Metadata, citation and similar papers at core.ac.uk

SA Technical Reports Server

- O

. N86-14099

Transformation Matrices
Between
. Non-Linear and Linear

s Differential Equations

Te ) Robert L. Sartain
| Associate Professor
Department of Matﬁematics and Physics
Houston Baptist University

Houston, Texas

T A
A R

Fro
ST

Y

ABSTRACT

e o,

In the linearization of systems of non-linear differential equations, we consider those
_ systems which can be exactly transformed into the second order linear differential
equation Y”~AY'-BY=O where Y, Y: and Y”are n x | vectors and A and B are constant
n x n matrices of real nurabers. We use the 2n x 2n matrix M:ﬁ ,{] to transform the
7 above matrix equation into the first order matrix equation X' = MX. We study N
| specifically the matrix M and the conditions which will diagonalize or triangularize M.
We indicate transformation matrices P and P"l to accomplish this diagonalization or
triangularization and how to use these to return to the solution of the second order

matrix differential equaticn system from the first order system.

We conclude with a study of the relationship between the diagonalization of M to that

of the submatrices A and B.
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Introduction

(Szebehely, 1976), (Bond and Horn, 1978), and (Bond, 1982) have studied the
linearization of systems of non-linear differeniial equations. In each of these cases
the transformation of one system to the other involves square matrices A and B of

order n.

In the present paper we consider only those non-linear differential equation systems
which car be exactly transformed into the second order linear differential equation
system Y“-AY’ -BY=0 where the matrices A and B are constant matrices of real

numbers and where Y, Y', and Y”are n x 1 vectors.

We form the matrix M =[g : hich is a matrix of order 2n which arises in the standard
transformation of the second-order linear equation to a first-order linear equation by
the transformation
Z=Y
. T ! ‘o 7
where Y is the vector (Y, , Y, 4 «sy YR)and Y' = (Y, Y, , «ey Yn).
=Y
Observe that this transformation yields Z,' =Y’ =2, and Z; =Y"= AZ.+BZ,.

Written in matrix form we have

2/]1_ [ox][2

z;| T |BAJ|Z,
. Z, oI . " ¢ .
Letting X =[ Z“]and M= 3 A the equation Y "= AY + BY can be reduced to the linear
tirst-order matrix equation X’'= MX.
This research is concerned with the following questions:
(1.) What are the conditions on the matrix M which will allow us to solve the matrix
differential equation system x! = MX.
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' (2.) Under the assumption that this system can be solved, how does one actually
P recover the matrices to return to the original second order differertial equation .
4 " /
' systemY -~ AY -BY =0.
11',
p This paper shall try to answer these questions as completely as possible.
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Theory
The solution of the first-order linear differential equation system X/ = MX depends
heavily on the matrix M given. We consider two cases. The most satisfactory solution
occurs when the matrix M is similar to a diagonal matrix and much of our research has
centered wpon what must be known about the submatrices A and B of M g,ﬂin order
to assure that M can be diagonalized. We give some elementary linear algebra theory

to familiarize everyone with the ideas.

For a linear homogeneous transformation such as M above, there exist scalars /L- and
vectors X, which satisfy the equation MX . = A; X‘. . The values of 34- for which this
equation is satisfied are called the eigenvalues of M and the vectors X which are fixed
under the transformation M for each ’L‘ are called the eigenvectors. There are many
other names associated with these values and vectors, some of which are

characteristic values and vectors, latent values and vectors, ard proper values and

vectors.

Clearly, the zero vector will always satisfy the equation MX = AX for any)\chosen.
However, we desire to find nontrivial solutions to the problem. Rewriting the equation
as (M-AD X = 0 we see that any nontrivial vector X will satisfy the equation if and or .y

if det (M- Al) = 0 where det stands for the determinant of the matrix M-AL

The determinant of this is a polynomial equation in A. Since, in our case, M is of order
2n, the polynomial equation f(A) = 0 will be of degree 2n, and hence there will be 2n
eigenvalues associated with M. These values may or may not be distinct, and we shall

discuss the consequences later in the paper.
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For each distinct eigenvalue,)\, satisfying f (A) = det (M- = 0 there will exist at least

one non-trivial eigenvector X satisfying (M- AD) X = 0. (Stein, 1967).

The eigenvalues and eigenvectors play a central role in the solution of the differential

/ .. . g .
equation X = MX and this is our purpose in discussing them here.

A matrix M is said to be similar to the matrix C if there exist a nonsingular matrix P

 suchthatM =P CP”.

The matrix M is diagonalizable if it is similar to a diagonal matrix

o= [-S)

where the large zeros indicate that all elements off the main diagonal are zeros.

Suppose now that the matrix M of our system X’ = MX is known to be diagonalizable,
then there exists a nonsingular matrix P such that P-‘MP=D (A5 ouey Al,\,) where the
notation D (l,, aony A,..) will always mean a diagonal matrix where the A, /\1, ...,)1“
are the eigenvalues of M and they lie on the main diagonal of D. See Theorems 6.7.1

and 6.8.1 of (Stein, 1967) for a proof of the above statement.

¢ If we now set X = PZ where P is the matrix which diagonalizes M, then X’ =Pz’and Z
=P'X. SoPZ'=X'=MXorz'=P'MX = (P"MP) Z Thus Z’ = DZ where D is our
diagonal matrix. Using elementary differential equation theory, it is known that a

solution of Z' =DZis
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So \X = PZ will then solve the original system simply by multiplying the matrix P by the
vector Z. Thus it is of paramount importance first ¢+ determine whether or not the
original matrix M can be diagonalized and if it can, then how does one obtain the
matrix P which both diagonalizes M and gives the final solution for the X once we have
Z as shown above.

Now consider the second case where the matrix M is not diagonalizable. Every square
matrix M is similar to a triangular matrix T with the eigenvalues of M as the diagonal
elements of T. A constructive proof of this fact is given in (Stein, 1967) as Theorem
6.83.5. The process again generates a nonsingular matrix P such that P'MP = T. Using
the same construction of X = PZ given above, by elementary differential equation
theory (Murdoch, 1957), one can solve the system for the original vector X = (X,, X,,
osy Xh)T. If we assume the matrix T is upper triangular then after computing PZ, we
wil have X, = C,,‘),“e'l"‘t as in the preceding case, and in general depending on the
multiplicity of the eigenvalues, if A is an eigenvalue of multiplicity r, then the solution
for this case will be of the form e’ltf(t) where p(t ) is a polynominal of degree r-1.

Thus a solution is possible even in_this case although not as easy to obtain or use. If

Lt
the A’s are distinct then, for example, if Xz, =0, MC‘, then the solution for

A t Jamt
2’1-‘)3“('[ CJ ' + C""")J"\, e— ™

xau'o =C
where the Cij 's are the nonzero elements in the upper triangular matrix which

correspond to each row i and column j position. One can use these solutions then to

substitute in and solve for the next X ' and so on, until a complete solution is

obtained.
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Results

We next describe the process of actually obtaining P which will diagonalize or
triangularize the matrix to give us the solutions indicated above. We consider each of

the cases separately. )

Suppose first that M is diagonalizable, then there exists a set of 2n linearly

independent eigenvectors, say U, , U,, ..., U, and this is true regardless of whether or .
not any eigenvalue has multiplicity greater than one or not. See (Edelen, 1976) for a
discussion of this property. If we suppose that U, corresponds to )\., U, to /\2, ooy U,.‘to fIM
even if some of the A 's are equal, then the matrix P = (U, , Uy, «., U,.) where each
column of P is a vector of length 2n will be nonsingular since these 2n vectors are
linearly independent. We observe that if AfA‘.’ for instance, there will still be distinct
eigenvectors U; and Uj which are linearly independent when M is diagonalizable. P

nonsingular implies that it has an inverse and the product P~ MP will actually be a

diagona! matrix with the eigenvalues down the main - ‘iagonal.

We will address the process of determining the eigenvectors for a given A later in the hl

paper.

We now consider the problem of finding the nonsingular matrix P when the matrix M is

» not diagonalizable.

The process is given as follows. Process:
(1.) Find an arbitrary eigenvector, X, for the first eigenvalue ), of your matrix,
(We shall assume X,, ),,, ...,,L,\ are successively on the diagonal from top left to
lower right.)
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(2.) Form P, = (X,,6, «e., €3, ) provided that P so formed is nonsingular.

. -1
(3.) Compute P and calculate the product B, MP, where M is our original

matrix.

(4.) Using P MP we now have J,m upper left corner. Call the submatrix formed
by crossing out the row and column which contains },, M,. If M, is a 2xZ matrix
skip to step 10. Otherwise compute an eigenvector for lx using M, (not M, but it

will be the same eigenvalue, ); , as for M).
(5.) Form P, =(X5,65, «.0y&,) where X, is the 2n-1 eigenvector found in step 4.

(6.) Compute P;' and calculate the product P.' M, P, . This matrix is of order
2 a i Fa

2n-1.

(7.) P;'M, P, will now have A:L in the upper left hand corner and zeros in the

column belo* it.
(8.) Form the submatrix M, by crossing out the row and column containing J_z .

(9.) If M, is 2x2 goto step 10. If not continue the process as illustrated in steps

5-8 until a submatrix which is 2x2 is finally obtained.

(10.) When M; is reached which is 2x2 the process will be changed as follows:

22-8
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Process (Continued)

(a) Compute an eigenvector using M; for /\1"_ e

(b) Compute an eigenvector using M; for A -

() LetPj, =(X; » X,). Note it does not contain standard basis vectors as in

previous cases.

: (11.) Finally form the matrix P as follows:
1
pop. T QLI Of [T 0 [, et
=P . X r = = el
] O Fl O P; o P;h'_, where i ’ 2 o 1]y

(12.) Compute P~'. Then the final product P"'MP will triangularize M and leave
the eigenvalues on the diagonal of P~'MP. Note that this form will create an
upper triangular matrix.
Note: Each successive eigenvector is found by reducing M; - Ml to canonical form
for j = 0y «eyan-1. Then multiplying the reduced matrix by the appropriately sized
vector made up of the X; 's to be in the eigenvector. Solve this system of linear
equations by choosing appropriate values for the arbitrary X's. You can choose X; =

I for arbitrary X's if so desired. This then will make up the necessary eigenvectc: for

that A,

22-9
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In determining eigenvectors for an M which is diagonalizable, there are two cases to
consider. The first case is that for which al' eigenvalues are distinct. In this case use
Gaussian elimination to reduce the matrix M -AI to canonical form (we use this name
to imply that the matrix has ones on the main diagonal and zeros off the main diagonal
in so far as possible and always zeros below the main diagonal). Other authors use the

phrase'row echelon form to describe this.

If C is the row echelon form of M - A], then setting CX = 0, where X is the 2n x |
vector X =(X,, X,y eery X,‘)T, will allow us to obtain the elements X, X, «sy X, of
the eigenvector for A by solving the homogeneous system CX = 0. Any convenient
choice of the arbitrary X's will give us an eigenvector forA.Since al! A 's are distinct
in this case, then each of the eigenvectors will be linearly independent so the matrix P

formed from the eigenvectors will be nonsingular.

The second case is that where some of the eigenvalues have multiplicity greater than
one. In this case, if A‘-is an eip~nvalue of multiplicity &; then there will be x; -linearly
independent eigenvectors associated with each such /L-. Recall that we are assuming
the diagonalizability of M at this point, otherwise we would not know that this is
possible. For each i, one can obtain distinct eigenvectors by choosing different values
for the arbitrary variables in the equation CX = 0 when solved. Each of these
eigenvectors will not only be linearly independent of each other but also linearly
independent of eigenvectors obtained from distinct eigenvalues. See the proof of

Theorem 6.8.4 of (Stein, 1967) for a proof of this fact.

Thus all 2n of the eigenvectors so obtained will be linearly independent and thus the

m. ‘rix P formed from the eigenvectors as previously indicated will be nonsingular.

22-10
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We have made the assumption in the above work that M is diagonalizable. Consider

now the question of what conditions on M will guarantee that M is diagonalizable.

The most well-known theorem says that every real symmetric matrix is diagonalizable

{Stein, 1967). See Theorem 6.8.6. However, our matrix M= [(B)

I
A:\ is in general not

symmetric so we seek other criterion.

A second theorem (6.8.2) indicates that M is diagonalizable if and only if M has 2n

linearly independent eigenvectors.

The difficulty with using this theorem is that we would like to determine whether or
not M is diagonali :able before we compute the eigenvectors so we will know wl . her
to use the diagonalization or triangularization process which we have described above

in finding the matrix P and its inverse.

One further theorem (6.8.4.) tells us M is diagonalizable if and only if for each /L', the

multiplicity of ’\4' is equal to K=2n-r where r }; the rank of M-4; 1. (Stein, 1967).
Although this theorem is better than those above and works on all matrices, it still
requires checking the multiplicity of every /L' against the rank of M- ),-l which could
be a rather formidable task.

Thus we look specifically at the form of our matrix M =[: f,] to determine, if possible,

conditions on B and A which will help us decid the diagonalizability of M. To this

end, consider the following little known theorem from (Hohn, 1964).

22-11
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fPismxn yQismxn, RisnxmandSisnxn and nonsingular, then

P Q y
det [R SJ = det S-det (P-QS'R).

We now assume that P, Q, R, and S above are all square of size n x n and also that Q
= QS. We can then prove the following theorem.

det[: ?J = det (PS-QR) . g
Proof: By the first theorem above det [R S} = det S-det (P-QS'R). Then using the
well-known theorem that det AB = det A+det B when A and B are square n x n»
matrices we apply this to the right member above tc have det S* det (F’-QS'l R) = det
(S(P-QS'R)) = det (SP-SQS'R). Since we are assuming SQ = QS we have

det (SP-SQS'R) = det (SP-QSS™ R) = det (SP-QR) since $°S" =L

. . oI . . . .
We now apply this theorem to our matrix M = [8 A} . Since I, the identity matrix,
commutes with every inatrix of the same size, we have IA = Al so det M = |O°A - Bl | =

det (-B) = (-1)™. det (B).

-AI I
Considering the eigenmatrix M- Al we have det (M-l = det g n-)x]=

det ((- AIXA-A1)-B) = det (-AA_+4"1 -B) = de: (A’ 1 A-B).

Our purpose in looking at det (M- A1) is to observe that det (M- A1) = 0 is the
characteristic equation of the matrix M, but since det (M- A1)=det(A'l- AA-B), then

det ( A*I- AA-B) = 0 is also the characteristic squation for M, and it is a polynomial
equation in terms of the matrices A and B which are submatrices of the original
matrix M. Assume first A=0, then M = g : and even though we canrot use the

theorem just proved (S = 0 is not nonsingular) we can still see that det M = (-1)"-det B

22-12
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by Laplace's expansion. To .r.mpute the determinant of M- A1 in this case we have det

(M- AD =det [’H

I
8 _)‘{] and since - Al is nensingular, *he theorem does apply in this case to

give us

det (M- AD=det (A"1-B) = (-1)°det (B-A"1.  Since for a fixed n, (-1)" is a
constant, it will not affect the eigenvalues in the polynomial characteristic equation.
Thus if 4;, i = 1, ..., n are the eigenvalues of B, then /\; =3f/7‘.' will be the eigenvalues

of M. (Note:  det (B-4]I) = 0 implies det (M- A1) = 0.)

Assume now that B is diagonalizable. Then for each 451 =1, 2, .., n there exists an

'

eigenvector U; ,i =1, 2, ..., n such that the set (U, , U, , ..., Un) of eigenvectors is

]
k1 T

linearly n.dependent. Thus let T = (U, , Uy, ..., Un) be the matrix of eigenvectors as

I I

columns in the matrix. Then T" BT =D (41, y dlyy sos 4, ) will be the diagonal matrix of

eigenvalues.

L

2 1’A

- Let S = 0 .. ) be the matrix where the

~»

:L- s here are the positive square roots of the 4;'s and thus are half of the eigenvalues of

M. Consider first the case where 4¢0 for all i =1, 2, ..., n. Then S™' exists and

z‘ ! U -t -I]
- ' o - sT T
* is given byS': {‘x. . In this case letP:[rs rsJandP ':%LT_. -T"J

0 ™4, T

[str ) fo ) [rs? Ts™ rigTses  TTBTTISTS
- . = . -
or P MP:”Lsr"-r'Hs 0 [T =T 17 rverstes -TET S-S

’//'1. O _ k:h/l:_ O '/A,' O ]
0% O "'x:] [O A

pY)

w

A
Computing T™' BT $™' we obtain: [O“"r.‘o ] {
4

¥ e

. e

m l%mt”eg Py oy
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0 }: S. Since T BT diagonalizes B to its eigenvalue matrix.

5+S S-S [ Yo
.} - -
Thus P MP-”[—S'('S -S‘SJ = [O—SJ'

Hence this choice for P will diagonalize M where the positive square roots of 4; are
down the diagonal of the upper-left n x n matrix ard the negative square roots of 4; are
the diagonal elements of the lower right n x n matrix. Thus we have shown how to
diagonalize M given any diagonalizable B provided the eigenvalues of B are nonzero.
Thus M is diagonalizable when B is diagonalizable provided none of B's eigenvalues are

zero, and provided that A = 0.
Now suppose A = A I, where A4 is any n~nzero scalar. We then obtain

det (M -AI) = det (A*1-4(81]) -B)
- det((A~AA)1-B)
= (-1 det (BLA= X A)D.

2
Again let 4, i = 1, 2, ..., n be the eigenvalues of B. We then have ,L- A,'ﬁ =4 OF
13
/Lv"'l"ﬁ’xq =0, for i=1,2, .., n. By solving these quadratic equations we again obtain

the eigenvalues for M from the eigenvalues for B.

If we assume 4 €0 for all i and that all of the eigenvalues for B are distinct, then the

eigenvalues for M will be distinct, and thus M is diagonalizab!e.
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