,
is simply 1/(2(At)3}). Of course,

this "eigenvalue aliasing" will lead to
erroneous frequency and damping factor
results for modes with frequencies
greater than f contributing to the
response tunct!on- used in the identi-
fication; as with the well-understood
Nyquist-frequency aliasing, however,
the phenomenon can also be used bene-
ficially, with the results accordingly
adjusted, if the data are pre-filtered
to contain information only in a cert-
ain, known frequency interval.

Obviously, for two eigenvalues of
[A] separated by ¢, any inaccuracy
in their calculation may translate to a
considerable inaccuracy in their cor-
responding modal frequencies and damping
factors, depending on the location in the
a~-b plane. To quantify this character-
istic, Fig. 9 provides contours of mini-
mum and maximum percent deviation in the
identified modal frequencies and damping
factors for three magnitudes of uncer-
tainty in the eigenvalue determination.
Note, in Fig. 9(a), that percent fre~
quency deviations are nearly independent
of damping level, and are large only for
values less than 0.1 f; (because the
data are shown on a percent-deviation
basis, and f is small in this range).
For all three uncertainty levels, the
percent frequency deviations are no
greater than 2% at all frequencies at
least 0.2 f,, for C/Cc < 10%. The
envelopes of maximum perSent deviation in
the damping factor identification, on the
other hand, are considerably larger, as
shown in Fig. 9(b). These data suggest
that damping factors derived from eigen-
values of [A] subtending small angles
in the a-b plane may be subject to
appreciable error.

As (At); increases, the fre-
quency interval corresponding to eigen-
values located at Ox = 0 and Ox = 7w
decreases, and the eigenvalues for any
two modal frequencies separate in the
a-b plane. When this occurs, a more
accurate analysis generally can be made
of a smaller total frequency interval.
Figure 10 shows typical results of this
effect in the identification of the
2%~-damping, 20%-noise baseline model for

two selections of N; (the number of data
samples corresponding to the time-shift
interval (At);). The results in

Fig. 10(a) were obtained with Nj; =1

and those in Fig. 10(b) with N3 = 3,
holding all other algorithm constants
unchanged. In the polar plots of

Fig. 10, the symbols denote the loca-
tions of all identified eigenvalues of
[A] in the a-b plane; the eigenvalues
corresponding to the 15 structural modes,
distinguishable from the "noise modes"
whose OAMCF's were all less than 2%,

lie approximately equally spaced along
the 2%-damping (dashed)line in each
figure. As shown in the tabulated re-
sults, the identification accuracies of
both damping factors and mode shapes
were improved when Nj; was increased

from 1 to 3.

An Alternate Method for

Calculating Modal Damping

In addition to the straightforward
calculation method for the desired modal
damping factors using the eigenvalues of
[A], shown in Eq. (10), limited study has
been done of an alternate method using
the first po elements in the upper and
lower halves of the computed eigen-
vectors-~-data used previously in comput-
ing the MCF values. Based on experience,
the identified damping factors often show
the greatest variance of all the computed
modal parameters. By assuming that the
eigenvector data are more accurate than
the identified damping data, a method
similar to the reverse process used in
computing the MCF data can be used to
obtain a second estimate of the modal
damping factors.

Mathematically, a form analogous to
that for obtaining the amplitude of a
frequency response function using the
Fourier components of input and response
signals can be used to compute an average
modal amplitude ratio between the 'upper'
and 'lower,' po-element, mode shape
vectors. In particular, if {yy} is an
upper identified (complex) mode shape, and
{yy} is a lower identified (complex)
-93. shape, a Modal Amplitude Ratio (MAR)
can be calculated as:

| )T (wy}"|

MAR = R e
W) (uy)

(15)

from which an alternate modal damping

factor can be calculated, using the cor-
responding damped natural frequency, w
obtained directly from the eigenvalue o

[a], by:



g
(€/C), = k3 (16)
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Ox2 = 1ln(MAR)/(At)3.

where

This estimate of modal damping was found
more accurate in many cases--but not
all--particularly for modes with poor
signal-to-noise ratios. Figure 11

shows modal damping factors identified
by each of the two methods for the
2%-damping, 50%-noise baseline model for
NDOF in steps of 20 from 60 to 200.

Only data for the first 10 modes are
included. Although the data for modes 1
and 2 (circle and square symbols) are
significantly over-estimated by either
method, overall, the data in Fig. 1ll(b),
obtained indirectly using the eigenvector
and identified frequency data, cluster
appreciably closer to the true value of
2% than the data in Fig. ll(a), cal-
culafe? directly from the eigenvalues

of Al.

When the modal damping is calculated
using this alternate method, an MSCC
between the upper and lower pg-element
vectors used in the calculation should
also be formed to be used as an indi-
cation of the consistency of the eigen-
vector data, which may itself be inaccu-
rate. A conservativa2 approach would
certainly be to calculate the damping
factors by both methods, and use any
discrepancy in their values as a indi-
cator of inaccurate identification.
Unless otherwise noted, the damping
identification results shown in this
paper were obtained using the direct
calc?lition method from the eigenvalues
of Al.

Modal Response Level

In all identification results pre-
sented thus far, the response levels of
all 15 modes in the simulated models were
set equal; for actual experimental data
this would not be the case. To examine
identification accuracy of modes with
significantly different response level,
Figs. 12(a) and 12(b) show NDOF-fre-
quency maps for the 2%-damping, 2%-noise
baseline model when the response level
of mode 8 (at 24 Hz) was reduced to 1%
and 5%, respectively, of the level selec-
ted for each of the other 14 modes. The
l¥-response case represents the approxi-
mate lower limit at which this mode was
identifiable for NDOF up to 75. Com=-
parad with a similar plot shown earlier
in Fig. 6(c) for all modes of equal
response level, note that these plots
have several randomly scattered dots,

corresponding to "modes" with OAMCF less
than 2%, the cutoff used for plotting
the data shown in Figs. 6 and 7. This
cutoff criterion was removed for these
plots to allow the 24-Hz mode data in
Fig. 12(a) to be discernible.

Although Figs. 12(a) and 12(b) show
that the 24-Hz modal frequency was iden-
tified in both cases, these data do not
indicate the accuracy of either the
identified mode shapes or modal damping
factors; this information is included in
Figs. 12(c) and 12(d), respectively.

In Fig. 12(c), MSCC's calculated between
the identified mode shapes and the known
input shape are plotted for each case as
a function of NDOF. For the S5%-response
case, denoted by the square symbols, the
MSCC is essentially 100% for all NDOF
above 46; for the l%-response case, on
the other hand, the MSCC value does not
rise above the 83% levgl. In fact, when
the ls%-response model was analyzed using
NDOF of 250, the MSCC of the 24-Hz mode
remained at approximately 83%.

Identified modal damping factors
for these cases, calculated both using
Eg. (10) and by the alternate method
discussed in the previous report sec-
tion, are shown in Fig. 12(d). In all
cases, the data appear to be approaching
the correct value of 2% with increasing
NDOF; the results for the 5%-response
case being closer to the true value than
those for the l%-response case. Addi-
tionally, the damping factors calculated
by the alternate method using the com-
puted eigenvector data are more accurate
at each value of NDOF than the damping
factors calculated directly from the
identified eigenvalues of [A].

The Selection of NCOL

In establishing the two response
matrices, both the number of rows (equal
to twice NDOF) and the number of columns,
NCOL, must be selected for each identifi-
cation. As shown in NDOF-frequency maps
in Figs. 6, 7, 12(a), and 12(b), the
minimum required NDOF is related to the
signal-to-noise ratio of the modes.

The value for NCOL, denoted by 's' in
the THEORY section of this report, is
restricted to be at least twice NDOF,

so that Eg. (8) contains no fewer equa-
tions than unknowns. An intuitive upper
limit in selecting NCOL corresponds to
the time at which the free-response sig-
nal for the mode to be identified becomes
smaller than the noise level; beyond this
point each additional data point used
from the response functions would provide
more noise than additional information
to the identification algorithm.
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. The effects of the selection of
NCOL on identification results for the
28=-damning, 20%~noise baseline model

are shown in Pig. 13. To estimate the
time at which the superimposed noise
oxceeds the signal information in the
free-responses, a 20-point, running
mean-sguare value, averaged over all 65
functions nsed for the model, is plotted
in Fig. 13(a). These data have been
normalized so that the any-ptotically
approached noise level corresponds to

0 d8. Sinee all 15 modes have the same
response level in this model, the mean-
square value of the free-response signal
£or each mode cguals the mean-square
nois2 level when the function of

Tig. 13’a) cauais 10 log(l6) or 12 dB.
?hi; anxrresponds to NCOL of approximate-
1y 225,

Fsinq NDOF of£ 65, all 15 modal fre-
aquannics for this model were accurately
idon*i”ied for NCOL ranging from 200
~n *R0, and ~r~<- 7alnes are not shown.
0f in%orest. thongh, are the cor-
responding vscc "a?ucs and identified
madal damping factors for these cases.
These results are chown in Figs. 13(b)
and 13(c), respectively. To maintain
clarity, data for only the first five
modes (which typify the results obtained
for all 15 identified structural modes)
are included. Of particular interest in
these figures is the rapid deterioration
of the identification results when NCOL
is less than 200. Above NCOL of 200,
the MSCC data are affected only slightly
as NCOL increases to 950, although a
slight downward trend is noted for NCOL
greater than 300. Optimum mode shape
identification was obtained for NCOL
ranging from 200 to 300. The identified
modal damping factors, on the other hand,
diverge from the selected value of 2%
considerably faster than the MSCC data
from 1008, as shown in Fig. 13(c).
Selecting NCOL near 200 would also pro-
vide the best damping identification
over the range of NCOL from 170 to 950.
It is of interest to note that the
identified damping factors in Fig. 13(¢)
all tend to approach the correct value
cf 2% as NCOL decreases. This effect is
similar to that shown in Fig. 1ll(a) for
an increase in NDOF with NCOL held
constant.

Close Natural Frequencies

A classic problem using any modal
identification technique is the accurate
determination of the modal parameters
for two or more structural modes of
approximately the same natural frequency.
Assuming no attempt was made to appor-
tion the force used in exciting the
structure, the response levels of two

modes close in frequency may well be
approximately equal in a set of response
measurements obtained during wide-band
force ekcitation. If T seconds of
data are available for analysis, the
corresponding frequency-domain functions
will be determined to a resolution of
1/T Hz by Fourier methods. For the
models constructed in this study,

T = 2.5 seconds, which corresponds to a
frequency resolution of 0.4 Hz. To
obtain accurate modal parameters with
methods that rely on visual determina-
tion of response peaks in frequency
spectra or frequency response functions
is unrcasonable when the modal frequency
separation approaches the frequency
resolution value.

To study the fregquency rescluticn
ability of the ITD algorithm, several
meodal models were constructed Dy meving
the frequency of mode 8, originaliy at
24.0 Ez in the baseline model, to a
lower value, close to mode 7 at 22.0 Hz.
All 14 othar mrndes were maintained at
their originpal spacing of 2 Ez from
10.0 &» 38.0 Bz. Table III shows the
identification results using the 2%-damp-
ing, 2%-noise baseline model, for 0.10,
0.05, and 0.01 Hz frequency separation
between modes 7 and 8. Sixty-five
degrees~of-freedom, with NCOL of 390,
were used in the identifications. At
each frequency separation value, the
damping in mode 8 was successively
changed from 2% (the same value assigned
to mode 7), to 3%, to 10%. For all
three frequency separations, near-perfect
identification of the parameters for all
15 modes was obtained for the cases when
the mode 8 damping was either 3% or 10%.
Identification accuracy of modes 7 and
8 in the cases where both modes were
assigned 2% damping successively deter-
iorated as the frequency separation was
decreased. These trends are consistent
with the fact that two modes, although
of equal natural frequency, will cor-
respond to different eigenvalues of [A]
if their damping factors are different—
the larger the difference in damping,
the larger the corresponding eigenvalue
separation.

To extend the study of eigenvalue
resolution one step further, modal
models were constructed with five of the
15 modal frequencies set to 22.0 Hz.
Figure 14 provides identification results
for two of these models: Fig. l4(a)
with the five modes assigned damping
factors of 1, 2, 3, 4 and 5%; and
Fig. 1l4(b) with damping factor assign-
ments of 2, 4, 6, 8 and 10%. Of course,
as shown in the frequency spectrum plots,
only one response peak is discernible at
22 Hz in both cases. The parameters of
all 15 modes were accurately identified
in each model, as shown, when the
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percentage of added noise was held to a
very low level: 0.01% in the AC/Cec =
1% cas2 and 0.1% in the AC/Cc = 2%
case. Althongh these noise levels are
extremely low--often unattainable

with experimental data--these results
do illustrate the potential accuracy of
the method and the relationship between
noise level and the attainable eigen-
value resolution. These two identifi-
cations were run with NDOF of 65; the
same models could be identified with
somewhat higher noise levels at the
(computational) expense of allowing more
degrees-of-freedom.

A Condition on the Selection

of (At)i

The gselection of the time shift
bhetween the uvprer and lower halves of
the two response matrices, (At)3a,
can significantly affect the iden-
tification acsuracy of modes at or
ncar certain f£requencies; in particular,
if all of the data in the lower halves
are obtained by delaying the data in the
upper halves by (At)3, frequencies
fx = n/(2(At)3), for integer values of
n, will not he identified. Using a
Aiffercent time shift on one or more of
the stations will help alleviate this
problem, which may occur whenever
fx < £5. Of course, selecting
(At)3 < (At); will always eliminate the
condition by forcing the lowest value of
£¢x to be larger than fg, the upper
1l:mit of the analysis range.

CONCLUDING REMARKS

Using simulated free-response
functions, the Ibrahim Time Domain (ITD)
algorithm has been found capable of
accurately identifying known, structural
modal parameters over a wide range of
frequency separations, damping factors,
mode response levels, signal-to-noise
ratios, and user-selectable algorithm
constants. It has been found thit the
modal parameters can often be identified
in cases of poor signal-to-noise ratio
if sufficient computational degrees-
of-freedom are allowed in the identifi-
cation process. A significant finding
is that no detrimental effects were
observed when many times more degrees=-
of-freedom were allowed than the minimum
necessary for reasonable identification;
this result suggests the use of a high
number of degrees-of-freedom for the
"blind" use of the algorithm in analyz=-
ing experimental data.

For many of the models analyzed,
the identified modal frequencies and

mode shapes were more accurate than the
corresponding modal damping factors.
When the identified damping factors were
plotted as a function of either the
number of allowed degrees-of-freedom,
NDOF, or the number of time samples

used from ecach response function, NCOL,
however, the correct values were often
asymptotically approached. An alternate
method for calculating modal damping,
using the identified eigenvectors and
modal frequencies, was found more accu-
rate in some instances than using the
identified eigenvalues directly.

Por cach set of user-selectable
algoxrithm constants, direct correlation
was fonnd between the variance in the
identification results and the signal-
to-noisec level of the respcnses. In
analyzing noisy data, when sufficient
degrees-of-frecedom were allcwed in the
analyses, all natural freguencies and
mode shapes were identified with geod
accura~sy in nearly every instance. Low
values of Overall Modal Confidence
Factor, OAMCr, for modes with reasonably
identified mode shapes, were usually
indicative of inaccuracy in the esti-
mated damping factors. For noise-free
input data, the identification accuracy
of all parameters approached the computa-
tional accuracy of the computer.

The required computer time varied
approximately as the number of columns
in the response matrices, NCOL, and as
the square of the number of allowed
degrees-of-freedom, NDOF. Typical
CPU times for identification on the CDC
Cyber 203 computer were 15 seconds using
NDOF of 65 and NCOL of 390, and 340
seconds using NDOF of 200 and NCOL of
968.

Related areas of work which need
further attention include the study of:

1. techniques to minimize noise
and distortion on free-response
functions from experimental
measurements;

2. effects of structural non-
linearities on ITD identifi-
cation results; and

3. resolution and roundoff errors
which may occur in using the
technique on smaller-wordlength
computers.
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TABLE I.- IDENTIFICATION RESULTS FOR THREE BASELINE MODELS.

(A1l "Noise Modes" had OAMCF < 2%)

NDOF = §5; NCOL = 390 in each fdentification.

(See Figure 3 for mode shapes)

2% noise.

C/C, = 2% 1n all modes.
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TABLE II.- IDENTIFICATION RESULTS FOR THE 2%-DAMPING, 20%-NOISE
BASELINE MODEL AT HIGH ALLOWED DEGREES-OF-FREEDOM.

wope | NOOF = 66 (NCOL = 993) || NOOF = 200 (cOL = 969) | NOOF = 250 (coL = 969)[| WOF = 300 (NcoL = 961)

K. | g crc, |omcr [msccf £ | csc, [omcr usccl b | e, |omer |mscefl £ [ csc, | ommer | msce

1] 9.99[/8.n| 90 | 9 [10.01|2.720| 96 | w0fl10.01]2.4] 98 | 100)[10.01]2.31| 98 | 100

2 |n.99|7.69] 80 | 99 f11.99[2.72| o4 | 100f11.99]2.48| 92 | ‘100|{ 11.99|2.42| s | 100

3 [13.99|4.28| 95 | 99 [[14.00[2.48| 100 | 100} 16.01|2.27| 98 | 100l 14.01]|2.18] 96 | 100

4 |15.99(s.39| 76 | 99 || 16.00|2.53| 98 | 100f/16.01]2.38| 96 | 100}/ 16.01]2.38| 93 | 100

s [17.99|3.44| 87 | 98 f[18.01]2.29| 95 | 100]l18.00| 2.21] 96 | 100]|18.00|2.11| 96 | 100

6 [20.05|a.36| 76 | 98 In.n 2.9| e | 100)19.99|2.32| 90 | 100||20.00|2.24] 95 | 100

7 |22.02|3.59| 77 | 98 |{22.01[2.28| @9 | 100fj22.00|2.15| 93 | 100|{22.00] 2.08] 93 | 100

8 |24.00[2.8¢| o5 | 99 Jl20.00|2.06| 95 | 100|{24.00] 2.13] 92 | 100)|24.01|2.07| 93 | 100

9 |26.09]3.87| s9 | 96 || 26.02|2.3a| 96 | 99l{26.02|2.22| 94 | 100 26.01|2.03 92 | 100

10 [28.00|s.68| 35 | 95 [l28.00|2.67| @9 | 99|l27.99|2.48| es | 100|{27.99|2.27| 93 | 100

1" |30.08{3.51| 70 | 95 || 30.00{2.31| 94 | 100/30.00{2.25] 91 | 100||30.02|2.14| 87 | 100

12 [32.05|a.01| 39 | 91 |l 32.03|2.39| 85 | oof{32.03|2.21] & | 10|l 32.03]2.09] 87 | 100

13 [3a.25|a.22| 23 | 86 |l 3a.00]|2.18| 89 | ool{33.99]|2.15{ 89 | 100|34.00{2.07| 90 | 100

19 [36.30(5.2¢| 17 | 1 |l 36.02]|2.29| es | 100|{3.02]2.21] 83 | 100| 35.99|2.08| 85 | 100

15 |37.43]6.02] 19 arJv.sa 2.22| 94 | 10| 37.98(2.1a| 96 | 100|37.97|2.06| 8 | 100

(A1l "Noise Modes" had UAMCF < 2%)
TABLE III.- IDENTIFICATION RESULTS WITH FREQUENCIES OF MODES 7 AND 8
SET NEARLY EQUAL IN 2%-DAMPING, 2%-NOISE BASELINE MODEL.
(NDOF = 65; NCOL = 39 in each identification.)
af = 0.10 Hz i Af = 0.05 Hz “ Af = 0.01 Hz
INPUT PARAMETERS
T | 22.000 | 22.100 | 2.00 2.00 22.000 | 22.050 | 2.00 2.00 22.000 | 22.010 | 2.00 2.00
2 1.00 3.00 3.00
3 10.00 10.00 10.00
IDENTIFIED PARAMETERS

case | Moe it c/c, | oamcr | wscc f c/c, | ommck | msco f crc, | ommcr | mscc
7 | 21.998 | 2.61 | 87 1| 21.94 4.28 57 66 21.184 | 36.69 1 3
! 8 | 22.07 | 2.07 | 100 | 22.0% 2.01 100 66 22.007 | 2.00 | 100 66
7 | 22000 | 210 | 96 | 99|l 22.0m 2.12 96 99 22000 | 22| 98 | 99
: 8 | 22000 | 3.08| 98 | 99| 22.083 3.09 100 99 2.0 | 3.09| 10 | 99
7 | 22,00 | 200 | 100 | 100 || 22.00m 2.01 100 | 100 22.00 | 2.00 | 100 | 100
31 8 | 22000 |02 | w0 | 100 f| 22.0: 10.02 00 | 100 22.0m | 10.02 | 100 | 100

(Identification accuracy of other 13 modes comparable to values shown

in Table I for 2%-damping, 2%-noise model.)
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Figure 1.- Example Placement of Free-Response Data into the Two Response Matrices.



SAMPLING FREQUENCY = 400 HZ (1000 PTS. IN EACH FREE-RESPONSE FCT.)
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Figure 2.- Typical free-responses and frequency spectra for three baseline models,
with modal frequencies spaced every 2 Yz from 10 to 38 Hz.
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ORIGIMAL PACE IS
OF POOR QUALITY

NPT = R5; NOM. = 30A,

(Mode shape phase angles
indicated in polar plots)

Figure 3.- Identified (complex) mode shapes for baseline model with 2% damping
in all modes and 2% noise.




NDOF = 65; NCOL = 390.

Figure 4.- Identified (complex) mode shapes for baseline model with 2% damping
in all modes and 20% noise.

NDOF = 65; NCOL = 390.

Figure 5.~ Identified (complex) mode shapes for baseline model with 5% damping
in all modes and 10% noise.
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NCOL = 300 in each identification.

(Heights of vertical line segments proportional to OAMCF values)
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Figure 6.- "NDOF-Frequency Maps" for 2%-damping baseline model at several low

noise/signal ratios.



NCOL = 300 in each identification.
(Heights of vertical line segments proportional to OAMCF values)
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2%-damping, 20%-noise baseline model. laantification Resyits
NDOF = 65; NCOL = 390.
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7 21.98 .4 86 100
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Figure 10.- Typical effect of changing (At)1 on identification accuracy.
Polar plots show eigenvalues of [A].
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Figure 11.- Comparison of modal damping computed by standard and alternate
methods, for 2%-damping, 50%-noise baseline model.
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NDOF = 65; NCOL = 390 in each identification.
CICc = 2% in modes 1-5 & 11-15.
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DISCUSSION

Mr. Ewins (Imperial College,London):

Are you convinced that the theoretical
data you have used which was polluted
with noise, realistically represents the
kind of data you get from experiments on
real structures?

Mr. Ibrahim: From my previous ex~-
perience, I would rather work with
experimental data than simulated data.

Mr. Ewins: 1 asked because we've been
through a similar kind of process: and we
find that experimental data contains a
quite different type of error to that
which you put in with random errors
superimposed on the theoretical ideal.
The structures have systematic errors.
You have non-linearities and I wonder
whether the method is equally effective
on real data as you have shown on the
synthesized.

Mr. Ibrahim: Yes, we have lots of pre-
vious appficutions and we will put the
paper in the AIAASDM Conference in April
and we are dealing with large modal sur-
veys of real experimental full scale
structures. And to answer your ques=-
tion, I personally feel as comfortabhle
with experimental noise as with simu-
lated noise because the experimental
noise is nice and random. What yon
generate in the computer usually has
some distribution. The other question
is non~linearity. We did not include a
non-linecarity here, but non-linearity of
the structures is another completely
different ball game and it has tn be
dealt with separately. But we get as
good results with experimental data,
yes.
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Large Modal Survey Testing
Using the Ibrahim Time Domain Identification Techmque

Samir R. Ibrahim*
Old Dominion University, Norfolk, Va.

and

Richard S. Pappat
NASA Langley Research Center, Hampton, Va.

The ability of the Ibrahim time domain identification algorithm to identify a complete set of structural modal
parameters, using a large number of free-response time histories simultaneously in one analysis and assuming an
identification mode! with a high number of degrees of freedom, has been studied. Identification results using
simulated free responses of a uniform rectangular plate, with 225 measurement stations, and experimental
responses from a ground vibration test of the long duration exposure facility (LDEF) Space Shuttle payload,
with 142 measurement stations, are presented. As many as 300 degrees of freedom were allowed in analyzing
these data. In general, the use of a significantly oversized identification model in the identification process was
found to maintain or increase identification accuracy and to identify modes of low response level that are not
identified with smaller identification modei sizes. The concept of a mode shape correlation constant is in-
troduced for use when more than one identification anaiysis of the same structure are conducted. This constant
quantifies the degree of correlation between any two sets of complex mode shapes identified, using different
excitation conditions, different user-selectable algorithm constants, or overlapping sets of measurements.

Nomenciature
[4] = square system matrix (of order 2m).
iTD = [brahim time domain (technique)
m =number of computational degrees of freedom
(NDOF)
MCF =modal confidence factor
MSCC =mode shape correlation constant
NDOF = number of computational degrees of freedom

N/S =noise-to-signal ratio

[n(1)) = vector of measurement noise time histories
OAMCF =overall moda! confidence factor

p =number of structural modes

rms =root mean square

s =number of rows in [®] and [®]

L =time instant j

[x(1)) = vector of free-response time histories

ay = kth eigenvalue of [A]

(v)e =portion of {¥],
(Ar), =time shift between [®] and [$)
¢ =modal damping factor=C/C.
x = kth characteristic root of structure
(®],[®] =response matrices (2m xs)-
l v ; = kth eigenvector (complex mode shape) of (4]
=transpose of vector | |
t l‘ =complex conjugate of vector [ |}
Il = magnitude

Introduction

SING a time-domain approach, it has been shown that .

the identification of structural modal parameters from
experimental data can be placed in the form of a complex
eigenvalue problem.' The resulting method, referred to as the

Presented as Paper 81-0528 at the AIAA/ASME/ASCE/AHS 22nd
Structures, Structural Dynamics and Materials Conference, Atlania,
Ga., April 6-8, 1981; submitted April 15, 1981; revision received April
S, 1982. This paper is declared a work of the U.S. Government and
therefore is in the public domain.

* Associated Professor, Department of Mechanical Engineering and
Mechanics. Member AIAA.

tAerospace Engineer, Structural Dynamics Branch. Member
AlAA.

Ibrahim time domain (ITD) technique, uses free-response
time histories |x(7) ] measured at various points on a test
structure to compute a square system matrix (4], or order
2m, in a least-squares sense from the equation

(4] [987) = [$&7) (n

In this equation, [®] and [®] are rectangular matrices of size
2m x s, with s =2m, whose elements are
®,=x,(t) ¢, =x[,+(an,] 2)

The ith row of [®] corresponds to the ith measurement or a
measurement delayed some arbitrary time, Ar. The use of
delayed or ‘‘transformed’’ stations' allows the computation
of a modal confidence factor? (MCF) at each station for each
identified mode. The MCF parameter is used to differentiate
the desired structural modes from ‘‘noise modes,"'’ computed
whenever the number of structural modes contributing to the
responses is smaller than m. A (complex valued) MCF is
calculated for each station, and indicates the consistency of
the modal deflection identified at each station with the
deflection at the same station identified using data measured a
small time later. Its value is near 100% in amplitude and 0 deg
in phase for accurately identified structural modes.

Possible time-domain functions which can be used include
actual free decays obtained following random excitation of
the structure, unit-impulse response functions calculated by
the inverse Fourier transform of frequency response func-
tions, or ‘“‘random-decrement’’ functions® calculated from
random operating time histories.

After computing [A] from Eq. (1), an eigenvalue problem
of the form

[Al W) =a V], (3)

is solved. The kth eigenvector of [A] is the kth complex mode
shape of the structure and the kth eigenvalue of [A4] is related
to the structure’s characteristic root A, through the equation

ay =M @

Details of the identification technique are contained in
Refs. 1-4.

s ———
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In previous applications of the technique using simulated
and experimental data,*® the primary purpose was to
establish credibility of the method. The studies were limited,
for research purposes, to problems with small numbers of
measurement stations and structural modes. For large modal
survey tests, however, it is not unusual to obtain responses at
200 or more measurement stations on a test structure.

If the response functions used in the identification
technique are entirely noise-free, the size of the identification
model, m (or ‘‘number of allowed computational degrees of
freedom’’) must exactly equal the number of excited struc-
turai modes in the responses. When experimental data are
processed, however, there is always some level of noise, and
the number of structural modes contributing to the responses
is not exactly known. Since the maximum number of modes
identified in a single computer analysis is equal to the number
of allowed degrees of freedom, an obvious question is
whether all parameters can be accurately obtained by simply
allowing the number of degrees of freedom to be
unquestionably larger than the number of excited structural
modes. Since the number of measurements analyzed in each
identification run can be as high as the number of allowed
degrees of freedom, the use of a large enough identification
model would also allow the response functions for all stations
selected for the modal survey to be processed simultaneously.

When the number of available measurements is less than
the number of degrees of freedom desired in the identification
process, extra ‘“‘iransformed stations’’ can be formed by
delaying the origin.! response functions by small arbitrary
time increments. Us .ig this approach, a large identification
model can be used even when a relatively small number of
responses are available.

If computer storage limitations restrict the processing of a
large number of response measurements simuitaneously, a
technique is presented for correlating sets-of identified mode
shapes from different runs using data corresponding to a
common set of measurements used in each analysis. With this
approach, modes obtained for two or more portions of the
available test measurements can be matched more accurately
than on the basis of identified frequencies and damping values
alone. A mode shape correlation constant (MSCC), whose
value is zero for no correlation and 1.0 for complete
correlation, is introduced for this purpose. The MSCC is a
general procedure for measuring the degree of correlation
between any two complex modal vectors. It has also been
found useful in correlating mode shapes identified with
responses from different excitation conditions or identified
using different values of the few user-selectable algorithm
constants, to provide additional confidence in the iden-
tification results by studying the consistency of independent
analyses.

This paper presents typical results that have been obtained
in processing simulated and experimental data with the ITD
identification algorithm using a large number of measurement
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stations and/or large identification model sizes. The results
indicate that the use of large identification models in the
analysis procedure can result in the accurate identification of
a large number of structural modes in a single analysis, often
allowing all measured response data from a large model
survey test to be used simultaneously in computing the modal
parameters of a test structure.

Theory of Oversized Identification Model

A set of free-response functions containing modal in-
formation from p structural modes of vibration can be ex-
pressed as

(x(0)) = f (V) e )

k=1

If noise-free responses are used in the identification
algorithm, the identification model must have exactly p
degrees of freedom for unique identification. If more than p
degrees of freedom are allowed, the | ®] matrix is singular.

In experimental work, however, measured responses always
contain a certain amount of noise. These responses can be
expressed as

(x(0) )= f: (V)@ + (n(1) ] ®)

k=/

In previous applications'® it was found that using noisy
responses in the identification process with the number of
degrees of freedom larger than p yielded good results without
encountering singularity. The results even improved as the
identification model size was increased. The qualitative ex-
planation for this situation is that the extra degrees of
freedom act as outlets for the noise. In this case, the noisy
responses can be expressed as

2m

P/
|xun=f,m.ew+ E G W)

k=1 k=2p+1!

in which the noise is modeled as a combination of (2m - 2p)
complex exponential functions. Since the value of p, the
number of excited modes, is a characteristic of the structural
response and not the data analysis process, additional ex-
ponential functions are allowed to represent the noise in the
math model as m is increased. This resuits in a higher-order fit
for the noise portion of the responses, reducing residuals that
would otherwise be included in the signal portion of the
responses.

Mode Shape Correlation Constant
When two or more sets of measurements are used in
identifying the modal parameters of a test structure,
corresponding modes obtained from different identification

Table 1 Model and identification parameters for the four simulated plate tests
No. of No. of Natural Damping rms N/S Allowed
Test measurements modes frequency, Hz t % ratio, "o NDOF
1 225 2 20.000 1.000 0.0001 300
30.000 1.000
2 225 2 30.000 1.000 0.0001 300
30.000 1.000
3 225 2 20.000 1.000 200 300
30.000 1.000
4 225 30 10.000 1.000 20 300
11.000 1.000
12.000 1.000
39.000 1.000
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runs can often be matched by comparing modal frequencies
and damping factors. This procedure can lead to mismatching
of some modes, however, particularly in regions of high
modal density, owing to variance in the identified frequency
and damping data. To reduce the possibility of mismatching,
mode shape maiching can be used in addition to frequency
and damping matching.

Let {¢,) and [¢,] be two identified (complex) modal
vectors from identification runs | and 2 that use an
overlapping set of measurements. If the modal vectors at the
common measurements are denoted by [vy,) and (v, ], the
correlation of the mode shapes can be estimated by the degree
of correlation between [v,] and [v,] using a mode shape
correlation constant (MSCC) defined as

Hy ) T30
I\hl’h;l‘lnl’lnl‘

where T denotes the transpose and * the complex conjugate.

The MSCC between two (complex) modal vectors ranges
from 0 for no resemblance to 100% for perfect resemblance.
Values between 0 and 100% can be interpreted as the amount
-of coherent information in the two compared mode shapes.
Of course, care should be exercised in using the MSCC in-
formation since it can indicate false correlation between
overall mode shapes if the number of elements in [y, and
{v,} is small and only portions of the two shapes have some
resemblance. Using frequencies and damping factors,
together with MSCC, can significantly reduce the possibility
of mismatching.

MSCC =

®)
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Results and Discussion

In this section, results from several data analyses of
responses from two test structures are reported and discussed.
The first structure is a NASTRAN-simulated rectangular
plate. The other is the long duration exposure facility (LDEF)
Space Shuttle payload. The simulated plate results are in-
cluded to demonstrate typical accuracies which are obtained
using simulated free responses from a system with known
modal parameters and an overexpanded identification model.
The results of the simulation study also help in interpreting
and supporting the accuracy of the LDEF experimental results
that follow.

Simulated Piate Results

An arbitrary number of NASTRAN mode shapes of a
rectangular plate, with arbitrarily assigned natural
frequencies, damping factors, and . ¢ yonse levels, were used
in constructing free-response funcuons analyzed with the
identification algorithm. Four sets of response functions were
formed for use in four different identification runs. The first
three contained only two modes, with varying assigned modal
frequencies and noise-to-signal (N/S) ratios. The number of
measurement stations and structural modes in the fourth set
were selected to simulate those of an actual large modal
survey test. In each set, the response levels of all modes were
set equal. Table | shows the parameters used in establishing
and analyzing each of these simulation data sets. NDOF is the
number of computational degrees of freedom allowed in the
identification model.

Table 2 ldentification results for the four simulated plate tests

Natural
Mode frequency, Damping OAMCF* MSCC,
Test No. Hz t % % %
i 1 20.000 1.000 100 100
2 30.000 1.000 100 100
2 1 30.000 1.000 100 100
2 30.001 1.000 100 100
3 1 20.006 2.234 78 98
2 29.989 1.981 7 98
4 1 9.998 2.100 91 9
2 11.003 1.812 90 929
3 11.990 1.746 95 99
4 13.000 2.047 91 99
) 14.006 1.492 98 9
6 14,999 1.879 92 9
7 16.005 1.505 93 99
8 17.012 1.255 9 100
9 17.999 1.615 88 99
10 19.001 1.691 86 99
11 20.003 1.435 94 99
12 20.993 1.365 89 99
13 22.007 1.260 93 9
14 22.994 1.385 87 99
15 23.985 1.334 88 9
16 24.99% 1.498 84 9
17 26.000 1.194 95 9
18 27.000 1.447 81 9
19 28.009 1.314 87 99
20 29.019 1.195 89 99
21 30.006 1.373 83 9
22 31.008 1.113 92 9
23 32.010 1.394 81 9
24 33.002 1.447 79 98
25 34.007 1.299 78 99
26 35.024 1.332 82 98
27 36.026 1.387 75 98
28 37.001 1.458 69 98
29 37.982 1.459 76 9%
30 39.033 1.301 86 9

4 All other modes (**noise modes’") had an OAMCF of less than 2%.
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The identified frequencies and damping factors for all four
tests are listed in Table 2. Also included are the overall modal
confidence factor* (OAMCF) for each identified mode and
the MSCC value, showing the correlation between the
identified and theoretical mode shapes. The OAMCEF value is
the percentage of measurement stations whose calculated
MCF values for each mode were at least 95% in amplitude
and no larger than 10 deg in phase. The OAMCFs for *‘noise
modes’’ are very small, generally less than 2%.

The results for tests | and 2 are included to show that a
significantly oversized identification model did not cause
singularity or ill-conditioning even in cases of extremely low
noise-to-signal ratio (tests |1 and 2) or with almost identical
cigenvalues (test 2). Theoretically, for noise-free data, the
rank of the [®] matrix is equal to the number of independent
modal vectors (twice the number of structural modes) and its
determinant is proportional to the differences between the
system'’s eigenvalues.' Test 3 demonstrates the effect of using
an oversized identification model when processing high noise-
to-signal data in reducing errors in the identified parameters.
Although the rms noise-to-signal ratio was 200%, negligible
error was found in the identified frequencies and mode
shapes, and the errors in the damping factor results were
bounded. These characteristics also apply to the identification
results of the 30-mode simulated data set, test 4.

All of the identified mode shapes are nearly in-
distinguishable from the theoretical shapes used in forming
the simulated response functions. The largest identification
error occurred in mode 29, with an MSCC value calculated
between the theoretical and identified mode shapes of 96%.

For all four tests, even though the ratio of the number of
allowed degrees of freedom in the identification model to the
number of structural modes in’ the responses was very high
(150 for tests 1-3 and ten for test 4), no false modes or
numerical anomalies resulted in the identifications. All ‘‘noise
modes’’ (298 in tests 1-3 and 270 in test 4) had an OAMCEF less
than 2%.

LDEF Results

The LDEF, shown in Fig. 1, is a 30-ft long, 12-sided
cylindrical structure designed to hold 86 experiment trays
around its periphery. It will be placed in Earth orbit for ex-
tended periods of time to study the effects of space on selected
materials and scientific processes mounted in the experiment
trays. A large modal survey program was conducted at the
Langley Research Center with the structure suspended in a
free-free configuration. For these tests the experiment trays
were removed from the structure and 142 acceleration
measurement stations were used. Data obtained with the
structure excited with single-shaker, wide-band random noise
in the y (lateral) and z (verticai) directions will be shown.

J. SPACECRAFT

Unit-impulse response functions, obtained by inverse Fourier
transformation of acceleration/force frequency response
functions, are used in the ITD identification runs. A
photograph of the structure with the trays removed, mounted
on a transport vehicle, is shown in Fig. 1b. Figure Ic
illustrates the positions of the y and z exciters and the location
and sensing direction of accelerometers placed on the
structure for the vibration tests.

i el e . nast

¢ "N ;'L,

I\

| \ 2

—J S 4 /

y exciter\ \/\)ﬁ\ %,/&;j// ,
) x

Fig. 1 Long duration exposure facility (LDEF). a) Typical
deployment from the Space Shuttle. b) On transport vehicle with
experiment trays removed. ¢) Measurement positions and two exciter
locations used for vibration tests.

OV S

Table3 Test and analysis information for the LDEF identification runs

Force No. of Analysis
excitation measurement frequency Allowed
Run direction stations range, Hz NDO}
1 2 142 5-55 1-75
Steps of 1
and 80-200
Steps of 10
2 z 142 5-55 150
3 2z 142 5-55 300
4 2z 142 19.75-32.25 150
S y 142 5-55 300
6 2z 81 5-55 81 NAl pPACE In
(measurements 1-81) ORIGINAL PACE I3
7 : 81 5.55 st OF POOR QUALITY

(measurements 62-142)

142)
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Fig. 3 NDOF-frequency map for LDEF identification run 1.

Results for seven identification runs, using a range of
allowed degrees of freedom and two different excitation
conditions, will be shown. Table 3 summarizes the test and
analysis parameters for each run.

Figure 2 shows the average value of the quadrature com-
ponenis of all 142 frequency response functions for the z-
excitation test, over the 5-55-Hz frequency range. The ab-
solute value of each quadrature function was taken prior to
averaging, and the result is presented on a logarithmic scale.
This ‘“‘composite’’ function provides a good indication of
both the natural frequencies and relative response levels of the
structural modes excited in the z-excitation test. For this plot,
the reference decibel level has no special significance.

In run 1, the number of allowed degrees of freedom
(NDOF) was incremented from 1 to 75 in steps of 1, and then
from 80 to 200 in steps of 10. Figure 3 shows a ‘““‘map’’ of the
identified modal frequencies as a function of NDOF. The
identified frequencies are denoted by vertical line segments at
the corresponding frequencies whose heights are proportional
to the OAMCEF value calculated for each mode. An OAMCF
of 100% is represented by a line height equal to the distance
between adjacent NDOF values used in the analysis. A
continuous vertical line indicates higher confidence in the
identified mode, while a dashed line shows lower confidence.

It is of interest to note the order in which modes appear on
the map as NDOF is increased. The first mode to appear, near
30 Hz, has the largest average response level, as seen in Fig. 2.
The next two modes appear near 27 Hz, followed by ones near
14, 42, and 48 Hz. As NDOF is increased further, some lower
level modes near 7 and 21 Hz are identified. As suggested by
Eq. (7), the average strength of the ‘‘noise modes’’ decreases
when the size of the identification model is expanded,
allowing lower strength structural modes to be identified. This
behavior is clearly indicated in Fig. 3. As NDOF increases
from 80 to 200, more new vertical lines start to form, in-
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dicating new identified modes. Based on the results of many
other simulated plate experiments,* no evidence exists to
suggest that these new modes aré adverse effects resulting
from the ¢xpansion of the identification mode! size used in the
identification. The straightness of the vertical lines in this map
illustrates the insensitivity of the identified frequencies to
higher numbers of degrees of freedom than necessary for
initial identification, and the consistency and stability of the
analysis process at high NDOF vaiues.

In runs 2 and 3, unit-impulse responses for the 142 stations
over the 5-55-Hz frequency range, with single-shaker z ex-
citation of the structure, are used in identifications with 150
and 300 degrees of freedom (DOF), respectively. In run 4,
“‘zoomed’’ transfer functions over the frequency interval of
19.75 to 32.25 Hz, transformed to the time domain, were
analyzed with 150 DOF. For run S, responses to single-shaker
y excitation of the structure, over the 5-55-Hz range, were
analyzed with NDGF of 300.

The curves in Figs. 4a-d show the average quadrature
component of all 142 frequency response functions obtained
for runs 2-S, respectively. The curves consist of 512 equally
spaced values each. The diamond symbols placed above the
curves denote the frequencies of all ITD-identified modes
with an OAMCF of 60% or larger, for each of the four runs.
The 60% OAMCF cutoff is arbitrarily selected to single out
strongly identified modes. These figures are provided to
illustrate three basic results of this study: The strong
correlation between ITD-identified modal frequencies and
peaks in measured frequency response functions; the iden-
tification of modes with low response level as the number of
allowed degrees of freedom is increased; and the ability of the
identification algorithm to identify modes which are spaced
closer in frequency than the resolution of classical Fourier
analysis. In these figures the diamond symbols are placed
equidistant from the composite quadrature functions at each
ITD-identified frequency, and indicate the identified modal
frequencies only.

Many interesting comparisons of the results shown in Fig. 4
can be made, some of which are highlighted by circled letters
a-d. Near 21.5 Hz, denoted region a, three modes are iden-
tified using 150 DOF in Fig. 4a, and four modes are identified
using 300 DOF in Fig. 4b. On examining Fig. 4c, in which the
resolution of the frequency response function is four times
greater than in 4a or 4b, the existence of four distinct response
peaks is apparent in region a. In both Figs. 4a and 4b, a mode
was identified at 24.0 Hz, denoted by b, where no indication
of a structure mode was apparent. Again on examining Fig.
4c, the existence of this mode is just discernible along the
ramp of the more strongly excited mode at 24.2 Hz. Region ¢
shows several highly coupled modes identified with the z-
excitation response data in Figs. 4a and 4b, but are better
separated in the y-excitation data, Fig. 4d. Region d shows
two identified modes in Fig. 4d near 43 Hz, where a more-
defined response is noted in Fig. 4b.

To study the consistency of the identifications and to
demonstrate an application of the MSCC parameter, Figs. Sa
and Sb provide ‘‘cross-plots’’ of the ITD-identified modal
frequencies and damping factors, respectively, determined
from two independent tests of the LDEF: run 3 for z ex-
citation and run § for y excitation. Both identifications were
run using 300 allowed degrees of freedom. The data shown in
these plots represent results of correlating all 300 identified
modes (‘‘noise’’ and structural) from run 3 with all 300 from
run S, using the MSCC parameter. Results for all pairs of
modes with a calculated MSCC of 80% or larger are shown.
The excellent agreement of identified frequencies shown in
Fig. 5a implies not only that consistent mode shapes were
determined in two independent tests of the structure, but that
the calculation of MSCC values using a large number of
measurements (142 for these data) can potentially match
identified modes independent of a comparison of identified
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Fig. 4 Comparison of ITD-identified modal frequencies with
average quadrature component of frequency response functions used
to form impulse responses for LDEF runs 2-5. a) Run 2: NDOF = 150,
2 excitation, 5-55 Hz. b) Run 3: NDOF = 300, : excitation, 5-55 Hz.
¢) Run 4: NDOF =150, z excitation, 19.75-32.25 Hz. d) Run §:
NDOF = 300, y excitation, 555 Hz.

modal frequencies and damping factors. The damping faciors
identified for each pair of modes whose frequencies are shown
in Fig. 5a are included in Fig. 5b.

Identification runs 6 and 7 illustrate a method for matching
modes identified in two or more separate runs, using several
common measurements in each. This process can be used in
analyzing data from a test where limited computer memory
restricts the processing for all available response
measurements simultaneously. In run 6, stations 1-81 were
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Fig. 5 Cross plots of identified frequencies and damping factors for
mode pairs with high MSCC ( > 80%) using different exciter directions
(runs 3 and 5) and overlapping measurements (runs 6 and 7).
a2) Frequencies: z excitation (run 3) vs ) excitation (run 5). b) Damping
factors: for modes shown in a. ¢) Frequencies: stations 62-81 from run
6 vs stations 62-81 from run 7. d) damping factors: for modes shown
inc.

used with 81 allowed degrees of freedom, and in run 7,
stations 62-142, also with 81 DOF. Figures 5c and 5d show the
resulis, in the same format used in Figs. Sa and 5b, of the
correlation of two ITD identifications where 20 of the
available free-response functions are common in each run.
These plots show those mode pairs with MSCC >80%,
calculated using only the 20 common elements of the iden-
tified mode shapes, and with OAMCF > 15%. Several of the
modes from run 6 correlated at 80% or higher with more than
one mode in run 7 when only the 20 common mode shape
elements were used in the calculation of MSCC. In these
cases, only the pair of modes whose MSCC was highest is
included in Figs. Sc and 5d. In nearly every case, this pairing
is the same as that resulting from pairing those modes closest
in identified frequency from each of the groups. As in Figs. Sa
and 5b, the identified frequencies paired in this manner are
almost identical, and the scatter in the corresponding dam-
ping factors is small for most modes.

Conclusions

The number of degrees of freedom to be allowed in the ITD
identification algorithm can be several times larger than the
number of structural modes of vibration excited in the time
response functions used for the identification of modal
parameters. No adverse effects, in either the accuracy or
consistency of identification, resulted from the use of
significantly oversized identification models. Such large

‘models are useful in identifying a complete set of modal

parameters for all available measurements in one computer
analysis. This is valuable for large modal survey tests when a
large number of response measurements are obtained.
Furthermore, it was found that larger models improved the
identification accuracy when noise was present and also
allowed the identification of modes of low levels of response.
Identifications with identification models of up to 300 DOF
proved accurate for data with 200% noise-to-signal ratio and
did not result in ill-conditioning for data with infinitesimal
noise.
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A mode shape correlation constant was used in matching
mode shapes obtained from different identification runs,
reducing the possibility of mismatching if only frequencies
and damping factors are used. This concept was demonstrated
in matching experimentally identified modal parameters from
two sets of overlapping measurements due to the same ex-
citation, and from different excitation conditions.

!Ibrahim, S.R. and Mikulcik, E.C., *“A Method for the Direct
Identification of Vibration Parameters from the Free Response,”
Shock and Vibration Bulletin, No. 47, Part 4, Sept. 1977, pp. 183-198.

LARGE MODAL SURVEY TESTING USING ITD TECHNIQUE 465

2Ibrahim, S.R., *‘Modal Confidence Factor in Vibration Testing,"
Journal of Spacecraft and Rockets, Vol. 15, Sept. 1978, pp. 313-316.

YIbrahim, S.R., ‘‘Random Decrement Technique for Modal
Identification of Structures,”’ Jowrnal of Spacecraft a:d Rockets,
Vol. 14, Nov. 1977, pp. 696-700.

“Pappa, R.S. and Ibrahim, S.R., ‘A Parametric Study of the
Ibrahim Time Domain Modal Identification Algorithm," Shock and
Vibration Bulletin, No. 51, Part 3, May 1981, pp. 43-72.

SHanks, B.R., Miserentino, R., Ibrahim, S.R., Lee, S.H., and
Wada, B.K., ‘“Comparison of Modal Test Methods on the Voyager
Pa ,"* Transactions of the SAE, Vol.87, 1978.

Ibrahim, S.R., ‘““Application of Random Time Domain Analysis
to Dynamic Flight Measurements,"' Shock and Vibration Bulletin,
No. 49, Part 2, Sept. 1979, pp. 165-170.



Computation of Normal Modes from
Identified Complex Modes
S. R. Ibrahim

Reprinted from

m meal Volume 21, Number 3, March 1983, Page 446

AERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS « 1290 AVENUE OF THE AMERICAS « NEW YORK, NEW YORK, N.Y. 10104

e L i D ARSI P S A I oA, = . .



446 AIAA JOURNAL

VOL.21,NO.3

)

N86-13590
Computation of Normal Modes from Identified Complex Modes

S. R. Ibrahim*
Old Dominion University, Norfolk, Virginia

A technique is presented to compute a set of normal modes from a set of measured (damped) complex modes.
The number of elements in the modal vectors, which is equal to the number of measurements, can be larger than
the number of modes under consideration. It is also shown in this paper that the practice of normal mode ap-
proximation to complex modes can lead to considerabiy large errors when the modes are too complex. A
numerical example and a simulaied experiment are presented to illustrate the concepts discussed and to support

the theory presented.
Nomenclature
Q) = damping matrix
[e] =modal damping matrix (diagonal)
f = frequency, Hz
I; =imaginary part of the jth element of a complex
modal vector
K] = stiffness matrix
[k] =modal stiffness matrix (diagonal)
M] = mass matrix
[m] =modal mass matrix (diagonal)
n(t) = measurements noise
lp;) = jth eigenvector of the state variable equation
(d, } = jth assumed modal vector
R, =real part of the jth element of a complex modal
vector
s = jth assumed characteristic root

y() }

y()

y(e) = free-response time function

o, =two angles defining sign () boundaries for the
approximated normal mode elements

[x(t)] =state vector, = [

B, = phase angle for the jth element of a normal modal
vector (0.0 or 180.0 deg)

6, = phase angle of the jth element of a complex modal
vector

9, = jth element of the normal modal vector

1o}, = jth normal modal vector

7 = jth element of the complex modal vector

vl = jth complex modal vector

A = jth characteristic root

w = natural frequency, rad/s

¢ =damping factor

{yr = transpose of a matrix

el =inverse of a matrix

Introduction and Background

ODAL vibration tests are carried out to experimentally
determine a set of modal parameters for the structure
under test. These modal parameters are usually used to verify,
detem}ine. or improve some analytical model of the struc-
ture.'
Most of the approaches that use experimentally determined
modal parameters for dynamic modeling of structures use one

Received Dec. 1, 1981; revision received May 28, 1982. Copyright
© American Institute of Aeronautics and Astronautics, Inc., 1982,
All rights reserved.

*Associate Professor, Department of Mechanical Engineering and
Mechanics. Member AIAA.

or more of the following equations:

M]-'[K]Ie)=w?[0] (1
[017M ](¢] =(m] 2
(017K (@] = k] (&)
[617(CI¢] = [c] ()

In all these equations, the {¢] are the normal modes even
though, in practice, the measured modes are the damped
complex modes, which in some cases can be very different
from normal modes. As a matter of fact, in vibration testing
and analysis work it is frequently assumed that damping levels
are very small and/or the damping matrix is proportional to
either the mass or stiffness matrices, an assumption that is not
valid for many of today’s complex structures. Such assump-
tions and the lack of differentiation between normal and
complex modes may be attributed to the lack of a tool to
measure or compute the normal modes.

With the introduction of computer technology to modal
identification in the early 1970s in both frequency domain®'°
and time domain'''® techniques, the question of normal vs
complex modes started to need answers. In frequency domain
approaches, even with light damping and well-spaced modes,
users frequently encountered a scatter of the phase angles
associated with the measured modal vector.'* Some resear-
chers and users even went to the extent of questioning the test
and data analysis procedures when the phase angles were not
within = 10 deg at 0-180 deg.

It is to be noted also that measurement of phase angles in
the frequency domain can be subject to high levels of errors
especially in cases of high modal densities. This is due to the
limited frequency resolution and the rapid change in the phase
angles around the resonant frequencies. In some cases, the
scatter of the phase angles of the modal vectors was due to the
fact that the damping is nonproportional, and hence the mode
shapes are complex. Time domain approaches to modal
identification, which contain no assumptions regarding the
level or proportionality of damping, also indicated that
structures, in many cases, possess complex modes.

Normal Mode Approximation to Complex Modes

Normal modes are defined as modal vectors whose phase
angles are either 0.0 or 180.0 deg. Such modes exist for ex-
tremely simple structures, that do not need any testing
anyway. They also exist for structures with no damping or
structures tailored with proportional damping, none of which
represents today’s complex structures.

Unlike normal modes, complex modes may possess any
phase angle distribution. Each element of the modal vector is
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described by a real and imaginary part or an amplitude and
phase angle relative to some arbitrary element. A scatter in the
phase angles of as much as +90.0 deg from 0.0 or 180.0 deg is
not uncommon.

Recognizing the phase angle scatter for measured (complex)
modes and the need for normal modes for use in equations
such as (1-4), researchers and users have frequently used
normal mode approximation to complex modes.

Figure i4 shows an element of a complex modal vector ¢,
which is complex and can be expressed as.

V=R, +il, )

The approximate normal mode element ¢, corresponding to
¥, is

6,=+VRI+F (6a)

where the assignment of a positive or negative sign, which is
equivalent to 0.0 or 180.0 deg phase angle, depends on the

pim
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a) Complex mode element
Im /
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02/ ﬂul = Re
Y
/
/

/ b) Boundaries for normal mode sign ()
Fig. 1 Normal mode approximation to complex modes.
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angle §; (6, =tan "' I;/R;) of the complex modal element and
its relation to some arbt’lnry angles «, and «; as shown in
Fig. 1b. In other words, the phase angle 8, for the ap-
proximated normal mode element ¢, is assigned according to
the equations,

B} -0.0 deg
B,=180.0 deg

a,<8,<a, (6b)
a,<0,<a, (6¢)

It is enough to state that, irrespective of the choice of «,
and a;, it is unacceptable to assign two different signs to two
elements of the approximated normal modal vector because
the phase angles of the corresponding elements of the complex
modal vector differ by a fraction of a degree.

Such approximation can lead to erroneous and misleading
results and conclusions. An example is the orthogonality
check where the orthogonality of the measured modes with
respect to the mass matrix is tested. Large off-diagonal terms
may result not only because of errors in the mass matrix or
inaccuracies in the identification process, but also because of
the normal mode approximation to complex modes.

Numerical Example

The purpose of this example is to show that even though all
the parameters used are exact:

1) Complex modes can be very different from normal
modes, even for lightly damped modes and small non-
proportionality in the damping matrix.

2) Large errors may result from assuming that normal
modes approximated from complex modes are orthogonal
with respect to the mass matrix.

The system used in this example is a 10 degree-of-freedom
system. This system was constructed (simulated) by
analytically generating 10 normal modes at 10 measurement
stations of a simply supported beam, 10 undamped natural
frequencies, and a stiffness matrix for the system. The natural
frequencies were selected corresponding to 10.0, 12.0, 15.C,
20.0, 24.0, 30.0, 36.0, 43.0, 46.0, and 50.0 Hz. Then, a
proportional damping matrix (equivalent to 1.0% modal
damping factor for all 10 modes) and the mass matrix were
computed from the assumed information.

To make the damping matrix nonproportional, the damp-
ing elements C(3,3), C(4,4), C(3,4), and C(4,3) were doubled.
Complex modes, damping factors, and damped natural
frequencies were computed for the system. Damping factors
changed from 1.0% for all modes for proportional damping
case to 2.6, 1.3, 1.2, 1.2, 1.1, 1.8, 2.9, 3.8, 1.7, and 1.0% for
the nonproportional damping case. These damping factors
are relatively small but nevertheless, some modes showed high
levels of complexity. Table 1 shows the two most complex
mode shapes, modes 9 and 10, listed with the corresponding
normal modes. Phase angles of as much as 98.9 and 74.8 deg

Table 1 Comparison of complex and normal modes

9th mode 10th mode
Complex Complex
Normal $=1.75% Normal £=1.04%
[f=46.00 Hz S=4583 Hz f=50.00 Hz f=49.99 Hz

+ Amplitude Amplitude Phase + Amplitude Amplitude Phase
100.00 100.00 0.0 100.00 100.00 0.0
26.00 §3.27 64.3 56.00 57.95 175.1
~136.00 144 46 - 155.5 -0.00 9.94 -72.9
168.00 167.74 -0.3 $6.00 54.85 7.3
- 98.00 144.19 136.7 - 100.00 102.48 176.0
-26.00 113.55 ~98.9 114.00 . 119.61 -79
136.00 135.26 33 ~98.00 102.24 172.3
- 168.00 220.22 143.3 56.00 55.70 0.3
98.00 188.00 ~354.8 ~0.00 9.73 -74.8
26.00 36.38 48.7 ~56.00 58.22 173.0
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for modes 9 and 10 are noticed, respectively. Also, large
differences in amplitudes exist between normal and complex

To illustrate the large errors that may result from normal
modes approximation to complex modes, approximated
normal modes were used in checking their orthogonality with
respect to the exact mass matrix. The orthogonality matrix
results for different values of a, and «, are

In Eq. (7a) a, and «, were chosen as 90 and 270 deg, while in
Eq. (7b) they are 135 and 315 deg. Errors in the off-diagonal
terms are as high as 23.29% for the first case and 35.49% for
the second case.

Theory: Computation of Normal Modes

In this section, two approaches are presented to compute
normal modes from a measured set of complex modes. The
required data are a set of modal parameters such as may be
identified from a modal survey test. These modal parameters
are namely a set of compiex modes [¥),, i=1,... m and a set
of corresponding characteristic roots A, i=1,...m (and their
complex conjugates). The modal vectors have n elements
where n>m, which is a typical test situation. To compute the
normal modes from this given set of complex modes, one of
the following two approaches may be used.

Approach 1:  Using an Oversized Mathematical Model
From the given modal parameters, displacement, velocity,
and acceleration responses are formed according to the
equations,
2m

)= 3 (¥),eM+1n, (1))

i=]

(8a)

S. R. IBRAHIM

T 1.0000
0.0003 1.0000
-0.0000 -0.0002 1.0000
-0.0004 -0.0009 -0.0003 1.0000
0.0010 -0.0002  0.0027 -0.0007 1.0000
0.0010  0.0033 0.0097 -0.0174  0.0013 1.0000
0.0003 0.0138  0.0054  0.0010  0.0029  0.0074
0.0013 0.0003 -0.0005 -0.0026 -0.0071 -0.0136
-0.0597 0.0178  0.2339 -0.0639 —0.0895 0.0826
0.0071 ~0.0005 0.0150 -0.013  -0.0091 0.0042
" 1.0000
0.0003 1.0000
-0.000 -0.0002 1.0000
-0.0004 -0.0009 -0.0003 1.0000
0.0010 -0.0002  0.0027 -0.0007 1.0000
0.0010  0.0033 0.0097 -0.0174  0.0013 1.0000
0.0003 0.0138 0.0054  0.0010  0.0029  0.0074
0.0013 0.0003 -0.0005 -0.0026 -0.0071 -0.0136
-0.2035 0.3549 -0.1791 0.0311 0.0073 -0.3108
| —0.0124 -0.0144 -0.1338 0.0016  0.0053 -0.0241
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2m
O 1= 3 NI¥)eM+ a0 (8b)
i=]
2m
) )= 3, Miv) e +iny(0)) (8¢)
i=l
(7a)
1.0000
0.0070 1.0000
-0.268 0.0316 1.0000
-0.0209 -0.0004 -0.2281 1.0000
.
(7b)
1.0000
0.0070 1.0000
0.1137 0.2265 1.0000
-0.0214 0.0254 0.1672 1.0000

where n,(t), n,(t), n;(¢) are added random noise of
uniform distribution. These responses are then used in the

state vector equation,
{)(:)} 0 1 {y(r)}
() -M-'K -M-IC »(t)

(%] =[A]lx] (&)

or

where [x] is now the system’s state vector containing the
displacements and velocities responses. By repeating Eq. (9)
for 2n time instants, the following equation is satisfied:

(X1 = (4]1X) (10)

where [X] and [X] contain responses measured at the 2z time
instants. From Eq. (10) the [4] matrix can be identified as,

(4] = (XX~ an
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By computing matrix [4], the [M~'K] matrix gives normal
modes according to the eigenvalue equation,

IM-'Kll¢) =’} (12)

Naturally, without any noise, the matrix [X] is singular
since the number of degrees of freedom is larger than the
number of modes present in the responses. A small amount of
noise makes the inversion of [X] possible for the purpose of
extracting modal information. For example, noise to signal
ratios of as little as 0.000001 were used'” to invert a 600 x 600
matrix of a rank of 4 without signs of ill-conditioning on a 60
bit word computer. Higher levels of noise may be needed for
computers with less accuracy.

The mechanism on which the success of this approach is
based can be explained as follows.

The state vector’s 2n free-response functions containing
modal information from m structural modes of vibration can

be expressed as,

2m
(x(0))= Y (p) e (13)

k=]

where [p] represents the m complex pairs of the systems
independent eigenvectors. If noise-free responses are used in
the identification algorithm, the math model must have
exactly m degrees of freedom for unique identification. If
more than m degrees of freedom are allowed, the [X] matrix is
singular.

In experimental work, however, measured responses always
contain a certain amount of noise (or as in this case a small
amount of noise is added on purpose). These noisy responses
can be expressed as,

2m
(X )= Y (Pl +(n(0)) (14)
k=]

In previous applications''"'? it was found that using noisy
responses in the identification process, with the number of
degrees of freedom larger than m, yielded good results
without encountering singularity. The results even improved
as the math model size was increased. The qualitative ex-
planation for this situation is that the extra degrees of
freedom act as outlets for the noise. In this case, the noisy
responses can be expressed as,

2m 2n
(x())= Y (Pl + Y (N)ew (15)
k=l k=2m+ |

in which the noise is modeled as a combination of (2n~2m)
complex exponential functions. Since the value of m, the
number of excited modes, is a characteristic of the structural
response and not the data analysis process, additional ex-
ponential functions are allowed to represent the noise in the
math model as #n is increased. This results in a higher-order fit
for the noise portion of the responses, reducing residuals that
would otherwise be included in the signal portion of the
responses.

Approach 2:  Using Assumed Modes
The given set of complex modal parameters satisfy the
equation

Vi
M-'K M"C]{ }-I-W‘l (i=1,...m) (16)
AV

Since we have only m modes and the system has n degrees
of freedom, Eq. (16) cannot be solved for [M~/K M~!C]. Let
us assume that there exists a set of vectors {Q], and a set of
characteristic roots s;, j=m+1, m+2,..n. This set of
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assumed parameters are selected such that
A #s; (17a)
1Q);#[¥, ¥,...¥,]la) (17b)
where [a] is any vector of coefficients. Equation (17b) im-

plies that [Q], and {¢], for all i and j form a linearly in-
dependent set of vectors. In such a case, it can be written that

M-'K M-'Q) { 2 } = -5Q,)
5,Q;

(J=m+1, m+2,...n) (18)

and Eqgs. (16) and (18) can be solved for [M~/K M~/C] from
which normal modes are computed according to Eq. (12).

To illustrate the soundness of this second approach, let it be
assumed that there exists a hypothetical system whose n free
response time functions are linear combinations of the two
independent sets of modes [ ) and [ Q}. These responses can
then be expressed as

2m 2n~2m
)= Y (¥le+ Y 107

k=1 Jj=l

ert e

ery esy

=¥, ¥ Vaml +(Q,0;---Qzn-2m)

erom' eran-2m!
{ t'\ " 3

ery

.[¢I¢2'"wanIQJ"'QJn-hl] < (

| esn-2m (19)

The responses of Eq. (19) are typical of a second order
dynamic system whose state vector equation is

e ]

where the [A] matrix represents the inertia-stiffness in-
formation and the [B] matrix represents the inertia-damping
characteristics.

If these responses, as expressed in Eq. (19), are to be used in
any identification algorithm, the vectors (¢ ] and { Q] and the
characteristic roots A\ and s will be uniquely identified. The
identified properties of the initial set of modes {y | should be
unique and independent of the assumed Q and s as long as the
conditions of Eq. (17) are satisfied.

An appropriate selection for the set of assumed modal
parameters would be from the structure’s finite element
model. Higher analytical modes, other than the measured
ones, are highly recommended for such a use.

It is extremely important to point out that {M~'K ] and
[M~'C] obtained from either approach are not unique since
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Table 2 I[dentified comgplex mode and normal mode
Mode 9 Mode 10
Theoretical Identified Theoretical Identified
Complex Complex Complex Complex
Normal $=1.75% Normai =2.60% Normal £=1.04% Normal $=1.74%
J=46.00 Hz f=4583 Hz S=46.00 Hz S=4593 Hz f=50.00 Hz f=50.00 Hz f=50.00 Hz /= 50.00 Hz

& Amplitude Amplitude Phase = Amplitude Amplitude Phase ' + Amplitude Amplitude Phase = Amplitude Amplitude Phase
100.00 100.00 0.0 100.00 100.00 0.0 100.00 100.00 0.00 100.00 100.00 0.0
26.00 53.27 64.3 25.18 64.93 9.0 - 56.00 57.95 175.1 -55.07 §7.27 170.7
- 136.00 144.46 -155.5 ~136.76 152.63 -154.0 0.00 994 -729 0.39 13.54 -74.4
168.00 167.74 -0.3 170.00 164.89 -2.2 56.00 54.85 7.3 54.08 53.19 8.8
-98.00 144,19 136.7 -97.65 135.86 132.6 - 100.00 102.48 176.0 ~94.95 97.74 175.6
- 26.00 113.55 ~98.9 - 36.95 107.75 -109.2 114.00 119.61 -79 109.92 116.18 -96
136.00 135.26 33 145.63 140.38 -0.3 ~98.00 102.24 172.3 -90.82 94.78 171.5
-~ 168.00 220.22 143.3 - 167.51 202.69 143.7 56.00 55.70 0.3 §9.42 58.61 -1.1
98.00 188.00 ~54.8 94 81 16494 547 -0.00 9.73 ~-748 ~0.44 4.01 ~48.1
26.00 36.38 48.7 28.32 36.51 41.5 ~56.00 58.22 173.0 - 55.36 7. 170.9

they are functions of the introduced noise or the assumed
modes. However the set of normal modes, corresponding to
the set of given complex modes, was found to be independent
of the introduced small levels of noise or the assumed modes.

Simulated Experiment

To test the validity of the theories presented in this paper,
the 10 degrees-of-freedom system previously discussed in the
section on numerical example is used here as a simulated test
structure. Response time histories containing contribution
from the last four modes measured at the 10 stations were
generated. The last four modes were selected because the last
two modes show a high level of complexity. Simulated
measurements noise was added to these responses, with a’
noise/signal rms ratio of 20%, to represent conditions in a
real vibration test. From these responses, the complex modes
and characteristic_roots were identified, using the time
domain approach.'!" Normal modes were then computed
using the two approaches presented here. A noise to signal
ratio of 0.00001 was used for Egs. (8). The assumed modes
approach produced results identical to those of the oversized
math model approach.

Table 2 lists the identified complex modes and the com-
puted normal modes for the last two modes. A close
examination of the computed normal modes, in comparison
with the theoretical ones, indicate the validity of the ap-
proaches presented.

Using the identified complex modes and the computed
normal modes, the orthogonality check matrices are

" 1.0000 ]
~0.0438  1.0000
‘ (20a)
~0.0018 -0.0300  1.0000
| -0.0205  0.0365 -0.2091 1.0000 |
" 1.0000 ]
-0.0438  1.0000
(20b)
0.0899  0.0999  1.0000
| -0.0282  0.0626 -0.4802 1.0000 |
10000 ]
~0.0464  1.0000
(200)
0.0228 .-0.0353  1.0000
| ~0.0082  0.0531 -0.0546 1.0000 |

In Egs. (20a) and (20b) approximated normal modes were
used with (90, 270 deg) and (135, 315 deg) for (a,, a;),
respectively. In Eq. (20c) the computed normal modes were
used. Errors of 21 and 48% are noticed in the off-diagonal
terms for cases a and b, respectively, while the maximum
error for case ¢ was only 5%.

Conclusions

It is shown in this paper that even for low levels of damping
for structures with nonproportional damping, complex modes
can be very different from normal modes. In such cases,
normal mode approximation to complex modes may lead to
large errors in mass-weighted orthogonality checks or in any
other use of these complex modes approximated as normal
modes.

A technique is presented to compute normal modes from
measured complex modes. Computed normal modes
eliminate possible errors that may result from using normal
mode approximation to complex modes produced by non-
proportional damping.
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A technique is presented to use 2 set of identified complex modes together with an ansiytical mathemstical
model of a structure under test to compute improved mass, stiffness, and damping matrices. A set of identified
normal modes, computed from the measured complex modes, is used in the mass orthogonslity equstion to
compute an improved mass matrix. This eliminates possible errors that may result from using spproximated
complex modes ss normsl modes. The improved mass matrix, the measured complex modes, and the higher
analytical modes are then used to compute the improved stiffness and damping matrices. The number of
degrees-of-freedom of the improved model is limited to equai the number of elements in the measured modal
vectors. A simulated experiment shows considerable improvements, in the system’s analytical dynamic model,
over the frequency range of the given measured modsl information.

Nomenclature

[C4] = (nxn)analytical damping matrix

[Cgl = (nxn)exact damping matrix

[C1 = (n X n) improved damping matrix

J =vV-1

[K,] = (nxn) analytical stiffness matrix

[Kg] = (nxn) exact stiffness matrix

K] = (n X n) improved stiffness matrix

m = number of measured modes

[m,] = (nxn)analytical modal mass matrix (diagonal)
[M,] = (nxn) analytical mass matrix

IMg] = (nXxn) exact mass matrix

(M) = (n X n) improved mass matrix

n = number of degrees-of-freedom of math models
[¢;]  =ith normal modal vector (n elements)

{¥;)]  =ith complex modal vector (n elements)

$ = ith damping factor

N = ith characteristic root

Wy = damped natural frequency

W, = natural frequency
Introduction

UE to the increasing complexity of modern aerospace,

and some nonaerospace structures, and due to the
nature, sensitivity, and sophistication of the missions of such
structures, an accurate mathematical model has become a
necessity for successful performance. Such models are needed
for responses and loads prediction, stability analysis, and
control system design.

Past, and sometimes current, common practice, in spite of
the advanced state-of-the-art in both finite element and
structural dynamic identification, in arriving at a dependable
mathematical model was done primarily by trial and error
approach. An analyst, using some modal test data, adjusts his
or her model, using persoral judgment and experience, to
make it fit the available modal test data. During the last three
decades there have been continuous efforts Ly researchers and
practitioners in the area of dynamic modeiing of structures
using identified modal parameters. The survey paper,’
covering work done in the 1960’s, pointed out a need to
improve the state-of-the-art of dynamic modeling."

Presented as Paper 82-0770 at the AIAA/ASME/ASCE/AHS 23rd
Structures, Structural Dynamics and Materials Conterence, New
Orieans, La., May 10-12, 1982; submitted May 12, 1982; revision
received Sept. 17, 1982. Copyright © American Institute of
Aeronautics and Astronautics, Inc., 1982, All rights ;eserved.

*Associate Professor, Department of Mechanical Engineering and
Mechanics. Member AIAA.

Subsequent work in dynamic modeling from test data can
be divided into two categories. The first category uses only
experimental data to derive the mass, stiffness, and damping
matrices.2* The other category deals with using identified
modal data to improve an existing, sometimes larger,
analytical model.**

One of the important and basic relations often used in
dynamic modeling is that the measured modes satisfy the
theoretical requirement of weighted orthogonality with
respect to the mass and stiffness matrices. Such a requirement
can caly be satisfied assuming no or proportional damping
and a symmetrical stiffness matrix,® in which a case damped
and normal modes are the same. For simpler structures the
measured modes (complex modes) are very close to the
normal modes. For more complex structures, the complex
modes can be very much different from the normal modes.
Attempts to use these complex modes, as normal modes, for
satisfying (e orthogonality requirement may lead to adverse
effects on the process of dynamic modeling.

Complexity of modes, indicated by a scatter in the phase
angles associated with the modal vector, is becoming more
noticeable to today’s dynamicist due to the complexity and
dampiag characteristics of modern strucfures. Naturally, such
a scatter in the phase angles could be due to measurement
errors, erroneous identification, nonlinearities, as well as just
the mere fact of having a case of complex modes as a result of
the presence of nonproportional damping.

For structures with nonproportional damping, it is extreme-
ly difficult to measure normal modes even by using techniques
such as multiple-sine-dwell, since this very technique is based
on the assumption of proportional damping.'® Using
measured modes directly in the equation of orthogonality
requirement can result in large errors in the cff-diagonal
terms. "2 Such errors can be due to the fact that the structure
has complex modes (nonproportional dampirg) among other
reasons.

The approach proposed herein is designed to circumvent
using complex modes as normal modes, when correcting the
analytical mass matrix. Instead, the procedure allows fouv the
computation of normal modes from the given set of measur:d
complex modes.

Theory and Procedure
In this procedure, it is assumed that the structure under
consideration has an analytical mathemaical model that
needs improvements. Such a model can, as in most cases, be a
finite element model. Furthermore, it is assumed that the
structure has been tested in a modai survey test for the
identification of its modal parameters. The following in-
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formation is required for the procedure of improving the
analytical model.

1) Modal Test Data. It is assumed that a complete modal
survey test has been conducted and that the following test data
are available: a) the complex modal vectors (¢, ], i=1,...m,
measured at n measurement stations where n>m; b) the
damped natural frequencies (wy), i=1,...m; and c) the
damping factors {, i=1,...m.

2) Analytical Model Data. From the analytical model, the
following information is required: a) an 7 xn mass matrix
[M ] or the n elements of the modal mass matrix {m ,]; b) the
normal modes [, ], i=1,...n, at the n measurement stations
of the modal survey test; and c) the natural frequencies (w, ),
i=1,...n. The preceding information will be used to compute
improved mass and stiffness matrices [M] and [K] and a
damping matrix [C].

Compautation of (M~ /K) and (M~7C)

Assuming that the structure under consideration is linear,
the measured modal parameters satisfy the following
equation:

Vi
A

where X, is the ith characteristic root of the system which is
related to the ith damping factor and the ith damped natural
frequency through the equation

[M"KM"C){ }-(—w,l... (i=1,2,..m) (1)

A= (u")i{ﬁ‘u}m 2

Equation (1) represents n X m complex equations or 2n x m
real equations. These equations are not sufficient to solve for
system’s [ M~ 'KM~-'().

Since no information is available to correct the analytical
model beyond the frequency range over which the modal test
was conducted, the analytical higher modes will be assumed to
also satisfy Eq. (1). This will give the following set of
equations:

2 - “ =|- =
M-'K M 'q{ml ] (=N,)... (i=m+1,...n)
3)
where A, in this case is:
X,s(w,),l-ﬁ»ﬂ' I—F)... 4)

It is to be noted here that most analytical models do not have
damping information. It is reasonable to assume that these
higher analytical modes have a damping factor equal to the
average damping factor of the m measured modes

r-% )7 )

isl

Equation (3) represents 2a X (n—m) equations. Combining
Egs. (1) and (3), the 2n? linear equations can be solved for
M-1KM-'C).

Computation of Experimental Normal Modes

The purpose of this section is to compute the set of normal
modes, corresponding to the set of measured complex modes,
for use in correcting the mass matrix. This step is essential in
case the measured modes indicate the presence of non-
proportional damping in the structure under test. This can be
indicated clearly by large scatter in the phase angles associated
with the measured modal vectors, a phenomenon found in
several of tpday’s modern comple: <tructures. Such a
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complexity cf measured modes is especially noticed in the
higher modes ti:at are needed badly to increase the frequency
range of the dynamic model correction. It is the author’s
opinion that any effort to use complex modes, approximated
as normal modes, to correct an analytical mass matrix may
worsen rather than improve the analytical mass matrix.

Two approaches'’ were presented to compute normal

- modes from measured complex modes, one of which is similar

to the method presented in the preceding section to compute
[M~'K M~'C). The [M~'!K] matrix can yield a set of normal
modes, corresponding to the set of measured complex modes,
through the relation

IM-'Kl(¢)=u?[8]... (6)

This eigenvalue equation will give n eigenvalues and »
eigenvectors. The first m of these eigenvectors are the m
computed normal modes corresponding to m measured
complex modes. The remainder eigenvectors will be the higher
analytical modes used in Eq. (3).

Correction of the Mass Matrix

Several approaches can be used to correct the mass or
stiffness matrices. The approach based on minimum
changes,® gives the corrected mass matrix as

[m,]=[2]7[M,]l¢]
M) =M ]+ M, ]J¢)lm,]) ' [I—-m ]lm,]~"[6]7[M,]

where [¢] is (n x m) ‘“measured’’ normal modes, and [m ] is
mxm.

The approach used herein is simply based on computing a
mass matrix that satisfies the orthogonality condition for the
measured normal modes and the higher analytical normal
modes, i.e.,

(@17 [M)[#] = [m ) )

where the columns of [¢] in this case are the eigenvectors
computed from Eq. (6).

Computation of Corrected Stiffness and Damping Matrices

After computing [M~/K M~/C] from Egs. (1) and (3) and
[M] from Eq. (7), the stiffness and damping matrices can be
given by

(K] =[M)IM-'K] ®
[Cl=MIM-'C) 9

and this completes the computation of corrected or improved
mass, stiffness, and damping matrices.

Criteria for Evaluating Dynamic Model Improvements

The question of judging the success of any dynamic model
improvements technique is quite a difficult one. Should the
changes to the analytical model be minimum? Should the
improved model represent a physical system rather than just a
set of numbers? What about ending with negative masses or
negative stiffness in the improved mass matrix? The answer to
the question of success should be very much dependent on the
intended use of the improved model.

In the work reported here, the goal of improving the
analytical mathematical model is to make the improved model
respond to any input as close as possible to the response of the
exact model (real structure) over the correction frequency
range. This makes the improved model suitable for responses
and loads prediction and control system design but not for
structural modifications. If the improved mode! is to be used
for structural modifications, the number of degrees-of-
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Table 1  Exact, analytical, and improved frequencies and damping factors
Frequency, Hz Damping factor {, % ’
Mode Exact Analytical Improved Exact Analytical Notes
1 9.999 10.082 9.998 2.00 1.00 2.00 Frequency
1 11.998 12.142 11.998 2.00 1.00 2.00 range of
3 14.997 15.204 14.997 2.00 1.00 2.00 modal test
4 19.996 19.254 19.996 2.00 1.00 2.00 data
s 23.995 23911 23911 2.00 1.00 1.00
6 29.994 31.683 31.683 2.00 1.00 1.00
7 35.993 33.740 31740 2.00 1.00 1.00
8 42.991 41.020 41.020 2.00 1.00 1.00
9 45.991 44.293 44,293 2.00 1.00 1.00
10 49.990 46.104 46.104 2.00 1.00 1.00
Table2 Exact, analytical, and improved mode shapes
Analytical Improved
Mode Amplitude Phase, deg Amplitude Phase, deg Amplitude Phase, deg
100.00 0.0 100.00 0.0 100.00 0.0
157.00 -0.4 148.49 0.0 157.00 -6.4
155.56 -19.7 141.85 0.0 155.56 -19.7
116.55 -45.5 9371 0.0 116.55 ~45.5
81.11 -93.2 29.97 0.0 81.11 -93.2
2 81.11 - 156.7 29.06 180.0 81.11 - 156.7
116.55 155.6 95.00 180.0 116.55 155.6
155.56 129.8 134.79 180.0 155.56 129.8
157.00 116.5 141.71 180.0 157.00 116.5
100.00 110.1 101.35 180.0 100.00 110.1
100.00 0.0 100.00 0.0 100.00 0.0
74.24 -18.0 70.32 0.0 74.24 -18.0
51.66 -150.3 43.19 180.0 51.66 -150.3
99.08 166.7 91.65 180.0 99.08 166.7
63.70 116.5 44.89 180.0 63.70 116.5
4 63.70 6.4 43.48 0.0 63.70 6.4
99.08 ~43.8 89.33 0.0 99.08 -438
51.66 ~-86.8 42.40 0.0 51.66 ~86.8
74.24 - 140.9 72.75 180.0 74.24 140.9
100.00 122.9 106.09 180.0 100.00 122.9

freedom of the analytical model should be larger than the
number of elements in the measured modal vectors. This will
require the computation of the unmeasured modal vectors’
elements. That is a point to be considered for future in-
vestigations.

Ilustrative Simulated Experiment

The purpose of selecting a simulated experiment, rather
than a real experiment, is to test the effectiveness of the
proposed technique under controlled conditions. In this
simulated study an exact mathematical model is available as a
reference for comparison. This exact mathematical model is
corrupted with random errors to produce an analytical model
which is to be corrected to produce the improved
mathematical model. A comparison is later conducted be-
tween the improved, analytical, and exact mathematical
models.

Exact Model

The exact model possesses ten degrees-of-freedom. It is
derived through assuming ten complex modes of the form

itk+1)=
11
(i=1,2,...10 and k=1,2,...10)

Vu -sin%! +J0.5sin
(10)
The ten modes were assumed to have undamped natural

frequencies of 10, 12, 15, 20, 24, 30, 36, 43, 46, and 50 and a
damping factor of 2.0% for all ten modes.

Using the preceding modal information, [Mz'Kg] and
[Mz'Cg] were computed. From [Mj'K,] the normal modes
were computed and then used in the equation

(@17 (Mglio] = (M) (n

with all elements of [m,] assumed equal 1.0x10-%; [M]
and, subsequently, [K ;] and [C] were calculated.

Analytical Model

Random errors ranging between = 1.0% for first mode to
+10.0% for the tenth mode were introduced in the ten un-
damped natural frequencies. Random errors of +5.0% were
introduced to exact normal modes. These corrupted modal
parameters were then used to calculate (MK, M3/C,] for
the analytical mathematical model with proportional damping
equivalent to 1.0%. The modal mass matrix [m,] from the
exact model was used with +5.0% random errors to calculate
M,], [K,]), and [C,].

Improved Model

Exact modal parameters (complex mode shapes, damped
natural frequencies, and damping factors) of the first four
modes here are considered as the measured modal parameters.
These four modes together with the six higher analytical
modes were used to correct the analytical model as previously
described.
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Results and Discussion

Table | shows the exact, analytical, and improved natural
frequencies and damping factors. The second and fourth
mode shapes for the exact, analytical, and improved
mathematical models are listed in Table 2 for comparison.
Figures 1a and 1b show the fourth station response of the
analytical model and improved model, respectively, plotted
on the exact response due to an impulse at the first station.
These figures show responses over the whole frequency range
(0-60.0 Hz). While noticeable improvements are produced
over the correction frequency range (0-20.0 Hz), no adverse
effects resulted from the improvement process over the
remainder of the frequency range.

Conclusions
A direct technique to use experimental and analytical
modal parameters to improve an existing analytical model is
presented. The corrected model’s response resembles the exact
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model’s response more accurately than the analytical model
over the frequency range of the measured modal test data. No
adverse effects on the improved system’s responses resulted
beyond the correction frequency range. Built into the
algorithm procedure is tiie computation of the normal modes,
corresponding to the set of measured complex modes, that are
used for mass matrix correction. This feature promises to
eliminate the errors that may result from using approximated
complex modes as normal modes for mass matrix correction,
which makes this technique advantageous when dealing with
complex structures possessing, not necessarily high levels of
dhl:iﬁﬂl.bmlhi;hdeueeofmproponiondityindmp-
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Abstract

A time-domain linear modal identification
Lechnique is applied to identify some highly non-
linear dynamic systems. The modal concept is used
to identify such nonlinear systems with the under-
standing that the resulting modes are only a mathe-
matical representation of the series solution of
the nonlinear system under consideration. Natu-
rally these identified modal parameters are not
unique, for nonlinear systems, since they are func-
tions of the systems' amplitudes and hence referred
to as quasi-linear. The approach presented in this
paper can be useful in predicting signs of non-
linearities when linearity is assumed. It can also
be used to analyze and understand types of non-
linearities of nonlinear systems through successive
identifications at different levels of responses.

Nomenclature

f frequency in Hz

Fi force in restoring force element i

M mass

m number of degrees of freedom of the
identification math model

n number of harmonics

{n(t)} measurements noise vector

{Nj} modal vector for noise representation

p number of degrees of freedom of system
under identification

q number of degrees of freedom allowed for
measurements noise

ry the ith characteristic root for noise
representation

{x(t)} linear system response vector

{y(t)} nonlinear system response vector

{z(t)} displacement in restoring force element

a4 the ith characteristic root for harmonics

r the ith modal vector of harmonics

i the ith damping factor (%)

] angular displacement

{041} the ith vector in the systems response
matrix [¢]

{vy} the ith linear (or equivalent linear)
modal vector

ITD Ibrahim Time Domain modal identification
technique

NMO number of modes allowed in the identifi-
cation math model

SDOF single degree-of-freedom system

TDOF two degrees-of-freedom system

Introduction

With the increasing complexity of modern aero-
space and non-aerospace structures, accurate

*Associate Professor, Member AIAA

Cupyright © American Institute of Aeronautics and
Astronautics, Inc., 1983, All rights reserved.

dynamic identification has become a necessity.
Dynamic identification is usually carried out
through identifying the structure's modal param-
eters. These moda! parameters are required for
modeling, responses and loads prediction, stability
analysis and control system design.

The demand for more sophisticated dynamic
identification techniques, to match the stringent
accuracy requirements, for dynamic design and per-
formance analysis, has resulted in numerous
research efforts in this area during the last two
decades.

Presently, for dynamic identification, a
structural dynamicist ha? a choice between fre-

quency domain-techniques ¢ and time-domain tech-

niques.3’ Although quite different and their
merits are still and will be debatable for a while,
the two approaches so far have been dealing with
only linear systems.

There have been few efforts for the dyn?mic
identification of nonlinear dynamic systems. 2-
Unfortunately these efforts are limited to lumped
parameter systems and are still academic and far
away from being applicable to real structures that
possess some unknown forms of nonlinearity as well
as unknown number of degrees of freedom.

The assumption of linearity in dynamic identi-
fication has been found to be a reasonable assump-
tion for many applications. This is true where
amplitudes of vibration are small or when in gen-
eral the levels of nonlinearities are small and can
be ignored. On the other hand, some applications
require serious considerations for their high
levels of nonlinearities where assuming linearity
can be highly erroneous. An example of such appli-
cations is the case of large amplitude responses of
panels subjected to acoustic and mechanical

cxcitation.zo'

The efforts presented in this paper are first
to study the applicability of a linear modal iden-
tification technique to nonlinear systems. The
term quasi-linear used in this paper is meant to
perform the identification at one certain level of
excitation or response. Although the modal approach
may be nonexistent for a nonlinear system as a
whole, the modal concept will be used here and it
is understood that the identified modal parameters
will be function of the level of response of the
system.

The second purpose of this paper is to iden-
tify the type of nonlinearities in the system.
This can be attained by identifying the quasi-
linear modal parameters of the system at different
levels of responses and study the changes in these
modal parameters.



The linear modal identification method
selected here for the quasi-linear identification
of nonlinear systems is a time-domain technique
referred to as the Ibrahim Time Domain (ITD)

technique, =11 Appendix A.

It is to be noted here that although the
examples used in this paper are lumped parameter
systems, the method is applicable as well to dis-
tributed parameter systems. The identification
technique is not dependent on the number of degrees
of freedom of the system under consideration. The
identification model allows any larger number of
degrees of freedom such that all modal information
in the responses can be identified.

Theory: Linearized Identification Model

For linear systems, the ITD technique is based
on that the free-decay responses of a structure
{x(t)} are linear combinations of the excited
modes:

2p Mt

(x(t)} = I (wd e’ + (n(t)) (1
i=]

where (*1} is the ith modal vector, A, is the

ith characteristic root, p 1is the number of modes
excited in the responses (2p complex conjugate
modes), and n(t) 1is measurements noise.

The linear ITD technique also u?es the concept
of an oversized identification model!! to reduce
effects of measurement noise on the identified
parameters. It was shown that allowing more
degrees of freedom in the identification model
improves accuracy of identification since the extra
degrees of freedom act as outlets for the noise and
equation (1) becomes

2p At 2m ret
{x(t)} = T {y;l e + T (Nde (2)
i=1 k=2p+1

where m is greater than p.

This same concept can be used to develop a
linearized identification model for nonlinear
responses. The free-decay responses of a p
degrees-of-freedom nonlinear system can be
expressed as:

2p At = t
{y(t)} = X {y;}) e LAY b » {ry} eu" + {n(t)}
i=1 k=1

(3)

where in this case the first set of modes represents
the fundamental solutions and the second set repre-
sents the harmonics.

If only a finite number of m degrees-of-
freedom (m > p) are allowed in the identification
model then equation (3) becomes

2p atoo2n at 2q rot
y(t)} = {v;le’ + F (rde + (NjJe
i=] k=1 2=]

(4)

where
ptn+qg=m

With the understanding that usually the ampli-
tudes of higher harmonics get smaller for higher
orders, the number of high harmonics to be identi-
fied will be dependent on identification accuracy
and levels of noises in the responses.

Applications

To test the validity and applicability of the
preceding theory, the proposed approach is applied
to three different nonlinear systems. These
systems were selected to represent single-degree-of-
freedom systems with and without damping and a
damped two-degrees-of-freedom system. The non-
linear terms are restricted to the stiffness terms
while the damping terms were kept linear. For non-
linear stiffness, soft and hard springs are repre-
sented. High nonlinearities were achieved through
having the nonlinear term coefficient larger than
that of the linear term and or having large ampli-
tudes of responses.

The simulated responses of these systems were
obtained by numerically integrating the nonlinear
differential equations with some specified initial
displacements and zero initial velocities. A
fourth order Runge-Kutta with variable step method
was used for the numerical integration.

Simulated Systems

Three systems are simulated and identified
using the preceding theory. These systems are:

1. A Simple Pendulum:

The nonlinear differential equation of motion
of the simple pendulum, Fig. 1, is:

§+4r sino=0 (5a)

§ + 0.0418 + 4n° sin 5 = 0 (5b)

where equation (5a) represents the undamped case
with a linear natural frequency of 1.0 Hz and
equation (5b) has a 1.0% equivalent damping factor.

Responses were simulated for initial ampli-
tudes eo of n/6, n/3, n/2, and 2n/3.

2. A Mass-Spring System:

A single-degree-of-freedom system, Fig. 2, was
designed to have hardening spring with an equiva- .
lent linear frequency of 1.0 Hz and equivalent
linear damping of 1.0%. The governing equations of
motion of such a system for undamped and damped
cases are:

§+and(y + 2.0y3) = 0 (6a)

¥+ 0.04:7 + n(y + 2.0y%) = 0 (6b)
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Responses were simulated for initial ampli-
tudes of 0.5, 1.0, 1.5 and 2.0 units.

3. Two-Degrees-of-Freedom System:

To simulate a multi-degree-of-freedom non-
linear system with damping, a nonlinear system with
two masses, three linear viscous dampers and three
nonlinear sprin?s, Fig. 3, is analyzed. The two
springs were selected with cubic nonlinearity
representing hardening springs with the coeffi-
cients of the nonlinear term being 50 and 100% of
that of the linear term. The equations of motion
of such system are:
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Free responses due to initial displacements
were obtained by numerically integrating equation
(7). Two sets of initial conditions were used.
The first was to represent small amplitudes
{0.3, 0.1} and the second set was to simulate
larger amplitudes {3.0, 1.0}.

Identification

The numerically integrated responses were
sampled at the rate of 50 Hz for the simple pendu-
lum and the spring mass system and 100 Hz for the
two-degrees-of-freedom system. Four seconds
(200 samples) were used for the identification of
both the SDOF and the TDOF systems. The number of
modes allowed in the identification program was
changed from 1 to 6 for the SDOF systems and from
1 to 12 for the TDOF system. Two samples were used
to create the pseudo stations for the SDOF systems
and six samples_for the TDOF system. The parameter
for delaying [¢] from [¢] was taken as two
samples for the SDOF system and four for the TDOF.
This means an aliasing frequency of 12.5 Hz for all
cases. Unaccounting for the errors arising from
the numerical integration, cases with 0.0% and 1.0%
noise/signal ratios were considered.

Discussions

1. The Undamped Case (SDOF)

For the simple pendulum and single mass-spring
system, the ITD was able to identify very accu-
rately the fundamental frequency and also harmonics
up to the ninth harmonic. Tables 1 and 2 Tist the
identified harmonics for the two cases and Figs. 4
and 5 show these identified frequencies. Tabie 3
lists identified damping factors for the undamped
simple pendulum.
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Tables 4 and 5 1ist the level of contribution
of each harmonic showing the extremely small levels
of contribution of higher harmonics.

Figures 6 and 7 show the identified funda-
mental frequencies, as functions of the initial
amplitude, and their relation to the theoretical
frequency of the nonlinear system. The same
results are also shown in Tables 6 and 7.

As expected more harmonics are identifiable
for higher levels of nonlinearities. This also is
evident from determinant plots shown in Figs. 8
and 9. For smaller initial amplitudes, smaller
nonlinearities, the determinants decreased at a
faster rate indicating a lesser number of
harmonics.

2. The Damped Case (SDOF)

The identification technique identified a
strong fundamental frequency and very weak signs of
a third harmonic. Without noise added to the
responses, early signs of singularities were
noticed when the number of degrees of freedom was
increased beyond two, an indication of extremely
small nonidentifiable higher harmonics.

For noise-free data larger number of degrees-
of-freedom in the identification model revealed the
changing frequency due to the decreasing amplitude
of response due to damping. The accuracy of the
identification program detected the change in fre-
quency between the measurement response and the
pseudo measurements. This phenomenon was not found
when a small amount of noise, 1.0%, was added to
the response. This can also be avoided by using
shorter time records for identification.’

3. The Two-Degrees-of-Freedom System

Equations (7) were integrated with two sets of
initial conditions (0.3, 0.1) and (3.0, 1.0).
These are only the initial conditions; responses in
the second set had maximum displacements of 3.0 for
both measurements.

Identification results showed no more than two
modes for the small displacement case. For the
larger displacement case (high nonlinearities), the
two fundamental frequencies are much higher than
the linear case - a result that is expected from a
system with hard springs. Also, four other har-
monics appeared in the identification output.
Tables 10 and 11 summarize the identified quasi-
linear modal parameters for the system. Table 11
shows that for the large amplitude case, the first
two modes have the largest contributions to the
responses, also indicating that these two modes are
the fundamental modes.

For better understanding of the results in
Table 11, the linear modes of the system would have
resulted in modal contribution vectors of
{0.2 0.2} and {0.1 -0.1} for the small
amplitude case and {2.0 2.0} and {1.0 -1.0}
for the larger amplitude case. For the nonlinear
identified modal vectors, the amplitudes of the
fundamental modes did not change much from the
linear amplitudes, but large changes in the phase
angles occurred.



Concluding Remarks
The time-domain, linear modal identification

technique is found to be useful for the quasi-
linear modal identification of nonlinear dynamic
system. Such approach can be used to detect non-
linearities, and their types, in structures by per-
forming the identification at different levels of
response and study the changes in the identified
modal parameters.
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APPENDIX A

Background - ITD Modal Identification

Technique

The ITD modal identification technique is

based on the fact that a vector of free-decay
responses of 2m measurements, and or pseudo
measurements, and containing contributions from p

modes can be expressed as:

2p At
{¢(t)} = z {Wi} e
i=1

(A1)

To allow using an identification mathematical
model with an m degrees of freedom, where
m >> p, the vector {¢(t)} 1is arbitrarily selected

as:

.
{x(t)}

{x(t + atp)}
{x(t + 2atp)}

(08 = § (e & aty))

{x(t + aty + 4t,)}
{x(t + 28ty + aty)}

. )

(A2)

where {x(t)} is the measured response vector.
Equation (1) can be written for the same responses
delayed Aty in time as:

" 2p Aot At
{6(t)} = {o(t + At,)} =¥ {y;} e - e
i=]
(A3)
By repeating these measurements vectors {¢}

and (3} for 2r times where r > m, to form the

two 2m x 2r response matrices [¢] and [8],
and computing a matrix [A] where:

[A] [olLe]" = [2061" (A4)

the modal parameters of the system under considera-
tion can be determined from the eigenvalue problem.

[Adysd =e ' ' (yy) (45)

For complete details on ITD please refer to
references 3-11.

Table 1 Ratios to fundamental of identified frequencies for
undamped simple pendulum

—— —
= o = o = o = o
Mode 8 30 8 60 8, = 90 8 120
?:5 fiy N/ f fy fiu/ 1 fy /1 fiy i/,
1 0.9829 1.000 0.9318 1.000 0.8472 1.000 0.7284 1.000
2 2.9846 3.037 2.7949 2.999 2.5417 3.000 2.1854 2.999
3 4.9162 5.002 4.6747 5.017 4.2360 5.000 3.6415 4.999
4 - - 6.5269 7.005 5.9334 7.004 5.0987 7.000
5 = - - - - - 6.5681 9.017
6 = - o - - . = =
3
Table 2 Ratios to fundamental of identified frequencies for
undamped spring-mass system
P ———————————————
Mode Yo °* 0.5 Yo = 1.0 Yo=1.5 Yo = 2.0
no.
1 1.1708 1.000 1.5691 1.000 2.0651 1.000 2.6032 1.000
2 3.5124 3.000 4.7073 3.000 6.1953 3.000 7.8116 3.001
3 5.8529 4.999 7.8456 5.000 10.3256 5.000 13.0204 5.002
4 - - 10.9841 7.000 14.4605 7.002 18.2261 7.001
$ - - - - - - 23.4437 9.006
6 - = - - - > . -
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Table 3 Identified damping factors for
undamped simple pendulum

Damping factors” ;
. 1 2 3 4 5

30 0.00000  0.00065  0.00002 -
60  0.00001 0.00000  0.00050 -0.00096 -
90  0.00006  0.00001 0.00000  0.00122 -
120 0.00000 0.00002  0.00030 0.00866  0.00593

*A11 theoretical damping factors were equal to zero.

*The 1isted values were obtained from different identification
runs for optimum damping identification.

Table 4 Amplitudes of identified harmonics for undamped simple pendulum

Initial amplitude

90 (rld-) Identified Oo = 91 + 63 + 05 + 97 + 69
Theory Identified 8, 84 Bg 8, 8q
0.523  0.523  0.5264 x 100 -0.7474 x 1073 -0.1080 x 104 - -
1.0472 1.0274 0.1054 x ]0] -0.6429 x 10 1 0.6942 x 10 3 -0.2919 x 'IO.4 -
1.5708 1.5708 0.1594 x 10] -0.2396 x 10:] 0.6300 x 10:2 -0.1930 x 10-3 - 4
2.0944 2.0944 0.2158 x 10 -0.6697 x 10 0.3449 x 10 -0.2058 x 107 0.1156 x 10

Table 5 Amplitudes of identified harmonics for undamped spring-mass system

Initial amplitude Identified yo =y +y3+ y5 + ¥g

Yo
Theory Identified N ¥3 ¥ ¥7 ¥g
0.5000 0.5000 0.4942 x wg 0.5697 x 10:% 0.6270 x 10:3 - -4 -
1.0000 1.0000 0.9741 x 10] 0.2529 x 10_l 0.6399 x 10_ 0.1577 x 10 N
1.5000 1.5000 0.1449 x 10.I 0.4913 x 10 1 0.1617 x 10 -2 0.6205 x 10:3 - -3
2.0000 2.0005 0.1924 x 10 0.7323 x 107 0.29871 x 10 -0.3066 = 10 0.7986 x 10
Table 6 Theoretical and identified Table 7 Theoretical and identified
fundamental frequency for undamped fundamental frequency for undamped
simple pendulum spring-mass system
5.0 1 (Hz) " f1 (Hz2)
° Theory Identified 0 Theory Identified
30 0.9829 0.9829 0.5 1.1708 1.171
60 0.9318 0.9318 1.0 1.5691 1.5693
90 0.8472 0.8472 1.5 2.0651 2.0650
120 0.7284 0.7284 2.0 2.6032 2.6042




Table 8 Identified frequencies and Table 9 Identified frequencies and damping

damping factors for simple pendulum . factors for spring-mass system
8,° f (Hz) ¢ (%) Y f (42) ¢ (%)
30 - 0.9906 0.93 0.5 1.1542 0.76
2.9186 3.50 3.4240 2.1

60 0.9398 1.15 1.0 1.5242 0.49
2.7M2 2.89 4.5873 1.98

90 0.8678 1.30 1.5 1.9935 0.36
2.5698 2.60 6.0214 1.89

120 0.7714 1.89 2.0 2.5064 0.33
2.2955 4.67 7.5700 1.58

Table 10 Identified frequencies and dwing factors for
the two-degree-of-freedom system

Y10 Y Mode

o1 702 no. f (Hz) z (%)

0.3, 0.1 1 1.0185 0.95
2 2.0359 0.99

3.0, 1.0 1 2.2783 1.40
2 4.0214 1.34
3 5.7955 1.07
4 8.5792 0.65
5 10.4157 1.47
6 12.1253 1.60

*Theoretical linear frequencies are 1.0 and 2.0 Hz and
damping factors are 1.0% for the two modes.

Table 11 Identified quasi-linear mode shapes for the two-degree-of-freedom system

Case Mode no.
(Yo10 ¥02)  station ] 2 3 4 5 6
0.3, 0.1 1 - Ampl, 0.1992 0.10156
Pha.0 0.21 0.23
2 - Ampl. 0.1995 0.1014
Pha.0 0.25 178.84
3.0, 1.0 1 - Ampl., 2.0408 1.7412 0.0643 0.1191 0.0455 0.0578
Pha.0  -8.10 -29.30 -106.00 -71.94 -94.91 -126.47 .
2 - Ampl. 1.9648 1.8263 0.0828 0.1121 0.0333 0.0547
Pha.0  -11.45 99.10 -154.79 -96.12 -35.31 78.94
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Fig. 1 Simple pendulum. -

T

m=1
F = 4n2(y + 2y3) + 0_041(;

Fig. 2 Single-mass-spring

system.
Fig. 5 Identified harmonics versus fundamental
y y frequency for spring-mass system.
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Fig. 6 Theoretical and identified fundamental
frequency of simple pendulum.
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Fig. 4 Identified harmonics versus fundamental
frequencies of simple pendulum.
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Fig. 7 Theoretical and identified fundamental
frequency of spring-mass system.
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Fig. 8 Determinant versus DOF of identification
model for simple pendulum.
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Fig. 9 Determinants versus DOF of identification
model for spring-mass system.
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