
OE RT E T OF MECHA leAL E 1 EERING AND MECHANICS 
SCHOOL OF E Gl EERI G 
OLD DOMINIO UNIVERSIlY 
NORFO K, VIRGINIA 23508 

I 

DYNAMIC IDE TIFrcATfgN FOR CONTROL 
OF LARG SPAC~ ~TRUCTURES 

By 

Samir R. Principal Invest iga or 

(ASA-CR-176180) DI.A • 
CO tROL Of L 8GB SP ale IDEI7lPICAtION POB 
Report , period EDdi!CE STRUCTURES Piual 
Do.inion Uni I £9 1 Bay 1983 (Old 
HC 04/", 0 1·' or olk, Va.) 64 p 

1 CSCL 

Fi tta 1 Report 
for the ,period entii ngMay 1, 1983 

Prepared for 
National Aeron ut cs and Space Administrati .on 
l angl y Research Center 
Hampton VA 236:65 

Under 
Researc Grant -1649 
Mr. Edwt n J. Prior, Technical Monitor 
Office of Di rectol'" 

N86-135€7 
THBU 
186-13592 
Unclas 
02724 

https://ntrs.nasa.gov/search.jsp?R=19860004119 2020-03-20T15:52:46+00:00Z



E GI EERING 0 M CHA rcs 

DYNAMIC IDENTIFICATION FOR CONTROL ' 
OF LARGE SPACE STRUCTURES 

By 

Samir R. Ibrahim, Principal Investigator 

Final Report 
For the period ending ~ay 1, 1983 

Prepared for 
National Aeronautics and Space ~~ministration 
Langley Research Center 
Hampton, V 23665 

Under 
Research Grant SG- 649 
Mr. Edw'n J. Pr ' or, Technical Monitor 
Office 0 Di rect or 

Submi ed by th e 
Old Dom nion Uni versity Research Foundation 
P. o. Box 6369 
Norfolk, VA 23508 

November 985 



DYNAMIC IDENTIFICATION FOR CONTROL OF LARGE SPACE STRUCTURES 

BY 

Sam;r R. Ibrahim* 

S Y 

The final report or SG 1649, Dynamic Iden ification for control of 

Large S ace Structures, consists of the following five journal articles: 

(1) II Par etric Study of the Ibrahim Time Domain dal Identification 

Algorithm," The Shock and Vibration Bulletin, ay 1981; ad IJ /J 2 - ~ 

(2) IILarge to'odal Survey Testing Using the Ibrahim Time Domai n Identifica­

t ion Technique,' Journal of Spacecraft and ockets, Vol. 19, o. 5, 

Sept. - Oct. 1982. ~/A-cJq</~1 

(3) IIComputation of ormal des from Identified Complex to'odes,1I AIAA Jour-

nal, Vol. 21, o. 3, arch 1983. 8.aA '2.21 ¥..3 

(4) II Dyn ic to'odeling of Structures from Measured Complex Mo des,1I AI A 

Journal VoL 32, o. 6, June 1983. 83 A 3 2.. ;8 B 
(5) "Time Domain Quasi-Linear Identification of onlinear Dynami c Sys ems,1I 

AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics and Materials 

-Conference, Lake Tahoe, Nevada, May 2-4, 1983. ~Lf,q .:3;' y~ ~ 

*Associate Professor, Department of Mechanical Engineering & Mechanics, 
School of Engineering, Old Dominion University, Norfolk, VA 23508. 



'. 
Reprint m 

Bulletm 51 
(Part 3 of 3 Parts) 

SHOCK A D B ATION 
BULLETIN 

art 3 
Analytical Methods, Dynamic 

Analysis, Vehicle Systems 

MAY 1981 

tion f 
IBR I 

CE TER 
~aval Research Laboratory, Wa hington, D.C. 

Office of 
The Under Secretary of Defense 

for Re earch and Ena neerina 

Approved for public release : di tribution unlimited. 



3N \ozSB 

DY AMI A ALYSI 

J), 
86-13588 

A PARAMETRIC STUDY OF THE I BRAHIM TIME DOMAIN 
MODAL IDENTIFlCATIO ALGORITHM 

R chard S. Papp 
Structural Dynam c s Branch 

NASA Langley Res arch C nter 
Hampton, Virginia 

and 

S ir R. Ibrahim 
Department of M ch nic 1 Engineering and M chanics 

Old Do in on Univ rsity 
Norfolk, Virginia 

The accur cy of the Ibrah Ti Domain (ITO) i ntification algorithm in 
extracti ng structural od 1 par met rs from free-r sponse functions h s 
been studied us ng co puter-simulat d data for 65 poSition on n isotropic, 
uniform-thickness plate, th mod shapes obtain d by NASTRAN analysis. 
Natural frequencies, damping factors, and respons levels of the first 
15 plate modes were rbitr rily ssigned in forming the respons functions, 
to study identification r sults over rang s of mod 1 par ter valu sand 
user-selectable algorithm constants. Effects of superimposing various 
levels of noise onto the functions w re investigated in d tail. A partic­
ularly i nteresting result is th t no detrim ntal effects were observed 
when the numb r of computational d grees-of-freedom allowed in the algo­
rithm was made many times larg r th n the minimwl'. necessary for adequat 
identification. This result suggests the use of a high number of deg~ees­
of-freedom when analyz ng exper n al data, f o. th simultaneous identifi­
cation of many modes n one computer run. Details of the procedure used 
for these i dent fications are included. 

I NTRODUCTION 

A fundamental probl in exp ri­
mental structural dynamics is th accu­
rate determination of par ters 
characterizing th important vibr tion 
modes of a test structure. Th s param­
eters--natural frequencies, damping 
factors, and mode shapes--ar us d for 
a variety of purposes, includinq: 

1. trouble-shootinq excessiv 
vibration or noise fro echan­
ical equipment ; 

2. dynamic .analysis of portions 
of a structur that re too 
difficult to model analytically; 

3. refinement or verifica ion of 
an analyt cal model; and 

4. direct calculation of dynamic 
loads or response leve s that 
a structure may experience 
during operation. 
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An dditional future us of experimen­
tally d termined modal p ram ters, of 
current research interest to NASA, is in 
the activ att tude control of large 
space structures. 

Obviously, th pplications and 
corresponding ccuracies which are re­
quir d of thes data v ry considerably. 
Results ad quate for one us may b un­
accept ble for nother. In ddition, 
accuracy requirements for particular 
applications may be difficult to quantify 
and m y b subject to error. Establish­
ing th adequacy of experimental modal 
data still oft n include a judgem nt 
of wheth r th most accurate set of data, 
within an alloc ted period of time, has 
been obtained. 

Befor the widespread us 0 mini­
computers in th labor tory, modal te t­
ing and analysis were conducted almost 
exclusively with analog instrumentation. 
As the advantages of digital computa tion 



A tandard st p in th data-reduc­
tion phas of most modal test proqr s 
is th computation of frequ ncy-dom in 
character stics of th sur d struc­
tural responses. In controlled ground 
vibration tests wh re th input forc (s) 
as w 11 as the respons s can b accurate­
ly measured, acceleration/force frequenq{ 
respons functions r usually formed; 
in cases where th input forces cannotb 
measured, th response inform tion lone 
is used. Many single- and multi-degr e­
of-freedom algorithms have b en developed 
to dentify the structural modal param­
eters by curvefittin~ analytic 1 expr s­
sions to these data [1]. Single-d gree­
of- i r e dom m thods use a few data points 
near ach resonant fr qu ncy for quickly 
estim ting the modal param ters of on 
m.ode t a time. B caus in these tech­
niques it is ssum d that th overall 
response ne reach resonanc is dominated 
by th characteristic of a ingle mode, 
however, the degre of modal coupling in 
any f requ ncy interval significantly 
affects id ntification results. On the 
other hand, multi-degr e-of-fre dom algo­
rithms, developed to id ntify the par 
eters of several modes simultaneously, 
nearly always work w 11 on data that can 
be reasonably nalyzed with single-d gree­
of-freedom m thods, but m y differ appre­
ciably in more difficult c ses. 

Various a pect of using time-
·dom in respons data rather than fr quen­
cy-domain functions in th experim nt 1 
modal id ntification of structur s excit­
ed by random forc (s) have b en dis­
cussed pr viously by Ibrahim (2-6]. An 
early multi-degr -of-freedom tim -domain 
identif ication procedure [2] required 
numerical integration (assum · ng the 
measuremen of acceleration responses) 
to obtain displacement and velocity time 

•• 

h s or ch respon~ nt 
poin , ion to the ac-
celer t i on ti histories. This approach 
as 1 ter abandon d in f vor of re 

str ightfo rd thod (3] in which any 
on of displ c nt, v locity, or ac-
c 1 ration free-r pons function are 
used in an 19 nval solution sche 
to obt in the d air d adal par tex's. 
Th n w r proc dur is ref rred to in 
this pap r as the ITO ("Ibrahim T 
Do in") algorithm. The t rm Mfre -
respon "function is used throughout 
t his p p r to d note any of thre tim 
r spons forms hich y b us d in th 
i dentif cation 19orithm: actual free­
d cays me sured following rando excita­
t ion of structur: unit-impulse-
r spons functions fo d by inv rse 
Fourier tr nsfo tion of frequency 
respons function; or "rando -decrem n~ 
funct ions (4] computed from random 
operating time histories. 

Th ITO algorithm h s b n used 
to nalyz t st data fro sev ral truc-
tur s[7,eg). As no plement d, the 
identification process is a "blind" tec~ 
nique, requiring a inimal ount of 
op rator input to compute paramet rs 
for many odes fro a set of free-
r sponse functi ons. A large number of 
structural modes, often 20 or mar , are 
identified in a single computer run. In 
gen ral, the par ters computed for the 
dominant modes of thes structures agreed 
well with 'those obtained by other m thods. 
Param ter for mod s identified by the 
ITO analyses, but not d t ermi41ed with 
other analysis thods, ho ever, lacked 
verification and th ir accuracy was 
r ightfully questioned. 

Th work reported in this pap r was 
initiat d to help interpret th se experi­
ment 1 r sults. For this study, compu­
ter-simul t d fr -re ponse data, for 
l i near, multi-mode mod ls with known 
modal paramet rs, were proc ssed with 
the ITO algorithm. Th id ntified para­
meter wer used to quantify th ability 
and accuracy of the identification pro­
cess, to look for anomalous numerical 
behavior under severe id ntificati on 
condi ions, and to compare r sults for 
range of the f w user-selectabl algo­
rithm ~~nstants. Th mod ling approach 
cons isted of constructing fr -r spons 
functions for 65 position on an isotro­
pic, uniform-thickn ss r ctangul r plat 
by th line r summation of th fr -r s­
ponses of the first 15 an lytic 1 modes. 
The mod shap s wer obtained from a 
fi nite-element nalysis, nd modal fr -
quencies, damping factors, and respons 
levels were arbitr r ily ass gned for 
each desired modal model. arious 
levels of noise, calculated on an rms-



percentag b sis, re super pos d 
onto th fr e-Tesponse f ction •• 

free 
or obt n ng distortion­
-r sponse functions 

nt. , an 
oda! identifi­
ITO 19orit 

d in thh pap r. 

terminology is u d in 
To avoid con­

id ntifi­
cation r sults with the usag of the 
free-respons data in the proc dur , 
complete d t ils of th techniqu are 
includ d. Th thods us d in con-
structing th free-r spons function 
and n qu ntifying th ccuracy of 
ident ified od shap s ar described 
in t he following report sections. Th 
rems nder of th r port contain a sum­
mary of th identific tion results. 
These dat illustrate typical identi f i ­
cat ion accuracies ov r a ide range of 
simulated modal mod 1 and user- selec­
table algorithm con t nts. 

i 
j 
k 
K 
m 

Po 

s 

Xij 

( li t ) 1 

( ti t 2 

LIST OF SYMBOLS 

k' th complex eig nvalu of [A] 
the "system" m trix 
Transpos of [ ] 
a damping coeffici nt 
dampi ng factor (fraction of 
cri t ical damping) of k'th 

de 
frequency corr spondins to 

k 'th eigenvalu of [AJ 
multiples of th frequ ncy 

1/ (2 (fit) 3) 
"folding frequ ncy· based 
on (fit)l 

me asur ent station i ndex 
ime index 

mode index 
a spring constant 
numb r of assum d mod s 
ex NDOF) 

a mas 
numb r of tim samples cor­

r esponding to (fit) 1, (fit) 2' 
and (fit)3 

numb r of respons uremerts 
available 

numb r of time sampl s in 
each fr -r spons f~ction 
e- COL) 

tim inst nt j 
tot 1 tim length of respons 

f unctions 
free- espons of tation i 

at tim instant j 
t im incr ment between the two 

response matr ices, [ ] and 
[$] 

time i ncrement i n forming 
"transformed stations" 
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(Ot ) 3 

AT 
E 

[ ] 

t ' nt b t in 
upp 10 r h th 
r espons trices 

an. rbitrary t ncr nt 
a s 11 unc rtain y in 

e i genvalu determin 
angular position of 'th 

e i g nv lu in th a-b plan 
char ct rist c value of mod k 
a matrix of co pl x expon n­
tials 

damping valu of k'th mod 
(- r 1 part of characteris­
t i c valu ) 

da ping v lu of k'th mod 
us ing altern t hod 

respons trix whos ro s 
contain th f re -respons 
f unctions 

Th [] matrix delayed (fit)l 
co plex eigenvector of mode k 
m.a trix who columns re th 

sys m's eigenv ctors 
the [ ~] matrix with r sponses 
delayed (fit)l 

damped natural frequency of 
k'th mode (- imaginary part 
of characteris c value) 

undamped natural r equency of 
k'th mod 

Abbreviation 

ITO 
MAR 
MCF' 
MSCC 
NCOL 

NST 

OAMCF 
RHS 
SF 

Ibr him Tim Domain (technique) 
M ~l Amplitude Ratio 
Modal Confidence Factor 
Mode Shape Correlation Constant 
Number of Columns in [ ] and 

[ ) 
Number of (measurem nt) 

Station used in calculation 
of OAMCF 

Overall Modal Confidence Factor 
Roo t-M an-Square (value) 
data Sampling Frequency 

(- recipr ocal of tim inte~ 
b tween data sample ) 

THEORY OF THE IDENTIFICATION TECHNIQUE 

The Eigenvalu Solution Approach 

The char act ristic equ tion for a 
c lassical s ingle-degree-of-fre domstruc­
tural s ystem , govern d during its fre 
respons by 

M X + C X K x - 0 (1) 

i . , A2 M + A C + .K - 0, and the gen ral 
solution form is x(t) - ~ e At. For an 
overdamp d syst , ~ and are both 
r e I-valued; for an underdamped system, 
t h yare complex, occurring in conjugate 
pairs . 

In the more common underdamped case, 
the roots of the char acteri s tic equati on 

... 



are >. 
damped n 

on, n - ,Ia2 
ral frequ 
factor or 
C/Cc · 

For a lin ar 
dom s y t 
free res pons 
(measu amen ) 
time tj can 
mation o f the 
mode as: 

IIId is th 
in r dian /sec-

th und p d n tu­
• a/llln th d ping 
critical d ping, 

of 

(2) 

where k and >. re both complex 
numbers, in gen ral. ot th t the sum­
mation extends to 2m s nc th re are 
2m roots of th characteristic equatio~ 

re -respons values for 2m sta­
tions and s in tants of t e, calcu­
lated using Eq. (2), can be arranged 
into matrix form s: 

11 12 1, 2m 

21 22 2, 2m 

X 

2m, 1 ... 2m, 2m 

e 
). ltl e 

).1 2 
e 

).lts 

e 
). 2t l 

e 
). 2~ 

e 
>'2 t s 

(3) 

). 2mt l 
e e 

).2 ts 
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or sim ly 

[ ] - ( ] [A] ( 4 ) 

(2 )( s) - (2 )( 2m) (2 )( s) 

Simil rly, fre -r sponse va es (At)l 
later in t m than those in Eq. (2), 

sured th same stations, c an be 
expressed 

(At) J 

2m 
~ ).ktj 
~ Aik e (5) 

k=l 

or, in mat r i x form, for 
s instants of tim : 

2m stations and 

( 6) 

(2m )( s) .. (2m )( 2m) (2m )( s) 

For s> = 2m, ['1'] and [~] are 
related throu9h Eqs . (4) and (6) , 
el iminating LA], by: 

(7) 

(2m x 2m) ( 2m )( 2m) = (2 2m) 

where 

( 8) 

(s )( 2m) (2m )( 2m) - (s )( 2m) 

Since the columns of [ ) and 

related from Eq. (5) by {'}k. 
{ }k, the complete system can now be 
placed in the form of a single eigenval 
problem as: 

The matrix [A] is referred to i n this 
paper as the "system matrix," and con­
tains information characterizing the 
complete set of modal pa~ameters of the 
system. 



The des ' red s ructura (damped) 
natural frequenc es nd d p ng f c tors 
are determined f ro the igenvalues of 

[ AJ, e
A (6 t )1 _ 

k + i b k , by: 

a k - 2( 6
ltl

l 
In(ak

2 
+ bk

2
) 

(10) 

The eigenv ctors of [AJ are the 
des ired (complex) structur 1 mode 
shapes, { }k' 

Equ tion (8) and (9) formth 
basics of the solution ppro ch: fre­
response function A re placed into th 
rows of and; [AJT is obtained 
by a least-squ res olution of Eq. (8); 
and the c ompl x eigenvalues and eigen­
vectors of [A] are hen found, to 
which the syst 's mod 1 param ters 
are d i rectly related. 

The dim nsion 'm' is referred 
to throughout this paper as the "numb r 
of al lowed (computational) degrees-of­
freedom," COF. This term hould not 
be confused with th more widely us d 
mean ng of "degrees-of-fre do " as 
the number of indep ndent sp tial coor­
dinates nece sary to define the motion 
of a system. Th "numb r of assumed 
modes " or the "order of the math model" 
are o ther d scriptors that have be n 
used to denote this fund nt 1 analysis 
constant. The m trix dim nsion 's,' 
the number of columns in [] amd [ A] 
(i.e. , th numb r of time samples used 
from each free-respons function), is 
referred to throughout s NCOL. Th 
matrices [] and (A] are referred 
to as the two "response matrices." 

Three distinct , user-s lectable, 
time shifts re used in positioning over­
lapping segments of th asured free­
response functions into th rows of th 
response matrices. The !undamental time 
increment b tween all data placed into 
[~J ' and (J is (6t) l' Two oth r 
time shifts, denoted by (6t)2 and 
(6t)3' will be discussed in the report 
section entitled "Transformed Stations 
and Modal Confidence Factors." The 
number of consecutive time samples 
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corr sponding to each of th 
will b denot d her af r by s 
N2, and 3, resp cti v ly. 

the 
th 

Soluti on Considerations 

r-

Equ tions (8) and (9 ) are forms 
whose computer solution have been studied 
: n depth by numerical analysts. Eq. (8) 
~s an ov r-determin d sys e of si ulta­
neous linear equa ions, and Eq. (9) is 
an algebraic igenvalue problem, wher 
the (2 ) eigenvalue 0 (A] are 

Ak (6t)l 
e and th correspond ' ng eigen-
vectors are {~} k' 

The ·conventional transpose ap­
proach" of solving Eq. (8) consists of 
pre-multi pl ' ing both sid s by (] and 
then solving for (A]T by any of s v ral 
methods for the solut on of 2m simulta­
neous lin ar equations in 2m unknowns. 
This ' s th approach used for the r sults 
show~ in this paper. In particular, pre­
mult~plying Eq. (8) by [J results in: 

Equation (11) was then solved by a stan­
dard Gaussian elimination subroutine 
us ing an LU decomposition of the 
( [ ~] (]T) matrix of coefficients. 

Other methods are available for 
solving Eg. (8) which do not require 
the pre-multiplication of ach side by 
[~] , (0,9]. These m thods hav been 
developed for the expr:ess purpose of in­
creasing the sol ution accuracy when the 
matrix of coefficients, in this case 
[~]T, is ill-condition d, th pre­
multiplication will increase any ill­
conditioning of th coefficient matrix. 
A l imited number of comparison identifi­
cati ons hav been run using two oth r 
computer subroutines vailable for th 
solution of Eq. (8), n mely: 

1. by singular value decomposition 
of the coefficient matrix using 
Householder transformati ons, 
obtaining the isometric matrix 
(U] and orthogonal matrix [v], 



2. 

In 1 cases run u ng th se other mathods, 
no chang s in the computed modal par 
eters were observ d to the precis on used 
in printing th resul t s sho in this 
paper . On the other hand, ach of th 
two m_thods described above required 
considerably more co puter mory to 
impl em nt using av ilabl FORTRAN sub­
routines than the conventional transpos 
a~pro ch. In both cases, the []T and 
[ jT m trices--each of size (s x 2m)-­
needed to reside in core, whereas the 
transpose thod was imple ented with 
two matrices of order 2m each. For 
a t ypical s/2m ratio of 3 u ed in many 
of th identifications, election of 
eithe r optional solution method required 
a f actor of 6 times more core storag • 

Th details of available tech­
niques for the solution of Eq. (8) are 
compiled in several num rical analysis 
textboo s [8,9]. A subroutin pack 
contai ning a standardized set of computer 
code f or implementing these methods is 
available [10]. 

Th numerical techniques for solving 
Eq. (9) are not as plentiful; th OR 
method advocated by Wilkinson [8,11], 
is th accepted approach for determining 
the complete set of real and complex 
eigenvalues and eig nvectors of [A], 
a ful ly-populated general matrix with 
real elem nts. This is the m thod us d 
to ob tain all r esults pr e sented in this 
paper. A subrouti e pack ( 1 2] con- . 
taining standardi zed code for the com­
puter solution of eigenvalue problems 
is also available. 

48 

me 
fa r, 
viou 

r sponses. 

impl -
thus 

When the numb r of response measure­
ments that re available, say Po' is 
le s than the number of computational 
degrees-of-freedom which are desired, 
fewer than half the rows of [] are 
f illed by the original, unshifted, 
re ponse functions. Under these circum­
s t anc s, Nassumed" or Ntransformed" 
stations [2] are created for th addi­
t i onal rows of both response matrices 
by s imply shifting the original functi 
placed in th first Po rows by multi­
pl es of a second us r-s lectable time 
shift, (At)2: (At)2, 2(At)2' 3(At)2' 
etc . , until th upper halv s of both 
ma trices are filled. This process of 
adding transformed stations does not 
mathematically affect the eigenvalues of 
the system matrix, [] , s . ng perfect 
i dentification. (If NDOF is se l ected 
smaller than Po, only NDOF of the 
available response functions are used in 
the analysis.) 

The bottom halves of the two 
re ponse m trices are formed by duplicat­
i ng the upper rows, but delaying an 
additional user-selectable time shift, 
(At )3' The rationale for filling only 
th upper halves of the matrices with 
th available response functions (and 
tran formed stations) and filling the 
bottom h lves with a time-shifted form 
of the upper halves is based on the cal­
culati on of "Modal Confidence Factors," 
to be discussed next. 

If two seqm nts of a free-response 
function obtained from th sam measure­
ment tation, but separated by an 
arbitrary time interval AT, are placed 
into different rows of th response 
matr ces, the elements i n each computed 
eigenvec t or of [A] correspondi ng to 
these two rows, i k and tik' wi ll be 
related (again assuming perfect identif~­
cation) by: 



for 

t _ 
ik e 

ch lin r structural mod 

n 

(12) 

k. 

r 
s. The 

This process c n b thought of as 
the comparison of two sets of eigen­
vectors , corresponding to th same set 
of eigenvalues, computed imultaneously 
for the system using two different 
segments of th available free-r sponse 
funct ions. An important us r advantage 
in obtaining both 8 ts of eigenvectors 
in on eigensolution is that no effort 
is ne d d to "pair up" corresponding 
eigenvectors if somewhat different 
eigenvalues are computed for ach et of 
segments. A single igenvalu set i 
obtain d using i nform tion derived from 
both se~s of data, and the two eigen­
vector set are correc ly compared in t h 
computer nalys s with no us r d cis ions 
required . 

An MCF is calculated in this manner 
for each of t he Po stations, f or each 
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d ntified co 
PiiCt this info 
abl lev 1, an 

was unn c ssary. 

The time shift (At») should not b 
sel cted qu 1 to either (At)l or 
(At )2' If qual to (At)l' all MCF's 
will be computed as 100 in amplitude and 
00 in phase, and be of no us. If 
equal to (At)2, and at least one trans­
formed station has been used, [] and 
[AJ will each have two id ntical rows 
and Eq. (8) cannot b solved. Setting 
(A t ») equal to on -half th valu of 
(4t )2 has b en found satisfactor y in 
ost cas s. To clarify the relationship 

b tw en these time shifts, refer again 
to Fig. 1 , which shows a typical place­
m nt 0 da ta i nto the respon e m tricEs 
when ree free-response functions are 
used . 

TRUCTION OF THE SIMULATED 
E-RESPONSE FUNCTIONS 

Mode shapes used in constructing 
e simulated free-response functions 

w re obtained from a NASTRAN finite-ele­
m nt analysis of an isotropic, uniform­
t hickness plate with 8 x 24 square ele­
m nts. Data for 65 stations were obtain­
ed by using the analytical mode shape 
data (for motion normal to the plate 
only) from ev ry other grid point in 
both directions, including the outside 
bard r. The first 15 modes of this 
analysis were used in forming the 
responses. For each desired modal model, 
a damped natural frequency, damping 
factor, and response amplitude w re 
arbitrarily selected for each mode. Th 
effects of randomiZing the initial phase 
angle for all stations of each mode and 
of s lecting other than 00 or 1800 be-
tw n the stations in a mode (i •• , 
co plex modes) wer studied for s veral 
ca es, and no change in the identifi­
cat ion accuracy were noted. Thus , unYiSS 
otherwise stated , the contribution of 
each mode i n the re ponses was represent­
ed as a damped cosine funct ion multiplied 
by an appropriate (positive or negative) 
mode shape ampli tude cons t ant. 
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EVALUATION OF IDENTIFICATION ACCURACY 

Th accuracy of all ode shape 
id ntifications for this study has 
be n quantified by computing a "Mode 
Shap Correlation Constant," MSCC, 
betw en the identified od shap s and 
each of the 15 input mode shap s. Th 
constant is calcul ted in a manner 
analogou to that of coh renee, oft n 
computed in ti -s ria analysis work. 
The functional form is that of the 

HZ, 
and 
th 

squar of the correlation co fficient 
def ined in basic statistics, computed 
between two sequences of complex numbers. 

Mathematically, if {l} is a known 
input (co plex) mod shape, and {2} 
is an identified (complex) mode shape: 

MSCC -

where T d not s th transpos 
• th co lex conjug t • 

nd 

Th accur cy of ified fr -
quency and damping p r ers w s 
assessed by direct obs rvation only. 

RESULTS AND 

In processing set of free­
respons unctions ith the id ntifi-
ca ion algorit , liv pr ry us r-
sel ctable constants must b chos n. 
They re NDOF, COL, (At)l, (At)2, 
and (At)3' S cond ry considerations 
include the el ctions of data sampling 
rate and an log or digital filt ring 
rang s, th p rticular station to be 
analyzed in one co put r run, nd the 
absolute t arting times of the fre -
r sponse data (i •• , wheth r any data 
points are skipped at th beginning of 
the functions). An optim s lection of 
the analysis options is a function of 
the characteristics of the d ta b ng 
analyzed, and "cookbook" in tructions 
are difficult to develop. Th results 
to be sho in this section, however, 
provide guidelines for th ir selection 
and for judging the sensitivity of the 
choice , and illustrat identification 
accuracies which may be exp cted. 

All re ults shown in this paper 
were obtained using a vectorized v rsion 
of the cod on Langley's CDC Cyber 203 
(formerly Star-100) computer. Typical 
CPU times for identification w re 15 sec­
onds for NooF - 65 nd NCOL • 390, and 
340 seconds for NooF a 2~0 and NCOL -
968. Th required comput r tim vari d 
approximately as the numb r of columns 
used in () and (), NCO~, and as 
the square of the numb r of allow d 
computat onal d grees-of-freedom, NooF. 

Som Baseline Model Re ults 

Figure 2 shows the time- and fr -
quency-domain responses at measurement 
Sta tion No. 1 (a corn r of the plate) 
for thre of the baseline od Is analyzed 
in the study. In Figs. 2(a) and 2(b), 
the damping factor, CICc , of all 15 
modes was set to 2. The rms noise 
levels in these two cases were 2% and 
20%, respectively. Similarly, Fig. 2(c) 
shows the response of Station No. 1 with 



5 modes ss gn d 5 ing and 
noi se. The ashed lin a on th 

h story plots design t th rang 
po nts used from ch function in ITO 

analyses whose r suI s . 11 b pr-
sen ted n Table I nd gs. 3 through 5. 
The center and right-hand plot in 
F g . 2 show the quadratu e ( gin ry) 
component and modulus, r sp c iv ly, of 
the Fourier transfo of th corr pond­
i ng free-response function. 

Table I conta ' n MSCC valu a for 
thes three id n ificationa calcu­
lated between each of th 15 input mod 
shapes and each iden ilied mod (whos 
OAMCF was 2% or larger), round d to th 
earest whole number. Al 0 included 

are ' n identified frequ nci s in 
Hertz, the dentified d ping f c ors in 
p rcent, and the OAMCF for ch ode. 
The column to the right of th OAMCF 
da ta contains the n r of tations of 
65, NST, that were u ed n calcul ting 
the corresponding OAMCF value; only 
those ta tions with non-negligible 
modal response (at least 3 at t'he max­
imum value of t he mode) are inc l uded in 
the calculation. This 3 cr trion w s 
impos d on the calculation of OAMCF 
because any of th select d 65 asure­
ment s at ons were loc ted xactly on 
mode shape node lines; the variance in 
the calculated MCF d ta for thes 
stati ons was generally h gh, as to b 
expected, because very small mod 1 
ampl i tudes identifi d for thes stations 
were used i n the cal cuI tions. Each of 
these i dentification w re run using 

DOF of 65 and NCOL of 390 . The oth r 
50 "modes" obtained in ch identifi­
cation were "noise modes," differentiated 
by low «2 ) tAMCF valu s. 

For these identifications, the us r­
selectable time-shift constants, (At)l, 
(A t )2 , and (A t )3 ' w re set to 3/SF, 
8/ SF, and 4/ 5F, r es ctively, wh re SF 
is the data sampling rate. The values 
Nl z 3, N2 = 8, N3 - w re used in 
obtaining all i dentific tion r ults 
shown in th s paper, unl ss otherwis 
noted. (Thes are the value selected 
for Fig. 1 in illustrating typical 
placement of f ree-respons d ta into the 
two response matrices . ) 

Figl1 re 3 shows the 15 identified 
(complex) mode shapes for th 2 -damping, 
2%-noise aselin model, corr sponding 
to the data contained in Table I. Th se 
identified mode shap s re indistingui~ 
able from those used in constructing the 
model. Note that the ITO algorithm 
identifies complex mode shapes, consisting 
of a magnitude and phase at each sleeted 
measurement station: the identifi ed 
mode-shape phase angles a re i ncluded 
adjacent to each mode shape, assigned by 
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cons cutiv ata ion n r fro th 
c n r of the circle to the outer ring, 

s depicted in h low r-right corn r of 
Fig. 3; th data for the accompanying 
mode sh p plot. war obtain d by th 
produc of th iden ified od -sh p 

plitud s and th cosine of th cor­
.r ponding phas angle. 

Figures 4 and 5 show the mode h p s 
i d ntified for th two other b line 

dels whos r ults re pr sented in 
Ta 1 I, Iso using DOF of 65 and NCOL 
of 390 in th . an lys s. As b fore, only 
t hos "od SM ith an OAMC of at 1 ast 
2 are sho • In Fig. 4, for th 2-
d ping, 20 -noise mod 1, th identified 
s h p s are also indistinguishabl fro 
t he exact, input mode shap s, and the 
phas -angle scatter av rage only a few 
degrees. Identification r suIts for the 
5%-damping, 10 -noise model, provided 
i n Fig. 5, sho od shapes that re 
sl ghtly dis orted for mod s 11 through 
14, with significant phase angle scatter 
in everal of the modes. In interpret­
i ng these results, however, the reader 
is c utioned that more accurate identifi­
cations are obtainable for these models; 
as shown later, allowing higher degrees­
of-freedom in th identification will 
i ncr ase the accuracy to som degree. 
These identifications all used NDOF of 
65 and NCOL of 390, and the results 
typify th effects of changing modal 
damping and noise level while holding 
all of the algorithm constants fixed. 

ote in Table I that an MSCC of 
100 was calculated for each of the 
accurately identified mode shapes of the 
2 - damping, 2 -noise baseline model, 
shown in Fig. 3. Also of interest in 
t hes MSCC results is the slight "bl nd­
ing" of the higher- numbered mode shapes 
for the 5 -damping, 10 -noise model, 
corr ponding to the- small distortions 
seen in th plots in Fig. 5. 

The Number of Allowed Degrees-of-Freedom 

The numb r of computational degrees­
of-freedom allowed in the identification, 
NDOF , should b s 1 cted equal to the 
numb r of modes excited in the responses 
if th free-response functions are 
noi se- tree . For any deviation of th 
respons data from th exact analytical 
form--that is, sam lev 1 of sup r-
impos d noise--more deg~ees-of-freedom 
than this must be allowed for accurat 
identification. It is omewhat intuitive 
that b tter id ntification of th under­
lying deterministic modal data may re ult 
when one allows for the calculation of 
extr a "noise modes," in addition to the 
number of actual structural modes con­
tributing to the responses, to provide 



an ou tle n the 
no i se con r bu on. 

d model for the 

To s-

a which 

Th lowest v lu of NDOF for accu­
rate id ntification h b en found in 
this study to b r 1 ted to th signal­
to-noise ratios of the modal r spon es. 
Th considerable shifting of th fr­
qu ncy ·lines· in th s NDOF-frequency 
maps at low values of NDOF r s 111ts 
largely from s tt ng 11 15 modal 
res ons 1 v ls qual. Wh n experi­
mental d ta ar proce 8 d, th low st 
NDOF values for id ntitication 0 each 
mad vary consid rably or bet e n 
mod s th n th dat shown in Figs. 6 
and 7, du to diff r nt r spons 1 v Is, 
and lmost no lin shifting occur • 

Typical ccuracy at much high r 
allo d d gr s-of-fre do re included 
in T ble II for th 2 -d ping, 20 -no 
baselin model with n lys s t NDOF of 
65, ~OO, 250, nd 300. Th se id n-
tif cations used 11 1000 d t po nts n 
each of th 65 respon e functions; that 
is, NCOL was mad as large a s possible 
in eac h c ase. Although the parameters 
for a 1 15 modes are of acceptable 
accuracy for most a pplications at NDOF 
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par 
no 

veys, 

ot th t th r sults sho in 
Tabl II for DO of 65 re not a 
accurate s thos shown arli r in 
Table I for analysis of th s 2 -damp-
ing , 20 ~oi baselin od 1; th re­
sults in Tabl I w re obtain d u ing 
NCOL of 390 and thoae in Table II with 
NCOL of 993. The e ffects of the selec­
tion of COL on identification accuracy 
will b ddr ss d in a later report 
section. 

ction of (6t)l 

To h Ip understand th effects of 
th lectabl 19orithm constant 
(6t)l (th tim increment be ween cor­
responding d ta in th two response 
matrices), not f r om Eq . (9) that the 
co put d eigenvalues of [A] , ak + ibk, 
ar expon nti 1 functions of th product 
of th system's characteristic valu s, 
Ak, a nd (6t)l. The desired structural 
modal frequ ncies and damping factors 
ar th n calculat d directly from these 
eig nvalu s by Eqs. (10). Using these 
relationships, loci of constant damping 
fac tor are plotted in Fig. 8 in the com­
pl x a-b plane, for fd - Wd/(2w) 
ranging from 0 to 1/(2(6t)1). A typical 
eig nvalue of [A] is denot d by po nt 
'k ,' whose corresponding natural fre-
qu ncy in radians/sec is simply the 
angle ek divided by (6t)1. Since 
equ 1 damping values, Ok' li on equal 
radii in the a-b pl n , by Eq. (10), 
th contours of constant d ping f ctor 
(equ 1 to th damping valu divid d by 
t.h undamp d n tural frequency) will con­
ve rg to th point (1,0) for fd - 0 
and s eparat from on anoth r as fd 
increase A C/Cc i ncr as , th 
contours lie in i de on another, until, 
at 100\, the locus s simply th positive 
x-axis. 

The frequency in Hertz correspond­
ing to 0k - , denoted as f n , is the 



func-

n-

f'lf 
cours , 
ill 1 d to 

a n , 

eig nvalue of 
[AJ ny inaccur cy 
in th ir c lcul tion y tranalat to a 
cons der 1 inaccur cy in th ir cor­
responding modal fr qu nci s nd damping 
factors, d p nding on th loc tion in th 
a-b pl n. To quantify this charac er­
iatic , Fig. 9 provid s contours of mini­
mum and axim p rc nt d vi tion in th 
identifi d d 1 frequenci d dam ing 
factors for thr e magnitudes of unc r­
ta i nty in the eig nvalu det rmin tion. 
Note , n Fig. 9( ), that p rcent fr -
quency d vi tions r n a rly ind pend nt 
of damping level, nd re 1 rg only for 
valu s less than 0.1 f (b caus the 
data re shown on p rcent-d viation 
basis, nd f is 11 in thia range). 
For 11 thre unc rtainty levels, the 
p rcent fr qu ncy d viations ar no 
gr at r than 2 at all fr quenciea t 
1 aat 0.2 f'lf' for C/Cc < 10. Th 
envelop s of maximum percent d v iation in 
the d ping factor id ntif c tion , on th 
other hand, ar considerably 1 rg r, s 
ahown in Fig. 9(b). Theae data suggest 
that d mpin~ factors derived from e i gen­
values of LA] subtending small ngles 
in th a-b pl n m y b s j ct to 
appr ciable rror. 

As (6t)1 incr s a, th fre­
quency int rv 1 correspondin? to eigen­
valu located t ex - 0 nd ax· 
decr e ses, and th eigenvalu a for ny 
two modal fr quenc a p r~t in th 
a-b pl n. When thi o~curs, a more 
accurat analys s gener lly c n b made 
of a small r tot 1 frequency interval. 
Figure 10 shows typ cal results of this 
effect in the identification of the 
2'-damping, 20'-noise baael i ne model for 

two s 1 ctions of 1 (th n 
sam le corre ponding to th t ' -shift 
int rval (6t)1). The r sults in 
Fig . 10() re obt in d with Nl - 1 
and ho in Fig. 10(b) ith Nl - 3, 
holding 11 oth r algo thm constants 
unchanged. In th polar plots of 
Fig. 10, th ymhols d not th loca­
tions of 11 identified eigenvalues of 
[A] in th -b pl n : the eigenvalue 
corr sponding to the 15 structur 1 mod s, 
diat nguish ble fro th ·noise modes· 
whos 0 F's re 1 le s th n 2 , 
li pproxi tely equ lly spaced along 
th 2 -d ping (da h d)lin in each 
figur. As shown in th t bul t d re­
sults , t he id n ific ion accuracie of 
both damping factors nd mode sh pe 
were improv d when 1 s increas d 
from 1 to 3. 

thod for 

Calculating Modal Damping 

In addition to the straightforward 
c lculation method for the d sir d modal 
d ping factors using th eigenvalues of 
[AJ , shown in Eq. (10), limited study has 
b en don of an alternat ethod using 
th firat Po el ents in th upper and 
lower halves of the computed eigen­
vectors--data used pr viously in comput-

ng the CF valu s. Based on xp rience, 
th identified damping factors often show 
the greatest variance of all the compute~ 
modal p r ters. By ssuming th t the 
eigenv ctor da a are mor accurate than 
the id ntified damping data, a method 
s i mil r to the rev rse proc ss used in 
computing the MeF data can be used to 
obtain a s cond estimate of the modal 
damping factors. 

them tically, a form analogous to 
that for obtaining th amplitude of a 
frequency r~spons function using the 
Fouri r components of input and response 
s ign ls can be us d to comput an aver ge 
modal plitude ratio b twe n the 'upper' 
and 'low r,' Po- lem nt, mode shape 
vectors. In particular, if {~U} is an 
upper id ntifi d (complex) mod shape, and 
{ L } s a lower id nti ied (complex) 
mode shape , a Modal Amplitude Ratio (MAR) 
can be c lcul ted s: 

(15) 

from which an alternate modal damping 
factor can be calculated, using the cor­
r spondi ng damped natural frequency, ~ 
obtained directly from the eigenvalue of 
[AJ, by: 



- (16) 

wh r a 2 ,. In( )/(At)3· 

h n the modal damping is c lculated 
usi ng thi alt rn t m thod, an MSCC 
betw n the pp r and 10 r po-elem nt 
vectors u ed in the calculation should 
also b form d to bused s n indi­
cation of th consist ncy of th ~igen­
vector data, which y its If b ~naccu­
rate . A conserv tiva ppro ch would 
cert inly be to calculate th damping 
f ctors by both methods, and us ny 
discrepancy in th ir v lues as a indi­
cator of n ccurate identification. 
U less othe is not d, the damping 
dentif ca ion resul s ... hO .... l in th s 

paper wer obtain d u ing th dir ct 
calcu l tion m thod from the eigenva ue 
of (]. 

vel 

In all id nt fication re ults pre­
sent d thus f r, the response 1 vels of 
all 15 modes in th simul t d models re 
set equ 1; for ctual exp rim ntal data 
this would not be th case. To examin 
identification ccuracy of modes with 
s gnificantly different respons lev 1, 
Figs. 1 ( ) and 12(b) show NDOF-fre­
quency map for th 2 -damping, 2 -nois 
basel in mod 1 wh n th response lev 1 
of mod 8 (at 2 Hz) 101 r duc d to 
and 5 , resp ctiv ly, of th 1 vel s lec­
ted for ch of th oth r 14 modes. The 
l\-re pons case repr nts th pproxi­
mate 10 ar limit t hich this mod lola 
ident f b for NDOF up to 75. Com-
pared 101 h m lar plot shown arlier 
in Fig . 6( c) for all modes of equal 
response level, note that these plots 
have several randomly scattered dots, 
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corre ponding to " ode" ith 0 C le 
han 2 , th cu off us d for plotting 
h d ta shown in F gs. 6 nd 7. Thi 

cutoff criterion was r mov d for these 
plot to 110 th 2 -Hz od d ta i n 
Fig. 12( ) to b isc rnibl~. 

1 ough Figs. 2() and 12(b) show 
t h t the 24-Hz mod 1 frequency was iden-
ifi d in both cas s, th se d ta do not 

indic t the accuracy of ' th r th 
ident fi d mod shap or od 1 d ping 
f ctorsl this information is included in 
Fig . 12(c) nd 12(d), r sp ctively. 
In Fig . 12(c), MSCC's calculated b tween 
t h identified od sh p sand th known 
nput sh p re plotted for e ch case as 

a unction of NDOF. For the 5 -r spons 
cas , d noted by the s uarc symbols, the 
MSCC is ssentially 100 for 11 NDOF 
abov 6; for th 1 -response case, on 
th other hand, the SCC value does not 
rise abov the 83 lev~l. In fact, when 
the 1 -respons mod 1 was analyzed using 

DOF ,of 250, th MSCC of th 24-Hz mode 
rema~n d at pproxim tely 83 • 

Identifi d modal damping factors 
f or th se cases, calculated both using 
Eq. (10) and by th alternate thod 
di cuss d in the previous report s c­
t ion, are shown in Fig. 12(d). In all 
c ses, the dat app ar to b pproaching 
t h correct valu of 2 with incre sing 
NDOF; the re ults for th 5 -response 
case bing closer to th tru value than 
t hoa for the 1 -response case. Addi­
t ionally, th damping factors calculated 
by th alternate m thod using the com­
puted ' igenvector data re more ccurate 
at each valu of NDOF th n the damping 
facto r calculated dir ctly from the 
identifi d eigenvalu s of [Al. 

The S lection of NCOL 

In establishing th two r sponse 
matrices, both the numb r of rows (equal 
to t ic NDOF) nd the numb r of columns, 
NCOL, must b s lect d for each i dentifi­
cation. As shown in NDOF-frequency maps 
in Figs. 6, 7, 12( ), and 12(b), the 
m nimum required NDOF is related to the 
signal-to-noiae ratio of th modes. 
The value for NCOL, denoted by's' in 
th THEORY section of this report, is 
restricted to be at least twice NDOF, 
so that Eq. (8) contains no fewer equa­
tons than unknowns . An intuitiv upper 
limit in sel cting NCOL corresponds to 
the tim at which th fre -respons sig­
nal for the mod to b iden ified b co 
small r than th no se lev 1; b yond this 
po i nt each additional data poin used 
from the response functions would provide 
more noise than additional i nformation 
to the identification algorithm. 
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A classic probl using ny mod 1 
i dentification techniqu is th ccurate 
d t rminat ion of th odal p ram t rs 
for two or more structural modes of 
approximat ly th s natural frequ ncy. 
Assuming no attempt was made t o appor­
tion the force used in exci ting the 
structure, the response levels of two 
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To stud the fr ~uency resolution 
ability of ~~ ITO algorithm, severa! 
modal mode!a ~eze con tructed by cvi ng 
.. 1e fre~_~o~'=~r o~ ode 8, ori~inal1y at 
24 . 0 H~ in the e o line mode!, to a 
lo~e va!ue, r:~.ose to o(1.e 7 at 22.0 Hz. 
All 14 o~h~~ modes were maintained at 

eir oriCJ~.nal spaoing of 2 Hz from 
10.0 t~ 30.0 Hz. T le III shows the 
iden~ification r sults using th 2 -damp­
ing, 2t-nois baselin od 1, for 0.10, 
0 . 05, and 0.01 Hz frequency separation 
betw n mod s 7 and 8. Sixty-fiv 
degr e -of-fr do, ith NCOL of 390, 
were us d in the identific tions. At 
each fr qu ncy sep r tion valu , the 
damping in od 8 w s succ ssively 
chang d fro 2' (the am valu ssigned 
to mod 7), to 3 , to lOt. For all 
thre freque~cy separation , near-perfect 
identification of th p rameters for all 
15 modes was ob in d for the cases when 
the ode 8 d ping wa either 3' or lOt. 
I den ification ccuracy of modes 7 and 
8 in th c ses wh re both modes w r 
assign d 2' d ping successiv ly deter­
iorat d as th frequ ncy s p ration was 
decr as d. Th sa tr nd8 r con i tent 
with the fact th t two odes, although 
of equ 1 n tural fr quency, will cor­
respond to differ nt eigenvalu s of [A) 

f th ir d ping factors re different-­
the l arger th difference in d ping, 
the l arger th corresponding ig nvalu 
separation. 

To ext nd th study of eigenv lue 
re.ol ution on step furth r, modal 
model re con8tructed with fiv of the 
IS mod 1 fr qu ncies set to 22.0 Hz. 
Figur 14 provides id ntification results 
for two of thes od lSI Fig . 14( ) 
with th fiv modes ssigned damping 
factors of 1, 2, 3, 4 nd St: and 
Fig. 14 (b) with damping factor assi9n­
menta of 2, 4, 6, 8 and 10. 0 course, 
a8 shown in the frequency spectrum plot~ 
only on respons p ak s discernible at 
22 Hz in both cases. The parameters of 
all 15 modes were accurately identified 
in each model, as shown, when the 

- - - - .. _---------



ORIGINAL PAGE IS 

A Condition on the S 

,,£ (lot) 3 

he oe).cction of the time shift 
ba tt-leen tho to! -cor::r , d 10 e r halves of 
t~e _\-;0 ~esponae matricos , (t\t 3, 
~u signif ica tly af::ect t ho iden-
.ifir.ati"n ~c~u~acy of odes at ~r 

ne r certain frequencies; i p~rticular, 
if all of the data i n th 10\-1er halves 

c tained by d laying the data in the 
uppe halves by (lot) 3' frequenc:ies 
f x a 1(2(ht)3) ' for integer valu s of 
n , i ll not be dentified. Using a 
differont t- _ shift on one or more of 
·he stations will help all viato this 
problem, which may occur henever 
f x < f . Of course, lecting 
(lo t )3 < (lot)l will al ays eliminat the 
condi· i on by forcing th lO\'lest value of 
f .. 0 b l arger than fw, the upper 
120mi of t a analysis rang • 

Using simulat ed fre -response 
f nctions , the Ibrahim Time Do ain (ITO) 
algor ithm has been found capable of 
accu ate1y identifying known, structural 
me al paramete s over a ide rang of 
fre uency separations, ding factors, 
mode responae l evels, signal-to- noi se 
ratios , and user-selectable algor\ thm 
constanta. It has be n found th Jt the 
modal parameters c n oft n be identified 
i n cases of poor signal-to-noise ratio 
i f sufficient computational degre 
of-freedom ar allo d in the id ntifi­
cation proc ss. A s gnificant findihg 
i s that no detrim ntal ff cts w re 
observ d wh n many tim s more d grees­
of-fr dom were llowed than th minimum 
nec sary for r sonabl i d ntification: 
this r esult sugg sts the use of a high 
number of deg ees-of-freedom for the 
"blind" us of the algorithm in analyz­
ing experimental data. 

For many of the models analyzed, 
the identified modal frequencies and 

QU LITY 

or eae set of user-s 1 ct~ble 
alg ~ithm constants, direct correl~tion 
was fOI .d et~ e varia ce in the 
i tifieation r ults and the signal­
to-n ise l al of t e res~cn_es. In 
analyzi g noisy data, when uf~icient 
degrees- of - f r eedom w~r al!c~ed l the 
analyses, all ~at~ral f r equencies nd 
mode ohapeo t-1ere identifiec \'iith geod 
accura~y i n near.!y every instance . Low 
va UElO of Overall odal Confidence 
Fact or , 0 CF, for modes with reasonably 
identified mode shap s, w re usually 
indir.ative of i naccuracy in th sti­
mated dam ing factors. For nois -free 
i nput data , the i dentification accuracy 
of al l par am ters approached the computa­
t i onal accuracy of the computer. 

The required computer time varied 
approximately as t h n r of columns 
in the respons m t r ices, COL, and as 
the square of th number of allowed 
da reeo- of- freedo , NDOF. Typica). 
CPU tim s for identification on the CDC 
Cyber 203 computer w re 15 seconds using 
NDOF of 65 and NCOL o f 390, and 340 
seconds using NDOF of 200 and NCOL of 
968. 

Related areas of work which need 
further at t ention include the tudy of: 

1. t echniqu s to mi nimize noise 
and distortion on free-response 
functions trom xp rim ntal 
measurem nts: 

2. ef fects of structural non­
l i neariti s on ITO identifi­
cati on results; and 

3. resol ution and roundoff errors 
which may occur in using the 
teChnique on smaller-word length 
computer •• 



(1] 

(2] 

[3] 

[5] 

[6] 

[ 7] 

[8] 

[9] 

WE 

Brown , D. L., All 
Zil'IIm 

Ibrahim, S. ~lcik, 
E. C.: The Exper ent 1 
D termination 0 Vibr tion 
Par ters fro Time Responses. 
Shock and Vib ation Bulletin. 
No. 46, Part 5, Aug. 1976, 
pp. 187-196. 

Ibrahim, S. R., and Mikulcik, 
E. C.: A thod for the 
Di r ect Identification of Vibra­
tion Par ters fro th Free 
Response. Shock nd Vibration 
Bull tin. o. 47, Part 4, 
Sept . 1977, pp. 183-198. 

Ibrahim, S. R. : Rando Decr e nt 
Technique for Modal Identifi­
cation of Structure. J. Space­
craft and Rocket. Vol. 14 , 
No. 11, ov. 1977, pp. 696-700. 

Ibrahim, S. R.: Modal Confidenc 
Factor in Vibration Te tinge 
J. Spacecraft and Rockets. 
Vol. 15, No.5 , Sept. 1978, 
pp. 313-316. 

Ibrahim, S. R.: Application of 
Rando Tim Domain Analysis to 
Dynamic Fli ght Measurem nts. 
Sock and Vibration Bulletin . 
o. 49 , Part 2, Sept. 1979, 

pp. 165-170. 

Hanks , B. R., Mi er "ntino, R., 
Ibrahim, S. R., L , S. B., 
and Wada, B. K.: Comparison of 
Modal Test ethods on th 
Voyag r Payload. SAE Pap r 
78104 4. Nov. 1978. 

Wilkin on, J. B., nd Reinsch, C.: 
Handbook for Automatic Computation, 
Vol. II, Linear Algebra. 
Spri ger-Verlag, Heidelberg. 
1971 . 

Forsythe, G. E., and Moler, C. B. : 
Computer Solut : on of Linear 
Algebraic Systems. Prentice­
Hall, Englewood Cliffs, N.J. 
1967. 

&7 

(10] Donqarra, J . J., Bunc~, J. R., 
Moler, C. B., and Stewart, G. W.: 
LINP C Us r's Guid. SIAM 
Press. 1979. 

[11] Wilkinson, J. H.: Th Algebr ic 
Ei genv lu Probl Oxford 
Univ r ity Press, London. 1965. 

[12] Garbo , B. S., and Dor.garr , J. J .: 
Path Chrt and Docum nt tion for 
the EISPACK Package of Matrix 
Eigensystem Routines. Argonne 
National Laboratory, Applied 
Mathematics Division, TM-250, 
1975. 



TABLE 1.- IDENTIFlCATIO ESOl TS FOR THREE BASELI 

OOf · t il , t cien UftcaU ... (All · ise Modes· ad OAHCF < 2%) 
(See FIgure 3 r de, ' !lU) 

101( 
110. 

3 
4 

5 

8 , 
o 

11 

12 

13 

14 

15 

CICe • 2S hI an 

15.998 

17.998 

20. 001 
21 . 998 

24 .000 

26.001 

28.001 

30.002 

31 .996 

33.99 

36.004 
37. 8 

1.999 

1. 993 

2.005 

2.012 
2.016 

2.016 

2.009 
2.005 

1.997 
2.007 

100 

100 

100 

100 

100 

100 

100 

100 

CICe • 2S til ,11 

101( fREQU£Jl CT. 
MD. HZ 

6 

8 

9 

10 

11 
12 

13 
14 
15 

9.983 
11.973 

30.031 
31. 973 

34.014 

36.053 

2. 608 
2. 393 

94 
93 

81 

n 
89 
75 

CICe • 51 til , 11 

IlOO[ FREQIJ~NCT • ClCe • S OAMeF 110 . KZ 

1 10. 01 5.740 100 
2 12 .030 6. 031 2 
3 14.000 5.654 96 

4 16.00 6. 419 83 
5 18.026 5. 497 

6 19. 932 6. 447 75 
7 22 .071 6.092 68 
8 24.065 5.874 4 
9 26. 121 6.620 4 

10 28.231 8.047 32 
11 30 . 184 6. 578 37 
12 32 . 432 8. 862 15 

13 34.061 7. 484 30 
14 35 .688 8. 131 17 

15 37 . 860 5. 3S1 70 

2S ots • • 

100 

o 
o 
o 
3 

000 00 

o 0 0 4 0 
o 100 0 0 0 0 

o 0 100 0 0 0 

o 0 0 100 0 0 

0 00 

o 0 
4 00 
000 

000 
60 0 4 0 0 

0 00 
o 100 0 0 0 

63 0 0 o 0 100 0 0 1 
52 0 0 o 4 0 o 0 0 100 0 
60 0 0 

57 8 0 

o 

1 0 0 

00 0 
000 

020 

o 0 
6 00 

o 100 0 

o 0 100 
000 

11 0 o 0 5 o 0 1 0 0 

o 0 , 0 0 o 2 002 0 
o 0 o 4 0 o 0 0 600 

s. ZOS nots • • (5 fl 

61 

58 
55 
64 

58 

53 

9 0 0 
o 100 0 0 0 4 0 

o 0 100 0 0 0 0 

o 0 0 100 0 0 0 
o 0 0 100 0 0 

o 0 0 0 100 0 

o 0 0 0 0 0 100 

0050000 

o 0 
o 0 0 
3 0 0 

o 0 0 

o 9 0 
o 0 

001 

000 
o 6 0 

5 00 
00 2 
0 00 

o 
1 
o 

o 
o 

o 
o 

o 0 
1 0 
o 0 
o 0 
o 0 

o 
o 
o 0 
9 0 

o 100 
o 
o 1 
2 0 
o 0 

000 

o 0 0 
000 4 

000 

o 0 
002 0 
o 1 0 
000 , 

o 0 I 0 
o 0 0 

000 

o 100 0 0 
o 0 100 0 
o 0 0 100 

o 
o 
o 

o 
o 
o 
o 
o 

99 
o 
o 
o 

o 
99 

o 
o 

15 

o 0 
o 0 
9 0 
o 4 
o 0 

o 0 
2 0 
o 0 

o 6 

2 0 

o 0 
o 0 

o 
99 0 

o 100 

s. lOS nols • • (See Figure 5 for de shapes ) 

I NSf M';CC IilJlUlIfUI J«lOE NO . -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

65 100 0 0 0 6 0 0 0 0 0 8 0 11 0 0 
52 0 100 0 0 0 . 3 0 0 0 0 0 3 0 0 0 
61 0 0 100 0 0 0 4 0 0 1 0 0 0 9 0 
55 0 0 0 99 0 0 0 0 4 0 0 0 0 0 4 
65 6 0 0 0 99 1 0 0 0 0 0 0 5 0 0 

56 0 3 0 0 0 98 1 0 0 0 0 5 0 0 0 

60 0 0 3 0 0 1 96 2 0 1 0 0 0 2 0 
64 0 0 0 0 0 0 1 97 2 1 1 0 1 0 0 

62 0 0 0 5 0 0 0 2 88 9 0 0 0 0 5 
65 1 0 1 1 0 0 1 1 2 86 7 2 0 2 0 
61 8 0 0 0 0 1 0 0 0 5 84 10 1 0 0 
64 2 3 1 0 0 6 0 0 1 · 1 7 74 10 4 0 
62 5 1 2 0 3 2 0 1 1 0 0 14 63 19 0 
64 1 0 7 0 1 1 2 0 1 2 0 J 12 81 1 

61 0 0 0 4 0 0 0 0 6 0 0 0 0 4 95 
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ABLE 11.- IDE IFICATIO ESU TS FOR THE 2%- PI G. 201- ISE 
BASElI DEL AT HIGH A L ED DEGREES-OF-FREEDOM. 

IIlDE HOOF • 65 (NCOL • 993) MooF • 200 (NCOL • 969) HOOF· 250 ( COL • 969) 1400F • 300 (HCOL • 961 ) 
110 . F C/Ce ONtCf CC F C/Ce 0 F CC f C/Ce OAMeF MSCC F C/Ce 

1 9. 99 8.11 90 99 10.01 2.70 100 10.01 2.« 98 100 10.01 . 2.31 
2 11. 99 7. 9 8) 99 11. 9 2.72 94 100 11.99 2.48 92 ·100 11. 9 2. 42 
3 13.99 4.28 95 99 14.00 2.44 100 100 14.01 2.27 98 100 14.01 2.18 
4 15.99 15.39 76 99 16.00 2.53 98 100 16.01 2.38 96 100 16.01 2.34 
5 17.99 3. « 87 98 18.01 2.29 95 100 18.01 2.21 96 100 18.00 2.11 
6 20 . 05 4.36 76 98 19.99 2.49 100 19.99 2.32 90 100 20.00 2.24 
7 22.02 3. 59 77 9 22.01 2.28 100 22.01 2.1 5 93 100 22 .00 2.08 
8 24.04 2.84 8 99 24.01 2.16 95 100 24.00 2.13 92 100 24.01 2.07 
9 26.09 3.87 59 96 26. 02 2.34 9 99 26.02 2.22 94 100 26.01 2.13-

10 28.00 4.64 35 95 28.00 2. 57 89 99 27.99 2.48 88 100 27.99 2.27 
11 30.04 3.51 70 95 30.00 2.31 94 100 30.00 2.25 91 100 30.02 2.14 
12 32.05 4. 41 91 32.03 2.39 99 32.03 2.21 81 100 32 .03 2.09 
13 3 .25 4.22 33 86 34.00 2.18 99 33.99 2.15 89 100 34. 00 2.07 
14 36.30 5.24 17 51 36.02 2.29 8 100 36 .02 2.21 83 100 35.99 2.08 
15 37.43 6. 12 19 87 37. 98 2.22 94 100 37 .98 2.14 96 100 37.97 2 .06 . 

(All "Noise Hodes" had UAI'I(;F < 2%) 

TABLE III.- IDENTIFICATIOr~ RESULTS W TH FREQUE CIES OF ODES 7 AND 8 
SET NEARLY EQUAL I 2%-DAMPING. 2%- OISE BASELINE MODEL. 

( ooF • 65; COL· 19 1n each 1d ntlflcation. ) 

0 F 

98 

94 

6 

93 
6 

95 

93 
93 

2 

93 

87 

87 

90 

85 

88 

6f • 0.10 Hz 6f • 0.05 Hz II 6f • 0.01 Hz 

I PUT PARAMETERS 

CASE ' 7(Hz) '8(H z) 
(C/Ce) (C/Ce)8 f 7(HZ) t

8
(H z) (C/C ) (Cite) 

7 c 7 8 
1 22 .000 22 .100 2. 00 2.00 22.000 22 . 050 2.00 2.00 

2 3.00 3.00 

J 10.00 10.00 

IDENTI FIEO PARAMETERS 

CASE w.JOE f CICc OAJIICF CC f C/Ce OAHeF CC NO. 
7 21. 998 2.51 87 78 21.941 4.28 57 66 

1 
8 22. 074 2.07 100 77 22.034 2.01 100 66 

7 22. 000 2.11 96 9~ 22.001 2.12 96 99 
2 

8 22.101 3.0 98 99 22.053 3.09 100 99 

7 22.001 2. 01 100 100 22.001 2.0i 100 100 
3 

8 22.101 10.C2 100 100 22.051 10.02 100 100 

(Identification accuracy of other 13 modes comparable to values shown 
1n Table I for 2%-damping. 2%-noise model.) 
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f 7(Hz) '8(Hz) 
(C/Ce) 

7 
22.000 22 . 010 2.00 

f C/Ce OAMCF 

21.1 84 36 .69 1 

22. 007· 2.01 100 
22.001 2.12 98 
22.015 3. 09 100 
22 .001 2. 01 100 

22.011 10 .02 100 

CC 

100 

100 

100 

100 
100 

100 

100 

100 

100 

100 

100 

100 
100 

100 

100 

(C/Ce) 

2.00 

3.00 

10.00 

MSCC 

33 

66 

99 
99 

100 

100 

8 
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HOOF • 65. COL· O. 

Figure 4. - Ident ifi ed (co lex) mode shapes for b ase l in~ modal with 2% damp i ng 
in all modes and 20S noise. 

NDDF = 65. COL· 39Q . 

~. ~ " @ 0·... . . . .... :.-.. .' . 

Fi gure 5.- Identified (complex) mode shapes for ba.sel i ne model with 5% damping 
in all modes and l O~ noise . 
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2l-damping. 20l-noise baseline model . 

NOOF • 65; NCOl • 390. F. ~ C/Cc' , !!Sec 

, . 1 10. 21 99 

1 . 02 8.18 ao 
14. 00 4.22 tl !a 

12 16.03 . 20 ... 99 

17. 3. 24 99 

r 19 . '4 4.10 I 

2 • Z 3. 51 4 91 
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. ~ 3.n 68 96 
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14 36. 03 3. 10 59 94 

31 . t 2 3. JO 19 , 
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Figure 10.- Typical effect of changing (bt) l on iden i ficati on accuracy. 
Polar plots show eigenvalues of [A). 
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DISCUSSIO 

Kr. Ewins (1 perial College, London ): 
Are you convinced that tb th etical 
data you hsve used hicb ws s pol ted 
with nois • r.alistieally repr nt. tbe 
k ind o f data you ,.t f roa experi.ent. on 
r eal structures! 

Froa y pr vious ax­
perienee. I ould rather ork with 
e xpe ri ntal data th n simulated data . 

Kr. Ewin.: I ask.d eeause w.· •• been 
t hr9ugh a simila r kind of proee ~ a nd we 
f ind that experi ental data contains a 
quit e differen t type of e r ror t o t at 
which you put in wi th random r rors 
superimposed on the th or t ical i d al . 
The structures have system ie errors . 
You have non-linea r ities and I wonder 
whether t e ethod is qually ff er.tive 
on r eal data as you have hown on he 
synthesized. 

Mr. I brahi: Yes. we hav e lots of pre­
viou s applications and we will put the 
pape in the AIAASD Conference in April 
a nd we ar de ling with large modal . su r­
veys of real experi.ental full seale 
s t uctur s. And to answe r you ques­
tio n. I personally feel as co fo rtahle 
wit h xp rimental noise as with si u-
1 t ed nois because the experi e ntal 
nolse is nice a nd random . What you 
gene r t in the co pu er usually has 
soa e di s tri ution. The other question 
1 s non-l inearity. We did not inclu de a 
non- linearity he e. but non- linea i .y 0 

the s r u ctur es is anothe r co plc ely 
different ball game and i t b 0 be 
dealt with sep rately. ut we ,at as 
good results with experimental data. 
yes. 

72 



N86-13589 

81- 2 
La g Mo i g the Ibrahim 
Time Domain Identification Technique 
S. R. Ibrahim and R.S. Pappa 

Reprinted from 

ceeran 
Roekels Volum 19, Number 5, Sept-Oct. 1982, Page 459. 

Thl .paper I ~ declared a work of the U.S. Government and therfore is In the 
public domain . 

'.1ERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS -1290 AVENUE OF THE AMERICAS • NEW YOR , NEW YORK, N.Y. 10104 



VOL. 19, NO. S. EPT.-OCT. 19 2 J . P CECRAFl' 459 

AIAA 11-0511R 

[A ) 
ITO 
m 

M F 
MS C 

DOF 
IS 

(n(t) I 
OAMCF 
p 
rm 
s 
I, 
(x ( I) I 
IX 

b lk 
(.11) I 

r 
At 
["L[t ) 
(~I 
( IT 
( I" 
I I 

Large Moda 
Using the Ibrahim Time Domain 

log 
d n ification Technique 

mir . Ibrahim 
Old Dominion University. orfolk. Va. 

and 
Richard S. Papp t 

NASA Langley Res arch Center. Hampton, Va. 

om n latur 
quare system matrix (of order 2m) . 

= Ibrahim time domain (technique) 
= number of computation I de rees of fre dom 

( DO 
= modal confidence factor 
= mode shape correlation constant 
= number of computational de rees of freedom 
= noi e-to-si nal ratio 

tor of measurement noise time historie 
= overa ll modal confidence factor 
= number of structural modes 
.. root mean square 
= number of rows in [ ) and [ 
= time instantj 
= vector of free-respon e time histories 
=kth ei env lue of [A) 
= portion of ( I k 

=time hift between [ ) nd [ ) 
= modal dampin fa tor-etC, 
- kth characteristic roo of structure 
= respon em trice (Zm xs)· 
- kth eigenvector (comple mode shape) of [A) 
= trans po e of vector ( I 
= comple conju ate of vector ( I 
= magnitude 

Introductl n 

Ibrahim time dom in (ITO) technique. use fre -respon e 
time histories (x( t) I measured at various poi nts 'on te t 
tructure to compute squ re system matri [ ), or order 

2m, in a least- qu res en e from the equation 

(I) 

In thi equation. [ ) and [') are rectan ular matrice of size 
2m xs, ith sii!:2m. whose elements are 

,,=X, (/,) I, =x, [I, + (.1/) ,) (2) 

The ith ro of [ ) corresponds to the ith measurement or a 
mea urement delayed some arbitrary time • .1T. The use of 
dela ed or "transformed" stations' allows the computation 
of a modal confidence factor1 (MCF) at each station for each 
ident ified mode. The MCF parameter is used to differentiate 
the de ired structural modes from "noise modes," computed 
whenever the number of structural modes contributing to the 
respon es is sm lIer than m. (complex valued) MCF is 
calculated for each station, and indicates the consistency of 
the modal deflection identified at each station with the 
deflection at the same st lion identified usin data measured a 
mall lime I ter. Its value is near 100 0 in amplitude and 0 deg 

in pha e for accurately identified tructural modes. 

U ING time-domain ppro ch, it h 5 been sho n that . 
the i entification of structur I modal parameters from 

e perimental data c n be placed in the form of a com pie 
eigenvalue problem.' The resulting method, referred to as the 

Po ible time-domain functions hich can be u ed include 
actual fre decays obtained followin random e citation of 
the tru ture. unit-impul e re pon e functions c Iculated by 
the in er e Fourier transform of frequency respon e fun -
tion • or " random-de rement" functions ) calcul ted from 
r ndom opera tin time hi tories. 

fter computing [A) from Eq. (I), an ei envalue problem 
of the form 

nd 

Iru tural Dynami Bran h. ember 

( ) 

i olved . The A.'lh eigen ector of [ ) i the kth c mple mod 
shape of the truetu re and the kth ei en lue of [ ) is r I ted 
to the tru ture ' chara teri tic root k through the equation 

IXk=e~ ( ~1I1 (4) 

Detail of the identification te hnique are ontained in 
Ref . 1-4. 



Tlble I 

No. o f No. of 
T I measurements modes 

225 2 

2 225 2 

3 225 2 

4 225 30 

20. 

beo n el 
el of ee-re po e functions containin mod in­

formation from P lrU tur I mod of vibration nee ­
pre ed 

(x(t) 1 = (5) 
tel 

If noi e-free r pon are u ed in the identification 
al 0 't m. the i ntifi tion model must have e a t1y p 
d ree of fr om for unique identi IC tion. If mor than p 
ci r 0 freedom e allowed. the 1. 1 matrix is singular. 

In e perimemal wor • ho ever. me ured respon e aJwa 
contain a certain amount of noise. The e response c.an be 
e pres ed 

1 

Ix(t) 1 = I Ik~k ' In(1) 1 (6) 
tel 

In previous applications!" it as found that using noisy 
respon in the identi I tion process ith the number of 
de rees of freedom lar er th n p yielded good results ithout 
encounterin sin ul rity. The results e en impro ed the 
identin tion model size as in re ed . The qualitati e e -
planation r r this situ tion is that the e Ir degree of 
freedom ct as outlets for the noi e. In thi ca e, the noi 
response can e e pre sed as 

11ft 

I x(t) l::z E INlke'k' (7) 
kel kelp. I 

in hich the noise is modeled as a combination of (2m - 2p) 
complex exponential functions. Since the value of p. the 
number of e cited mode • is characteristic of the structur I 
respon e nd not the d ta nalysis p oce s. dditional e -
ponentiaJ fun tion are allowed to repre ent the noi e in the 
math model m is in rea ed . Thi results in a higher-order fit 
for the noise portion of the re pon • redu in re iduals that 
would other i e be included in the si n I portion of the 
respon es. 

Mode bape Correlation Con tant 
When two or more ets of mea urements are u ed in 

identifyin the modal par meters of a te t tructure. 
corre pondin modes obtained from different identification 

Allowed 
NOOF 

1.000 0.0001 300 
30.000 1.000 
30.000 1.000 0.0001 300 
30.000 1.000 
20.000 1.000 200 300 
30.000 1.000 
10.000 1.000 20 300 
11 .000 1.000 
12.000 1.000 

39.000 1.000 
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( ) 

Mode OAMC • M C, 
o. '7, 

1 20. I. I 
2 O. I. 1 
I 30. I. 100 

O. I. 100 
20. 2. 34 
29.9 1.9 1 2 9 

4 9.99 2. 1 91 99 
II. 3 1. 12 90 99 

3 II. 1.46 9 99 
4 13 . 2.047 91 99 
5 14.006 1.49 99 
6 14.999 I. 9 92 99 
7 16.00 I. 05 93 99 

17.02 1.2 5 96 100 
9 17.999 1.61 99 

I 
10 19.001 1.691 6 99 
II 20.003 1.435 94 99 
12 20.99 I. 65 9 99 
13 22.00 1.260 93 99 I 
14 22.994 1.385 99 
IS 23 .985 1.334 99 
16 24.990 1.49 4 99 
1 26.000 1.194 95 99 
18 27.000 I. 1 99 
19 28.009 I. 14 8 99 
20 29.019 1.1 5 9 99 
21 30.006 1.373 83 99 
22 31 .00 1.113 92 99 
23 32.010 1.34 1 99 
24 33 .002 1.44 9 98 
25 34.007 1.2 8 99 
26 35.024 1.32 2 98 
2 6.026 1.3 75 9 
2 3 . 1 1.4 69 9 
29 3 .9 2 1.4 9 6 96 
30 39.033 I. 01 99 
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The DE , shown in Fi . I, is a 30-ft long, J 2-sided 
cylindri I structure de i ned to hold 86 e penment trays 
around its periphery. It ill be placed in Earth orbit for e -
tended period of time to study the effects of space on elected 

Is and cientific proces e mounted in the e periment 
tra s. large modal survey pro ram was conducted at the 
Langl Re e rch Center ith the structure suspended in 

I ) 

b) 

free-free confi uration. For the e tests the e periment trays c:) 

ere remo d fro m the stru ture and 1 2 celeration 
measurement Slation ere u cd . Data 0 tained ith the 
structure excited with ingle- haker, ide-band random noi e 
in the y lateral) and t (vertiCal) directions will be sho n. 

Force 
e it tion 

Run direction 

142 

2 ~ 142 
3 <: 142 
4 <: 142 
5 )I 142 
6 i: I 

(me uremenlS I- I) 
7 I 

(measurement 62-142) 
142) 

p 

5- 5 1- 5 
Step of I 
and 80-2 
Step of 10 

5-55 tSO 
5-55 300 

19.75-32.25 ISO 
5-55 300 
5-55 I 

5-55 
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I • 3 OOr. frtquney lIlap for LDEF Idr.tlneal n run 1. 

Re ults fo r e en identificat ion runs, u in a ran e of 
allowed de ree of freedom and two different e citation 
ondition5 , will be hown. T ble 3 summarizes the test and 

analy i parameter for each run. 
Figure 2 hows the avera e value of the quadrature com· 

ponen of II 142 frequen y respon e fun tions for the z· 
e citat ion te t , 0 er the S·SS-Hz frequenc ran e. The ab-
olute value of each quadratu re function was ta en prior to 

averaging, anti the re ult i presented on a 10 rithmic sc Ie. 
Thi "compo ite" function pro ides a ood indication of 
both the natural frequencie and rela ti e respon e levels of the 
tructural modes e cited in the Zoe citation te t. For this plot, 

the reference decibel level ha no special ignifican e. 
In run I, the number of aJlowed dearees of freedom 

(N OOf) wa incremented from 1 to 7S in steps o f I , nd then 
from 0 to 200 in tep of 10. Figure 3 hows a JIm p" of the 
identified modal frequencie a a function of DOF. The 
identified frequencies arc denoted by ertlcalline e ments at 
the corresponding frequencie wh e heights re proportional 
to the OAMCF value aiculated for each mode. n OAMCF 
of 100'70 is repre ented by a line height equal to the distance 
between adjacent NOOF value used In the analysis. 
continuou vertical line indicate hi her confidence in the 
identified mode, while a da h d line sho s lower confidence. 

It i of interest to note the order in which mode ppear on 
the map as NDOF i increased . The fi r t mode to ppear, near 
30 Hz, has the large t avera e re pon e level , as een in Fi . 2. 
The next two modes appear ncar 27 Hz, followed by ones ncar 
14, 42, and 48 Hz. NDOF i increa cd further, ome 10 er 
Ie el mode ncar 7 and 21 Hz are Ident ified. su ested by 
Eq. (7), the a erage trength of the " noi e mode " deere es 
when the ize of the identification model I e p nded, 
aJlowing lower trength tructural modes to be identified. Thi 
behavior I learly indi ated in Fig . 3. As NDOF In rea e 
from 80 to 200, more new vertical line start to form, In-

0 1 DT CH IQU 

The curves in Fi s. a-d sho the avera e qu drature 
ompon nt of all 142 freq ency respon e functions obtained 

for run 2-5, respectively. The curves con ist of 51 equ Ily 
pa ed v lu ea h. The diamond symbols pia d bove the 
ur denote the frequencies of att ITO-identified modes 
ith an 0 C 0 60'70 or lar er, for each of the four runs. 

The 60 • 0 MC cutoff is arbitr rily seleeted to sin Ie out 
tron ly identified modes. The e figures arc provided to 

illustrate three b ic results of this study: The strong 
correlation between ITD·identified modal frequencies and 
pea s in m ured frequency response functions; the iden­
tification of modes ith 10 response lev I as the number of 
allowed degrees of freedom is increased; nd the bility of the 
identification alaorit m to identify modes hich re spaced 
10 r in fr uency th n the resolution of cI sical Fourier 

analysis. In these figures the di mond symbols re placed 
quidi t nt from the compo ite quadrature functions at each 

ITD·identi led freq ency, nd indicate the identified modal 
frequenci only. 

M n interesting comp risons of the results shown in Fig. 4 
can b made, some of which arc hi hli hted by circled letters 
a-d. e r 21.5 Hz, denoted re ion a, three modes are iden­
tified u in ISO DOF in Fi . 4a, nd four modes are identified 
usin 300 DOF in Fig. 4b. On ex minin Fia. 4<:, in which the 
resolution of the frequency response function is four times 
gr ter than in a or 4b, the existence of four distinct response 
pea s i app rent in region a. In both Figs. 4a and 4b, a mode 
wa identified at 24.0 Hz, denoted by b, where no indication 
of a structure mode wa pparent. Aaain on e aminin Fi . 
4c, the e istence of this mode is just discernible along the 
ramp of the more stron Iy excited mode at 24.2 Hz. Region c 
hows everal hi hly coupled modes identifi d ith the t­

excitation response data in Fi s. 4a and 4b, but are better 
sep raled in the ,-excitation data, Fl . . Re ion d ho 5 

two identified mode in Fi . 4d near 43 Hz, here a more· 
defined respon e is noted in Fig. 4b. 

To study the consistency of the id ntifi at ions and to 
demonstrate an application of the MSCC parameter, Figs. Sa 

rid 5b provide "cro -plots" of the ITO-identified modal 
frequen ies and d mpin r ctors, respectively, determined 
from two independent tests of the LDEF: run 3 for z ex­
citation and run S for y e citation. Both Identifications were 
run u ing 00 tto ed de rees of freedom. The d ta sho n in 
these plots represent results of correl tin all 3 identified 
mode ("noise" and structural) from run 3 ith all 300 from 
run S, u in the M CC parameter. Results for att pairs of 
mode with a calcul ted SCC of 0 070 or lar er are shown. 
The e cettent reement of identified frequenci sho n in 
Fig. Sa implie not only that con i tent mode shape ere 
determined In two independent tests of the tru ture, but that 
the calculation of MSCC alue using a large number of 
mea urements (142 for these data) can potentially match 
identified modes independent of a comparison of identified 
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u ed ith 1 allowed degrees of freedom, and in run 7, 
stat ions 62-142, also ith 81 OOF. Figures Sc and Sd show the 
re uhs, in the same format used in Figs. Sa and Sb , of the 
correlation of two ITO identifications where 20 of the 
a ail ble free-respon e functions are common in each run. 
Th e plots sho tho e mode pairs ith M CC>80OTo, 
alculated usin only the 20 common elements of the iden­

tifi d mode sh pes, nd with 0 MCF> ISOTo. Several of the 
mod from run 6 correlated at OOTo or higher with more than 
o ne mode in run he only the 20 common mode shape 
elements ere used in the calculation of MSCC. In these 
a. es, only th pair of modes whose MSCC as highest is 

in luded in Figs. Sc nd Sd. In nearly every case, this pairin 
i the same s th t resultin from pairin those modes closest 
in identified frequency rom each of the groups. s in Figs . Sa 
and Sb, the identified frequencies paired in thi manner re 
aJmo t identical , and the catter in the corresponding dam­
pin fa tors is small for most modes. 

n lu I n 
The number of degrees of freedom to be allowed in the ITO 

identification algorithm can be several times lar er than the 
number of structural modes of vibration e cited in the time 
re pon e functions used for the identification of modal 
parameters . 0 adver e effects, in either the accura y or 
onsistency of identific tion, resulted from the u e of 

significantly oversized identification models. ' uch lar e 
models are u eful in identifying a complete set of modal 

'pa ameters for II v iI Ie measurements in one compllter 
naJysis. This is v lu ble for large modal survey tests hen 

large number of response measurements are obtained. 
Furthermore, it was fou nd that I r er models improved the 
id ntific tion ura y hen noi e as pre ent nd a1 0 

11 ed the identifi ation of m de of low Ie e1 of re p n e. 
Iden tifi tlon ith identification model f up to 300 OOF 
pro ed a urate for data with 200 0 noi e-lO- ignal ratio and 
did not re ult in ill -conditioning for data with infinite Imal 
no' e. 
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Computation of Normal Mode from Identified Complex Modes 

Ic] 
leI 
f 
I, 

IK ) 
Ik) 
1M ) 
Iml 
n(t) 

(.11 1 
(~J I 
Rj 

(x(t) 1 

y(t) 

a i' 1 

fJj 

S. . Ibrahim-
Old Dominion Univ rsity. Norfolk. Virginia 

omenclature 

= dampin m trix 
= modal d mping matr" diagonal) 
,. requency. Hz 
= imagin ry part of the fth element of complex 

modal vector 
... t iffne m ri 

modal stif ne s m tri (di on I) 

= measurements noise 
= ft,h eigenvector of the st te v riable equation 
... ft,h umed modal vector 
... real pan 0 the ft,h element of a omple modal 

ve tor 
ft,h umed char cteri tic ro t 

(
y(t) J 

tate ector.'" y(t> 

.. free-re po e time function 

... to n les definin i n (:c) bound de for the 
appro im ted norm 1 mode elements 

... pha e n Ie for the ft,h element of a norm modal 
vector (0.0 or 1 0.0 de ) 

... ph e an Ie of theft,h element of a comple m dal 

m dal vector 

nd tron ut i , In ., I 2. 

Mechani 31 ngineer ng and 

or more of the ollowing equ tions: 

[M I -/ [K IIl/1l =w1(l/IJ 

[l/IV[M ](l/II " Iml 

Il/II TI ](l/II = Ikl 

Il/I]TIC,ll/I) = leI 

(I) 

(2) 

(3) 

(4) 

[n all these equations, the (tP 1 re the normal modes even 
thou h. in pr tice. the me ured modes are the damped 
omple modes. which in some c ses can be very different 

from normal modes. a matter of fact. in vibration testing 
and analysis ork it is frequ ntly sumed that damping levels 
are ery small andlor the damping m trix is proportional to 
ither the mass or stiffness m trices. an ssumption th t is not 

id for many of today's comple structures. Such assump­
tion nd the lac of differenti tion between normal and 
comple mod~ may be ttributed to the lack of a tool to 
me ure or compute the normal modes. 

With the introduction of computer technology to modal 
identific tion in the early 1970s in both frequency domain9•IO 

and time domain 11, 18 techniques. the question of norm 1 vs 
omple modes started to need answers. In frequency domain 

appro cheSt even with light damping and ell-spaced modes. 
u er frequently encountered a catter of the phase n les 

ci ted with the measured modal vector. 14 Some resear­
cher and u ers even went to the e tent of questioning the test 
and d t analysis procedures when the phase angles ere not 
within :c 10 de at 0-1 0 deg. 

lt is to b noted also that measurement of pha e angles in 
the frequency domain can be subject to high levels of errors 
e p 'ally in c s of high modal den itie , Thi is due to the 
limited frequency resolution and the rapid change in the phase 
angle ound the re onant frequencies . In some c eSt the 

alter of the ph engle of the mo I vector was due to the 
fa t th t the d mping is nonproportional. a d hence the mode 
h pes are com pie , Time domain approaches to modal 

identific tion. which contain no assumptions regardin th 
1 vel or proportionality of damping. Iso indicated that 
tru tures. in many ca eSt po sess comple modes, 

90 
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(5 

ro 'm t normal mode element ~, corre pondin to 

where the a ignment of po itive or negati e i n, hi h is 
equi alent to 0.0 or I 0.0 d ph engle, d pend on the 

1m 

----------~~~------~~~- Re 

a) Complex mode lem nt 

1m / 
/ 

/ 
O2 01 

--------~~~~--------~ Re 

/ 
/ 

/ ~'I. Bound rie (or no rmal mode sign (±) 

fla. I onnal mock approximation to compl , m d 

rm 
/- 46. Hz 
~ Amplitude 

Comple 
t-1.7S • 

/-4S . 3 Hz 
Amplitude Ph 

0 0 SF 0 COMPL 00 

{3,-0.0 eg 

(3, = 1 0.0 de 

um ri mpl 

44 

b) 

(6c) 

The purpose of this e ample is to ho that even thou h 11 
the parameters u ed are e act: 

1) Complex modes can be very different from normal 
modes, even for Ii htly damped modes and small non­
proportionality in the d mping m tri . 

2) Lar e errors may re ult from sumin that normal 
modes pproxim ted from comple modes re orthogonal 
with respect to the m s matrix . 

The sy tern u ed in this e mple is a 10 degree-of-freedom 
y tem. This system was constructed (imulated) by 

analytically gener tin 10 normal modes at 10 measurement 
tations of a simply supported be m, 10 undamp d natural 

frequencies, nd a tiffness m tri for the sy tem. The natural 
frequencies ere elected corresponding to 10.0, 12.0, IS.a, 
20.0, 2 .0, 30.0, 36.0, 43 .0, 6.0, nd SO.O Hz. Then, a 
prop rtion I damping matrix (equivalent to 1.0OTo modal 
damping f tor for all 10 mod ) nd the m s matrix were 
computed from the as umed inform tion. 

To m e the damping matrix non proportion I, the damp­
ing elements C(3,3), C( , ), C(3, ), and C(4,3) were doubled. 
Com pie modes, damping factors, and damped natural 
frequencie ere computed for the sy tern . 0 mping factors 
hanged from 1.0OTo for all modes for proportional damping 

c e to 2.6, 1.3, 1.2, 1.2, 1.1, 1. ,2. ,3. , 1.7, and 1.01110 for 
the nonproponion I damping c e. The e d mping f ctors 
are relati el m II but neverthel ,orne mode how d hi h 
Ie els of comple ity. Table I h th t m t mple 
mod h p , mode 9 nd 10, Ii led with the arre ponding 
norm I mode. Ph e angl of s mu h a 9 .9 and 74. deg 

Com pie 
t-I .0401. 

/"" 9.99Hz 
Amplitude Ph e 

0.0 
17 .1 

- 2.9 
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1.0000 

0.0003 I. 

- 0.0000 - 0.0002 1.0000 

- 0.0004 - 0.0009 - 0. 1.0000 

0.0010 -0. 2 0.002 -0.0007 I. 

0.0010 0.0033 0.0097 -0.01 4 0.0013 1.0000 

0.0003 0.013 0.005 0.0010 0.0029 0.0074 

0.0013 0.0003 - 0.000 - 0. 26 - 0.00 1 - 0.0136 

- 0.059 0.017 0.2339 -0.0639 - 0.0895 0.0 26 

0.00 I -0.0005 0.0 150 - 0.013 - 0.0091 0.0042 

1.0000 

r o.~, 1.0000 

- 0.000 -0.0002 1.0000 

- 0.0004 -0.0009 - 0.0003 1.0000 

0.0010 -0.0002 0.0027 -0.0007 1.0000 

0.0010 0.0033 0.009 -0.0174 0.0013 1.0000 

0.0003 0.013 0.0054 0.0010 0.0029 0.0074 

0.001 3 0.0003 -0.0005 -0.0026 -0.0071 - 0.01 6 

- 0.203 0.3549 -0.17 1 0.031 1 0.0073 - 0.310 

- 0.0124 -0.0144 -0.133 0.0016 0.0053 -0.0241 

In Eq. ( ) al nd a1 were cho en 90 and 270 deg. while in 
Eq. (7b) they are 135 and 315 deg. Errors in the off·diagonal 
term are high as 23.29070 for the first case and 35.49070 for 
the econd ca e. 

Theor : mput tI n f rmst od 
In this section. t 0 pproaches re pre ented to compute 

norm I mode from a me ured set of com pIe modes. The 
required data are a et of modal p rameters such as m y be 
identified from a modal survey test. These modal parameters 
are namely a set of comple modes (~I i' ,- 1 •... m nd et 
of orrespondin char cteri tic roots XI' i-I •. .. m (and their 
com pie conjug tes). The modal vectors have n elem nt 
where n>m. hich is a typical test situation. To compute the 
norm I modes from this given set of complex mode . on of 
the folio ing t 0 pproaches m y be u ed. 

Approach 1: Inll an 0 z d Mathem.1I 81 Model 

From the gi en mod I p r meter I di pI ement, elo IlY. 
and ac eleration r p n s re fo rmed a cording to the 
equation I 

1m 

(/») = E I )/ fI Ind t)) (8a) 
I_I 

1M AL 

1", 

( . (1 ») = E xd l(eAI In1 I) I 8b) 
/-1 

1m 

(y(t») = E fI l /eAI (nJ (t) I 
/-1 

(7a) 

1.0000 

0.0070 1.0000 

-0.26 0.0316 1.0000 

- 0.0209 - 0.0004 - 0.2281 1.0000 

(7b) 

1.0000 

0.0070 1.0000 

0.1137 0.2265 1.0000 

- 0.021 0.0254 0.1 672 1.0000 

here n d t) . nl(t). nJ( t) re added random noi e of 
uni orm di tribution. The e respon e are then ' used in the 
tate vector equation. 

or 
IiI - [AJ( 

[ ' = ( )[X] 

where [X] and (X] ontain re pon e 
in tant . From Eq . (10) the [ 1m tri 

] {~ (t) } 
y (t) 

(9) 

(10) 

(II) 
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(12) 

ingul 

ppro h is 

1m 

IX(/) I" E Ip I e"l' (1 3) 

k-' 
where Ip 1 rep es nts the m comple p ' rs of the systems 
independent ei envectors. If noi e-free respon es are u ed in 
the ideati IC tion I orithm. the m th model must h ve 
exact I m egrees of freedom for unique identification. If 
m re than m d ree of freedom are 110 ed . the [X] m tri is 
in ul r. 

In e perimental or. ho ever. mea ured r po n e I ys 
ontain a ertain amount of nois (or in this e a mall 

amount of noi e i added on purpo e). These noi 
can be e pres ed 

1m 

IX(/) I'" E lplke"l'+ln(/)1 (1 ) 
k_' 

In previou a pplic tions ll •17 it s found that u ing noisy 
re pon e in the identi I tion proce s. ' th the num ber of 
degree of freedom larger th n m. yield d good results 
without en ounteri n sin ularity. The re ults e en impro ed 

the math m del size incre ed . The qualitati e e -
planation for this situation i that the e tra degree of 
freedom t out lets for the noi e. In this ca e. the noi y 
re pon e can e e pre ed as. 

1m 

IxU) I '" E Ip I e"l' (IS) 
k_' 

in whi h the noi e i modeled a combin tion of (2n-2m) 
omple e ponential functions. Since the v lue of m. the 

number 0 e cited mode. is a characteristic of the structur I 
re pon e nd not the data n lysis pro e • dditional e -
ponential fu nctions re allo ed to repre nt the noi e in the 
math model n i incre ed. This re ults in high r-o rder It 

for the noi e portion of the responses. redu ing r idual that 
would other i e b included in the i nal portion 0 the 
re pon es. 

App a 2: ng u edMod 

The given et of comple modal param ter ati the 
equation 

[M-'K M -'C] { I} '" 1- f d (i=I .... m) (1) 
}..I I 

Since e ha e onI m modes and the s tem h n de re 
offreedom. Eq. (16) aonotbe 01 edfo [M-I KM-' Cj . Let 
u a ume that there e ita et o f e tor (Ql j and a et of 
har c eri ti j. j= m + I. m 2 ... n. Thi et of 

umed parameters ed su h th t 

(I ) 

(17b) 

e el a 1 is any vector of coef I ·ents. tion I b) im-
pli th t I Q 1 j and I II or all ; nd j fonn linearly in­
dependen t set of ector . In uch a e. it can britten th t 

U=m I, m 2, ... n) (IS) 

and s.(16)and(IS}c nb olved for [ -'KM-'C) from 
hi h norm I modes are computed ccording to Eq. (12). 
To illu trate the M>undne s of thi on pproa h. let it be 

a umed th t there exists a hypotheti a1 sy tern ho e n free 
re pon e time function are line r combinatio ns of the t 0 

independent ets of mod I'" I and I Q I. These re pon e c a 
thea be e pre d 

1m l11 -1m 

1), (1) I = E ll CAl' E I Ql j 'I ., i-I 

. { " .. ,.1 [] {Q,Q,Q'"-'·{.L 1 

r

eA" 

eA1' 

eAl",I 

" 

( 19) 

The re pon e of Eq . (19) are tYRical of a econd order 
dynami y tem who e tate vector equation i 

where the [AJ matrix represents the inertia-stiffness in­
formation and the [BJ m tfix repre ents the inertia-damping 
haracteristics . 
If these responses. as e pressed in Eq. (1 ). are to b u ed in 

any identification algorithm. the vector ( 1 and (QI and the 
haracterlstic roots).. nd s ill be uniquely identified. The 

identified properties of the initial et of modes ( I should e 
unique nd independent of the ssumed Q nd s long as the 
conditions of Eq. (17) are sati fied . 

n ppropriate ele tion fo the et of a sum d modal 
parameters would be from the structure's finite element 
m del. Hi her an I tic I mode • other than the mea ured 
one • are hi hly r commended for u u e. 

It i e tremel important to point OUt that [M -I K I od 
(M-' Cj obtained from either pproach re not unique in e 
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the are unc ions of the introduced noi e or the ume 
mod . Ho er (he s t of normal modes, corre pondin to 
the et of i en omple mode, was found to be independent 
of the introduced mall levels of noise or the sumed m des. 

imulat d prim nt 
To te t the validity of the theories pr nted in this paper, 

the lO de ree -of-freedom sy t m previou Iy discus ed in the 
cetion on nurn ri 1 e mpl is used here as a simul ted te t 
teu lure. Response time histories cont ining contribution 

from the I t our modes me ured t the 10 station ere 
generated. The I t four modes ere elected bee u e the I t 
two mode sho a hi h level of comple hy. imul ted 
measurem ntS noi e dded to th e respon es, ith a' 
noi e/ ign I rms ratio of 20'1. , to represent conditions in a 
rea] vibration test. From the e respon es, the comple modes 
and h ra teri tic roots ere identified, u ing the time 
dom in appro ch:" orm 1 modes ere then omputed 
u ing the t 0 ppro ch~s pre ented here. noi e to si nal 
ratio 0 O. 1 u ed for Eqs. ( ). The a umed modes 
approa h produced result identical to tho of the oversized 
math model ppro h. 

Tabl 2 Ii ts the identified com pie modes nd the com­
puted norm 1 mod for the Itt 0 modes. clo e 
e amination of the computed normal mode, in compari on 
with the theoretical ones, indicate the validit of the ap­
proa he pre ented. 

U ing th identified comple omputed 
normal modes, the orthogonality 

[ 

1.0000 

- 0. 

- 0.001 

- 0.0205 

[ 

1.0000 

- 0.043 

0.0 9 

- 0.02 2 

I. 

- 0.0300 

0.0 65 

1.0000 

O. 9 

O. 26 

- 0.0464 1. 

1.0000 

- 0.2091 

1.0000 

- 0.4 02 

0.022 . - 0.0353 1.0000 

1.0000 

1.0000 

[ 

1.0000 

- 0.00 2 0.0 31 - 0.054 1.0000 

(20a) 

(20b) 

(2Oc) 

JO RNAL 

In Eq . (2 ) nd (lOb) approximated norm I modes ere 
u d ith ( ,270 deg) nd (135, 315 de for (01/, a,), 
re p tivel . In Eq. (2Oc) the computed normal mode ere 
used. Error of 21 an '10 are noticed in the off-di onal 
terms for c e nd b, respectively, while the m imum 
error for c e c as only 5 " •. 

oclu 0 

It is hown in this paper that even for 10 levels of dampin 
for tructures ith nonproportion damping, complex modes 
can be very different from normal modes. In such cases, 
normal mode pproximation to complex mod may lead to 
large errors in m -weighted orthogonality chec s or in any 
o ther u e of these complex modes approximated as norm I 
mod s. 

technique is presented to ompute normal mode rom 
me ured comple modes. Computed normal mode 
eli minate po ible errors that may result from using normal 
mode pproximation to complex modes produced by non­
proportion ] dampin . 

A knowl d m nt 
TN ork p rtially supported by a rant fro m A 

Langley Research Center. 

Ref ren 
I Young, J. P . and On, F. J., " Mathe 1 ti al Modeling Via Direct 

U of Vibr tion Data," Paper presented at SAE National eronautic 
and p ce En ineerin and Manufacturinl Meetinl, . Los n eles, 

Iif., Oct . t 9. 

l Thoren, A. R., "Derivation of Mass and Stiffnes M trices from 
o n it Test 0 ta," Proceedings 0/ th~ AfAAI SMEISAE 13th 
lruc/ur :s, Structural DynamiCS and Mat~rials Co"'~r~nc~, San 
ntonio, Te as, prilI972. 

3 Berman, A., "System td ntification of a Complex tructure," 
Pr~edings 0/ th~ Al I MEISAE 16th Structures, tructural 
D namic:sand MaterialsCo"'er nc~, D nver, Colo., May 19 . 

4 Potter, R. and Richardson, M., " M tiffness and Dampin 
M trices from Me ured Modal Parameters," P per pre enled at 
Intern tional Instrumentation- utom tion Conference, e Yor , 
Oct. 1974. 

5B rm n, ., "M atri Correction U in n Incomplete et of 
M ured Mod ," fAA Journal, Vol. 17, Oct . 1979. 

Baru h, M., " Oplimi7.ali n Pro edure 10 Corre 1 liffn and 
Fte ibilil alri ibr tion Te 1 ," I Journal, 01. 16, 

ril l97 . 



MAR H I 3 

FaCtor in Vibration 
oJ. I S. pt. (9' • pp. 

RO CO 



N86-13591 

Dy a Ie res from 
Measured Complex Modes 
S. R. Ibrahim 

RlptinllCl Ir 

Vo ume 21 . Number 6. June 1983. Page 898 

MERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS -1290 AVENUE OF THE AMERICAS -NEW YORK, NEW YORK, N.Y. 10104 



898 A1AAJOU AL VOL. 2 ,NO. 6 

DynalDl 
from Measure 

ctur s 
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oyer tile 'Fell 

[CAl - ("xn) alytical rix 
[CEl - ( " xn) actdampin m tr' 
[c, .. n n)improveddampin matrix 
j =..r::T 
[K A) - ( n x n ) an yticaJ stiffn s matrix 
[KE ) - ( n n ) e act stiffn m tr' 
rKl .. (n xn) impro edstiffnes m trix 
m - number of measured mod 
[m A) - n x n) analytical modal mass matrix (diagonal) 
[MA ) -(nxlJ) alyticalm smatrix 
IME) .. (nxn) e act m sm tri 
(M] - (n xn ) improV1!<im smatri 
n .. number 0 dear -of-freedom 0 math models 
( . , ) = ith norm modal ecto (n elements) 
I"', ) .. ith comp e mo vector (n elements) 
r, .. ith dampin factor 
X; = i characteri ic root 
Wd - damped natur frequency 
w. -natural frequency 

InCr tio 

D UE to the increasin c:omplexity of modern erosp ce, 
and some nonaeros .. e truc:tures, nd due to the 

nature, sensitivity, and sophistication of the mi ions of such 
stru ures, an ccura e mat emati al mod I has ecome a 
necessity for successful performance. uch models are needed 
for res n and loads prediction, stability analy is, and 
control system din. 

Past, and sometimes c:urrent, common prac:tice, in spite of 
the ad anced tate-of-the-art in both fmite element and 
structural dynamic identific tion, in arrivin at a dependa I 
mathe atical model was done primarily by trial and error 
approa h. An an yst, usin so e modal test d ta, adjusts his 
or her model, usin perso .31 jud ment and perience, to 
make it fit the avail ble mo te t data. Durin the last three 
decades there have been c:ontinuous efforts tl researchers and 
practitioners in the are of dynamic mode in of structures 
using identified modal par eters. The survey paper ,I 
coverin ork don in the 1960's, pointed out a need to 
improve the lat -of-the-art of dynamic modelin . ' 

~ted as Paper 2-0710 at the AIAAI M AS EI AHS rd 
Scructures, tructural Dynamics and Material Conference, New 
Orleans, La., May 10-12, I 2; submiltN May 12, 1982; ~vision 
rCl:eived Sept. 17, I • Copyri,ht © America.n Insu ute of 
Aeronautics and Astronautics, In ., 1982. All ri,hts l eserved . 

• Assoc:ia,e Professor, Department of MCl:hanicai En,ineerin, and 
MCl:hanics. Member AIM. 

Sub t ork in dynamic m elin rom testata can 
be di . ded into tot ori . e Ir ca ry uses only 
experimental d La to erive t e mas ,stiffn s, and dampin 
matrices. %... The other cat ory deals with ing id ntified 
modal ta to impro e an exi tin , sometimes lar er. 
analytical model. , .. 

One of the import t and b ic relation often used in 
dynamic modeling is th the ured modes satisfy the 
theoretic:a1 reiluirement of ei hted 0 ho onality ith 
res to the mass and stiUne s m ri es. 5 h a requirement 
can nly be satisfted umin no or proportional dampin 
and a tymmetrical stif n s matrix.' in hich a e damped 
and norm modes are t e same. For im ler structures the 
measured .xl (comp e modes) are very clo e to the 
norm mod . For more com pIe structures, the comple 
mod can very much different fro the norm I modes. 
AU"mpts to use th e c:om Ie modes, as normal modes, for 
sad fyin l:te ortho on ity r uirement may lead to adv rse 
effects 0 t e process of dynami modelln . 

Complexity of mod ,in 'c ted by a lter in the phase 
angle associa ed with the modal vector, i oming more 
noticeable to today's dynamic:ist d e to the c:omplexity and 
dampill char c:teristics of modem truquces. aturaUy. such 
a alter in the ph e an les could be due to measurement 
errors, erroneous id ntification, nonlinearities, as ell as just 
the mere fac:t of having a case of c:ompl modes as a result of 
the pr ence of non proportional dampin . 

For structures lh non proportional daml'in ,it is extreme­
ly di fficult to measure norm I modes even by u$ing techniques 
such as multiple- ine-d ell. since this very echnique is bulrd 
on the a sumption of proportional mpillg. IO Usin 
measured modes directly in thl'! equation of on 0 on Iity 
requirement can re ult in large errors in the off-di onal 
term . 11 . 1% Such errors can be due to the faa th t the structure 
has com pIe modes (nonproport 'onal damp]h .l on oth r 
reason . 

The approach propo ed herein is desi ned to circum ent 
using omple mode a norm I modes, hen correcting the 
analytical mass matrix. Inste.ad. the procedure allo fo ' the 
omputation of normal modes from the iven set of mea urad 

comple mod . 

beory nd Pro edure 
In thi pro educe, it is as umed tha the structure under 

consideration has an analytical mathema\ical model th t 
needs improvements. Such a model c ,as in mo t ca e , be 
finite element model. Furthermore, it I as med that the 
structure has been tested in a modal survey test for the 
Identification of its modal parameters . The following in-
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formation is required for th procedure 0 
analytical modeJ. 

1) Mod.a1 Test Data. It is 
survey test has been conduct d that tbe fo lio' t t d. 
are available: a) the omplex m aI ector (~,I, i-l •... m. 
measured at n measuremen st lions her n> m; b) the 
damped natu.ral frequencies «(old) I' f= 1, ... m; d c) the 
dampina factors r" i - I , ... m. 

2) Analytical Model Data. From the anal model. t e 
foUowina information i requir : a an" n m m trix 
[MA lor tbe n element of the modal mas. matrix (mA ]; b) th 
normal modes (~,) . i =I, .. . n, at then measurement talio 
of the modal urvey est; and c the natu aI frequencies «(II,, ) ,. 
i-I , ... " . The precedin in ormation will be used to ompute 
improved mass and t ffnes matrices [M) and [X] and a 
dampina matrix [C] . 

C_p.8.ldJoIIof (M- 'K) lad (M - /e] 

."",sumina that the tructure under con ideration i linear, 
the measured modal parameters ali fy the followin 
equation: 

where 'X, is the ith characteri tic root of the system which is 
related to the ith damping factor and the ith damped natural 
frequency throuah the equation 

(2) 

Equation (1) repr ts n x m complex equ tion or 2n m 
real equations. These equation are not sufficien t to olve for 
system's 1M- IX M -/C]. 

Since no information 's available to correct th analytical 
model beyond the frequency ranle over whi h the modal t 
was conducted, the analytical higher modes will be as umed to 
also satisfy Eq. (1). This will give the following et o f 
equations: 

(3) 

where 'X, in this case is: 

(4) 

It is to be noted here that mo t analytical models do not have 
damping information. It is reasonable to assume that the e 
higher analytical modes have damping factor equal to the 
average damping factor of the m mea ured modes 

J ", 
ram E r, ,., (5) 

Equation (3) represents 2n X (n - m) equations. Combining 
Eqs. (I) and (3), the 2n1 linear equations can be olved for 
[M- IKM- 'C] . 

Compatatlo. of upuilllenbl rmal Mod 

The purpo e of thi ection i to compute the et of normal 
modes, correspond ng to the et 0 mea ured com pie mode. 
for use in correcting the mas matrix. Thi tep i es ential in 
case the measured modes indicate tn p esence of non­
proportional damping in the tructure under test. Thi can be 
indicated clearly by large scatter in the phase angles associated 
with the measured modal vectors, a phenomenon found in 
several of I4>day's modem compl,. ; ~tructures . Such a 

[M-/X) ( l-w1(~I ... 

This ei envalu equation . I gi n eigen alu and n 
eisenvectors. The 11' m of these eigen ectors are the m 
compu ed normal mod corre ponding to m measured 
com pie mod • The remainder eigen ector wi\1 be the higher 
analyti modes used in Sq. (3). 

Several approach can be d to correct the mas or 
sti ffn s matrices. Th approach ba d on minimum 
chang .' gives th corrected m 

[rnA] ""' [~]T(MA)[~] 

[M) - [MA) + [MA)[~)[mA]-/[I-mA)[mA] -/ [~JT[MA) 

here [~) is (nxm) "me ured" normal mode , and [mAl is 
mxm. 

The pproa hu ed herein is simply based on computin. a 
mass matrix that at isfie t.he orthogonality ondition for the 
measured normal modes and the hjgher analytical normal 
modes, i.e., 

(7) 

where the columns of [~] in this case are the ei envector 
computed from Eq. (6). 

Co.pa ... tJ n of Corrected Stilla •• d o..pia Matrices 

After computing [M-I K M -I C] from Eqs . (1) and (3) and 
[M) from Eq. (7), the st.iffne and damping matrices can be 
given by 

[X) - [M)[M-I X) 

[C]-[M)[M-/C] 

(8) 

(9) 

and thi completes the computation of corrected or improved 
mas , stiffness. and dampin matrices. 

od Impro en 
The que tion of jud in the success of any dyn mic model 

improvement technique i quite difficult one. hould the 
changes to the analyti al model be minimum? Should the 
improved model repr ent phy ieal sy tem rather than just a 
set of number? Wh t abou endin with ne ative ma es or 
negallv stiffness in the improved ma s matrix? The ans er to 
the question of succe should be very much dependent on the 
intended u e of the im proved model. 

In the or reported here, the oal of impro in the 
analytical mathematical model is to ma e the impro ed model 
respond to an inpu clo e as po ible to the re pon e of the 
exact model (real stru ure) over the correction frequency 
range. Thi ma e the impro ed model uit ble for re pon es 
and loads prediction and control ystem desian but not for 
structural modifications. If the improved model is to be used 
for structural modifications, the number of degrees-of-



900 

Mode 

I 
I 
3 .. 
~ 

6 
7 
8 
9 
10 

Mode 

2 

Exact 
Amplitude 

100.00 
1".00 
1$5 • .56 
116 . .5.5 
81.1 1 
81.1 1 

116 . .5 
1.505 .05 
157.00 
100.00 

100.00 
''' .24 
51.66 
99.08 
63 .70 
63.0 
99.0 
.51.66 

'''.24 
1 

Phase,dq 

0.0 100.00 
- 0." 148."9 

- 19.7 1"1.8~ 
- .. ~ . S 9 .' 1 
- 93.2 29.97 

- U6.' 29.06 
1055.6 9 . 
129. 134. 
116.05 1 .. 1.71 
110.1 101.35 

0.0 100.00 
- 18.0 0.32 

- ISO.3 "3 .19 
166.7 91.6.5 
116.05 ..... 9 

6.4 .. 3.48 
- 43. 9.33 

42.40 
- 140.9 72.75 

122.9 1 .09 

freedom of the analytical model hould be larler than the 
number of element in the measured modal vectors. This will 
require the com put ion of the urun ured modal vectors' 
element . That is a point to be considered for future in­
vcstiaation . 

nIo tnt e 1m at d rim nt 
The purpo e of electin a simulated e penment. rather 

than a real e penment. I to test the e fecti en of the 
propo ed techniqu under controlled conditi n . In thi 
simul ted study an e ct m them tical model is a ailable a 
ref e-nce for com pari on. Thl exa t mathernati model is 
corrupted Ith random errors to produce an analytical model 
which I to be orrected to produce the improved 
mathemati al model. A comparison is later condu ted be­
tween the improved, analytical. and exact mathernati al 
models. 

EuctModd 
The exa t model po e es ten de ee -of-freedom . It is 

derived throuab uminaten comple m de of the form 

Ih '0 j i( k+ 1)7 
!/I lt= InlT J. n 1/ 

(/=1.2 . ... 10 and k=1.2 . .. . 10 (1 0) 

The ten modes were assumed to have undamped natural 
frequencies of 10, 12, 15,20, 24,30, 36,43, 46, and 50 and a 
dampina factor of 2.0". for all ten modes. 

ytical 
Phase,dq 

0.0 
0.0 
0.0 
0.0 
0.0 

180.0 
180.0 
180.0 
180.0 
180.0 

0.0 
0.0 

1'80.0 
180.0 
180.0 

0.0 
0.0 
0.0 

180.0 
180.0 

Improved 

2.00 
2.00 
2.00 
2.00 

100.00 
U7.00 
1.5~ . ~6 
116.05 05 
81.11 
81.11 

116 . .55 
1055.056 
1.57.00 
100.00 

100.00 
7" .24 
51.66 
99.08 
63 . 0 
63 . 0 
99.08 
.51.66 
7" .24 

1 

Freq 
ran eor 
rnodallest 
data 

0.0 
- 6." 

- 19.7 
- 45.5 
- 93.2 

-1 056.7 
1.505.6 
129. 
116.5 
UO. I 

0.0 
- 18.0 

- 150.3 
166.7 
116.5 

6.4 
- 43. 
- .8 
140.9 
122.9 
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Usina the precedin modal information. [Mi' KEI and 
[Mi' CEI were computed. From [M -IK£I the normal modes 
were computed and then u ed in the equation 

(11) 

with II elements of [mA l as umed equal LO x 10 - $; [MEl 
and, ub equently. [Kel and [Cel were alculated. 

Random errors ran in bet cen 1.0. for first mode to 
~ 10.0 • for the tenth mode ere Introdu ed in tbe ten un­
damped natural frequenci . Random errors of 5.0. ere 
introduc d to e act normal mode . The e corrupted modal 
parameters ere then used to calculate [M; ' K A M;' CAl for 
the analytical m them tical model with proportional dampina 
equivalent to 1.0 • . The modal mass matrix [mAl from the 
exact model u ed Ith :*:5.0.,. random error to calculate 
[MAl, [ A)' and [CAl . 

h.proved Modd 

Exact modal parameters (comple mode hape , damped 
natural frequencie , and damplna factor) of the fi r t four 
modes here arc considered as the measured modal parameters. 
These four modes toaClher with the six hig er analytical 
modes were used to correct the analytical model as previously 
described . 
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Table 1 sho s the e ct, analytical, and improved natural 
and ciampin factors. The second and fourth 

mode ha for the e , analytical , and improved 
mathematical models are listed in Table 2 for comparison. 
Figures la and Ib how the fourth station respon e of the 
analytical model and improved model, r pecti el , plotted 
on the e ct response due to an impulse at the fi rst tation . 
Th figures ho r pon e over the hole frequency ranae 
(0-60.0 Hz). While noti eable improvement are produced 
over tbe correction frequency ran e (0-20.0 Hz). no adverse 
effcc:ts resulted from tbe impro ernent process over tbe 
remainder of the frequenc ran e. 

Conclu on 
A direct technique to use experimental and analyt ical 

modal parameters to improve an existina analyt ical mod.el is 
presented. The corrected model's response resembles tbe exact 

in, . 
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bstract 

A tim -dom in linear modal identification 
L~chn i e is applied to identify som hig ly non­
inea r dyna ic systems. The modal concept is us d 

to i d ntffy such nonlinear systems i h the und r­
stand ' ng at the resulting modes ar only a mat -
at i ca1 repres ntation of the s ries solution of 

the nonlinear system und r consideration. atu­
ral ly hese id ntified modal para ters are not 
n 'que, or nonlinear systems, since they are func­

t i ons 0 t e systems' amplitudes and nc re erred 
to as q asi-linear . The approach presented fn this 
paper can be us ul in predicting signs of non-
1inea r i fes hen lineari y is ass d. It can al so 
be used to nalyze and understand types of non-
1ineariti es of nonlinear systems through successive 
ident i icat ions at di ferent levels 0 responses. 

f 
Fi 
M 
m 

n 
(n(t )} 
{ i } 
p 

q 

(x( t )} 
(y ( t ) } 
(z( t )} 

ri 

!;i 
e 
{ i } 

{ i} 

lTD 

MO 

SOOF 
TOOF 

o enclature 

frequency in Hz 
force in restoring force ele ent i 
mas s 
nu r of degrees 0 freedom of the 
iden ifica ion math model 
number of harmonics 
measurements noise vector 
modal vector for noise represen ation 
number of degrees of reedom of system 
under identification 
number of degrees 0 reedom allo ed for 
measurements noise 
the ith characteristic root for noise 
representation 
linear system response vector 
no linear system response vector 
dis placem nt in restoring force element 
the ith characteristic root or harmonics 
the ith modal vector 0 harmonics 
the ith damping factor (S) 
angular displacement 
the ith vector in t he systems res pons 
matrix [~] 
the i h lfnear (or equivalent li near ) 
modal vector 

Ibra him Time Domain modal identification 
technique 
number of modes allo d in the identi fi­
cati on math model 
single degree-of-freedom system 
two degrees-of-freedom system 

Introduction 

Wi th th incr asing complexity of modern aero­
space and non-aerospace structur s, accurate 

*Associate Professor, Member AlAA 
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dyn ic identi ication has beco e a necessity. 
Oyn mic identifica ion is us ally car ried 0 t 
through identifying t structure's modal param­
eters. T ese modal par eters are required for 
model ing. responses and 10 ds prediction. stability 
analysis and control syst desig. 

Ted mand or more sophisticated dynamic 
identification tech iq es, to atch the stringent 
accuracy requirements, for dynami c design and per­
ormance analysis, as resulted i n numerous 

research e or s in t i s area during th last two 
decades. 

Presently, for dynamic ide tification , a 
structural dynamicist as a c oice bet een r-
quency do in-tec niques l ,2 and time-domain tech­
niques. 3-11 Although quite di fferent and th ir 
merits are still and ill be debatable or a hile, 
the two approaches so far have been dealing with 
only linear systems. 

There have b en fe e orts for the dyn~mic 
identification of nonlinear dynamic syste s.12-19 
U fortunately these efforts are limited to lumped 
par meter systems and are still academic and far 
awa ' from being applicabl e to real structures that 
possess some unknown forms of nonlinearity as ell 
as unknown numb r of degrees of freedom. 

The assumption of linearity in dynamic identi­
fication has been found to be a reasonable assump­
tion fo r many applications. This is true where 
amp litudes of vibration are small or hen in gen­
era l the levels 0 nonlinearities are small and can 
be i gnored. On the other hand. some applications 
requ ire serious considerations or their high 
l evels of nonlineariti es where assumi ng linearity 
can be highly erroneous . An example of such appl i ­
cations is th case of l arge ampl i tude responses of 
panels subjected to acoustic and mechanical 
excitation. 20-26 

The efforts presented in this paper are first 
to study the applicability of a linear modal iden­
tification technique to nonlinear systems. The 
term quasi-linear used in this pap r is meant to 
perform th identification at one certain level of 
excitation or response . Although ·the modal approach 
may be nonexis tent for a non linear system as a 
who 1 • th moda 1 concept wi 11 be used here and it 
is understood that the identifi ed moda l param ters 
will b function of the level of response of t e 
system. 

The s cond purpose of this paper is to iden­
t ify the type of nonlineari t ies in the system. 
This can be attained by identifying the quasi­
l inear modal parameters of the system at different 
levels of responses and study the changes in these 
moda 1 pa rameters . 



I is to be noted r ttl ough th 
examples sed in t is p pe are 1 d para ter 
syste , the t od is applic ble as ell to dis­
tributed par ter syst s. Tide tification 
technique is not depende on nu er 0 degrees 
of freedom of t syste under consideratio . he 
identification model 110 S any larg r number 0 
degrees of reedo such that all modal info tion 
in the res pons s can b 1d nti ied. 

Theory: Linearized Identification odel 

For linear systems, the ITO t echnique is based 
on that t he free-decay re 'ponses 0 a structure 
(x(t )} are linear combinations of the excited 
modes : 

2p A t 
{xC )} • l: {\jIi} e f + (net)} (1) 

i=l 

where {~i} is th ith modal v ctor, Ai is the 
fth characteristic root, p is the n mber of modes 
excited in th responses (2p complex conjugate 
modes ) , and net) is asurements noise. 

h linear ITO technique also uses the concept 
of an oversized identification model ll to r duce 
effects of asurement noise on t e identified 
parame ters. It as' sho n that all owing more 
degrees of freedo in the ide ti ication model 
improves accuracy of ident ificati on since t he extra 
degrees of freedom act as outlets or t e no ise and 
equation (1) becomes 

where m is greater than p. 

This sa concept can be used to eve10p a 
linearized identificati on model for nonl i nea 
responses . The f ree-decay responses of a p 
degrees-of- freedom nonli near sys tem can be 
expressed as : 

2p A t co a t 
(y( t )} • l: { 1} e i + l: {r } e k (net)} 

1 .. 1 k"l 

(2) 

(3) 

wher in this case the first set of modes repres ts 
the fu ndamental solutions and the second s t repre­
sents the harmonics. 

If only a fi nite number of m degrees-of ­
freedom (m > p) are al l owed in t he identificat ion 
model then equati on (3) becomes 

2p A t 2n a t 2q r t 
(yet)} • l: {\jIi } e i + l: Uk} e k + ~ {Nt} e t 

.1 k-l tal 

(4) 
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where 

p n q" m 

ith the nderstanding hat usually e ampli­
t des of hig er a nics get s ller or i gher 
orders , the u ber of high harmonics to be ident i ­
fi ed will be dependen on identifica ion accuracy 
and l evel s of noises in the responses. 

ppli cations 

To test the validity and applicabili y 0 the 
preceding theory, th proposed approach is applied 
to t hre different nonlinear systems. These 
syste s ere selected to represent single-degree-o -
freedo systems ith and without damping and a 
damped two-degr s-of-freedom system. The non­
li near terms are restricted 0 the stiffness terms 
whil e the damping terms were ept linear. For non­
linea r sti ness, soft and hard springs are repre­
sented. High nonlinearities were achieved through 
having t e nonlinear term coefficient larger than 
that of the linear term and or having large ampli­
tudes 0 responses. 

The simulated responses of these systems ere 
obtained by numerically integrating the nonlinear 
differential equations ith some specified initial 
di splaceme nts and zero initial velociti es. A 
fourth order Runge-Kutta with variable s ep ethod 
was used for the numerical integration. 

Simulated Systems 

hree systems are simu1a ed and identifi ed 
usi ng the preceding theory. hese systems are : 

1. A Si mpl e Pendulum: 

The nonlinear differential equation of moti on 
of the si mp l e pendulum, Fig . 1 , is: 

e + 4n2 sin e .. 0 (Sa ) 

e + 0.04n6 + 4w2 sin 9 • 0 (5b) 

where equation (Sa) represents he undamped case 
with a linear natural frequency of 1.0 Hz and 
equati on (5b) has a 1.OS equival ent damping factor. 

Responses were simulated for initial ampli­
tudes eo of n/6 , n/3, n/2, and 2n/3. 

2. A Mass-Spring System: 

A single-degree-of-freedam system, Fig. 2, as 
desi gned to have hardening spr i ng with an equiva- . 
lent l inear frequency of 1.0 Hz and equiva ent 
l i near da mping of 1.OS. The governing equations of 
motion of such a system for undamped and damped 
cases are : 

(6a) 

.. . 2( 3) y+0.04 .7y+4 y + 2.0y =0 (6b) 



Responses e s1 lated fbr initi al ampl i ­
tudes a 0.5. 1.0. 1.5 a d 2.0 units. 

To simulate a 1 i-degree-o - reedo no-
linear syst ith damping. a nonlin ar syste ith 
two masses, three 1i ea viscous dampers nd thr e 
non linear springs, Fig. 3, is analyzed. The t 0 
springs re selected with cubic nonlinearity 
representi ng hardening springs with the coeffi­
cients of the no linear term being 50 and 1 0% 0 
tha t of the l inear term. The equations of motion 
of such system are : 

fYl} r 0.06 -0.02 ] {Y1} roi 
-6 2]{Y11 

1.Y2 + l:0.02n 0.06 Y2 + l:6 2 lOw2 y~ 

-:.Je} · ( O) 
(7) 

Free responses due to initial displace nts 
were obtained by numerically integrating equation 
(7). Two sets of ini tial condi tions were used. 
The first was to represent smal l ampli tudes 
{O.l, O.l } and the second set was to si mulate 
larger amplitudes {l.O, 1.0}. 

Identification 

The numerically integrated responses ere 
sampled at the rate of 50 Hz for the simple p ndu­
lum and the spring mass syste and 100 Hz for th 
two-degrees-of-freedom system. Four seconds 
(200 samples) ere used for th identification of 
both the SooF and the TDOF systems. The n mber of 
modes allowed in the identification program as 
changed from 1 to 6 for the SDOF systems and from 
1 to 12 for the TDOF system. Two samples were used 
to create the pseudo stations for the SDOF systems 
and six samplesAfor the TooF system. The parameter 
for del aying [,] rom [,] was taken as two 
sampl es for the SDOF system and four fo r the TDOF . 
This means an al iasing frequency 0 12. 5 Hz for all 
cases . Unaccounti ng or t he errors arising from 
the numer i cal i ntegrat ion . cases with 0.0% and 1.0% 
noise/s ignal ratios were considered. 

Discussions 

1. he Undamped Case (SDOF) 

For the simple p ndulum and single mass-spring 
sys tem, the ITO was able to id ntify very accu­
rately the fundamental frequency and also harmonics 
up t o the ni nth harmonic . Tables 1 and 2 list the 
i dent ified harmonics for the two cases and Figs. 
and 5 show these identifi ed frequencies. T ble 3 
l is ts ident i f ied damping factors for the undamped 
s imple pendulum. 
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1e 1 0 con ribu 0 
11 1e 1 s 

As expected mor armonics re id nti iab1e 
for hig e 1 e1s 0 no lineari t i es. his also is 
evident from determinant pl ots shown in Figs. 8 
and 9. For smal l er initi"l ampl i tudes . smaller 
nonl i nearities, the determinants decreased at a 
faster rate indicating a l esser number of 
harmonics. 

2. e Damped Case (SooF) 

e identification techniqu id ntified a 
strong undamental frequency and very ea signs of 
a th i rd harmonic. it out noi$ added to the 
responses, early signs of singularities re 
not iced w en t e number of degr s of freedo was 
increased b yond two. an indication of extremely 
smal l nonid ntifiable hig r harmonics. 

For noise-free data larger n mber 0 degrees­
of-freedom in the identification model revealed the 
changing frequency due to the decreasing amplitude 
of response due to damping. T accuracy of the 
identification program detected the change in fre­
quency be een the asurement r sponse and the 
pseudo asure nts. This pheno non as not found 
when a small amount of noise. 1.0%. as added to 
the response. This can also be avoided y using 
shorter time records for identification • • 

Equations (7) ere integrated with two sets of 
i nitial conditions (0.3.0.1) and (3.0. 1.0). 
These are only the initial conditions; responses in 
the second set had maximum displacements of 3.0 for 
both measurements. 

Identification results show d no more than 0 
modes for the small displacement case. For the 
larger displacement case (high non1inearities), the 
two undamental frequencies are much higher than 
the linear case - a result that is expected from a 
system with hard springs. Also. four other har­
moni cs appear d in the identification output. 
Tabl es 10 and 11 su arize the identified quasi­
l inear modal parameters for the system. Table 11 
shows that for the large amplitude case. the firs 
two modes have the largest contributions to the 
responses , also indicating that these two modes are 
the fundamen a1 modes. 

For better understanding of the results in 
abl e 11. the li near modes of th system would have 

resu lted in modal contribution vectors of 
{0.2 0.2} and {0.1 -O.l} for the small 
ampl itude case and {2.0 2.0} and {1.0 -1.0} 
for the la rger amplitude case . For the nonlinear 
identified modal vectors, the amplitudes of the 
funda men ta l modes did not change much from the 
linear amplitudes. but large changes in the phase 
angles occurred. 



-do in, 11 ear d 1 ide tific tion 
ound to use ul for quasi-

d 1 i de ti ica ion of nonlinear dynamic 
system. Such approac ca be sed to detec non­
lineari t tes, and t hei r types, i n structures by per­
forming the identification at diff rent levels of 
response and study the changes i n t he identi fied 
modal parameters . 
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PE OIX 

2p A t 
{ ( t )} '" I: { f} e f 

i-1 

p 

(A1) 

o allow using an identi fi cati on mathematical 
model with an m degrees of freedom, where 
m » P. the vector {()} i s arbitrar i ly selected 
as : 

{ ( t )} = 

{x(t }} 

(x( t At 2)} 

{x(t + 2At2) } 

(x(t + At 3)} 

(x( t + At2 At 3)} 

(x(t + 2At2 + At3)} 

(A2 ) 

where {()} is as red esponse vector . 
Equat on (1) can bitten or same responses 
delayed At1 in t i 

2p .At l ( t )} = { (t + At 1)} • I: { i} e 1 

i .. 1 
( 3) 

By rep atfng se sur nts ectors {} 
and (} for 2r ere r > ,to form the 
two 2m 2r response trices ] and [~]. 
and computing a matrix (A] where : 

(A4) 

the moda l parameters of t he system under cons idera­
tion can be determined from the eigenvalue probl em. 

For complete details on ITO please refer to 
references 3-11 . 

(AS) 

Table 1 Rati os to fundamental of i denti ied requencies for 
undamp d si ple pendulum 

Mode 
no. 
(N) 

1 
2 
3 
4 
5 
6 

Mode 
no. 
(N) 

1 
2 
3 
4 

'5 
6 

0. 9829 
2. 9846 
4.9162 

1.000 
3.037 
5. 002 

0.931 8 
2.7949 
4.6747 
6. 5269 

1.000 
2. 999 
5.017 
7.005 

0.8472 
2.5417 
4.2360 
5.9334 

1.000 
3.000 
5.000 
7.004 

e '" 1200 
o 

0.7284 
2 .1854 
3.6415 
5. 0987 
6. 5681 

1.000 
2.999 
4.999 
7. 000 
9.017 

Table 2 Ratios to fundamental of identifi ed frequenci es for 
undamped spring-mass system 

Yo • 1.0 Yo = 1.5 

fN/f1 

1. 1708 1.000 1.5691 1.000 2.0651 1. 000 2.6032 1.000 
3. 5124 3.000 4.7073 3. 000 6.1953 3.000 7.8116 3.001 
5. 8529 4.999 7.8456 5. 000 10.3256 5.000 13 .0204 5.002 

10.9841 7.000 14.4605 7.002 18.2261 7.001 
23.4437 9.006 
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bl 3 de i i e ping ctors or 
unda ped s1 p d 1u 

0 . I;i 
8

0 1 2 3 5 

30 0.00000 0.00065 0.00002 
60 0.00001 0.00000 0.00050 -0 .00096 
90 0.00006 0.00001 0.00000 0.00122 

120 0.00000 0.00002 0.00030 0.00866 0.00593 

;Cation 

Table 4 lit d s 0 iden i i ed a nics or undamped si p1e pendu1 

Ini ti al amplitude Identified 80 = 81 93 85 87 89 8
0 

(rad. ) 

Theory Identifi ed 91 83 95 97 89 

0.5236 0.52 6 0.5244 x 10~ -0.7 7 x 10-3 -0.lOS0 x 10-
-0.2919 10-6 1.0472 1.0274 0.1054 x 101 -0.6429 x 10-~ 0.6942 x 10-j 

1. 5708 1.5708 0.1594 101 -0.2396 x 10:1 0.6300 10: 2 -0.1930 x 10:j 
0.1156-x 10-4 2.0944 2.0944 0.2158 10 -0.6697 x 10 0.3449 x 10 -0. 2058 x 10 

Ta le 5 plitudes of identi ied harmonics for undamped spring-mass system 

In itial ampl i tude Identified Yo • Yl + Y3 Y5 Y9 Yo 

Theory Identifi ed Yl Y3 Y5 Y7 Y9 

0.5000 0 .5000 0.4942 x 100 0.5697 x lO: j 0.6270 x 10:3 0.1577 x 10-4 1.0000 1.0000 0.9741 x 10~ 0.2529 x 10_1 0.6399 x 10 2 
1. 5000 1. 5000 0. 1449 x 101 0.4913 10 1 0. 1617 10- 0.6205 x 10: 3 0.7986-x 10-3 2.0000 2.0005 0.1924 x 10 0.7323 10- 0.29871 x 10-2 -0. 3066 x 10 

Table 6 Theoretical and identified Table 7 Theoretical and identified 
fundamental frequency for undamped fundamental frequency or undamped 

si mple pendulum spr ing-mass system 

8 0 
fl (Hz) (Hz ) 

0 Theory Ident fied 
Yo 

Theory Identifi ed 

30 0.9829 0.9829 0.5 1. 1708 1 .1711 
60 0.9318 0.9318 1.0 1. 5691 1. 5693 
90 0.8472 0.8472 1.5 2.0GSl 2.0650 

120 0. 7284 0.7284 2.0 2.6032 2. 6042 
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able 8 
da i 9 

9 0 
0 

30 <l 

60 

90 

120 

able 9 Id n i f ed req 
factors for spr g-

f ( z) l; (%) Yo f (. ) 

0.9906 0.93 0.5 
2.91 86 3.50 

0.9398 1.15 1.0 1.52 2 
2.7712 2.89 4. 5873 

0.8678 1.30 1.5 1.9935 
2. 5698 .60 .021 

0.7714 1.89 2.0 2.5064 
2.2955 4.67 7.5700 

Table 10 Ide t if' ed frequenci es and dampini factors or 
two-degree-of-freedo syste 

Y01' Y02 Mode 
no. f ( z) l; (I) 

0.3, 0. 1 1 1.0185 0.95 
2 2.0359 0.99 

3.0, 1.0 1 2.2783 1.40 
2 4.021 4 1.34 
3 5.7955 1. 07 

8.5792 0.65 
5 10. 157 1. 7 
6 12 . 1253 1.60 

--Theore ical linear frequencies are 1.0 and 2. 0 Hz and 
ding factors are 1.01 for the two modes. 

cies nd 1ng 
55 syste 

l; (I) 

0.76 
2. 11 

0.49 
1. 98 

0.36 
1.89 

0.33 
1.58 

Table 11 Iden i f i ed quasi- linear mode shapes or the t o- degree-of-freedom system 

Case Mode no . 

(Y01' Y02 ) Station 2 3 4 5 6 

0.3 , 0.1 1 - p1. 0.1992 0.10156 
Pha. o 0. 21 0. 23 

2 - Amp1. 0.1995 0.1014 
Pha. o 0.25 178.84 

3.0, 1.0 1 - Ampl. 2.0408 1. 741 2 0.0643 0.1191 0.0455 0.0578 
Pha .o -8 .10 -29.30 -10 .00 -71.94 -94.91 -1 26 .47 • 

2 - Amp1 . 1.9648 1.8263 0.0828 0.1121 0.0333 0.0547 
Pha. o -11.45 99.10 -154.79 -96.12 -35.31 78.94 
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Fi g. 1 S i • e p nd 1 u 

m .. 1 

F = nl(y l y3) 0.0 ny 

Fig. l Si ngle- ass -spr ing 
sys t 

~l .. F3 " n
2(z + z3) 0.0 ni 

Fl .. 6nl ( z 0.5 z3) 0.06nz 

(z i s di spl acement of restori ng orce el ement ) 

Fi g. 3 T o-degree-o - reedom sys em. 

10 ----------------------------------, 

o 

o 3
0

' 300 

o '0 ' 60
0 

0 , • 900 

o u 
II " 0 • 120 

.2 . 4 .6 .8 1. 0 

Fig . 4 Identifi ed harmon ics v rsus undamental 
f requenci es of simple pendulum. 
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o Yo • 1.0 

o Yo • 1.5 

30 6Yo · 2. 0 

20 

10 

o 

Fig. 5 Identi i ed harmonics versus ndamen al 
requency or spring-mass sys em. 

1.0 r::--===-----------------------, 
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-- Theory 
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Ampl 

Fig . 6 Theoretical and iden ti ied fundamental 
frequency of simple pendulum . 
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Fig. 7 Theore ical and identi i ed f nda 
frequency of spring- as s sys te . 
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Fi g. 8 Determinant versus DOF of i dent i ication 
model for simple pendulum. 
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