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SUMMARY

Pitot rakes are often used to measure mass flow rate in circular or
annular ducts. Often the rakes are area weighted and a simple summation is
used to determine the average velocity. Errors in flow rate measurement are
inherent in this technique because of the discretization of the velocity pro-
file. The error decreases as the number of tubes on the rakes increases, and
resolution of the velocity profile improves. A study was conducted to deter-
mine the error in measuring mass flow rate with pitot rakes in an annulus.

The ideal flow rate was determined by using a unique semiempirical analysis

for fully developed, turbulent flow. The velocity profile obtained from this
analysis was imposed on the pitot rake, and an area-weighted summation was

used to determine the flow rate that the rake would indicate. Results in terms
of flow coefficient, or the ratio of ideal to indicated flow rate, ranged from
0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a
10-probe area-weighted rake. Flow coefficients were not a strong function of
annulus hub-to-tip radius ratio for rakes with three or more probes.

INTRODUCTION

The measurement of airflow rate is of primary interest in the testing and
development of aircraft propulsion systems. Several methods of measuring flow
rate are available inciuding choked-exit devices, venturis, and bellimouths.
These methods generally require the jnstallation of additional hardware for
the specific purpose of measuring flow rate. Where installation of such hard-
ware is impractical, other means of measuring flow rate must be devised. For
inlet testing there is usually an array of total pressure rakes at the diffuser
exit station to measure total pressure recovery and distortion. Such rakes
are generally area weighted and may also be used to measure flow rate. Each
ring (probe in each rake at a common radius) in the array is assigned an area
of the circular or annular duct. If the rakes are area weighted, these are
equal areas. This area combined with the measured ring total pressure, a
representative static pressure, and the total temperature can be used to cal-
culate a mass flow rate for that ring. Subsequent summation of all ring flow
rates results in an estimate of the total mass flow rate. Because of the dis-
crete nature of the measurements significant error exists in the indicated
value of flow rate, especially in high velocity gradient regions such as boun-
dary layers. Obviously the larger the number of probes on the rakes, the finer
the resolution of the velocity profile and the smaller the error. To account
for this discrepancy between the measured and ideal flow rates, experimentally
determined flow coefficients applicable to a particular rake geometry and
annulus hub-to-tip radius ratio have normally been used (ref. 1). However,
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since the flow coefficient varies with the number of probes on the rakes and
the hub-to-tip radius ratio of the annulus, a semiempirical procedure for
determining an applicable flow coefficient would be desirable in many cases.

This investigation was conducted to determine the error in the rake mass
flow rate measurement for turbulent flow in an annulus due to the discretiza-
tion of the velocity profile and the variation of this error with the number
of probes on an area-weighted rake. Also investigated was the effect of annu-
Tus hub-to-tip radius ratio on the error.

A semiempirical method for determining the velocity profile in fully
developed, turbulent flow in an annulus is presented. The integral of this
velocity profile is.compared with summation of velocities as measured by an
area-weighted rake subjected to the same velocity profile. Results are pre-
sented as flow coefficients, or the ratio of the integrated profile to the
summed, for area-weighted rakes of up to 10 probes and a range of annulus hub-
to-tip radius ratios.

SYMBOLS
A4 area assigned to probe 1, me
Ap integration constant for region n
Bn constant for region n
Cr flow coefficient
Cnh constant for region n
Dp constant for region n
En constant for region n
F(n) function of region n
F(x) function of variable x
I number of probes on rake
Kn dimensionless distance from origin to inner radius of region n, r/R¢
Kﬁ dimensionless distance from hub surface to inner radius of region n,
(r -~ Rp)/(Rt - Rp) .
mp ratio of turbulent to laminar viscosity in region n
N number of regions in semiempirical method
p static pressure gradient in flow direction, Pa/m
r distance from origin in radial direction, m



Rh annulus hub radius, m

Rt annulus tip radius, m

u | d1mens1on1éss distance from origin in radial d1rect1on, r/R¢
\ velocity in z-direction, m/sec

Vmax maximum velocity in z-direction, m/sec

Vi velocity in z-direction at interface of regions n and n - 1, m/sec
u(ﬁ) coeff1c1ent of laminar viscosity, Pa sec/me

u(t) . coefficient of turbulent viscosity, Pa sec/me

r&i) “laminar transport of z-momentum in r-direction, Pa/m2

Ti:) turbulent transport of z-momentum in r-direction, Pa/m2
Sﬁbscripts:

h hub surface

i individual probe on rake

N outermost region in semiempirical method

n individual region in semiempirical method

f' radial direction

t tip surface

z axial direction

Superscripts:
(%) laminar

(t) ‘turbulent

APPROACH
Derivation of Semiempirical Velocity Profiles

To develop the turbulent velocity profiles, a semiempirical approach is
used under the following assumptions:

(1) Two-dimensional (axisymmetric) flow
(2) Steady, fully developed flow



(3) Incompressible flow
(4) Linear pressure gradient in flow direction

Figure 1 depicts the flow sttuation and the coordinate system.. The time-
smoothed z-component of the momentum equation under the preceding assumptions

becomes .

1d (2) (t)
P=rdr [r(rrz Y Trz )] (1)

Before equation (1) can be integrated to yield velocity profiles, an
additional equation 1s needed to relate the laminar and turbulent flux of
z-momentum in the radial direction to the radial velocity gradient. To develop
this relation, the annular cross section is divided into an arbitrary number
of annular regions N. Within each region 1t is assumed that the negative of
the radial velocity gradient is proportional to the sum of the laminar and
turbulent momentum fluxes. Further the constant of proportionality in a
particular region n 1is the sum of the laminar viscosity and a turbulent
viscosity that varies from region to region. In equation form

1), (B (0, (b)ay |
ez =T ey (2)
Expressed in terms of the ratio of turbulent to laminar viscosity, which is.
constant in a particular region n, equation (2) becomes

ettt w0 emy O @
where "(t)
n

L ) (4)

Combining equations (1) and (3), there results for a region n

__1d | (R) dv '
P=-Yrdr [}“ (1 +m) dr] (3)
Integrating over the radial direction yields after rearrangement
d—v = - __—1__. <Lr: +A_r> (6)
dr u(l)(] . mn) 2 r | :

where Ap 1s the integration constant for region n. Defining K, as the ratio
of the inner boundary radius of region n to the annulus tip radius R¢ and
defining Vp as the velocity at the inner boundary radius of region n,



equation (6) can be integrated from the inner boundary of region n to an
arbitrary radius within the region:

v A
fdv - - ;?—1—#—— : (g—' + ;ﬂ>dr (7)
v

T +m)
n %R

Finally for any region n

: 2
v(r) = V_ - 1 P r—z_xz + A In (7= ©(8)
n “(9.)(1 £ m) 4 Rt n n KnRt
n

Note that Ky 1s equal to the hub-to-tip radius ratio and Ky,7 1s equal to 1.
At the interface of two adjacent regions the solutions are "spliced" together
by equating the velocity gradients. Writing equation (6) for regions n and
n +1 at a common radius Kp,7 and equating the two resulting expressions

yields
1 (?Kn+1Rt . An ) - 1 (pKn+1Rt . An+1 ) (9)
T+ M 2 Kn+1Rt 1+ M1 2 ' Kn+1Rt

Solving for An+1 results in a recursion relation

A " - [] TS <pKn+1Rt . An > _ pKn+]Rt] K R
n+l 1+ m 2 Kn+1Rt 2 n+l't (10)

Velocities at the interfaces between regions can be computed by evaluating
equation (8) at r = Kp4qRy:

pR2 K

1 t 2 2 n+l

- (K R =V - (K —K)+A1n(———> (1)
n+l n+l't n u(s?.)(1 . mn) 4 n+1 n n Kn

v

Applying the no-slip boundary condition at the tip radius R, equation (11)

- becomes

pR2 K

1 t (.2 2) ( N+i)

0=V, - K - Ko )+ A, Tn \—— (12)
N u(m)(] + mN) 4 ( N+1 N N KN



Now Vp can be successively replaced by using equation (11) until an equation
of the form '

N
V] = Z F(n)
n=1
(13)
pR:
1 t /,2 2 n+l
F(n) = K -K°) +A_1In
u(!)(] . mn) 4 ( n+l n) n (\Kn )

results. Since Vjy is the velocity at the inner boundary of region 1, it is
the velocity at the hub surface and is zero. Hence

M=

0 =), F(n) - (14).

n=1

Equation (14) along with the N - 1 equations obtained from the recursion
relation for Ap (eq. (10)) can be arranged into the following form:

C]A1 + C2A2 + .., + cN-lAN-1 + CNAN =B (14)
E]A] - A2 = -D] (10)
E2A2 - A3 = -02 (10)
Etna A O 00
where
N .
pRi : Kr21+1 " Kﬁ
B = - (15)
4 T+m
‘n=1
K )
1 n+l
n 1 + mn Kn
(K_..R )2 T+m
D = Pt n+l ] (7)
n 2 1T +m.
n
1 + mn+]
S (18)



Cramer's rule can be used to solve for the integration constant in region 1
(A7), after which repeated application of equation (10) yields all other Ap's.
The velocity profile for the entire annulus i1s now computed by using equation
(8), beginning at the hub surface (where Vy = 0) and progressing to the
outer radius of region 1. At the outer radius of region 1 a solution for

Vo results, and equation (8) is applied again for region 2. In a similar
manner the solution progresses across the annulus to the tip surface, where
the no-s1ip boundary condition has previously been satisfied in equation (14).

Values of turbulent-to-laminar viscosity ratio m, and region bound-
aries, as well as the number of regions used N 1in this investigation are
depicted in figure 2. These constants were found to best fit available experi-
mental velocity profile data over a wide range of hub-to-tip radius ratios
with only the region 5 viscosity ratio mg varying with hub-to-tip radius
ratio. In figure 3 nondimensional velocity profiles obtained by this procedure
show good agreement with the experimental data of reference 2.

Calculation of Flow Coefficients

For the purpose of this analysis flow coefficient is defined as the ideal
flow rate divided by the measured or indicated fiow rate. The ideal flow rate
1s determined by using the semiempirical velocity profile. The indicated flow
rate is determined by using an area-weighted summation of velocity values taken
from the semiempirical profile at the rake probe Tocations. Under the assump-
tion of incompressible flow the flow coefficient reduces to the following:

]
2f v(u)u du

K
¢ ! (u - E—) (19)

= I
2 § :
i=1

where v3 1is the velocity at probe location 1, A4 1s the annular area
fraction associated with that probe, and I 1s the number of probes on the
rake. If the rake is area weighted, all A4y are equal. Solutions to
equation (19) were obtained by using the fortran computer program l1isted in
the appendix. The program evaluates the numerator by applying a sixth-order
numerical integration technique known as Weddle's method to equation (8).
Inputs to the program are annulus hub-to-tip ratio and the number of probes on
the rake. A subroutine automatically locates the probes at area-weighted radii
although provisions exist to input other rake geometries through an input data
set. Turbulent-to-laminar viscosity ratios, region boundaries, and the number
of regions used in conjunction with equation (8) are input through a separate
input data set. A1l results presented were obtained by using the values in
figure 2.




RESULTS

Figure 4 depicts the differences between the ideal velocity profile and
the discretized profile that is summed in obtaining the indicated flow rate.
For all probes compensating errors occur. However, probes near the hub and
tip surfaces will clearly overpredict the flow rate because of the no-slip
condition at these surfaces. The discretized profiles more closely approximate
the ideal profile as the number of probes increases. Figure 5 presents the
flow coefficients obtained with the Fortran program for area-weighted rakes
with one to 10 probes over a range of annulus hub-to-tip radius ratios.

CONCLUSIONS

" An investigation was conducted to determine the error in the rake mass
flow rate measurement for turbulent flow in an annulus due to the discretiza-
tion of the velocity profile and the variation of this error with the number
of probes on an area-weighted rake. The following conclusions were drawn:

1. The semiempirical method presented for determining fully developed,
turbulent velocity profiles in an annulus agreed adequately with experimental

data.

2. Flow coefficients ranged from 0.903 for one probe placed at a radiué
dividing two equal areas to 0.984 for a 10-probe area-weighted rake.

3. Flow coefficients were not a strong function of annulus hub-to-tip
radius ratio for rakes having three or more probes.
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APPENDIX - COMPUTER PROGRAM LISTING

[
gKlXK*DONUT.SOURCE.TAPVA
c THIS PROGRAM COMPUTES SEMI-EMPIRICAL VELOCITY PROFILES FOR FULLY-DEVELOPED TURBULENT
c FLOW IN AN ANNULUS. THESE PROFILES ARE COMPARED YO DISCRETIZED PROFILES AS INDICATED
C BY A PITOT RAKE SUBJECTED TO THE SEMI-EMPIRICAL FLOW FIELD, FLOW COEFFICIENTS ARE
c CALCULATED BY DIVIDING THE 'ACTUAL' FLOWRATE BY THE INDICATED FLOWRATE. THE 'ACTUAL®
[ FLOWRATE IS5 OBTAINED BY A NUMERICAL INTEGRATION OF THE SEMI-EMPIRICAL PROFILE., THE
c INDICATED FLOWRATE IS OBTAINED BY AN AREA-WEIGHTED SUM OF VELOCITIES OBTAINED FROM
c THE SEMI-EMPIRICAL VELOCITY PROFILE AT THE RAKE PROBE LOCATIONS. RESULTS ARE OUTPUT
g GRAPHICALLY.
DOUBLE PRECISION CAPPA(10),VISCO(10)
DOUBLE PRECISION VISCOL,PRESS,RADIUS
DOUBLE PRECISION B(10),C(10),D1,D2,D3,D(10),E(10),BSUM, ATERM, ANUM, ADEN,AC10)
c DOUBLE PRECISION V(2000),VINTER(10),RATIO,VREF,H(10),HSUB(10),VSUM, SUBSUMC10),P1,P2,P3,RV,COEFF(7)
DIMENSION NHINT(10),VEL(2000),RAD(2000)
DIMENSION AREA(100),TLOC(100),DISC(100),PLOCC100),TVELC100),PVELC100)
DIMENSION PFLOW(2)
¢ DATA COEFF/1.,5.,1.,6.,1.,5.,1.7
DIMENSION XVARS(10),YVARS(10)
c DIMENSION IVARS(10)

[
gK*!NNINPUT REGION GEOMETRY AND FLOW VARIABLES

READ(S 1000) NREG
0) ALPHA

NREG
) CAPPACI),NINT(I),VISCO(I)
PHA+(1-ALPHA)XCAPPA(I)

OO
o

READ(5,1200) VISCOL
READ(5,1200) PRESS
READ(5,1200) RADIUS

c CAPPA(NREG+1)=1.

c
gN*NIKCOMPUTE INTEGRATION CONSTANT FOR REGION ONE
DO 200 N=1,NREG

B(N)=PRESSXRADIUSHM2X (CAPPA(H+1)u%2=CAPPA(HN)
C(N)=(DLOG(CAPPA(N+1)/CAPPA(H)))/(14VISCO(K)
D1=(1+VISCO(H+1))/(14VISCO(N))
D2=PRESSX(CAPPA(N+1)%%2) % (RADIUSK¥2)/2
D(N)=D2%(D1-1)

E(N)=D1

c
200 CONTINUE
c

c
glKXKKSOLVE NXN MATRIX FOR AC1) AND COMPUTE REMAINING A(N)'S

BSUM=0

DO 220 I=1,NREG

BSUM=BSUM-B(I)
220 CONTINUE

ATERM=D(1)

ANUM=BSUM

DO 240 I=2,HREG

AHUM=ARUM-C(I)*ATERM

ATERM=ATERMXE(I)+D(I)
240 CONTINUE

ATERM=1
ADER=0
DO 260 I=1,HREG
ADER=ADEN+C(I)*ATERM
ATERM=ATERMXE(I)

260 CONTINUE

AC1)=ANUM/ADEN
DO 300 HN=2,N

A(N)=D(N- 1)+E(N 1)%A(N-1)
¢ 300 CONTINUE

c
:NZ)I(QX(IOVISCO(N)))

[
CHXNXANUMERICALLY INTEGRATE VELOCITY PROFILE FROM CAPPA(l) T0 1

c
c
VsumM=o0,
VINTER(1)=0.
JSTART=1
c
DO 600 K=1,NREG
c
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SUBSUM(N)=0.
H(N)=CCAPPA(H+1)~CAPPAIN) I/NINT(N)
HSUB(N)=H(N)/6.

RATIO=CAPPA(N)

NSTOP=NINT(N)
DO 500 NSUB=1,NSTOP

JSTOP=JSTART+6
K=1

DO 400 JS=JSTART,JSTOP

P1=1,/(VISCOL¥(1+VISCO{N)))
P2=PRESSXRADIUS¥X2X(RATIOXX2-CAPPA(N)IX%2)/4
P3=A(N)IXDLOGC(RATIO/CAPPA(N))
V{J)=VINTER(H)-P1X(P24P3)

RVSV(J)%RATIO

RADCJ)=RATIO
:Uasgﬂ(ﬂ)=SUBSUM(N)4COEFF(K)XRV
=K+ .
¢ RATIOSRATIO+HSUB(N)
c 400 CONTINUE

RATIO=CAPPACN)+NSUBXH(N)
JSTART=J

c

c 500 CONTINUE
SUBSUM(N)=,3XHSUB(N)NSUBSUM(N)
VSUM=VSUM+SUBSUM(N)
VINTER(N+1)=V(J)

[
c 600 CONTINUE

[
glxx!lCOMPUTE POINT OF MAXIMUM VELOCITY (VREF), AKD VAVG
H=(NREG+1)/2

c

c RATIO=DSQRT(~-2XA(N)/ (PRESSXRADIUSHX2))
P1=1./(VISCOL*(1+VISCOC(N)))
P2=PRESSKRADIUSKX2X(RATIOX¥2-CAPPA(NINX2)/4
P3=A(N)XDLOG(RATIO/CAPPA(N))

¢ VREF=VINTER(N)-P1%(P2+P3)

¢ VAVG=2XVSUM/ (VREF%(1-CAPPA(1)X%2))

[
gunxxxPLOT THEORETICAL PROFILE USING POINTS OF INTEGRATION

DO 650 I=1,JSTOP
VEL(I)=V(I)/VREF
650 CONTINUE

[
XVARS(
XVARS(
XVARS (
XVARS (
XVARS(
XVARS(
XVARS (
XVARS(
XVARS (
CALL X

LN BU NN NI N
ONFUNIO OO VORI~ OoOOOW

" e s O

Wt "t " ot et o N

Ao o e 0 s

PPA(1)
1.,1.,XVARS)

YVARS
YVARS
YVARS
YVARS
YVARS
YVARS
YVARS
YVARS(
YVARS(9
CALL YAXIS(1.,1.,YVARS)

CALL CORNER(1)

IVARS(1)=2
IVARS(2)=JSTART

CALL GPLOTC(VEL,RAD,IVARS)
c CALL AVRAD(VEL,RAD,JSTART,VAVG,RADH,RADT)
CHMMUMANALYZE RAKE PROFILE

CHOXINPUTS ARE NUMBER OF TUBES, RADIAL LOCATIONS
CXMMMXAND ANNULAR AREA FRACTION ASSUMED FOR EACH TUBE
c

PPACL)

Pl la e le e
OO~ NI N = PFOVRNOIDUWN -

muunatnnon

)
)
)
)
)
)
)
)
)

4
c

TSUM=0.
READ(6,1300) NTUBE

10
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DO 700 I=1,NTUBE
READ(6,1400) TLOC(I),AREA(I)
¢ 700 CONTIRUE

c
g*lll*COMPUTE POINTS OF DISCONTINUITY

ATOT=1-CAPPA(1)Nx2
DISC(1)=CAPPA(1)

ISTOP=NTUBE+1

DO 750 1=2,ISTOP

DISC(I)=SQRTC(CAREA(I-1)XATOT)+DISC(I-1)%x2)
750 CONTINUE

KUMXXCOMPUTE VELOCITY AT EACH TUBE LOCATION AND DO WEIGHTED SUM
DO 800 J=1,NTUBE

DO 350 N=1,NREG

IF(CAPPA(N*I) GE.TLOC(J))GO TO 875
850 CONTINUE
¢ 875 CONTINUE

RATIO=TLOC(J)

P1=1.7(VISCOLX(1+VISCO(N)))
P2=PRESSXRADIUSHN2X(RATIOX%2~-CAPPA(N)IXX2)/4
P3=A(NIXDLOG(RATIO/CAPPA(H))
VCJI=(VINTER(N)-P1%(P2+P3))/VREF
TSUM=TSUM+AREACJIXV(J)

c
c 800 CONTINUE

O O0OOOO0

[
gxnxlCUMPUTE FLOW COEFFICIENT
CFLOW=VAVG/TSUM

[
gllKKXPLOT *ASSUMED* PROFILE, WITH TUBE LOCATIONS
NPOINT=NTUBEN2

DO 900 I=1,NTUBE

II=1I%2

PVEL(II)=V(I)

PVEL(II-~1)=V(I)
900 CONTINUE

PLOC(1)=CAPPA(])

DO 950 I=1,NTUBE

II1=1Ix%2

PLOCCII)=DISC(I+1)

PLOCCII+1)=DISC(I+l)
950 CONTINUE

IVARS(2)=NPOINT
CALL GPLOT(PVEL,PLOC,IVARS)

c

o0 O O

975 CONTI

Iv
IVARS(6) 20

CALL GPLOT(TVEL,TLOC,IVARS)

[21+]

CALL NUMBER(G.CFLON 6,4, PFLON)
CALL CHARS(6,PFLOW,0 6 8,.5,15
CALL CHARS(12,°*FLOW COEFF "p0:3...5 15)

PRINT1500,CFLOW
CALL DISPLA(L)

STOP

CHXXXXFORMATS
c

1000 FORMAT(I2
1100 FORMAT(F6.4
1200 FORMAT(D1
1300 FORMAT(I3
0 FORMAT(F1
0 FORMAT(F1

END

2X,12,2X,F10.5)

2X,F10.5)

OQvn—- -~

3
.5,
-5)

n
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