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1. TINTRODUCTION

Consider the evolution partial differentiation equation wu, = Lu, on a
finite interval, where L 1is a hyperbolic operator. The solution u has a
projection Py u on a finite subspace (which may for example consist of the
first N modes in a Galerkin method, or N collocating points in the
interval), and a numerical approximation uy generated by some spectral
method, For linear operators it is known from the Lax equivalence theorem
that if the scheme is consistent and stable, then wuy approximates Py u in
some appropriate norm. If u 1is smooth, then the theorem implies that uy
approximates the solution u in the same sense.

In practice, one looks at the point values of wuy at the grid points and
takes it as an approximation to the values of the true solution u at these
points. We shall call this approach the realization of the computed solution
via its grid-points value. The aims of the paper are: 1) demonstrate that
when u is a complicated function, this realization will not produce
acceptable results; 2) to suggest different ways for the realization of the
solution in such cases.

The following examples give a very clear illustration of the misleading

results that may be obtained by pointwise realization.

Example 1

Consider the equation

u_ = u 0 < x < 27
(1)
u(x,0) = uo(x)



where wu(x) and uy(x) are periodic functions and EO(X) is a discontinuous

function. If we expand uo(x) in Fourier series we get

i ikx
uo(x) = k=§_m a e (2a)
where

2%
_ -ikx
ak = ﬂ fo UO(X)e . (Zb)

—

The solution u(x) 1is thus given by

~ ikt ikx
u(x) = 2: a e e .

Suppose that (1) is solved numerically by the Fourier—Galerkin method, namely

we seek a trigonometric polynomial of the form

N
ikx
u (x,t) = b, (t)e
N PILN

that satisfies
(3“N duy ikx)
y € =0,

SE—'- T -N< k<N
(3)
N
ikx
u (x,0) = 3 a e .
N =k
From (3) it is clear that
dbk(t)
—q— - ik bk(t), -N<k <N (4)

and



bk(O) = a,
yielding the solution
_ 1kt
Therefore
N .
u(x,t) = 3 a elKE o1KX (5)
N ko= k

Equation (5) implies that uy(x,t), obtained from the numerical solution (3),
coincides with Py u(x,t), the Galerkin projection of u, thus yielding the
best possible convergence of wuy to Py u. However, since the Fourier series
of u(x,t) converges very slowly, the point values uN(xj,t) will not
approximate well u(xJ,t). In general, one would witness the Gibbs phenomenon
of overshoot in the neighborhood of the discontinuity and global oscillations
all over the domain. In fact, even the initial approximation, uN(x,O),
displays the same behavior in relation to ug(x).

In the second example we show that the same phenomenon occurs even if the
numerical initial point values do approximate the true initial point values to

a high degree of accuracy.

Examgle 2

Consider the equation (1) where up(x) 1is the saw-tooth function

Ax x < x
uo(x,i) = (6)
A(2x - 7) x> x
for some k, 0 <k < 2N-1, X =% (ktlp), .



In the pseudospectral Fourier method we seek a trigonometric polynomial

VN(x,t)
il 12X
vN(x,t) = 2: bz(t)e (7)
2=-N
such that
avN avN 7
— D —— = ol i = ces - 8
5T e at the points x N 0 4= 0,...,28-1 (8a)
vN(x,O) = uo(x,;). (8b)
Since vy 1is a polynomial of degree N, (8a) implies that
avN _ avN (9)
ot ax
is the

for all x 0,2x). Moreover, from (8b) it is clear that vN(x,O)

(unique) trigonometric polynomial of order N that interpolates uO(x) at the

points Xy» j = 0,ee0,2N-1, thus

N
- 18x _

vN(x,O) zgg% az(x)e = AFN(x,x) (10)

where IN-1
_ 1 _ -ilxj
a,(x) = e, ) ug (x; e . (11)
j=

Performing (11) we get

(12)

ay(x) =A% [k - N+ .5]



'_igi (k+1)
= _ ™ 1 -e w4 -
az(x) A 2Nc£ 2 =) + ictn—N- 1 , 2=0 (13)
1l -e N
where
c g =2 c, = L, |2| # N.

The numerical solution vy(x,t) of (9), (10) is
ve(x,t) = v(x + £,0) = AF (x + t,x) (14)
and upon manipulating (12), (13) one gets
vN(x,t) = AFN(X,E'— t) + At. (15)

The trigonometric interpolant FN(x,;) collocates uo(x,§) at the grid

points x.: However, in between the grid points it oscillates. If we read

J.
the values of wvy(x,t) at the grid points, then by (14)

VN(xj,t) = AFN(xj + t,;)

and unless t = - for some integer m, we will get solution that 1looks
oscillatory. Thus, even though the initial approximation looks smooth at the

grid points, when it evolves in time the oscillations will present themselves

at the points X5.



The conclusion one might draw from the above examples is that spectral
methods (or any higher-order methods) are useless when applied to
discontinuous function. A different approach is to look at a different
realization of the numerical solution rather than the pointwise one. We will
argue that high-order accurate information is contained in the numerical
solution and demonstrate how that information can be extracted in such a way

that accurate pointwise approximation to the true solution can be obtained.

2. INFORMATION AND HOW TO EXTRACT IT

Consider the linear equation

ut = Lu

u(0) =u

(16)
0
where L 1is a linear hyperbolic operator with variable coefficients and ug
is a discontinuous function. For simplicity, we will restrict ourselves to a
periodic, one (space) dimensional problem though the results are more general,
(see Gottlieb and Tadmor [2]). Let v be the solution of the auxiliary

problem

(17)

where vy 1s a ¢® function. Because of the hyperbolicity of L, (17) is a

well-posed problem. In Lemma 1 we quote the well-known Green”s identity.



Lemma 1l: Let wu(t) and v{(t) Dbe the solutions of (16) and (17) at some
level t, then

(uCt), v(t)) = (ug,vy)- (18)

Assume now that (16) and (17) are discretized by the Fourier-Galerkin
method. That 1is, we seek wuy and vy that are trigonometric polynomials of

degree N such that for every k, |k| < N

du

N _ ikxy
(Tt_- L uN, e ) 0 (193)
ikx
(uy(0) = uy, e77) =0, (19b)
( thx (.a_vﬁ+ L v )) =0 (19¢)
¢ 3t N
ik
et X, (vy(0) = vy) = 0. (194)
We have also a Green identity for uy and vy.
Lemma 2:
(uN(t),vN(t)) = (uN(O),vN(O)). (20)

Proof: Since vy(t) and uy(t) are Nth-order trigonometric polynomials we

use (19a) and (19¢) to get



(52 = Ly vy) = 0

oV

N *
(UN, ﬁ-—"' L VN) = 0,

and therefore

3 *
EE'(uN’VN) = (LuN,vN) - (uN,L vN) =0

which implies (20).

We will proceed by showing the relation of the RHS of (20) to that of

(18).
Lemma 3
(ug(0),vy(0)) = (ugrvg) *+ €, (21)
where
vl
le, | < K —08 (22)

for every s.

Proof: From (19b) it is clear that

(4€0) = u,, v (0)) = O. (23)

Also,

[(ugsvy(0) = vy)| < Kiugn vy (0) - V!



and since vp is a c® function,

"VOHS
iv,(0) = v, <K , for every s. (24)
N 0 NS

Now

(uN(O), vN(O)) = (uo,vo) + (uN(O) - Uy, VN(O)) + (uo,vN(O) - vo)

and in view of (23) and (24),

(ug(0), vy (@) = (uy,vy) + ¢,

where

HVOHS

le,| <K

and this proves the Lemma,

From Lemmas 1 - 3 we can conclude:

Theorem 1: Let u(t) and v(t) be the solutions of (16) and (17),
respectively. Let uy(t) and wvy(t) Dbe the solutions of the Fourier—
Galerkin approximations of (16) and (17). Then
nvon

5_, for every s. (25)

|(uN(t),vN(t)) - (u(t),v())| <K
N

The proof is an immediate consequence of (18), (20), and (21).
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Assume now that the Fourier—-Galerkin method described in (19¢) and (19d)

is stable, then vy(t) approximates v(t) within spectral accuracy, that is

v

= S
() = v(edn =g, <K T

We can, therefore, replace wvy(t) in (25) and get

(uy(e),v(e)) = (ule),v(e)) + ¢

where ¢ 1is spectrally small. We use now the fact that every c” function
v(t) can be obtained from some vy 1in (17). This is, in fact, one of the

definitions of hyperbolicity. We can, therefore, state:

Theorem 2: Let u(t) be the (nonsmooth) solution of (16) and let wup(t) be
the solution of the spectral Galerkin approximation to (16). Then for any C*

function v(t)
(ug(t),v(t)) = (u(e),v(t)) + ¢ (26)
where ¢ 1s spectrally small.

Thus, uN(t) approximates weakly wu(t) within spectral accuracy. It is
in this sense that uN(t) contaings a highly accurate information about
u(t). We will show later how to use this information in order to obtain

spectral accurate approximation to the grid-point values of wu(t).
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We turn now to the pseudospectral Fourier -case. Here we need some
preprocessing of the initial data in order to prove the same result as in

Theorem 2,

Theorem 3: Let uy(x,t) be a trigonometric polynomial of order N that

satisfies
9
§;§-= LuN at x = xJ, xj = E%-, j = 0,e0e,2N-1
(27)
ik
(uN(O) -y, e X) = 0, |k| < N,

(i.e., uy(x,t) is the solution of the pseudospectral Fourier scheme, but
initially uy(x,0) 1is obtained by the Galerkin projection).

Then for every smooth function u(x,t)

x 2N-1 27
N jgf) uN(Xj’t) "(xjat) =f0 u(x,t) v(x,t)dx + ¢ (28)

where € 1is spectrally small, provided that the pseudospectral approximation

is stable.

Proof: Let vy be the solution of the pseudospectral Fourier approximation

of (17a) and let vy(0) be the Galerkin projection of vg, that is
ikx
(VN(O) - vy e ) =0, k| < N. (29)

From (27) and the analog equation for vy, one gets
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2N-1 N
N -1 . »
N ;O UN(XJ,t) VN(XJ,t) N j;o uN(xj,O)vN(xj,o) (30)

From the exactness of the trapezoidal rule for polynomials of degree 2N, we
conclude

. 2N-1 2%

i ;E% uN(xj,t) uN(xJ,t) =.£ uN(x,O) VN(x,O)dx = (uN(O),v (0)). (31)
Note that the initial functions vn(x,0) and uy(x,0) are not the
interpolants of ug and vg as in the usual pseudospectral methods but rather
the Galerkin approximation to uy and Vg We recall now Lemma 3 and
equality (18) to establish (28)., The proof is thus completed.

It is interesting to note the way in which the information is contained.
The interpolant of ug looks smooth at the grid points, whereas the Galerkin
approximation of u; looks oscillatory on the grid points. It means that in
order to preserve the information one has to require initially oscillatory-
looking solution. The information is preserved 1n the structure of the
oscillations.

We will show now a way of using (26) and (28) in order to construct a
better approximation to u(xj,t) then the one given by uN(xj,t) (here
uy(x,t) 1is given by either the Galerkin method or the pseudospectral method).

From (28) and (26) it is clear that in order to get a good approximation
to u(y,t) at some point y (0,2r), we need to find a function vy(x,t)
such that

2x

u(x,t) v (x,t)dx = u(y,t) + ¢,
0 y !
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where € is spectrally small. By (26) we will have
2n

"; u.N(x,t) vy(x,t)dx = u(y,t) + € + €, (32)

for the Galerkin method and

2N-1

;E% uN(xj,t) vy(xj,t) = u(y,t) +e + ¢ (33)

4]

for the pseudospectral method.
For conveniency we will shift the interval [0,27] to [-m,n]. Let

p(x) be a C -function vanishing outside the interval [-w,n] satisfying

p(0) = 1., (34)

Let Dp(x) be the Dirichlet kernel, namely

_ 1 ikx _ 1 sin(p+ 1p) v
Dp(y) 27 Z € 27 sin (y/2) : (35)
|kf<p

We set now

v () = vOP(x) = o7} p(e‘ly)np(e'ly). (36)

One can prove (see [2]) that

™
f u(x)we’P(y_x)dx = u(y) + ¢
L

2 (37)

where €, is spectrally small.

Thus, it is possible to extract accurate pointwise values from uN(x).



14—

3. NUMERICAL RESULTS
In this section we demonstrate the efficacy of the smoothing procedure

outlined above. As a test function we have chosen the piecewise c”-function

sin %- 0<x<K 7
f(x) = (38)
-sin~§ 7 < X £ 21.

Denote its spectral approximation by EN(x), and let fN(x) be the
pseudospectral approximation to f(x). It is evident from the first column of
Tables I and III that %N(yv) — the spectral approximation sampled at
y, = vr/N = do not approximate f(yv) within spectral accuracy. In fact,
the error committed by %128(yv) 1s only half of that committed by §64(yv).
Regarding the pseudospectral approximation, ?N(x), it, of course, collocates
the exact values at the sampling grid points, fN(yv) = f(yv); yet, in between
these gridpoints, ?N(y§+-92= (v +1)n/N)  approximate f(ywl/2 ) within
first-order accuracy only, as shown in the first column of Tables II and IV,
In order to construct our regularization kernel in (36), we define the

cut-off function p(E) = pa(g) to be

azz
exp S5 lel <1
E -1
pa(g) = 3 (39

0 otherwise

namely, pa(g) is a C°- function whose support 1s the interval |g| <1.

Y to be used in (36) is of the form

- i 1
¥20P () = g o (07t y) SRR IIG (40)
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The post-processing procedure of the spectral approximation fN involves

convoluting % against ¢e’p, namely

N

27 .
1 ° x-yy sin (p+1p )(x-y)/e
£x) ~ 715 -g I (57) —im =y)/28 & (41)
where x 1s a fixed point of interest. (In practice, we use the trapezoidal
rule to evaluate the right-hand-side of (41) taking a large number of
quadrature points.)

The parameter 6 was chosen as

x - ml; (42)

0 = me

this guarantees that ¢ is so localized that it does not interact with
regions of discontinuity.

It should be noted, in this stage, that 1f © was so chosen to be the
same for each x, (and not as in (42)), the formula (41) admits a simpler

form; that is, if

WP = X o M (43)
1 k=—w
then
N - ikx
f(x) ~ 2: f(k)ok e . (44)
KN

This procedure can be carried out efficiently in the Fourier space.
Next, we turn to the post—processing for the pseudospectral approximation

%N(x) which is simpler than (41). In fact, in this case
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2 WL
£x) ~ o 2 Gy v Plxmy ). (45)
v=0

Note that carrying out the smoothing procedure defined in (45) does not
involve any extra evaluation of f(y) in points other than Y, in contrast
to spectral smoothing procedure in (41). As before, the parameter 6 was
chosen according to (42). We have yet to determine the parameters p and

a. The parameter p must be equal to N for o0 <Bg <1, in order to
assure infinite accuracy. (In our computations, B = .8.) Finally, we feel
that o 1s problem dependent and we chose a = 10, We have not tuned the
parameters to get optimal results; further tuning may improve the quality of
our filtering procedure.

In Tables I, II, III, and IV we give the results of the smoothing
procedure at several points in the domain. The pointwise values are now
recovered with high accuracy. The first column in each table indicates the
points in which the procedure was performed. We limited ourselves to four
points in the interval (O,r) because of the symmetry of the function £(x).

The second column gives either the spectral approximacion EN(x) or the
pseudospectral approximation ?N(x), N = 128 in Table I and II and N = 64 in
Tables III and IV. The third column gives the smoothed results, when filtered
by (41) on (45), at the same points as in column I.

The results indicate the dramatic improvement obtained by the smoothing

procedure. Moreover, note that the error committed by ?128 (or £128) is

better than the one committed by ?64 (or g only by a factor of 2 whereas

64)

after the post—-processing the error improves by a factor of 10%,
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Table I. Results of smoothing of the spectral
approximation of f(x), N = 128
x =X |£(x ) - £ (x )] £ - £, " ¢l
v 8 v N v N
v equals at x - X,
2 3.2 (-3) 5.8 (-10)
3 5.2 (-3) 7.9 (-10)
4 7.8 (-3) 6.3 (-10)
5 1.1 (-2) 1.1 (-10)
Table II. Same as Table I for the pseudo-
spectral approximation ?N(x).
X, =Ll G, 1) - Bx, 10| £ -2, " vl
v+l B v 1lp N v+l N
v equals at x = Xv+%@
2 5 (-3) 7 (-10)
3 8.1 (-3) 7.9 (-10)
4 1.2 (-2) 6.4 (-10)
5 1.8 (-2) 1.2 (-10)
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Table III. Results of smoothing of the spectral
approximation of f(x), N = 64

x, = l£(x) - Ey(x )] £ - £ " ol
v equals at x = Xx
2 6.4 (-3) 4.8 (-6)
3 1 (=2) 5.9 (-6)
4 1.5 (-2) 7.7 (-6)
5 2.3 (-2) 8.9 (-6)

Table IV, Same as Table III for the pseudo-

spectral approximation, ?N(x).

Xal, =g M) EGe g 1) - Byl Ly )] F
v equals at x = xv*%@
2 1 (-2) 4.1 (-6)
3 1.6 (-2) 6 (-6)
4 2.4 (-2) 7.8 (-6)
5 3.6 (-2) 8.9 (-6)
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4. A DIFFERENT METHOD FOR EXTRACTING INFORMATION
In this section we would like to present a different approach for
extracting the information from an oscillatory solution. The idea is to
subtract from the solution those oscillations that correspond to the saw-tooth
function discussed in Example 2, This leads to the following procedure:
N .

Let uN(x,t) = Z u, e“’x, be the solution of the pseudospectral
2 = =N

approximation to a hyperbolic problem. We try to find an unknown smooth

function and a (oscillatory) saw-tooth function Fy(x-t,xg) with an unknown

jump 2yA at an unknown location x; such that
2N-1 P ilkj 2
= - -c - 46
H Z uN(xj,t) AFN(xj,xS) c Z bz e (46)
j=0 lﬂ—p

220

is minimized. Note that we have 2p + 3 wunknowns in (46): A, xg, ¢ and

2P wvalues of bk,(l # 0).

The conditions for local minima of H are found from the following

2p + 3 equations:

2N-1 P

igx,
8H _ o o z: - AR% - - z: R 47
5 0 ==> “ij AFJ. c.FJ. FJ. .ble 0 47)
j=0 2=-p
2#0

where Fj = FN(xj ,xs), ug = uN(xj,t). Also,



=-20-

SH ili
E—=0==>Zu-AFJ-c—Zble =0
3= 2=-p
20
- 2N-1 P ix, 8
— =0 == F7 u, — AF7 F, - cF7 - F~ b e =0
9s :E: J ] J ] J ] :E: L
j= 4=-p
220
N aaz(s) igx
where Fj = aFN(xj,xS)/as = E 55 ° e s and
g=-N
oH ~
H - 0=Db =u -Aa, |m| = 1,2,...,p
m
where
. ! 2N-1 -igx,
= E ; (x,)e J
Yn T 2Nc Uy °
m i=

|2 |>p

where a“(s) = aaz(x)/as. Next, we combine (52) and (53) to get

(48)

(49)

(50)

(51)

(52)

(53)

a single
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nonlinear equation for s:

ch aZ, GR, ch a_, a, - ch a_, Gz ch al, a, =0 (54)

where all sums run over p < |&] < N.

Equation (54) is solved iteratively for S. Having found s, one
immediately obtains from Example 2 all the az(s)'s. Then from (50) we have
the by"s, and A from (52). Finally, having A we find ¢ from (51).

The minimum thus obtained may be a local one while we are seeking a global
minimum. This means that in practice one searches for the global minimum.

We now give an example that illustrates the efficacy of the procedure. We

solve the following problem:

8uN auN

'a_t_+5x_=0’ 0<x<2r, t>0 (55)
sin % 0K x< 1

uN(x’O) = (56)
-sin% T <X < 2%

uN(O,t) = uN(Z'n,t). (57)

We ran the problem on several grids and exhibit here the numerical results for
the case N = 8 (i.e., 16 subintervals in the domain (0,2%)). The

unadulterated results at t = 7/2N on the grid points are shown in Figure 1.
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exact solution

X unsmoothed pseudo—

spectral solution

X o smoothed solution
(N = 8)

1.0

5

Ex!

Figure 1
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Table V
i exact solution error 1 = error 2 = error 1
|exact-unsmoothed| |exact-smoothed| ‘error 2
0 9.80 x 1072 5.86 x 1072 5.86 x 1072 1.00
1 9.80 x 1072 1.24 x 1072 5.86 x 1072 211
2 2.90 x 107} 2.57 x 1072 6.30 x 107> 408
3 4,71 x 1071 4,13 x 1072 7.33 x 107 563
4 6.34 x 107! 6.15 x 1072 9.30 x 107 661
5 7.73 x 1071 9.11 x 1072 1.31 x 1074 695
6 8.82 x 1071 1.43 x 1071 2.16 x 1074 662
7 9.57 x 107} 2.70 x 107} 4,42 x 1074 611
8 -9.95 x 1071 1.00 x 10° 1.10 x 1072 91
9 -9.95 x 107} 2,68 x 107} 1.34 x 1073 200
10 ~9.57 x 107} 1.42 x 107} 4.42 x 1074 321
11 -8.82 x 1071 9.07 x 1072 2.16 x 1074 420
12 -7.73 x 107} 6.12 x 1072 1.32 x 1074 464
13 -6.34 x 1071 4,11 x 1072 9.30 x 107 442
14 -4,71 x 107} 2.55 x 1072 7.32 x 107° 348
15 -2.90 x 107} 1.22 x 1072 6.30 x 1072 194

We then post-processed these uN(xj,n/ZN) values according to the procedure
described above. The filtered values are shown on the same graph, and the
errors listed in Table V are computed before and after processing. The
dramatic improvement is evident.

Next we demonstrate the procedure in the case of the Euler equation for
gas dynamics. Because the physical problem involves inflow, outflow, and no-
flow boundary conditions, periodicity could not be imposed and we use the

Tchebyshev, rather than Fourier, pseudospectral method.
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The physical problem is that of a wedge, inserted as a zero angle of
attack, into a uniform supersonic flow of an ideal gas with vy = l.4. An
oblique shock develops in time and the flow reaches, after a while, a steady
state. The time—dependent Euler equations in two-space dimensions were
discretized by the pseudospectral Tchebyshev method in space with an 8x8 grid
and a modified Euler scheme was used for the time discretization. Since we
are interested in the steady state only, the accuracy for the time integration
is of little importance. In order to be sure that a steady state is reached,
the code was run until all physical quantities did not change to 11
significant figures over a span of 100 time steps. The values of the density
in the steady state at the grid points together with the grid points

themselves are given in Table VI,

Table VI.

1.862 1.85%7 1.869 1.871%7 1.837 1.865 1.892 1.885 1.878 | 1.
1.862 1.870 1.867 1.820 1.870 1.954 1.899 1.803 1.759 961
1.862 1.854 1.852 1.904 1.877 1.770 1.782 1.864 1.900 .853
1.862 1.871 1.876 1.812 1.838 1.969 1.975 1.884 1.841 691
1.862 1.848 1.842 1.935 1.899 1.703 1.710 1.890 1.984 .5
1.862 1.883 1.894 1.729 1.832 2.429 2.994 3.255 3.316 .308
1.862 1.808 1.810 2.387 3.133 3.375 3.224 3.054 3.002 146
1.862 2.115 2.868 3.288 3.176 2.965 3.006 3.136 3.187 .038
1.862 3.083 3.046 2.975 3.087 3.108 3.024 3.013 3.016| O

X 0 .038 146 .308 .5 .691 .853 .961 1. J
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Note that the raw data in Table VI seems to indicate roughly the same y-shock
location at x5 =1, x; = .961, and xp = .853, namely between the grid points
¥4 = +3086 and y5 = .500. This means that because of the coarse Tchebyshev
grid the shock location cannot be resolved to better than 20%Z of the domain.
In fact, the correct shock locations at those x-stations are y = .434 for
X0, ¥ = 417 for x; and y = .370 for x,.

In the present case it is not necessry to employ a saw-tooth piecewise
smooth function, as was done in the previous section, because there is no need
to preserve periodicity. Instead, we subtract from the oscillatory data an

expansion of the Heaviside function, S(y,ys):

d, +d -1 <y<y
1 2 s (58)
d1 Yo €Y <1

where d;, the state ahead of the shock, and dj, the magnitude of the
discontinuity, are constant. The description here of S(YsYs)’ as 1f
independent of x, has to do with the fact that the two-dimensional results of

the pseudospectral algorithm were post-processed at fixed x—stations. The

expansion of S(y,ys) is given by
N
Sy(v,yg) = :‘;6 A ()T (¥) (59)

where Tl(y) is the Tchebyshev polynomial of order g,

T, (y) = cos[ 2 cos—l(y)], and
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Ay(s) = (s + %)/N

Az(s) = sin[lé (s + %-)] /N sin ;£ H 1 <2 <N-1
1

AN(S) = sin[(s + 2)]/2N.

If s 1is an integer, then on the grid points, yj = cos(mj/N).
SN(yj ’ys) = S(yj ’yS)O (60)

The Lj—norm which we wish to minimize is now, at any given x-station:

N
1 2
2; 5 [og(ry) = d) = dy Sy(yoy) - }: b, T,y )]7 (61

cj = (62)
2 j=0,N .
Differentiating (61) with respect to the parameters d;, dy, s and
bz(l < £ < p <N), using the orthogonality relations for the Tchebyshev
polynomials and manipulations similar to those used in the previous section,

we get p + 3 nonlinear algebraic equations which are completely analogous to

(50) - (53). They are:
£ =1,2,000,pP. (63)

o " dy By —dy =0 (64)
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N N N 2 (
c, A p -d 2;- c A" =0 65)
R~ SIRU  TRE R P
N N N
c Ap -d ¢ A AN =0 (66)
- B R R z=§+1 [ 3 T’}
where
N
» 2 1
= < — 67
Py = Too 2T PUPTGY) (67)
£ ._ J
j=0
A" =2 A (s) (68)
9s "¢ ’°

Again, we combine (65) and (66) into a single nonlinear equation for the shock

location index, s:
. 2 " .=
Z;cl A7 o, Z:Cz A, z:cz A, 0, E:cz A, AL = 0 (69)

where all the sums are from £ = p+l to & = N,

The procedure for extracting the shock location, jump magnitude and smooth
part of the solution from the raw data p(x,yj) (given in Table VI) is
exactly the same as described above for the Fourier problem.

For the wedge-flow problem considered here, this procedure applied in the
case of a coarse net (N = 8), located the shock with an error only in the
fourth significant figure. The smooth part was recovered to within 1% at the

worst field point.
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Conclusion

We have demonstrated that the realization of a numerical solution via its
grid-point value may be misleading when the true solution has a complicated
structure which is not resolved by the grid. We have shown, however, that the
numerical solution does contain highly accurate information about the solution
and we suggested two ways of extracting this information.

The analysis outlined in this chapter is a 1linear omne (though the
procedure was applied also to nonlinear problems). However, in [28] Lax has
argued that more information about the solution is contained 1in high
resolution schemes even in the nonlinear case. In fact, using notions from
information theory, Lax has shown that the eg-capacity of the set of
approximate solutions 1is closer to the eg-capacity of the set of the
projections of exact solutions if the numerical scheme is a high-order scheme.

In the area of digital filters one always processes the data in order to
overcome the Gibbs phenomenon. If we look at the initial conditions as an
input signal and at the final result as the output signal, the idea of

filtering is a natural one.
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