View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

NASA Contractor Report 177973
ICASE REPORT NO. 85-26 NASA-CR-177973

[CASE

Multigrid Solutions to Quasi-Elliptic Schemes

Achi Brandt

Shlomo Ta“asan

o
-l

s rnp rooTes
iy t':‘ii
f)

W Ly

[
AN
MOV 1 4 €85

5t

Contract No. NAS1-17070

May 1985 WGy hesEARCH CENTLR
LIBRARY, NASA
11AMPTON, VIRGINI?

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA

National Aeronautics and
Space Administration

Hampton Virana 23665 | (R ERDUOMMIRT



https://core.ac.uk/display/42842573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report No  NASA CR-177973
ICASE Report No. 85-26

2 Government Accession No

3 Recipient’s Catalog No

Title and Subtitie
Multigrid Solutions to Quasi-Elliptic Schemes

5 Report Date
May 1985

6 Performing Organization Code

Author(s})
Achi Brandt and Shlomo Ta“asan

8 Performing Organization Report No
85-26

10 Work Unmit No

Performing Organization Name and Address
Institute for Computer Applications in Science

and Engineering
Mail Stop 132C, NASA Langley Research Center

11 Contract or Grant No
NAS1-17070

Hampton, VA 23665 13 Type of Report and Period Covered

Sponsoring Agency Name and Address Contractor Report
National Aeronautics and Space Administration

Washington, D.C. 20546

14 Sponsoring Agency Code
505-31-83-01

Supplementary Notes
Langley Technical Monitor:
Final Report

Appeared in Progress and Super-
computing in CFD, (E. M. Murman
and S. Abarbanel, eds) Birkhausen
Baston, Inc., 1985, pp. 235-256.

J. C. South, Jr.

16

Abstract

Quasi-elliptic schemes arise from central differencing or finite element
discretization of elliptic systems with odd order derivatives on non-staggered
grids. They are somewhat unstable and less accurate then corresponding
staggered—-grid schemes. When usual multigrid solvers are applied to them, the
asymptotic algebraic convergence is necessarily slow. Nevertheless, it is shown
by mode analyses and numerical experiments that the usual FMG algorithm is very
efficient in solving quasi-elliptic equations to the level of truncation

errors. Also, a new type of multigrid algorithm 1is presented, mode analyzed and
tested, for which even the asymptotic algebraic convergence 1is fast. The
essence of that algorithm is applicable to other kinds of problems, including

highly indefinite ounes.

17 Key Words (Suggested by Author(s))

18 Distribution Statement

multigrid, 64 - Numerical Analysis
FMG solutions
quasi-elliptic schemes

Unclassified - Unlimited

19 Secunity Classif (of this report) 20 Secunity Classif (of this page) 21 No of Pages 22 Price
Unclassified Unclassified 29 AQ?2
N-305 For sale by the National Technical Information Service, Springfield, Virgimia 22161

NASA Langley, 1985



Multigrid Solutions to Quasi-Elliptic Schemes

Achi Brendt and Shlomo Ta’asan

Department of Apphed Mathematics
Weizmann Institute of Science, Rehovot, Israel

and

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center Hampton Virgima. US A

Abstract Quasi-elliptic schemes arise from central differencing or finite ele-
ment discretization of elliptic systems with odd order derivatives on non-staggered
grids They are somewhat unstable and less accurate then corresponding stagge-
red-grid schemes When usual multigrid solvers are applied to them, the asymp-
totic algebraic convergence 1s necessarily slow Nevertheless, 1t is shown by mode
analyses and numerical experiments that the usual FMG algorithm 1s very effi-
cient 1n solving quasi-elliptic equations to the level of truncation errors Also a
new type of multigrid algorithm 1s presented. mode analyzed and tested, for which
even the asymptotic algebraic convergence 1s fast The essence of that algorithm
1s applicable to other kinds of problems, including highly indefinite ones

Thas research 1s supported by the Air Force Aeronautical Laboratones, Air Force Systems
Command, Unmited States Air Force, under Grant AFOSR 84-0070, and also by the National
Aeronautics and Space Admumstration under NASA Contract No NAS1-17070 winle the
second author was 1n residence at ICASE, NASA Langley Research Center, Hampton, VA
23665

-
N5~/ 3 235



Content
Introduction
. Definitions and Examples
Instability and Inaccuracy
. Multigrid Troubles and Their Implications
. Modified Mode Analysis

FMG Solution to Truncation Level
6 1 Multigrid cycle

6.2 Full Multigrid (FMG)

6 3 Averaging

6 4 Measuring convergence

Algorithm for Fast Algebraic Convergence
7 1 Multiple coarse grid corrections

7.2 The modified algorithm

7 3 Mod:fied smoothing analysis

. Numerical Experiments

8.1 The skew Laplacian problem

8 2 The Stokes and Navier-Stokes problems

8.3 Accuracy and stability

8.4 Poor asymptotic convergence

8.5 FMG results

8.6 Asymptotic convergence with new algorithm



1. Introduction

Quasi-elliptic schemes arise, for example, when central differencing 1s used to
approximate odd-order derivatives 1n elliptic systems of partial differential equa-
tions, such as the Cauchy-Riemann, Stokes and Navier-Stokes systems Usual
finite element approximations to such systems also lead to quasi-elliptic schemes.
Such schemes are 1n some sense unstable certain highly-oscillating components are
amplified in the discretized solution much more than in the differential solution

Instead of the quasi-elliptic schemes, other discretizations of the same system
can usually be constructed which are h-elliptic. hence fully stable, and which are
also more accurate than the quasi-elliptic schemes Sometimes. however, these
fully elliptic schemes are inconvenient to use In case of elliptic systems with odd-
order derivatives, for example, full ellipticity is obtained by grid staggering. 1 e.,
by approximating different functions on different grids (cf [3] and {8]) This 1s
inconvenient, especially near curved boundaries. Also the instability of quasi-
elliptic approximations seldom really hurts, since the unstable components have
very small amphtudes, which are still small even 1n the discrete solution The
inaccuracy 1s modest The error in the quasi-elliptic solution 1s typically twice to
four times larger than the error in an elliptic solution using the same gnd size
Thus, quasi-elliptic schemes are often preferred and are widely used

The instability of quasi-elliptic schemes does seem to hurt when multigrid
solvers are applied: The asymptotic convergence turns out to be slow, and a
simple mode analysis traces this slowness to the unstable modes. One approach,
perhaps the best, to deal with this difficulty 1s simply to ignore it- the algebraic
slowness does not matter because it occurs 1n modes whose amplhtudes in the
algebraic solution are erroneous anyway, bearing no relation to their amplitudes
in the true differential solution One should only take care not to mmitially admit
large unstable amplitudes, and to average them out in case they must latter enter
We show, by mode analyses and numerical experiments, that the usual FMG
algorithm 1s very effective in solving quasi-elliptic problems to truncation level
(i-e., to the point where algebraic errors are dominated by discretization errors)
Sometimes the FMG solution may even be better than the exact solution of the
discrete equations, because the unstable components of the latter are slow to enter

Although this is the easiest approach for obtaining fast differential conver-
gence (convergence to the differential solution through a sequence of grids). an-
other algonthm is presented below which does provide fast algebraic convergence
for quasi-elliptic schemes This algorithm, based on multiple coarse-grid correc-
tions, is interesting in its own right, since it is the simplest example of a new
kind of algorithms for solving problems with highly-oscillating solutions, including
highly indefinite problems (see [1, §3.2], [8] and a subsequent article) Smoothing
rate analysis, for one quasi-elliptic example, suitably modified to account for the
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multiple coarse-grid corrections, shows that the new algorithm should algebraically
be as efficient as usual multigna cycles are for fully elliptic schemes Numerical
experiments exactly yield these expected convergence rates (see §8 6, tests of such
algorithms were also reported in (6] )

The significance of the present studies goes beyond elliptic PDE systems
many non-elliptic systems, such as all subsonic steady-state flow problems. have
determinants with at least one elliptic factor Most discretizations of such sys-
tems provide quasi-elliptic approximation to that factor, leading to troubles and
requiring cures similar to those reported here

Moreover, the techniques described in this article 1llustrate the following gen-
eral multigrid approaches to general non-elliptic problems (1) Differential not
algebraic convergence 1s sought and usually easily obtained Modified methods
for aprior: analyzing and aposteriori measuring such a convergence have been de-
veloped (1) With considerably more effort. fast algebraic convergence can also be
obtamned (m) The analysis of difference schemes. and the derivation of efficient
smoothers, for any PDE system 1s based on the factors of the h-principal part of
the operator determinant

We thank Ruth Golubev for some of the calculations reported in §8

+

2. Definitions and Examples

In the following L* will represent a system of g real difference operators on
g gnd functions where h, the meshsize of the grid, 1s for simplicity assumed
to be umform and the same in all directions That 1s, L* 1s a ¢ x ¢ matrix of
real polynomials in Ty, Ty, Ty T T, ! where T, are the grid translation
operators, defined by

T Tj'u(z) = u(z + vh),

with z = (z;, ,z4),v = (v1, ,vq)andd beng the dimension of the Euclhidean
space housing the grid (In case of staggered grids there may appear non-ntegral

powers of T, and L* will most usually be a matrix of polynomials n T_, 1/2 4nd
T2 =1 .d)

3
Three common examples of difference operator are

(1) The five-point (compact) Laplacian

1
1 1
AR = -h—2(To,1 +Tho0+ To,—1+T-10—4T00) = 2 {1 —4 1] J (21)
1

where T, 3 = TT Tf and the array on the left 1s the usual pictorial description

_4_



of the weights of the operator This is the simplest approximation to the two-
dimensional Laplace operator A= 8%/9z? + 3%/0z2

(i1) The central non-staggered approximation to the Cauchy-Riemann opera-
tor
97 93
Lig = ( ) 22
‘CR _95 o (22)
where 9¢ = (T, - T 1)

(1i1) The central non-staggered approximation to the Stokes operator in two
dimensions

-ak 0 8
Lh=1 0 -A* & (2.3)
K 85 O

For simplicity we will deal in this article only with constant-coefficient oper-
ators L® In this case the symbol Lh(Q) of L* 1s defined by

LhAet 2/t = [h(g) Ak, (o] < m)

for any g-vector A, where § = (01, ,64),8 z =012y + -+ 04zq4 and |8] =
max(|6y],. .,]64]) Thus, L*(8) 1s a ¢ X ¢ matrix of polynomials in e**%, ;3 =
1, . ,d, obtained from L* by replacing each T, with e

Also for simplicity we will deal here only with homogeneous operators Lh,
1e, operators for which all terms in det L (the determinant of L") have the
same power in k (This means that L* approximates a homogeneous differential
operator L, 1e., det L 1s a homogeneous polynomial in 8/0z,,.. ,0/0z4 All
examples above are homogeneous) For homogeneous difference operators, the
general notion of ellipticity measure on a given scale (cf [2, Sec. 3 1] or (3, Sec.
2.1}) is not needed, and we can use the following sumpler definition.

Definition The homogeneous difference operator L* is elliptic of order 2m
iff

d
|det L*(8) [> CR™2™ > 62™ for all |9 |< m, (2 4)

=1
where C 1s positive and independent of 8.

Ellipticaity of differential operators is defined in the same way (The parameter
h 1s arbitrary then, and the range of 8 1s unrestricted. It is thus more natural in the
continuous case to replace §/h by another phase variable, w = 8/h say.) It 1s easy
to see that both A and A"* are second-order elliptic. Generally, simplest central
approximations to second-order scalar (¢ = 1) elliptic operators are themselves
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elliptic. But not all central approximations are For example, the “skew Laplacian”

1 0 1
1 1
AX = ——§(T1’1 + le_] + T—],] + T—l,—] - 4T0,0) = 512 0 _4 0 (2 5)
2h 2h2
1 01
or the “long Laplacian”
A = W(Tz.o + To,2 + T-2,0 + To,~2 — 4To,0) (26)

both approximating A, have the symbols

AX 9) = h—l,l[(cos 0, — cos 02)2 + sin? 0, + smn? 6,)

A%h(g) = %(sm2 8, + sin’ 6,)
which clearly fail to satisfy (2 4) Indeed. A* (n.7) = 0 and A2*(%.0) = A?*(0, 7)
= A?*(n, 1) =0 Whereas these examples seem somewhat artificial (although the
skew Laplacian does naturally arise in various situations, e g., in sem-imphecit
Lagrange codes [4, § IV] and for some kinds of finite elements |7]) non-elliptic
operators are very common in approximations to elliptic systems (¢ > 1) The
discrete Cauchy-Riemann (2.2) and Stokes (2 3) operators well represent this sit-
uation' They are the simplest (non-staggered) central approximations to elliptic
operators, but det L%, = A" and det L% = ARA?* hence they do not satisfy
(2 4), their symbol vanishing wherever A?h does Note that taking the determi-
nant commutes with passing to the symbol, hence ellipticity of L* 1s equivalent to
ellipticity of det L*, which in turn 1s equivalent to ellipticity of all factors of det
Lh.

Finite element discretizations of the same elliptic systems. with uniform non-
staggered partitions, give rise to similarly non-elliptic difference operators This s
not usually recognized because finite element discretizations are seldom Fourer-
analyzed as uniform-grid operators

In all the above examples, even when L" fails to satisfy (2 4), 1t still satisfies
the weaker condition

d
|det L"(8) |> CA™2™ ) "sin®™(8,), for all [8 < , 27)

1=1

where C is positive and independent of § The term gquasi-elliptic was introduced
in [8] to describe such operators

Perhaps all reasonable approximations to homogeneous elliptic equations sat-
1sfy (2.7), but for the purpose of including some additional, not-so-reasonable ap-
proximations, we can extend the class of operators, and admit any homogeneous
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operators L* for which det I:"(Q) vanishes only at a finite number of points. This
class includes for example A2** = (Ty 2 + Ty _2 + T-25 + T2 _2 — 4T0,0)/(8h?),
which satisfies neither (2 4) nor (2.7), but for which the methods described below
are still applicable

More generally when inhomogeneous operators are also admitted, our meth-

ods will extend to any operator L* with O(1) “measure of quasi-ellipticity”, defined
by

Ehe(Lhy = . h k(g .

(I = _min |detI*(©) | /|dec () | (2.8
for some reasonable a > 0 E™™ js the usual measure of ellipticity E* described
in [3] The methods here will in principle work for any positive a, although they
will gradually deteriorate with the decrease of o for which EP<(L") is still O(1).

For clarity. we discuss below only homogeneous operators. and the strict quasi-
ellipticity (2 7) is assumed.

3. Instability and Inaccuracy

Quasi-elliptic operators do meet some general stability requirements even if
they do not satisfy (2 4) For example, the skew Laplacian (2 5) is a positive type
operator, hence satisfying the maximum principle. The associated matrix has a
dominant diagonal Nevertheless, in a certain sense such operators are not quite
stable. Namely, since det Lk (8) = 0 for some @ # 0, in an infinite space, or under
periodic boundary conditions, there exists a highly-oscillating function v*(z) =
Aexp(: z/h) which satisfies the homogeneous equation L*v*(z) = 0. Hence
the solution, unlike the corresponding differential solution, 1s not unique (upto
an additive constant); it contains an undetermined highly-oscillating component.
Similarly, i any bounded domain with any boundary conditions, functions w"(z)
close to v"(z) (e.g . w* = pyv* + v, p, being smooth) exist which satisfy the
boundary conditions and for which L*w" is everywhere very small. Such w”
therefore forms an unstable mode. A small change in the equation can introduce
a large change proportional to w”. This is a kind of numerical instability, since a
corresponding large change in the differential solution cannot occur

This numerical instability need not hurt much- If the differential system 1s
LU = F and the discrete system is LAU? = F* all one has to do 1s to define
Fh = I*F, say, through an averaging operator I* which hquidates the unstable
modes, 1.e  ["(0) = 1 and the ratio I*(8)/L"(8) 1s uniformly bounded for all
18| > € > 0 For example, one can take I" = ShI'* where I'* 1s any F averaging
suitable for the fully elliptic case and S" is like the solution averaging S* described
below. Even this is unnecessary in the usual, smooth case (in the same way that
the above rule for I* is frequently neglected for fully elliptic L*), because the
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unstable modes. even when unduly magnified by the discretization, are usually
still small

Generally, the main disadvantage of quasi-elliptic operators 1s a certain loss of
accuracy compared to corresponding truely elliptic operators, which 1s simply due
to the larger differencing steps taken in certain terms of the quasi-elliptic scheme
In some cases this 1s particularly obvious, since the grid is locally decoupled into
several subgrids which are not connected to each other by the quasi-elliptic oper-
ator For example, the skew-Laplacian (2.5) introduces no coupling between red
and black points (in the usual sense of checkerboard coloring. one color being as-
sociated with gridpoints where (z; + z2)/h 1s odd, the other with even) On each
subgrid the discretization looks like the compact Laplacian (2 1) on a rotated grid
with meshsize h; = v/2h Similarly, in case of (2 2). the gnid 1s decoupled 1mnto
4 staggered subgrids with meshsizes 2h, on each of which the operator has good
ellipticity (being in fact equivalent to the staggered-grid approximation described
mn [3, §17.2] or {5. §52]) Thus, since the approximation 1s O(h?). the error in
case of (2 5) 1s on the average twice larger, and 1n case of (2 2) four times larger
than the errors in corresponding fully elliptic approximations (assuming other dis-
cretization errors, related for example to the representation of right-hand sides or
boundary conditions, behave similarly) In these cases, 1n other words, each of
the subgrids can produce the resulting accuracy by itself, other subgrids only add
work

When derivatives are calculated from the solution, however, the approximat-
ing difference quotients may show much greater loss of accuracy, because they
involve differences between values belonging to different subgrids The error 1n
f-order derivatives will generally be O(h™%) times the errors in the function itself
This excessive error can be avoided by taking differences only from one subgrid at
a time, or, more generally, by using only difference operator D* such that Dh ()}
vanishes wherever L?(8) does In case of (2 3), for example, derivatives of the
third unknown function (the pressure) should be approximated by long differences
such as 87, 9;9;. etc.

The instability described above can also be removed, and the inaccuracy in
derivatives proportionally reduced, by averaging the solution. that 1s, by replacing
the computed solution u® by S*u* where S* 1s an averaging operator which
removes all the unstable components In other words, S h(0) = 1 and outside
a neighborhood of § = 0 the ratio $*(8)/L"*(8) should be uniformly bounded
(wherever defined) For the quasi-elliptic L* satisfying (2.7) there always exists
such an averaging operator of the form

St =T, (37,7 + 31, 7%)™, (3.1)

with integral m, < m. On the other hand, the averaging may further reduce the
accuracy of the solution. With the averaging (3 1) the lost accuracy 1s O(h2?) One

-8 -



can make that loss O(h?*) by taking for example

Sh=mg_,(1- (3 - i1, - 3T,7H))™. (32)
Another shght difficulty typical to quasi-elliptic approximations 1s the need to

define extra boundary relations This can satisfactorily be done by extrapolation
(cf,eg., §82)

In summary. although quasi-elliptic discretizations are in principle inferior
to fully elliptic ones (obtainable for systems by grid staggering), they can be
used Since many programmers consider grid staggering a serious complication,
especially near general boundaries, quasi-elliptic schemes and their fast solution
become important

4. Multigrid Troubles and Their Implications

Usual multignid solvers yield poor asymptotic convergence rates when applied
to quasi-elliptic schemes (see [4] and §8 4 below). The reason 1s simple. Slow to
converge are the unstable modes, such as v® or w" above. They cannot signifi-
cantly converge by coarse-grid corrections, since they are high-frequency modes.
essentially invisible on coarser levels Neither can they significantly converge by
any type of relaxation, since an error like w” shows a very small residual function
L*wh (compared with residuals shown by other modes with comparable ampli-
tude) and the corrections introduced by any relaxation scheme are proportional
to the size of the residuals (cf. [3. Sec 11]) In particular, the amplification
factor p(8) of the error mode exp(1§ z/h) per relaxation sweep must be 1 when
ih(ﬂ) = 0, and since the latter equality holds for some |8; = =, the smoothing
factor 1 = max,/2<|gj<~ |4{8)| cannot be smaller than 1.

The poor asymptotic rates are not a real trouble, though The modes slow to
converge are exactly those unstable modes for which algebraic convergence 1s not
really desired, their amplitudes 1n the algebraic solution being unrelated to their
amplitudes in the differential solution The only concern 1s that these amplitudes
will remain suitably small

This situation 1s typical to all problems which are not fully elliptic, includ-
ing most problems in fluid dynamics. Slow asymptotic convergence of suitable
multigrid cycles occur exactly in those components where not much convergence
1s needed anyway Whenever this situation arises, 1t is 1n a sense an absurd to
try and fix the algorithm (although we show in Sec. 7 below how to do 1t), since
one would then often end up investing most of his human and computer resources
to obtain mmprovements which are meaningless in terms of solving the original
differential equations.



Thus, the real objective of multigrid solvers should not be a fast algebraic
convergence (convergence of the computed solution u” to the exact discrete solution
U"*). but fast differential convergence (convergence of u* to the true differential
solution U), using any sequence of meshsizes h and measured directly 1n terms
of the decrease 1n || uP — U || as function of the overall computational work (cf
[3, §13]). This modified objective allows for simpler algorithms, but also calls for
some modifications in our approach for analyzing algorithms, for aprior: predicting
and aposterior: measuring their performance The next two sections will illustrate
these modifications for the case of quasi-elliptic schemes

5. Modified Mode Analysis

It was shown 1n Sec 4 that in case of quasi-elliptic systems g > 1, but that
this bad smoothing factor 1s not relevant to our real objective To analyze a given
relaxation scheme, assume first that 1t 1s as efficient as needed for the differential
convergence of the highest frequency modes (which should latter be checked by the
2-level FMG mode analysis mentioned below) The question then 1s what efficiency
one should expect from the multigrid cycle (employing the given scheme on all
levels) in reducing all other modes As in the conventional smoothing analysis, our
simplifying assumption here will be that relaxation on each level should efficiently
treat all modes 1n only one segment of modes. and that the union of these segments
should cover all relevant modes Instead of assigning to grid h the conventional
segment 7/2 < || < =, however, we can assign to it any segment of the form
a/2 <|| 8 ||I< a, with any norm | 8 ||. That would automatically assign to gnd
h/2 the segment a/4 <|| § |I< a/2. and so on It means that we allow some of the
highest frequency components on any intermediate level not to converge efficiently
by relaxation on that level, as long as those components efficiently converge by
the next-finer-level relaxation This only leaves the highest frequency modes on
the finest grid unaccounted for, which 1s exactly the segment where we do not
seek simple algebraic convergence Thus, the modified definition of the smoothing
factor relevant for our purpose here 1s

fi=min max w(8), (51)
where u(8) 1s the amplification factor of exp(:8 z/h) per relaxation sweep. and
the minimum can be taken over all @ > 0 and over all possible choices of the norm
|| - I (For a generahization of this definition to cases of sem coarsening. cf (3,

§12]).

In case of the skew Laplacian (2 5), for example. the lexicographically order
Gauss-Seidel relaxation yields the amplification factor

1(8) = % cos /(2 — 7% cosby), (5.2)
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so that u(m,7) = 1 and the conventional smoothing factor is 1. But choosing
a =7 and || @ ||= max(]6; + 62]|,|6; — 02]) easily shows that the modified factor
(5 1) yields & < 5. The same can be shown for the long Laplacian (2.6), by taking
o=7/2and | 8 = |0

In case of systems (¢ > 1). the ¢ x ¢ amplification matrix u of the mode
Aexp(:8-z/h) depends both or @ and on the g-vector A The modified smoothing
factor z 1s then defined by

 =min max | uA Al
pmmn max |udl/] Al

where a 1s allowed to depend on both 8//8! and A/|A] With these definitions and
suitable distributed Gauss Seidel (DGS) relaxation schemes (see e g [3, §18.6j)
this again yields g < .5, for both the Cauchy-Riemann (2.2) and the Stokes (2 3)
operators In all these cases. still better factors are obtained by four-color ordering,

for which definitions (5 1) and (5 2) should further be extended (cf (3 2) mn {3])

As for two-level analyses (cf {3. §4 1) or |5, §4.6]). they always couple lowest
with highest frequency modes In non-elliptic cases some highest-frequency modes
are not expected to converge fast What the analysis should then tell us 1s how
efficient 1s the entire multigrid algorithm 1n reducing the algebraic errors below
the truncation errors This can be done by a two-level FMG mode analysis. which
Fourier analyzes the N-FMG algorithm described below (usually for N = 1) by
assuming exact solution of the coarse grid equations (both for obtaining the first
approximation and 1n each of the N cycles) and by comparing for each mode the
final algebraic error with the truncation error (see (3, §7.4])

6. FMG Solution to Truncation Level

Since the multigrid cycling 1s 1nefficient 1n reducing unstable mode errors,
the multigrid solver should take care not to start with an initial solution which
contans large amplitudes of such errors The overall initial error in unstable modes
should better be smaller than the overall truncation error. This 1s easily obtained
by taking a first approximation from a coarser grid, employing interpolation of
suitable order The usual “Full multigrid” (FMG, also called “nested iteration™)
algonithm can therefore be used. with shight modifications The usual algorithm
and 1ts modifications are briefly described in the following For a flowchart, and
a detailed discussion of FMG algorithms and the order of the first interpolation,
see Secs 1.6 and 7 in [3] For simplicity we describe here the Correction Scheme
(CS) version of the algorithm, so the problems are assumed hnear; it should be
converted to Full Approximation Scheme (FAS) to treat nonlinear problems (3,

§8]
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6.1 Multigrid cycle A sequence of grids 1s given with meshsizes hy (k = 1,2, 3,
), where hgyq = hg/2 On the hy grid the discrete equations have the form

LkU* = F* (6 1)

where L* approximates L**! Given uf, an approximate solution to (6.1), the

k
multignd cycle MG for producing an improved approximation uj

uf — MG(k,ug, F¥) (6.2)

1s recursively defined as follows

If k = 1 solve (6 1) by any direct or 1terative method, yielding the final result
u¥ Otherwise do (A) through (D)

(A) Perform v relaxation sweeps on (6 1), resulting 1n a new approximation

]
X~

(B) Starting with ug'] = 0 make 7 successive cycles
bl MG(k - LUl Tl TP - LRER)). =1 .9)

where [ ,': ~1 s a transfer (“reduction”) of residuals from grid hy to grid hx_; We
have used the “full weighting”

IF' = 1Too+ 3 (Tox + Tro+ To—1 + T-1,)

) (6 3)
+3x(Tia+ T +To10 +Toy,-1)

(C) Calculate ik = gk + I,'c‘_lu:"l, where I,’:_l 1s a suitable interpolation
(“prolongation”) from grid hi_; to grid hy For problems considered here, bilinear
interpolation is used

(D) Perform v, relaxation sweeps on (6 1), starting with #* and yielding the
final result u¥

The cycle with v = 1 1s called V cycle or V (vy,12), and the one with v = 2
1s called W cycle or W(v,,v2)

6.2 Full Multigrid (FMG) The N-FMG 1s an algorithm for calculating an approx-
imate solution

uk, = FMG(k,F*, N) (6.4)
to equation (6.1), defined recursively as the following two successive steps

(a) Calculating a first approximation u&: If k = 1, put uf = 0 Otherwise put
uf = I¥_,FMG(k — 1,If 7 F* N), (6.5)

- 12 -



where II ',ﬁ_, is an interpolation of solutions from grid hy_; to grid hi, and [ ,': s
some transfer (“averaging”) from gnd k to gnd k — 1. usually a full weighting of
the type (6 3). The interpolation I :_1 should usually be of order higher than that
of the correction mterpolation I¥_, mentioned above [3, §7.1]. In our experiments
bicubic interpolation was used

(b) Improve the first approximation by N successive MG cycles
uk — MG(k,u5_, . F¥),  (3=1..N)

as defined 1n Sec 6.1.

6.3 Averaging The algorithm above 1s the conventional one, and for equations
with constant coefficients 1t requires no modifications In case of quasi-elliptic
equations with variable coefficients. and 1n particular in case of nonlinear equa-
tions. 1t 1s not enough to prevent unstable initial errors. because such errors can
also later be introduced due to interaction between modes It 1s then better to
exphicitly reduce the unstable modes by averaging. such as (3 1) or (3 2) It may
also then be important to replace I¥_,u*~! in step (C) above by If_ She-1uk~1
In fact, experiments with non-staggered Navier-Stokes equations (cf Sec 8 2)
gave slowly diverging MG cycles unless this averaging was used

6.4 Measuring convergence In various situations where algebraic convergence is
not attempted, as in the present algorithm and double discretization (3, §10 2|
and other algorithms, the question 1s raised how to measure convergence, how to
know, 1n particular, that a solution to the truncation level (1e. with algebraic
errors dominated by discretization errors) has been obtained

The answer is that solution to the truncation level is not really the important
information when differential convergence is our objective (as 1t should most often
be). because (1) Solving to truncation level tells us nothing about the trunca-
tion error itself We may for instance be doing good job 1n solving the algebraic
system due to having chosen an easy-to-solve but badly-approximating discretiza-
tion (u) A smaller differential error may often be obtained faster by switching to
a finer gnd before the equations on the present grid have been solved to truncation
level

The important information 1s the differential convergence itself as function
of computational work This very information can directly be obtained from the
N-FMG algorithm Indeed, the sequence of approximations u%, (k=1,2, )isa
sequence converging to the differential solution, hence the decrease 1n the sequence
of dufferences 6 =|| I-,':—lufv — uk™1 || exactly exhibit the speed of differential
convergence, where the norm || || used to measure éx can be chosen to exactly
represent the sense 1n which convergence 1s sought. One only has to check that
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the smallness of éx 1s not governed by lack of change from uf to u% It 1s enough

for this purpose to check that the suitable residual norm rk =|| F*¥ — LkuX | 1s
considerably smaller than r§ One can usually also verify that the algebralc errors

are below truncation level, e g, by confirming that rfv / r(’)‘ is considerably smaller
than &y /6x_1

7 Algorithm for Fast Algebraic Convergence

Although fast asymptotic algebraic convergence 1s not needed for fast differen-
tial convergence. 1t can still be produced by a more involved multigrid algorithm
This algorithm (also described 1n [6]) may be interesting in 1ts own right, since 1t 1s
the simplest example of a new kind of algorithms (first mentioned 1n {1, §3.2], and
more fully 1n [8]) for solving problems with highly-oscillatory solutions, including
highly indefinite problems

7 1 Multiple coarse grid corrections Let 8',8%. .6° be all the components for
P

which L* vanishes, or. more generally the centers of all neighborhoods in which
L*(8) 1s small Usually ' = 0 Then (by (3, §1 1}, for example) there exists a
relaxation scheme with fast convergence for all Fourier components except those
close to some #’ The error after few such relaxation sweeps must therefore have
the form

ZV" z)exp(:8’ z/h). (7.1)

where VJ" are smooth functions. Whereas classical multigrid seeks to approximate

Vh on a coarser grnd and the algorithm of Sec 6 approximates V}*, the new
algorithm will separately approximate each of the V]", by successively employing
¢ different coarse-grid corrections

Generally, denoting by H the coarser-grid meshsize (H = 2h), the equations
for VJH , the coarse-grid approximation to V]", should have the form

LFVH = 17 R* (72)

where I:JH(Q) R~ ﬁ;‘(Q’ + @) for small 6, and ffj (8%) ~ 6,5 (=0 except for 6,, = 1)
The boundary conditions may couple VJH and V¥ on any piece of boundary along
which exp(z(8’ —8%) z/h) 1s a smooth function There are various ways, vanational
ones and more direct ones to derive Lf I , and the boundary conditions There
also exast various ways for solving (7.2). In highly indefinite problems the latter
leads to creating more components on grid 4h, etc., so that on increasingly coarser
grids the representation tends to a Fourier representation
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Here we give only the very simple example of solving for the skew Laplacian
(2.5). (For a more general case. see [6] ) In this case £ = 2. ' = (0,0) and
8? = (x,7), and one may sumply take L¥ = L% to be any H-approximation to the
Laplace operator In some situations, where the same mechanism creates both the
fine grid and the coarse grid equations, these LJH may again be skew-Laplacians.
As transfer operators one can use

1120 (1 -2 1
Ifl:ﬁ 2 4 2| and I,{{2=Fi -2 4 =2
1 21 1 -2 1

Considering the case that the fine-grid boundary conditions are Dirichlet condi-
tions 1dentically satisfied by any fine-grid approximation. the coarse-grid boundary
conditions for both V;¥ and V! are the homogeneous Dirichlet conditions For
solving the coarse-grid equations (7 2) the MG cycle of Sec 6 1 can be used, even
in the case that LJH are themselves quasi-elliptic, because. for the purpose of accel-
erating the fine-grid algebraic convergence. equations (7 2) need to be solved each
time only to their truncation level (1 e, only to the level of the error VJH - VJ")

In case of similar equations but with non-constant coefficient, averaging as i Sec
6 3 should better be used

(7.3)

7.2 The modified algorithm Given an approximate solution u§ to (6.1), the mod-
ified multigrid cycle MMG for producing the improved solution uf

u¥ — MMG(k,u§, FF) (74)

1s defined non-recursively as follows

If k = 1 solve (6 1) by any direct or iterative method. yielding the final u}
Otherwise, perform v relaxation sweeps on (6.1), resulting 1n a new approximation
v*C and then. for 3 = 1,2. . ¢, calculate

vk=171 — MGk~ 1,0, 12" (F* — L*uy*7-1))

k17

whI = uka L exp(? g/h)IE vk L

with u¥ = u¥¢ being the final result If_, again denotes linear interpolation MG
is the cycle defined 1n Sec 6.1, with a choice of 7, v1. v

With this MMG cycle replacing the MG cycle, the modified FMG algorithm
1s defined 1n the same way as FMG 1n Sec 6.2

7.3 Modified smoothing analysis. The smoothing factor for the above MMG cycle.
1.e., the ideal factor of convergence one can expect from such a cycle per relaxation
sweep on the finest grid is defined by

= max (). (75)
x/2<|6—6| for one ;, |6i<~
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where |1(8)] is the spectral radius of the amplification matrix (or the absolute value
of the amplification factor. if ¢ = 1) Note that for £ > 29, the domain of 8 over
which the maximum is taken may be empty. In such a situation convergence can
in principle be obtained without any relaxation on the finest grid This does not
mean that the algorithm 1s more efficient than a conventional multigrid. because
1t employs at least £ times as many relaxation sweeps on each coarser grid

A more precise two-level analysis can of course be made here 1n the conven-
tional way (3, §4 1]

For the skew-Laplacian and the algorithm described above, the lexicographic
Gauss-Seidel amphification factor (5 2) attains 1ts maximum (7.5) at (+n/2,0) and
at (n/2.7), yielding o = 447

8 Numerical Experiments

8 1 The skew Laplacian problem Our main experimental studies were conducted
with the skew Laplacian scheme (2.5) in the rectangle {0 < z; < 2 0 < z; < 3}
with Dirichlet boundary conditions These conditions and the right-hand side
of the differential equation AU = F were chosen so that the solution U of the
differential equations 1s known, to allow direct measurements of discretization
errors The sequence of grids have meshsizes hy = 2% (k = 1.2, .), each
positioned so that the boundaries of {1 coincide with grid lines On every level
L¥ 1s the skew Laplacian, and the relaxation 1s lexicographic Gauss-Seidel The
algorithms were those described in Secs 6 and 7.

Table 1 shows the maximal differential error (maximal differences between
computed and differential solutions) on various grids In addition, columns headed
by @ or d° show maximal error in first derivatives, approximated either at grid
midpoint by short difference quotients (the 8 columns), or at gridpoints by 9, (the
0°¢ columns). The upper part of the table gives these errors for the exact discrete
solution, the lower part — for the solution obtained by a 1-FMG algorithm with
V(2,1) cycles For grid 5 an additional result (5a) is sometimes given It shows
errors measured after the solution 1s averaged by (Tll/ 24+ T]_l/ %)/2 (f. (31))
The table compares skew-Laplacian with usual (compact) Laplacian (using the
same meshsize and the same relaxation), and a case of smooth solution with a
highly-oscillatory case The latter 1s shown in order to emphasize how bad quasi-
elliptic schemes can be. In practice such highly oscillatory components have very
small amplitudes If their amplitudes are bigger than O(h?) (here h2 = .001),
then second-order approximations cannot be obtained by any discretization In
the highly oscillating case 1t was of course necessary to use the full weighting (6 3)
for I ,':—1 mn (6.5), this was started with k = 7. In the smooth case, however,
mjection of F' was used, in order to obtain a clearer picture, clean of F-averaging
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€Irrors

TABLE | U=sm(B+2y) | U=2(2- 2)y(3 —y) con 52
1 A TAT A | A
grid 8 o E ) 9 8! 5

Exact | 3 | 1703 410 271|.0517 108} 2.25 393 337 0152 030
4] 0417 115 092| 0129 033| 225 422 393] 0038 .008
5/.0104 031 .027%.0032 009! 608 19494 979 |.0009 002
5a) 0084 .027 031 306 979 381

i
T L

1-FMG| 3 | 1709 436 276! 0606 151 225 393 33715.0198 .039
|

! !
41.0418 109.092, 0169 048/ 225 4.22 393! 0055 .012
| | 510105 030 027, 0045 014; 215 752 647, 0014 003

;53 0085 .027 .031! } 213 647 641

8 2 The Stokes and Navier-Stokes problems We have also conducted experiments
with the Stokes operator (2.3). described 1n detail in 3, §18.6] (with shight improve-
ments, to be described 1n the new edition) The unknown grid functions of this
operator are U*, V" and P* - the discrete horizontal velocity, vertical velocity
and pressure, respectively

In the differential problem only velocities are normally given on the boundary.
In the non-staggered discretization (2 3) some boundary conditions for P* should
be introduced {which 1s a disadvantage typical to many quasi-elliptic operators)
For clarity of exposition we here avoid this 1ssue by showing results for pertodic
boundary conditions (adjusting undetermined additive constants before measuring
errors).

The exact treatment of boundary conditions is important only in measuring
asymptotic convergence rates It does not much affect results of 1-FMG Therefore
we will show such results also for the Dirichlet boundary conditions In these
experiments P* at each boundary pomnt 1s taken equal to the nearest interior
value of P" and it changes whenever the latter does This does not correspond
to Neumann boundary conditions, but to couphng the four subgrids into which
the P* gnd decouples. A partial relaxation sweep near Dirichlet boundaries is
performed before each full relaxation sweep

The relaxation employed is distributed Gauss-Serdel (DGS), a special case of
a scheme for relaxing general PDE systems, explained in [3. §3.7] Brefly, 1t 1s
equivalent to writing U* = ot — 3508, Vh = o — 35ph and P* = —AhRph,
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and relaxing by usual Gauss-Seidel the resulting equations 1n qp;‘. The changes

in the latter imply changes mn U"?, V* and P*, which define the actual changes
performed by the DGS relaxation The relaxation ordering 1s 4-colored, relaxing
the four mentioned subgrids one at a time

The domain for this problem 1s the square {0 < z, < 27} The meshsizes are
hr = 27%% The night-hand side and the boundary conditions are chosen so as to
give the prescribed solution U =V = P = sm(cos(:n + 212)), a periodic solution
which includes many Fourier modes The discrete right-hand sides were calculated
by F¥-1 = I,’:"IF", using (6 3), starting at k = 8

Some experiments were conducted with averaging (cf Sec 63). In the
present case this means averaging of P" only, since U* and V* vamish 1n the
unstable modes When used, this P-averaging employed (3.1), with m; = mg = 2.
performed on P" 1n any solution or correction just before interpolating it to a finer
gnd

Also mentioned below are expermments with non-stagered incompressible
Nauvier-Stokes (INS) equations. with procedures similar to those for Stokes For
details see [3. §19] the modification from staggered to non-staggered formulation
and processing are the same as for the Stokes equations Results are given for the
Dirichlet problem (U and V given on the boundary, P on the boundary treated as
above), for the case U =V = P = 1+.2sin(cos(z; +212)). We have experimented
with small and large Reynolds numbers, Re In the latter case anisotropic artificial
viscosity was used 1n relaxation, its magnitude being 1 4 times the viscosity intro-
duced by upstream differencing Central differencing without artificial viscosity
was used for the fine-to-coarse residual calculations. allowing O(h?) solutions to be
obtained The large Re PDE problem 1s not elliptic (more precisely, it has small
ellipticity measure), so 1ts detailed discussion is beyond the scope here Indeed.
the present example 1s not fully typical for large Re, because it has no boundary
layers and no gridline-streamline alignments

Table 2 summarizes four numerical experiments Three with the Stokes (Re =
0) problem (exact solutions for the periodic (“Per ”) boundary conditions, 1-FMG
solutions with W(2,1) cycles for the same problem, and similar 1-FMG solutions
for the Dirichlet (“Dir.”) problem), and one expermment for “infinite” Re. 1e.,
with viscosity completely dominated by artificial viscosity The latter experiment
uses 2-FMG algorithm with W(2,0) cycles, because double discretization (differ-
ent artificial viscosities at different stages) 1s involved (cf. [3, §10.2]). For each
experiment and each grid k, the three numbers shown 1n the first column are
max(|| w* — U |, || v* =V ), || p* — P || and || p* — P ||, where (u*,v*,p*) is
the solution obtained for that grid, p* = %Hle(T;/ 24 TJ_I/ %)p* and || || 1s the
discrete L; norm per unit area. The three numbers in the next column (headed
by “9”) are max,, y max(|| 9*u* — 8,U |, || 9*vk — 3,V |), || 85p* — 3,P ||, and

i 3;‘13" — 0,P ||, where 9, = 3/9z, and 6;‘ = (Tl/2 - T_1/2)/h;c In the next col-

2 J
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| TABLE Non-staggered Navier-Stokes Staggered
! 2 ! No P-averaging | P-averaging | Nav -Stokes
,, grid 8 o 8 & P)
Re=0 |5/ 00084 0030 0108 ;.00084 .0030 0108 | 00079 .0055
Per 00500 .0394 0392 |.00500 0394 0392 | 00150 .0094
00542 .0395 .0395 | .00542 0395 0395 | 00513 0212
Exact |6| 00024 .0007 0026, 00024 0007 0026 | 00018 .0013
. Sol ;100123 0098 0098' 00123 0098 0098 | 00037 0025 |
: : 100135 0100 0108| 00135 0100 0108 | 00127 0054 '
; Re=0 ;5T 00090 0036 0113 | 00097 0031 0113 | 00080 oosﬂ
Per | |.00661 2086 0555 00978 .3452 .0682 | 00163 .0215
| 00562 .0447 0445 00977 0670 .0691 | .00540 0243
W(2,1) |6].00024 .0008 0027 .00025 .0008 .0027 | 00018 0013
1-FMG | |.00136 0536 0146 | 00216 1346 .0181 | 00036 .0036
00136 0119 0117| 00209 0180 0189 | 00129 0057
Re=0 |5 00104 0041 0111, 00097 0035 0109 | 00076 0055 |
. Dir | | 01285 3715.0851| 01480 3946 0763 | 00198 .0176
i 1.00712 0665 .0530 |.00971 0719 .0649 |.00544 0246
W(2,1) 6] 00027 0011 .0028?.00026 .0008 .0027 | 00017 0013
1-FMG | |.00337 1586 0451! 00371.1776 0264 | 00047 0038
00191 .0348 .0271|.00223 .0252 .0191 | 00132 .0059
Re=oco|5! 00272 0433 .0253 |.00215 .0250 0097 | 00168 0180
Dir 01515 .4536 .2382 | .00637 .2098 .0256 |.00242 0832
00957 .1945 .1594 | .00273 .0168 .0147 |.00106 0076
W(2,0) |6| 00138 0547 .0357| 00088 .0154 .0046 | 00039 .0064
2-FMG | |.01517 .8227 .4913|.00142 .0830 .0085 | 00066 .0436
01051 4062 .3413 | .00074 .0048 .0033 |.00038 .0016
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umn (headed by 9¢). similar numbers are given, with the long difference quotient
5;‘ =95 = (T, - TJ'] )/(2hy) réplacing BJ" The next 3 columns show similar sets
of results for the case that P-averaging 1s used The remaining 2 columns give for
comparison results obtained on a staggered grid with the same meshsize, without

P-averaging (Using p* for approximation, especially of derivatives. still may pay
if v, =0)

8 3 Accuracy and Stability Tables 1 and 2 clearly show that the exact quasi-
elliptic solutions (A> and the non-staggered Stokes, the latter mainly in terms
of P) are several times less accurate than the corresponding fully elliptic ones
(A* and staggered Stokes, respectively), but they are still O(h?) Errors 1n the
highly oscillating case, exhibiting instability, could of course all be reduced to O(1)
(or O(h;!) in derivatives) by enough F-averaging (see §3) Averaging the solu-
tion {row 5a, or the p* results). or taking suitable long difference quotients. cure
the worst behavior too but also somewhat further reduce the smooth-component
accuracy, which nevertheless remains O(h?)

8 4 Poor asymptotic algebraic convergence Denote by A the asvmptotic conver-
gence factor per multigrid cycle, 1e. A = (r¢/rm)Y/ (€-m) for sufficiently large £,
m and £ — m, where r; 1s any error (or residual) norm measured at any fixed stage

of the £-th cycle As expected (see §4 1). the usual cycles MG(k, ) yielded poor
A for quasi-elliptic schemes

In case of the Skew Laplacian and V(2 1) cycles. our experiments exhibited
A = .845 and A = 96 for levels k = 4 and k = 5, respectively The convergence
rate log 1/) is clearly O(h?), as the rate of a simple Gauss-Seidel solver for the
compact Laplacian A" Indeed, on each subgrid (red or black) the relaxation does
look like Gauss-Seidel for AP!. and the coarse grid corrections are no help in case
the black residuals cancel the red ones in the transfer to grid k—1 For companson
V(2,1) cycles for the compact Laplacian A* with lexicographic Gauss-Seidel yield

~ 12 on all grids

Similarly. for the periodic Stokes problem and W (2.1) cycles, A = 80 and
A = 945 were obtained on levels 4 and 5, respectively, exhibiting again O(h?)
rate. The rates were almost identically the same whether P averaging was used
or not. For comparison, for staggered-grid Stokes discretizations the red-black
DGS relaxation gives A = 30 and A = 20 for the W(1,0) and the W (2,0) cycles.
respectively These same excellent rates are obtained both for the periodic and
the Dirichlet boundary conditions (provided some local relaxation near boundaries
1s added in the latter case) The same results are obtained for the Navier-Stokes
problem with small Re For large Re, divergence occur unless P-averaging is used

(cf 86 3).
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8 5 FMG results Despite the bad asymptotic convergence, Tables 1 and 2 clearly
show that results obtained for the quasi-elliptic cases by short FMG algorithms
are very good In smooth cases theyv yield differential errors practically as small
as 1n the exact discrete solutions Moreover, 1n case of the unstable mode, the
FMG results are visibly much better than the exact solution (precisely because the
bad behavior is slow to enter) In case of non-linear equations (Table 2, Re = oc)
proper averaging (Sec 6 3) 1s tvidently necessary for good FMG results

8 6 Asvmptotic convergence with new algorithm The MMG(5 ) cycle of §7 2
has been employed to solve the skew Laplacian problem with v = 3 relaxation
sweeps per cycle and with V(2,1) used as the MG(4. ) inner cycle For many
cycles the convergence factor per cycle was steadily between 07 and 08, or a
convergence factor of 425 per fine-grid relaxation close to the value 447 expected
by the smoothing mode analvsis (§7 3)
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