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Equations is analyzed to show the global existence of axisymmet-
rically buckled states. A surprising nodal property is obtained
which shows that everywhere along a branch of solutions that
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1. INTRODUCTIDN

In this paper we study the global qualitative
behavior of axisymmetric puckled states of homogeneous
isotropic nonlinearly elastic shells that can suffer

flexure, compression, and shear. Our model is geometrically

exact in the sense that a geometric quantity, such as sin®,

is not replaced by an approximation, such as 6 or 8 - 0%¢. (The
usual justification for such a replacement is that 6 1s known

to be small for the physical situation under study. But it

1s quite possible that a mathematical model with exact

geometry permits only small solutions, while those with approx-
1mate geometry have large solutions.) We allow the material
properties to be described by a very general class of non-
linear constitutive relations. Conseauently our governing
equations form a quasilinear sixth-order system of ordinary
differential equations.

Our main result is that nontrivial branches of solutions
pairs can be globally characterized by a novel nodal pattern
relating shear and bending effects. The detection of this
pattern is greatly aided by the generalaity of our theory,
which does not obscure the simple mathematical structure of
the governing equations with approximate geometrical relations.

I1ndeed, the beautiful numerical results of Bauer, Reiss,

& Keller (@970 for their technical theory of shells 1indicate
that their solution branches do not enjoy the nodal properties
we discover for our exact theory. We surmise that no such

technical theory would have these properties. Consequently,



the nature of the bifurcation diaqram away from the trivial
solution for these technical theories could differ markedly
from ours.

There is a large literature on the buckling of spherical
shells. The articles by Bauer, Reiss, & Keller (1970),

Antman (1971), Lange & Kriegsmann (1981), and Shih (1985)
give extensive lists of references. Our results differ
markedly from those developed in these references (except
for the work of Antman) by virtue of the generality of our
theory and the global character of our theorems.

The heart of our paper 1s 1n Sections 5 and 6. In
Section 5 we show that our equations meet the hypotheses of
Rabinowitz's Global Bifurcation Theorem. In Section 6 we
prove a basic uniqueness theorem that enables us to show
that solution branches preserve the nodal pattern they inherat
from the traivial branch. The use of the isotropy of the
shell material is crucial in enabling us to overcome the
difficulties posed by the polar singularitaies.

Notation. Partial derivatives are denoted by subscripts.
Ordinary derivatives with respect to the variable s are

denoted by primes. If f and g are functions of x and y, then

ol£,9) denotes the matrix of partial derivatives of f and g
I(x,y)

with respect to x and y.



§2. FORMULATION OF THE GOVERNING EQUATIONS.

Let { i,3j,k } be a fixed right-handed orthonormal

basis for the Euclidean 3-space E3. For each ¢ 1in R

we define

(2.1) §1(¢) = cos ¢i + sin ¢3j, ez (¢) = =-sin ¢i + cos ¢3,
e3=}f .

To each (s,¢) € [0,m] x [0,27] there corresponds exactly

one point on the sphere of radius 1 centered at the origin

with position vector of the form

(2.2) ry(s,¢) = sin s e; (¢) - cos s e,

Note that s measures the arc length to r*(s,¢) from the
south pole of the sphere. This convention will simplify
some of the formulas. We interpret the sphere defined by
(2.2) to be the natural reference state of the midsurface
of a spherical shell. The coordinates (s,¢) identify
material points on this surface.

An axisymmetric-configuration of a spherical shell

that can suffer flexure, extension, and shear is determined

by a pair of vector functions

(2.3) (s,¢) » xr(s,¢), Dbis,¢)

with r(s,*) and b(s,*) having period 27 and with



(2.4) r(s,¢) « e2(¢) =0,
b(s,$) - ez(¢) = 0.

lb(s,¢)| =1

The reference configuration of the shell is given by
r=1r, , b=-r, . The vector b(s,¢) 1is interpreted as
characterizing the deforme® configuration of the material

points that in the natural state of the shell lie along the

ray determined by «r,(s,¢)

We set
(2.5) r(s,¢) = r(s)ei(¢) + z(s)k ,
(2.6) §(S,¢) = cos w(s)§1(¢) + sin W(S)E ’
b(s,¢) = - sin y(s)ei1(¢) + cos y(s)k ,
(2.7) r (s,¢) = vis)a(s,¢) + n(s)b(s,d) ,
- _r(s)
(2.8) T(s) = Sin s '
u(s) = y'(s) - 1 ,
o(s) = sin y(s) _ 4
- sin s :

The strain variables for our problem are

(2.9) ws (v, T, n, u, o)

Let ni(s,¢) and mi(s,d) denote the resultant

contact force and contact couple per unit reference length



of the circle ¢ ~ f*(5'¢) of radius sin s that are
exerted across this circular section at E*(s,¢) . Let
gz(s,¢) and Tz(s,¢) denote the resultant contact force
and contact couple per unit reference length of the circle
s = r,(s,¢) of radius 1 that are exerted across this
section at 5*(s,¢) . Since we seek axisymmetric solutions,

we require these resultants to have the form

(2.10) ni(s,0) = N(s)a(s,0) + H(s)b(s,0)
(2.11) na(s,4) = T(s)e2(d)

(2.12) my(s,¢) = - M(s)ez(0)

(2.13) m; (s,4) = I(s)cos y(s)ei(s) + L(s)k

Then the equilibrium equations for the shell under an external

hydrostatic pressure of intensity XA per unit actual area

are

(2.14)  [sin sN(s)]'~T(s)cos ¥(s)-sin sH(s)¥'(s)-Ar(s)n(s)=0,
(2.15)  [sin sH(s)]'+T(s)sin V(s)+sin sN(s)y' (s)+Ar(s)v(s)=0,
(2.16)  [sin sM(s)]'~Z(s)cos ¥(s)+sin s[v(s)H(s)-n(s)N(s)1=0.

We can combine (2.14) and (2.15) to obtain

(2.17) {sin sPsin V(s)N(s)+cos y(s)H(s)]+Ar(s)2/2}'=0,



(2.18) {sin s[-cos w(s)ﬁ(s)+sin W(s)ﬁ(s)]}‘ +

+ %(s)+Ar(s)z'(s)=0 .

The material of the shell is homogeneous and non-

linearly elastic if there are constitutive functions N,

T, H, M, Z such that
(2.19) N(s) = N(y(s)), etc.,

when (2.3)-(2.8) hold.
We assume that these constitutive functions are thraice
continuously differentiable on their common domain of

definition
(2.20) D={weR®:v>h |u+tl| , 1T > h|o+l]| }

where h 1is a given number in (0,1) , which may be inter-
preted as half the thickness of the shell. The inequalities
in (2.20) ensure that in a standard three-dimensional
interpretation of our deformation variables the local ratio
of deformed to reference volume never be zero.

We require the constitutive functions to satisfy

the monotonicity conditions:

(2.21) 3(N,H,M) ' a(T, 3)

3(v, ns W 3(<, o) are positive-definite.



( This is the strict form of the strong-ellipticity condition
for axisymmetric deformations of axisymmetric shells. Cf.
Antman (1978).) These conditions ensure,e.g., that an
increase in the bending strain yu 1is accompanied by a
corresponding increase in the bending couple M . We also
use special forms of the following very natural inequalities

(2.22) NV + NT >0 , TT + Tv > 0

We impose compatible growth conditions ensuring that extreme

strains are accompanies by extreme resultants:

(2.23) N(w) ~ + = as v > @ if 1-h|l+c|has a positive
lower bound and if n,u,0 are bounded,
N(w) » -~ ©» as v = h|l+u|if T is bounded above and
if n,u,0, are bounded,
T(w) > +©as T+ ® if v-h|[l+u| has a positive
lower bound and if n,u,0 are bounded,
T(w) - - » as Vv - h|l+o| if v is bounded above

and if n,u,0 are bounded,

H(w) = + » as n = %= if (v,T,u,0) lies in a
compact subset of {(v,T,u,0):v>h|1l+c],
t>h|1+0]}

M(w) +~ t © as u + 2o if v >h|1+o0| and if (1,n,u)

lies in a compact subset of {(t,n,u):

t>h|1+0]|}



I(w) » £+ was o+t = if 1t > h|l+c]|and if (v,n,u)

lies in a compact subset of {(v,n,u):

v >h|1l+0]}.

We finally require that the shell be isotropic and

have a stress-free natural state

(2.24)

n e H(y) is odd, n » N(w),T(w),M(w),I(w) are even,
M(w) =0=2Z(w) if pu=0-=o0,
N, (y)=Nu (yg)=TO (Y)=Tu (w}=0 ifn=u=90= 0,

N(v,t,0,u,0) = T(TrVIOIGIU)r

M(v,t,0,u,0) Z(t,v,0,0,u) ,

N(1,1,0,0,0)

T(1,1,0,0,0) =0 .

Our boundary conditions essentially require that the defor-

mation be regular at the poles and that there be no net rigid

displacement in the z-direction :

(2.25a,b)

(2.26a,b)

(2.27a,b)

(2.28)

r(0) = 0 = r(m ’
n(0) =0 = n(m) ,
y(0) =0, vy(mw) == .

T
IO z(s)ds = 0 .



Substituting (2.25a) into the integral of (2.17) we obtain

(2.29)  sin s[N(s)sin y(s)+H(s)cos ¥(s)]+Ar(s)?/2 = 0.
If ﬁ and ﬁ are bounded and if A >0,

then (2.27) implies that (2.25b) holds. If we further
assume that Tt 1is bounded, then (2.29) and (2.27) imply
that ﬁ(O) =0 = ﬁ(w).\ The properties of H then ensure
that (2.26) holds. By comparing the integrals of (2.18)

over [0,s] and [s,m] we readily obtain
T A m
(2.30) Jo T(s) ds = =) Jor(s)z'(s) ds .

Note that the integral on the right side is the signed area
between the curve (r,z) and the E—axis.

Our boundary value problem consists of the strain
configuration equations (2.5)-(2.8), the equilibrium
equations (2.14)-(2.16) the constitutive equations (2.19)
and the boundary conditions (2.25)-(2.28). A reqular
solution of the remaining equations would automatically

satisfy (2.25b) and (2.26).

The shell theory we employ was originated by the Cosserats
(1909). (Cf. Naghdi (1972) and Libal & Simmonds (1983).) Our
formulation was foreshadowed by several papers of Reissner,
typical of which is his paper of 1963. The variables we
employ, and the very simple form of constitutive equations they

induce, were introduced by Antman (1971).
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§3. TRIVIAL SOLUTIONS.

We now seek solutions of our boundary value problem
in which the shell remains spherical, unsheared, and uni-
formly stretched, so that v = 1 = k(const), n = 0, yY(s) = s.
Thus 4 = 0 = ¢ . Under these conditions, (2.22) reduces

(2.14)-(2.17) to

(3.1) N(k,k,0,0,0) = T(k,k,0,0,0) = =-Ak2?/2 .

Then (2.22) and (2.23) imply that k » N(k,k,0,0,0) +

+)1k?/2 strictly increases from - ® to © as k 1ncreases

from 0 to =« provided that X > 0 . Thus (3.1) has a

unique solution for k, denoted k()) with

(3.2) [0,) A +» k(X) € (0,1]

thrice continuously differentiable and strictly decreasing .
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§4. THE LINEARIZED EQUATIONS.

We adopt the convention that if R is any constitutive

function (such as N, Nv,----° )}, then
(4.1) R°(\) = R(k()),k(nr),0,0,0).
The linearization of our boundary value problem about the

trivial solution is equivalent to the following boundary

value problem for the linearized variables v, n; , ¥1 :

s
(4.2) r,(s)= Jo{vl(t)cos t-[ni(t)+kyp, (t)1sin t} 4t =

= 1;(s)sin s ,

0 : — 0 )
(4.3) Nv[(v151n s)'-Ticos s]= [(NT +Hn +Akm1-+

+(N$k+xk2/2)w1]sin s ,

(4.4) Hg(nlsin s)' = -(Ns +N;+xk)(v1 + T1)sin s +

+(Ak2/2) (y1sin s)' ,

(4.5) M&[(wl'sin s) '=y,/sin s]+(Mﬁ -M; )Y,sin s =

= -[Hgk+kk2/2]nlsin s ,

(4.6) ni(0) = 0 = ny(m, Y1(0) =0 = Y1 (m) ,

m m
(4.7) Jo z1 (s)ds Jo{v1(t)sin t+[ny (£)+kyy (t)lcos tldt = 0
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In deriving this system, we relied crucially on (2.24).
From this system, we wish to extract a system for
n; and Y; alone. To accomplish this efficiently we write

(4.3), (4.4), and the derivative of (4.4) 1in the form

(4.8) (visin s)'-Ticos s = £, (vi+T1)sin s = g,

(visin s)'+vicos s= h ,
from which we immediately deduce that
(4.9) g = (h-f)tan s .
We write out this equation, replacing (¢Y1'sin s)'-y;/sin s
by it expression from (4.5) and supplement the resulting
equation with (4.5), (4.6) to get the system

(4.10a) (Lni) (s) + Any(s)sin s = -ay;(s)sin s ,

-bn;(s)sin s ,

(4.10b) (Ly,) (s) + -By;(s)sin s

(4.11) ni(0)= 0 = ny(m) , ¥,(0) =0 = Yy (m) ,
where
(4.12) (Lu) (s) = [u'(s)sin s]' - u(s)/sin s ,

+

= 0,-1 2 050 0y=1 (g0 _ag0
(4.13) A= (Hn) Ak b+ (NJ+N_+Ak) (N7) ©(N2-NO

0
+Ak+Hn)] ’
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-1 1

v
]

0 2 0 0 0y~ o _
(Hn) [%Ak B+(Nv +NT +Ak)(Nv) (kNT

-kNg +k2k?)] |,

w
"

— M0 /a0 = 0 2 0
1 MO/Mu , b= [an+)\k /2]/Mu .

We now convert (4.10), (4.11) to a problem for a

single complex-valued function
(4.14) ¢ = any + By,

where o and B are complex constants to be adjusted so

that (4.10a,b) can be combined into a single complex

equation. Thus we require that

(4.15) (aA+Bb)ny + (ca+BB)yy = Cé = C(ani+BY1)

where C 1is a complex constant to be determined. It

follows from (4.15) that
(4.16) oA + Bb = aC , aa + BB = BC
so that

(4.17) aa? + (B-A)aB - bR?2 =0
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Using (4.15) we reduce (4.10), (4.11) to

(4.18) (L$) (s) + Cé¢sin s =0 , ¢(0) =0 = ¢(m) ,

which has a nontrivial solution if and only if

(4019) C=n(n+1) ’ n= 1,2,0'.....

in which case

(4.20) d(s) = ¢n(s) = const_P;(cos s)

where P; is the associated Legendre function of the first
kind of degree n and order 1 . When (4.19) holds,

system (4.16) has a nontrivial solution if and only if

(4.21) g(i;n) = [A-n(n+1)] [B-n(n+l1)] - ab

1
o
L]

Note that A, B, a, b each depneds on the eigenvalue parameter
A . For a given integer n there can be none, one, or many
real solutions A of (4.21) . Noting that N°(X)= -ik(}A)?2/2,
we could readily fashion conditions on the constitutive
assumptions to ensure any of these possibilities. (CE.

Antman & Rosenfeld (1978) for a discussion of this issue.)

We limit our attention to positive solutions A of (4.21).

Negative solutions correspond to shear instabilities. (Cf.
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Antman & Carbone (1977).)

For X > 0, (2.21) implies that b > 0. Thus (4.16)
has no nontrivial solutions (q,8) with ¢ = 0. We can accordingly
adopt the special normalization that a =1 . In this case,

the roots B of (4.17) are

-R) 2 - -
(4.22) B B-A ¢ /(gbB) +4ab _ B-At [A+§b2n(n+1)]

the second equality coming from (4.21). Thus- B, are real

when (4.21) holds. 1In this case, B8, are distinct if and

only if
(4.23) A+B # 2n(n+l) .

When (4.21) and (4.23) hold, (4.14) and (4.20) reduce

to a system of the form

(4.24) ni o+ B ¥y = DtP;(cos s) .

If we take D real and not both 0 , then the distinctness

+

of B+ ensures that (4.24) can be solved uniquely for n;

and Y, . These solutions are proportional to P;(cos s)
To find D, , i.e., to find the constants of proportionality,

we normalize VY; by setting

(4.25) Yy (s) = P;(cos s) , ni(s) = EP;(cos s) .
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Then a comparison of (4.10) and (4.11) with (4.18)

implies that

(4.26) A+ a/E = n(n+l) = B + bE
whence

_ n(n+l)-B _ a
(4.27) E== = A(n¥l)-A

The compatibility of these two expressions for E 1is
ensured by (4.21)

Now we study the special case that
(4.28) A + B = 2n(n+l1), n=1,2,cc000¢
Then (4.22) implies that B8 1s unique with
(4.29a,b) 2bR =B - A , Dbp?=a
Consequently (4.20) vyields

(4.30) ny + By = DP;(cos s) .

Note that (4.29b) implies that there are no such solutions

if a< 0 .
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First we treat the even more special subcase that

(4.31) A

B = n(n+l) .

Then B

]
o
-

ny = DP;(cos s) . Moreover (4.16) implies
that a = 0. Since b > 0 , the alternative theorem
implies that (4.10b) has no solution unless D = 0 and

hence n;y = 0 . In this case, ¥, = const P;(cos s) . Note

that if we make the eminently reasonable assumption that
B < 2, then (4.31) cannot hold. Likewise, (4.31) cannot

hold if a # 0 .

Now we assume that (4.28) holds, but that
(4.32) A # B # n(n+l) .
Hence B8 # 0. Using (4.30) we convert (4.10b) to
(4.33) LYy: + n(n+l)y, = -bDP;(cos s)sin s ,
since (4.28) and (4.29) imply that B - bB8 = n(n+l) .

Since b # 0 , the alternative theorem implies that (4.33)

has no solution unless D = 0 , in which case (4.30) yields

(4.34) Ny = =By .
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In summary, the eigenvalues of (4.10) , (4.11)
are solutions X of (4.21). We limit our attention to
positive’ eigenvalues. If B < 2 , then the corresponding

eigenfunctions are
(4.35) (n1,¥1) = ([n(n+1)-Bl/b, 1)P_(cos s) :
Now the function P;(cos s) has exactly n+l zeros on

[0,7] , including those at 0 and m# , each of which is

simple. Thus every nontrivial solution (n:1,¥:) of (4.10) ,

(4.11) is characterized by the fact that n; and ¢; have

exactly the same zeros.
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§ 5.GLOBAL BIFURCATION ,

To show that our equations meet the hypotheses of
the bifurcation theorem and uniqueness theorem, which form
the basis of our analysis, we must transform them into
alternative forms that enable us to control the polar sin-
gularity manifested by the presence of sin s as a coef-
ficient of the highest derivatives of our differential
equations. We substitute (2.19) into (2.14)-(2.17),
carry out the differentiation of the leading terms, use
Cramer's rule (justified by (2.21)) to solve the resulting
equations for v'sin s, n'sin s, u'sin s, and finally
force this latest version of the system into a form suggested

by the linear equations (4.3)-(4.5). Using (4.12) we

obtain
(5.1) (v sin s)' = t cos s +(N$)-1(N$+H$+Ak)n sin s +
+ (N%)—I(N$k+lk2/2)(w-s)sin s +n ,
(5.2) (n sin s)' = -(H;)'I(N3+Ng+xk)(v+r)sin s +
+ (Hg)'l(xkz/z)[(w-s)sin s]' +h ,
(5.3) L( y-s ) = -B(y-s)sin s - b sin s + m '
where

lDl +(v-T)cos s-(Ng)-l(Ng+H%+Ak)n sin s -

(5.4) n = A

- (Ng)‘l(Ngk+xk2/2)(w-s)sin s



(5.

(5.

(5.

(5

(5.

(5.

(5

5)

6)

7a)

.7b)

8a)

8b)

.8¢c)

From

(5.

9)

(5.10)

h =

=
"n

(>4
11}

D
J

A

D,+ncos s+ (H%)-I(Ng +Ng +Ak ) (v+T)sin s

20

- (H;)‘l(xkzvz)[(w-s)sin s1'

A

-1

D3

+ (y-s)'cos s

+ bnsin s ,

det d(N,H,M)
9 (v,n,u) ’

is the determinant obtained from A by

o
replacing its jth column with [ B8 ] '

o =
B =
y =

Lr =
(z'sin s)'

(2.5)-(2.8)

Y

= -(NTT'+NOO')Sin s+Tcos yPY-Ncos s+Hy'sin s+irn

H -(HTT'+H00')sin s-Tsin yY-Hcos s-Ny'sin S-Arv

= —(MTT'+M00')sin s+Icos Y-Mcos s-{vH-nN)sin s

we find that

(vsin s)'cos Y+ (vsin s) (cos y)' -

-{nsin s)'sin Y- (nsin s)(sin y)' - 1

(vsin s) 'sin Y+ (vsin s) (sin y)' +

+(nsin s)'cos Y+ (nsin s) (cos y)'

’

’

14
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We now introduce new variables (u;, u,, uz) = u by
(5.11a) uy (s) (sin s) % = (Lr)(s)

(5.11b) usz (s) (sin s);5 = (2'sin s)' ,

(5.11c) u; (s) (sin s)% = L(y=-s) (s)

Let us assume that u 1is continuous. Then we can solve
(5.11a,c), (2.25), (2.27) in terms of wu; and u; . Now

from (5.11b) we see that u: must satisfy

m 3
(5.12) J uz(s)(sin s) “ ds =0
0

We thus find that

S
(5.13) z'(s) = (sin s)'lf0 u, (t) (sin t)? dt

. -1 (7 . 5
-(sin s) { uz (t) (sin t) © 4t
s

This representation shqws that =z satisfies the boundary
conditions z'(0) = 0 = z'(wm), which are consequences of
(2.5)-(2.8), (2.26), (2.27). We integrate one of the
equations of (5.13) and then use (2.28) to evaluate the

constant of integration. We obtain

n
(5.14a) r(s) = J K(s,t)u; (t) (sin t);5 dt = (Gu;) (s) ’
)
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(5.14Db) z(s)

J“ 10, g) 1

o u?(t) (sin t)%dt d
0 sin y Y

0
( Z2u2) (s) '

s
(5.14c) VY(s)-s = J K(s,t)u;(t) (sin t)%dt = (Guj) (s)
0

where X[0,s] is the characteristic function for [0, s]

and K 1is Green's function for L subject to Dirichlet data:

[ .y ltcos s sin t
l+cos t sin s

(5.15)

l+cos t sin
l+cos s sin

|

=%

(We could express (5.14b) in terms of a Green's function,

but doing so would interfere with our analysis. ) We also

record that

il
(5.16a) r'(s) = I Ks(s,t)ul(t)(sin t)%dt = (Gu,)'(s) ,
0

T
(5.16b) v'(s)-1 = I Ks(s,t)u3(t)(sin t)%dt = (Gu,) '(s)
0

where,
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(5.17)
[ nfseee et for el
Ks(s,t) = <
L - i:gg: : sii € for t>s .

z' 1is given by (5.13) . From (2.7), (2.8) we then obtain

(5.18a) v = (Gup) 'cos(s+Gui) + (Zu,)'sin (s+Gu;) ,

(5.18Db) n - (Gui) 'sin(s+Gui3) + (Zu,)'cos(s+Guj;) '

(5.18¢,d) 1 = (Gu,;)/sin s , o = [sin(s+Guj3)/sin s] - 1 .

We now convert our differential equations (5.1)-
(5.3) 1into integral equations for u o We replace the
left sides of (5.9), (5.10), and (5.3) with (5.14) . We
next substitute (5.1), (5.2) into the right sides of (5.9),
(5.10). Then we replace the variables appearing on the right
sides of (5.9), (5.10), (5.3) with their representations
from (5.14)-(5.18). Finally, as a precautionary measure,
we subtract from the right side of the resulting form of

(5.11) its mean value, a move suggested by (5.12). We

denote the resulting system of integral equations by

(5.19) u = f(aw .
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Let

(5.20a) u = { u e c®([fo,m1)® : (5.12) holds.}

We wish to show that £f(A,¢) 1is a compact mapping from

11
m

(5.20Db) un{ u : we D }

into itself ( P is defined in (2.20)).

Let w =+ R(w) be any constitutive function. 1If

ReCl(p ), then

(5.21a) R(X) = R(§) + Ri(f,g)(yi-xi)
with
1
(5.21b) R, (x,y) = J R, (ty+(l-t)x) dt
4 s Wi~ o

Here and below, twice repeated indices are summed from 1 to

5. If R e C?( D), then

(5.21c) R(y)=R(x) + Rw_(f)(yi-xi)+%Rij(§,¥)(yi-xi)(yj-xj)
1
with
1
(5.214) Rij(f,z) = Jo Rwiwj(t¥+(1—t)§) dt
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We let R (w) and R
W. '~ W.W
i i’j

(w) be any values of Ri and Rij

in which the arguments consist solely of entries from w.

E.g., Rw (w) could be taken to be Ri((r,v,O,o,u),
i~

(v,Tt,n,u,0)) .

Since we whall use only the continuity of ({ ﬁw 'iw w. ]

i 177
and not the specific functional forms, we allow their
meaning to vary even in the same expression.

In the spirit of (5.21) we define the continuously

differentiable functions C and S by

(5.22a) 1 - cos 0= 9%C(0) ,

(5.22b) © - sin 6 = 0°s(0) .

Then

(5.23a) cos Y- cos s = - (Y-s)sin s + U ,

(5.23b) U = - (y-s)2C(y-s)cos s + (Y-s)®S(y-s)sin s |

(5,23¢) sin ¢ - sin s = (y=-s)cos s + V ’

(5.23d) V = - (y-s)2C(y-s)sin s - (y-s)3sS(y-s)cos s .

Thus
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(5.23e) 7'sin s = (v=1)cos s - (Y-s) (vsin s+ncos s) -
- nsin s + VU - nv ,
(5.23f) 0'sin s = (u-g)cos s + Y'[U-(y-s)sin s] .
Let
A Y
(5.24) w* = (t,v,0,0,u) .

~

By using the formulas (5.21)-(5.23) we can convert a ,

given by (5.8a), to

(5.25) a = T(w) [U-(y-s)sin s] + % Tnnnzcos s -

~ [N (%) (v=T) 4N (w*) (=0) 3N, S (w¥ ) (w;~v})

*
(wj-wj)+NT

w.(v-r)(wi—wz)+ﬁowi(u—o)(wi—w:)]cos S

i
+ NT(w)[(w-s)(vsin s+ncos s)+nsin s-vU+nVvV] -

—No(y)W'[U-(w-s)sin s] + ﬁnnW'sin s + Arn .

We obtain similar representations for B8 and vy . Note
that a + [Nv(y*)(v-T)+Nu(y*)(u-o)]-n(ﬁnw'sin s+Ar) consists
of sums of product of continuous functions of (Y,w—s) with
quadratic functions of v -1, n, u-06 , Yy-s . By a lengthy
computation we find that the terms in f consist of products
of continuous functions of (Y,w-s)with quadratic functions

) -3 , - . -3
of (sin s) *{(v-1) , (sin s) *n , (sin s) * (p-0) , and
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with a number of other such functions of (w, y-s) . Let

us examine (sin s)-%(u-c), which (5.23¢c), (5.14c), (5.16b)
reduce to
(5.26a) (sin s) *[¥'(s) - 1 -(y(s)-s)cot s - V(s)csc s ]

™ _5/
= J J(s,t)us(t) dt - (sin s) * V(s)
0

where
(5.26Db)
( 9 _3
(1+cos s)?(sin s lw /
% l+cos t sin t (sin t) -t < s,
J(s,t) = 9
. (l-cos s)?(sin t]°%/u _. -3/ t > s
k s l-cos t (sin s] (sin t) :

The Arzeléd-Ascoli Theorem supports a straightforward proof

that the kernel J generates a compact and continuous

operator from C°([0,ﬁ]) to itself. Note that the kernel
- .

(sin s) “K_ ( See (5.17)) does not. It is the cancellation

of terms in J that is responsible for this compactness.

Now (5.23d) implies that

. -5/, . =1y
(5.26c) -(sin s) V = [(sin s) 8 (y-s)]2C(y-s) +

_5
+ [(sin s) /lz(w—s)]35(w-s)cos s .

Since the Arzela-Ascoli Theorem implies that the integral

_5
representation for (sin s) /lz(w-s) obtained from (5.14c)
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in a compact mapping of u o, it follows that (5.26c)

defines a compact mapping. Since compositions of continuous
and compact mappings are compact, we find that (5.26c¢c),
(5.26a), and (sin s)-l/z(u-o)2 correspond to compact
operators taking C°([0,m]) into itself. We emphasize that
the appearance of terms such as (u-o0) in f is a consequence
of the isotropy conditions.

By extensive use of arguments such as these, We

find that £ is a compact and continuous mapping of E

into itself. Moveover, the form of £ shows that it is

Frechet differentiable at the trivial branch of solutions .

Let uy(A) be the trivial solution of (5.19) for fixed
A ; up corresponds to the trivial solutions discussed in

-~

Section 3. The linearization of (5.19) about the trivial

state up , namely

-~

(5.27) v=f (Luy o,

-~

is equivalent to the equations of Section 4. We accordingly
can invoke the global bifurcation theory of Rabinowitz (1971)

and the local theory of Crandall & Rabinowitz (1971) to

obtain

5.28. Theorem. For a given positive integer n let Tn

be a solution of (4.21) of odd algebraic multiplicity,i.e.,

let there be an odd positive integer k such that
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(5.29) 33 (Fou) =0, 3520,..%-1, -2 (%

. —— g ,U. = I3 j= 1o e K—T1, - 3. g(>\ U.) # 0 .
akj n - alk n’~

Then bifurcating from the point an,uo(Tn)) on the trivial

. t -
branch of solutions are two connected sets C‘(An) of non-

trivial solution pairs (A,u) _of (5.19) that enjoy at

least one of the following properties :

(1) ¢ (A.) cannot be confined to any compact subset

of E .

+
(ii) The closure of c'(kn) contains another point

( z,uo(z)) where ¢ satisfies (4.21) .

Suppose, moreover, that Tn is simple,i.e., that k=1

in (5.29). Let v be a normalized eigenfunction of (5.27).

Iy

et g(fn) be the projection of U onto sEan(vn). Then there :s

a number € > 0 and there are continuous functions Kn :

[-€,e] » R, y_ : [-€,€] » [I-P(X )] u with « (0) =0 ,
y,(0) = 0 such that (X _+x_(€), wo (X +x (€)) + e[Yn+¥n(e)])
is a solution pair of (5.19) for |e| <€ . Moreover,

there is a neighborhood N of (Tn,go(xn)) such that if

(X,E) is a solution pair of (5.19) 1lying in Ny then

either (A,u) = (X ,uo()\)) or else there i1s an ¢ ¢ [-€,¢€]
such that (A,u) = (Tn+Kn(e), go(xh+Kn(e)) + elv +y_(e)1) .

Note also that (5.14)-(5.18) imply that w cor-

responding to any solution of (5.19) is continuous and in
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particular ¥ e C!([0,7]) . Moreover
(5.30) lim [v(s)=-1(s)] = 0 , lim [u(s)-o(s)] =0
s+0,w ‘s>0,

It follows from (5.1)-(5.3) that U generates a classical
solution to our boundary vlaue problem. In fact, the re-
guirement that the constitutive functions N, T, H, M, I

be thrice continuously differentiable on p implies that
the strains W generated by u are twice continuously
differentiable on the open interval (0,7) . To determine
the boundary behavior of n' , which is needed in the
sequel, we divide (2.29) by sin? s and use (2.19) and

(5.21) to obtain

(5.31)  N(w(s))EELE) g () Usleos y(s) +at(s)2/2 = 0

on (0,m). Since n satisfies (2.26), we can let s = O,
in (5.31) to conclude that n is differentiable on [0,T].
To show that n € C!([0,7]) we use the expression for n'
obtained from (5.2) and examine its limits as s =+ 0,7 .
This process is simplified by the observation that the
limiting forms for n' can equivalently be obtained by
substituting (2.19) into (2.15), carrying out the
differentiations, dividing the resulting equation by sin s ,
and exploiting (2.24) and (5.30) to show that the limits

n'(0) and n'(m) agree with those found from (5.31).
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An essentially equivalent version of Theorem 5.28 can
be obtained by using the theory of Fitzpatrick & Pejsachowicz
(1985), which generalizes that of Crandall and Rabinowitz. The
former theory does not require the use of Green functions.

The role of isotropystill remains paramount.
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§6¢. NODAL PROPERTIES OF SOLUTIONS

The determination of nodal properties of
solutions of our boundary value problem is a more subtle
question than that for the boundary value problem for
plates. The main reason for this difference is that in the
plate theory (cf. Antman (1978)) n 1is the product of a
certain function with sin ¢y and so the nodal properties of
n are determined directly from those of ¢y . On the other
hand, in our shell theory v , T , n , ¢ are all
coupled by nonlinear differential equations, which lack an
obvious nodal pattern. To approach the question for shells
we first need a candidate for a nodal pattern that is
preserved on solution branches.

The solutions of the lineariZed problem, treated in
Section 4 , have the property that n; and Y; have the
same zeros, which are simple. The perturbation solutions
of Section 8 also have this feature. Thus we are motivated
to study whether the number of simultaneous zeros of n and
Yy = s 1is fixed on each bifurcating branch.

We immediately confront a serious difficulty. Let

S»,n=1,2, -+ be the collection of all real-valued
functions p in C!([0,n)] having zeros at 0, 7 and
having exactly n - 1 =zeros on (0,7w), each zero being
simple. Then Sn is open in C!([0,m)]. Given any

function in Sn , it follows that all sufficiently nearby

functions enjoy the same nodal properties, i.e., have the
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same number n + 1 of zeros, each of which is simple.
Moreover, the boundary BSn consists of functions

having at least one double zero on [0,m]. These observations
support the nodal theory introduced by Crandall & Rabinowitz
(1970) for bifurcation problems governed by nonlinear
Sturm-Liouville equations. To study pairs of functions with
simultaneous zeros, we let Tn be the collection of all
complex-valued functions in [C!([0,7])]? having zeros at
0, 1 and having exactly n - 1 =zeros on (0,7), each zero
being simple. But Tn is not open in [C!([0,n])]1? and
there is no useful characterization of aTn . To
circumyvent this difficulty, we must exploit the fact that
(n, ¥-s) 1is not merely an arbitrary element of Tn , but
is also a solution of a boundary value problem.

Our strategy is as follows. We first describe an

auxiliary condition ensuring that if there is a solution of

our boundary value problem for which n , n' , ¢ -s,
(y-s)' all vanish at a point sy in [O0,m], then v-t
also vanishes at S¢ . Next we prove a basic unigqueness

theorem stating that if there is a solution of our boundary
value problem to which v -1, n , ¢ - s, (w-s)' all
vanish at a point s, in [0,m], then the solution is
trivial. This result does not enable us to assert that on a
nontrivial solution branch (n, Y¢-s) remains in Tn if

(n, ¥v-s) 1is in Tn at any solution pair on the branch.

To remedy this difficulty, we set
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(6.1) n(s) = p(s) cos 0(s),
Y(s) - s = p(s)sin O(s) .
If n{(sg) =0 = Y(sy) - s9 , then p(sy) = 0. Thus the zeros

of the real-valued function p are the simultaneous zeros
of n and ¢ - s . If n and ¢ are part of a nontrivial
solution of our boundary value problem for which the auxiliary

condition holds, we use the uniqueness theorem to prove that

p can be defined so that it belongs to C!([0,7]). We
can accordingly determine where op ¢ Sn . In particular,
if at a point on a nontrivial solution branch p € Sn '
then p remains in Sn until it has a double zero ( by
virtue of our discussion of BSn ).

By the remarks at the beginning of the last paragraph,
we conclude that the solution is trivial if p has a double
zero ( and hence n and Y - s have simultaneous double
zeros ) provided the auxiliary condition in met. Let Tn be
a simple solution of (4.21) and let e Tn) be the two
nontrivial branches bifurcating from (Tn,uo(fn)). We wish
to show that on C¥ Tn) the function p remains in

Sn as long as the auxiliary condition is met. To do this,
we must show that o admits a linearization and enjoys
properties like those stated in the last part of Theorem 5.28.,
We thereby demonstrate that on ct ( Xn), the function p
inherits its nodal properties from those of its linearization

and preserves them as long as the auxiliary condition is met,

i.e., on ct ( Tn) ’ p € Sn as long as the auxiliary
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condition is met. Thus on ct ( Tn) the function n and
Y = s have n - 1 simultaneous zeros on (0,m) as long as
the auxiliary condition is met.

We now proceed to carry out this program. We assume
throughout the ensuing discussion that (A,w,y) generates a
solution pair for our boundary value problem.

Suppose that there is an sy € (0,m) such that
nisoe) = n'(se) = Y(so) = so = V'(se) - 1 =u(sg) =0 . Then

(2.24) ensures that (2.15), (2.19), (2.29) reduce to
(6.2) N+ T+ At(sg)Vvi(sg) = 0,
(6.3) N +% At(se)2 =0

where the arguments of N and T are (v(sg), T(se), 0, 0, 0).
We know from Section 3 that (6.2),(6.3) admit a solution
of the form v(sy) = T(sy) = k(A) and that this is the only
solution of these equations for which v(sgs) = T(so). By
virtue of (2.20) the variables v , T , X are confined
to (h,») X (h,~*) x (0,»). Let G be the subset of this
region for which the only solution of (6.2), (§.3) 1is
visg) = T(se) = k(N). We then have the following result,

which is wvirtually a tautology.

6.4. LEMMA. If n(so) = n'(sg) = Y(sg) = s = Y'(sg) =1
=0 and if (v(s¢), T(s¢),A) €¢ G , then

v(so) = T(so) = k(A),
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In the next section we shall study the nature of G
the "auxiliary condition", alluded to above is just the
requirement that (v(sg),T(se),X) ¢ G . Our basic

uniqueness theorem is

6.5. Theorem. If there is an sy, € [0,7] such that

(6.6) v(sy) = k(})

T(s0) = k(X)) = n(sg) = Y(sg) =~ s =

Y'(se) -1 =20 '

then the solution is trivial .

Proof. Let

(6.7a) v = (Vy,V2,V3,Vy,Vs)
= ((v-1)sin s, (v+1-2k)sin s, nsin s, psin s, y-s) ,
(6.7b) v = lvil + [vel + [vsl + |va] + |vs] :

Then we can combine (5.1)-(5.3), (2.8), and (5.23) to

obtain the system

1) -
(6.8a) vy v(vssin s=U) 4v; + n(vscos s +V) + A 1D1 ’

(6.8b) v, (vi+vy)cot s - v(vssin s-U) - v, -

-n(vscos s+V) + A_1D1 ’
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(6.8c) V3 = vicot s + A-lDz ’
! -1

(6.84) vy = vycot s + A D3 '
! . -1

(6.8¢e) vs = v, (sin s) )

If so € (0,7) and if v satisfies (6.6) and (6.8)

~

then v = 9 , because the right-hand side of (6.8) is a
well-behaved function of s and v . Consequently the
initial-value problem has a unique solution, which is the
trivial solution v=20 .

Thus we need only concern ourselves with the cases

so = 0, m, in which the right-hand side of (6.8) is

singular in s . We just treat the former case. Throughout
our discussion we let v represent an arbitrary, given
solution of our boundary value problem ( known to exist by
the results of Section 5 ) which we subject to the
additional requirement that it satisfy (6.6) . In the
analysis to follow, we let ¢ denote a typical positive
constant depending on the fixed but arbitrary solution v .
The meaning of ¢ can change from place to place. We tacitly
restrict s to lie in an interval of the form [0,e] where

€ 1s small and positive.

Since sin s >s cos s on [0,e], we find that

s
(6.9) [ (sin t)_%dt < 2(sin s)%/cos s < c{sin s)% .
0
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Using this result in (5.13)-(5.18) and using the fact that

lul| < ¢ , we obtain after careful analysis that

~

(6.10) lv-=1| + [n| + |u=o| < c(sin s)l'5

|y=s| < ecsins , |u|] + |o| < ¢
Since (5.23) implies that

(6.11) lo| < c|vs|(sin s)71

we find from (5.25) and related expressions that

(6.12) la] + 18] + |y| < c(sin &)*

Let us now examine (6.8a) . From (6.10) we

immediately obtain

' - -
(6.13) lvi-4 1D1| < cl|lvs|+|vs|) < ev < cv(sin s) g
Note that (2.21) and (2.23) imply that

(6.14) NP

Accounting for (2.24) by using the notation introduced after

(5.21) we obtain
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6.15 D, =aH M =-aH M 2 . - N
( ) T Tt (BM =YH N+
+ BN M - YyH (N +N N
B y nn" Y n( un” Nuu“+Nuo°) P
(6.16) A-l - (NHM )—1 = 0=0n+Qu+Qo
vnou n u o

[ ]
Inequalities (6.10)-(6.12), (6.14)-(6.16) imply that
(6.17) |47 D1-a (N ) 7! < cv(sin 8) 72 i

— *
1 %* 3 -
If in (5.25) we replace Nv(y } with Nv(y )+vai(wi wi)

and replace N (w¥* with N +N +N i
P u(~ ) unn uu“ uco , then we obtain

from (6.10), (6.11]) that
(6.18) la +N_(v-t)cos s| < cv(sin s) 7% .
Inequalities (6.13), (6.17), (6.18) imply that

(6.19) [v;+v1cot s| < cv(sin s)-%

A virtually identical analysis yields
' . -%
(6.20) |vz=vaocot s| < cv(sin s)

The treatment of (6.8c) 'is just slightly different.

Using the same ideas as those leading to (6.17) we obtain
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(6.21) 167D, | < c|B| + cv(sin s)7*

Since HT = Hrnn’ Ho = Honn by (2.24), equation (5.8)

yields

(6.22) |8] < cv(sin s)-;i +| T+N+ivt|sin s
Equation (3.1) 1implies that
(6.23) T + N+ Atv = X = ?v(v-k) + ?T(T-k)

= 5[X (v1+v2) 48 (-v1+v,) ] (sin s) 7}

Combining (6.8c) , (6.21)-(6.23) , we obtain

] -
(6.24) vy-vscot s| < cv(sin s) %
We remark that the only place that the variable v, appears

in (6.8a,c,d,e) is in the right side of (6.8c). Similar

techniques produce
[} . _;s
(6.25) vy, - vscot s| < cv(sin s)

Combining (6.19), (6.20), (6.24), (6.25), (6.8e) we

obtain

L} 1] 1 L -
(6.26) v' < |v1|+|v2|+|v3|+lvu|+]v;| < veot s+cv(sin s) %
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the first inequality being a standard consequence of the

absolute continuity of v . Since (6.6) implies that

(6.27) v(s)/s - 0 as s > 0 '

we can invoke the standard uniqueness theorems associated
with differential inequalities (cf. Hartman(1964, Sec.III.6))
to conclude that v =0 - 0

It is important to note that if we were to insert a
constant exceeding 1 in front of vcot s in (6.26), then
we could not conclude that v = 0 . That the coefficient
in front of vcot s 1is 1 1is a consequence of the isotropy

condition.
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We are now ready to study the polar coordinates o
and 0O introduced in (6.1). We state their properties in

a series of lemmas.

6.28. Lemma. Let the boundary value problem have a non-

trivial solution pair with (v,7,)) taking values only in

G and with p and 0 defined in any manner consistent

with (6.1). Then the zeros of p on [0,n] are isolated.

Proof. If not, they would accumulate at a point s¢ ¢ [0,7],
at which 'n and Yy -s would consequently have simul-
taneous double zeros. By Lemma 6.4 and Theorem 6.5, the
solution would then be trivial. 0

Now (6.1) implies that

(6.29) tan 0= (y=-s)/n .

Suppose that the solution 1s not trivial and that (v,T,X) take
values only in G . Let s; and s; be a pair of adjacent
zeros of p . If n vanishes nowhere on (s;,s.;), then
(6.29 ) implies that tan © is continuously differentiable
on (s, s2) and we can define 0O itself (mod m) to be
continuously differentiable on (s;, s2). If n vanishes at

sS3 € (s;, s2), then we define
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(6.30) O(s) = w/2 + Js {n(¢) (b’ (£)=2]-(9(t)=2]n" (&) b gy (mog )
S3 n(t) 2+ [y (t)-¢])?

for s ¢ (si,s2). If sy, 1is a zero of p and if n'(s,)

and VY'(sy) - 1 do not both vanish, then 1'Hopital's rule
enables us to deduce from (6.29 ) that
(6.31) tan O(s) - i%4%§%§l— as s > s, ,

the limit existing as an extended real number. (If n'(s,)=
=0 = w'(su)-l, then we could use Lemma 6.4 and Theorem 6.5
to show that the solution is trivial when the condition on
G holds.) Then 0(s,) is defined mod m . By selectina
the value of © at such zeros of p appropriately, we can

define

(6.32) p = ncos 0 + (Y-s) sin O

Hence Lemma 6.4 and Theorem 6.5 imply

6.33. Lemma. Let the boundary value problem have a non-

trivial solution pair with (v,n,)\) taking values only in

G . Then o and © satisfying (6.1 ) can be chosen to

be continuous on [0,7].

Since n,¥ € ¢! ([0,7]), the constructions we have

made above ensure that p and © are continuously differen-
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tiable where p does not vanish provided the hypotheses of

Lemma 6. 33 hold. Differentiating (6.1 ) we obtain

(6.34a,b) o'

n'‘cos @ + (p'=-1)sin O ’

pO' = -n'sin O+ (Y'-1)cos O

where p does not vanish. The continuity of the right

sides of (6.34) then yields

6.35. Lemma. If the hypotheses of Lemma 6.33 hold, then

p' , 06' € Cc°(l0,7]).

We require the following refinement of this lemma

6.36. Lemma. If s, 1is a zero of p and if n'(sy)

and y'(sy)-1 are not both zero, then p(s,)0'(s,) = 0.

Proof. The Mean Value Theorem yields

1

[
(6.37) n(s) = l J n'(as+(l-a)50)da] (s-s¢) '
0

1

Y(s) - s

J

u(as+(l-a)sy)da ] (s=-sg)
0

On any small one-sided neighborhood of s, , (6.34b) thus

yvield
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(6.38 ) tp(s)0’' (s)
1 1
u(S)[on'da-n'(S){ouda

T ps
[[[ n'dal 2+ [I udotlz];5

0 0

where the arguments of n' and u in the integrands are
as + (l-a)sy . Since n' and u are uniformly continuous

1
on ([0,m] , we find that I n'(as+(l-a)se)da -+ n'(sy) as
0

S > sy , etc. Thus in the limit as s = sy, , the numerator
on the right side of (6.38) approaches 0 , while the

denominator approaches a positive number . [

In view of Lemma 6.35 we can examine whether
p E Sn' By the introductory remarks of this section, func-
tions p in 35S have a double zero. But this fact alone
n

does not guarantee that n and y-s have a simultaneous

double zeros, as an examination of (6.1) and (6.34a) shows.

But Lemma 6.36 coupled with (6.34) implies that at a

double zero of p the functions n and yYy-s have a simul-
taneous double zero, a result that enables us to invoke
Lemma 6.4 and Theorem 6.5 . Marshalling these facts in
the manner proposed in the introductory remarks in this

section, we obtain

639.Theorem. Let K be a connected set of nontrivial

solution pairs with the property that (v,1,)) takes values
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only in g for each solution pair in kg . If for one

solution pair in K the function op ¢ Sp ¢ then o

remains in Sn for every solution pair in ¢ . Thus n

and Y-s have exactly n+l simultaneous zeros on (

Let Xn be a simple root of (4.21 )(so that (5.29 )
holds with k =1 ). Then the last part of Theorem 5.28
together with the representations (5.14c ) and (5.18b)
imply that on the branch C( Th) near the bifurcation point
( Xh, 9 )s) X , n , ¥ have representations of the form
(6.40) A= Tn + «x(e), n =¢eny + o(e),

Y - s =¢ey; + ofe)

as € + 0, where « 1is continuous and «(0) = 0. If we
substitute (6.40 ) into (6.29 ) and wuse (4.25 ) we
obtain

(6.41 ) tan 0 = Yy /ny; + o(1) = E L + o(1).

Thus we may take

arctan (E-l) + o(1).

(6.42 ) 0

Then (6. 32) implies that

(6.43 ) P = €p1 +o0l(e) = ¢g[p;+o(e)ec-1]
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with
(6.44 ) o1 = (14E ) 7[En; +¥1]
= (1+E );i P;(cos s).
It follow that p; =€ Sn and that o ¢ Sn for ¢

sufficiently small. ( Incidentally, we show in the next
section that (v,T,)) generically belongs to G for ¢
sufficiently small essentially because v - t= 0 on the

trivial branch. ) We accordingly have

6.45. Theorem. Let be a simple root of (4.21).
— n

+
On the maximal connected subset of the closure of (o~ (Xn)

containing Tn, ug ( Tn)) for which (v,T,)A) takes values

+ 1 simul-

only in 6 , n and ¢ -s have exactly n

taneous zeros.
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§7. PROPERTIES OF G.

We now study (6.2), (6.3), which we rewrite as

(7.1) N(v,t) = -kxt?% ,

(7.2) N(v,t) + T(v,T) = -AvT ,
from which we obtain \
(7.3) T(v,T) = AT(sTt-Vv) .

Here we have suppressed the last three arguments (0,0,0)

of the functions N and T . The set G

consists of

all (v,t,2) in (h,») x (h,») x (0,») for which the only

solution of (7.1), (7.2) is v =1 = k())

few remarks about (7.1), (7.2) in general before studying

a specific example.
Since N, > 0 by (2.21) and since

the growth conditions of (2.23), egquation

. We make a

N satisfies

(7.1) can be

solved uniquely for Vv in terms of Tt and A :
(7.4) v = £(1;1), with 1 = £(1;0) .
Since fT = -(NT+AT)/Nv ,we find that fT < 0 if NT > 0

and that £_(1;0) > - 1 if N_(1,1) < N (1,1) .

The isotropy condition (2.24) ensures that the

curve in the (v,t)-plane defined by (7.2)

is symmetric
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about the line v =71 . If Tv + Nv >0, if T + N » - =
as v » 0 for fixed 1t , and if liminf T + N > 0 as
v - » for fixed Tt , then (7.2) can be uniquely solved

for v in terms of T and A :

(7.5) v = g(t;1A) with 1 =g(1;0) .

The results of Section 3 ensure that the graphs of f£(-;2)

and g(*;)A) intersect on the line v = 1 . Since
e (Ag+N_+T_)
. g_. = -
T ()‘T+N\)+TT) .

it follows that g, < 0 under our assumptions and, not
surprisingly, that fT(T;A) = -1 when <t = g(t;A) . Thus
the graphs of £f(-;)) and g(-;\A) cross transversally

on the line v = T when fT # -1 here, i.e., when
(7.7a) Nv(T.T) - NT(T,T) - xT #0 .

Using (7.1) we can rewrite (7.7a) as a condition involv-

ing only the constitutive function N :
(7.7b) Nv(T,T) - NT(T,T) + 2N(T,7)/T # 0 .

Wherever (7.7) holds, there is a neighborhood about

(t,7,2) 1lying in G . ( See thé parenthetical remark
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preceding Theorem 6.45.)

There are several ways to analyze (7.1), (7.2)
further by making general restrictions on N and T
leading to suitable estimates. It is also illuminating to
view (7.1) and (7.2) as each describing the inter-
section of two graphs over the (v,t)-plane. Alternatively
we could assume that N and T are derivable from a
stored energy function ( as in (7.9) below ), characterize
the equations as Euler-Lagrange equations for a constrained
problem, and study the extremization of a real valued
function on a constraint curve. There are several ways to
choose the constraint. It is more illuminating, however,
to analyze a specific class of materials.

Let A, B, C, a be positive numbers and let

(7.8) W(v,T) = Ac”ly TY T 4 LB (v+T) 2 + XC(v3+12) ,
(7.9) N(v,t) = Wv(V,T) - Wv(l,l) ’
T(y,r) = WT(v,T) - WT(l,l) .

These equations give a reasonable model for material behavior
in compression for h =0 . When (7.8), (7.9) holgd,
equations (7.1), (7.2) reduce to

_ Av-(a+1)T-(a+1)

(7.10) T+B (V+T) 4CV+A-2B-C = =-kAT? ,
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v-(a+1)T-(a+1)

(7.11) - A (V+T)+(2B+C) (v+T) +2A-

-2(2B+C) = =-Avt .

—(o+l)  na substitute the

We now solve (7.11) for =A(vT)
resulting expression into (7.10), obtaining an equation with
a factor v - 17 . Since we wish to study the locations of
possible solutions of (7.1), (7.2) with Vv # 1T , we
cancel this factor obtaining

(7.12) (B+C) (V+T) + A -2B - C = % At? .

Let us denote the solution of (7.12) for v in terms of

T by v#(T,A) . If we replace v in (7.10) with v#(r) ’
we obtain

(7.13) at” D) o G-y 1 vHr, a9t

For ) > 0 , trivial solutions of our boundary value
problem are characterized by v = t = k(A € (0,1) ,
N =T ==%3k()) 2 .We accordingly limit our attention to a
neighborhood (possibly quite large) of the trivial solutions

by seeking solutions of (7.13) for which

(7.14a,b,c,d) te (0,1), v (t,0 e (0,1)

N(v# (t,A),t) <0, T(v#(r,k),T) <0

for A >0 . We wish to characterize where (7.13) has

solutions satisfying (7.14) . Such solutions lie in the
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complement of G . (If (7.14) is not imposed, then (7.13)
always has a solution.)

Note that (7.14c) is automatically satisfied by
virtue of (7.1) . We now use (7.12)-(7.14) to show that
the set of points (v,1) ¢ (0,1) x (0,1) at which (7.1) ,
(7.2) has solutions for (7.8), (7.9) can be quite small.

Call this set H(x) . Clearly

(7.15) ) = { (ve) e (0,1) x (0,1) v = v, ,

T satisfies (7.13), T(v#(r,x),T) <0}

We now obtain a number of inequalities that elements of
H(A) must satisfy .
Equation (7.3) implies that (7.14d) 1is satisfied

if and only if
(7.16) viee, ) > 12

Equation (7.12) implies that

B -2
B C ’

(7.17) V#(T,X) > =1+ 1 +

which can represent a very severe or an insignificant
restriction depending on the relative size of A, B, C.

Equation (7.12) and conditions (7.1l4a,b) imply that

(7.18) T < [2(C+A) ] A7
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A simple graphical analysis of (7.13) based on (7.1l4a,b)

shows that

(7.19) T > min[

Note that if B-A and ) are sufficiently large,
then the set of +1's satisfying (7.14), (7.17), (7.18) is
empty. If X 1is small enough, then (7.19) implies that
T>1

By substituting (7.16) into (7.12) we obtain

.3 9 %
4+ AT, = 5(B+C)£[F(B+C) +2) (A-2B-C) ]

(7.20) T ¢ [T_,7

the interval [t1_, 1,] being regarded as empty if =

+ are

*

not real. If A-2B-C > 0 and if A 1is large enough, then
(7.20) delivers a lower bound for Tt that is larger than
that of (7.19) .
We seek similar estimates independent of A . Let
= (a+l)

us use (7.18) to get a lower bound for AT . A

sketch shows that a lower bound for =+t 1is the solution of

2(C+A) - (a+l) /2 _

(7.21) A | Y

(At-C) .

Thus
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an (a-1)/2
[2(c+a)] (@F1) /2 .

(7.22) T2 S5+

If o€ (0,1), then (7.22) delivers a lower bound depen-
dent on A , but nevertheless better than those of (7.19)
and (7.20) when A 1is large enough . If o =1 , then
(7.22) gives bound that is clearly better than (7.19) and
that itself has a further lower bound independent of A . If

a > 1 , then

21 > £x"% + (1-5)x*7!

(7.23)
(a+1)c(a-l)/(a+l)A2/(a+1)
(a_l)(a-l)/(a+1)2-2(a+2)/(a+1)(C+A)

with x = [TE%%TK]I/(Q+1) ’ E = _E%X— r the expressions

on the right side of (7.23) being the minimum of the right
side of (7.22) for X ¢ (0,) . An upper bound for the
rightmost term of (7.23) can be obtained by the Young
inequality. The right side of (7.23) can be made arbitrarily
large by taking o -1 sufficiently small and positive.

It is not difficult to obtain further estimates, e.qg.,
estimates for the neighborhood discussed in the comments
following (7.7b). We refrain from doing so.

The basic message of this section is that the set G

can be very large and that precise information about it can



55

be gained directly from degenerate constitutive equations.
Moreover, we would be able to strengthen the global results
of Section 7 even more by obtaining estimates for the
location of solutions of our boundary value problem and res-
tricting G to refect such estimates. We do not attempt such

estimates here.
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8. CONCLUSION.
In an unshearable shell n 1is constrained to be zero.
The shear resultant H , not defined constitutively, is the
Lagrange multiplier maintaining the constraint of unshear-
ability. It is a fundamental unknown of the constrained
problem. The same analysis as that used above can treat

unshearable shells if H is treated as n 1s.

Some of our techniques are reminiscent of those of
Antman (1978) for plates. The difference 1in boundary con-
ditions forced us to give the coordinate functions r and z
a central role in the analysis of fcction 5, which they
lacked in the plate theory. The i1ssues treated in Section
7 never arose for plates. Of course the nodal properties
of branches for shells differ markedly from those for plates
and for circular arches (cf.Antman & Dunn, (1980).) Incident-
ally, the uniqueness theorem of Antman (1978, Section 7) 1s
faulty; it can be readily corrected by following the develop-

ment of Section 6 above.

It is illuminating to compare our results with the
numerical results of Bauer, Reiss, & Keller (1970). Treating
an engineering theory of shells they discovered the remark-
able fact that all the bifurcating branches they analyzed
are connected. Our results point in the diametrically
opposite direction. We showed that nodal properties of
branches bifurcating from simple eigenvalues could only lose

their nodal structure at certain special places 1n solution-
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parameter space. In particular, if we could obtain delicate

pointwise estimates showing that v ¢ (0,1), 1 ¢ (0,1) ,

N<O0O, T«< 0, everywhere on a family of bifurcating

branches, then the results of Sections 6 and 7 show

that nodal properties cannot switch along such branches.

Consequently such branches could not connect bifurcation

points with simple eigenvalues having different eigenfunctions.
Now Section 7 shows that for fixed A the comple-

ment of G 1is generically a finite number of points. On

the basis of such genericity arguments we could expect that

on a given bifurcating branch there would be no sg € [0,n]

and A >0 such that (v(sg), 1(se),X) ¢ G . ( Such gencric-

1ty arguments are dangerous: The nodal structure we found

for n and yY-s 1is not generic for pairs of functions. )
The chief source of the suspected variance between

our results and those of Bauer, Reiss, & Keller is likely

the fact that various geometric terms regarded as small

were discarded in their theory ( as is typical of all tech-

nical shell theories). Consequently these terms could not

come into play in the large solutions they computed. A

conceivable alternative explanation of the connectedness
of all the bifurcating branches found by Bauer, Reiss, &
Keller 1is that they correspond to spurious solution branches
of the sort often found in numerical studies of bifurcation

problems. We tend to dismiss this explanation because 1t
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does not seem compatible with the consistent pattern they
found. Bauer, Reiss, & Keller did not aive enouah data for
us to determine what sort of nodal properties their solutions
possess.

Our approach may also be compared with that of
Lange & Kriegsmann (1981) who studied continuation prop-
erties for very thin shells by using asymptotic expansions.
Our global bifurcation theory gives an approach to the con-
tinuation of branches that does not require special hypoth-
eses on thickness, or more generally, on constitutive func-
tions. Presumably their detailed approach could be applied
to our geometrically exact theory for constitutive functions
corresponding to very thin shells. We could also introduce

the thickness h as a second bifurcation parameter and

study the role of thickness by using global multiparameter
bifurcation theory (cf. Alexander & Antman (1981)).
We mention that the perturbation results of
shih (1985) show that the local disposition of bifurcating
branches depends critically on the nature of our nonlinear
constitutive equations. 1In particular, the local structure
can be quite different from that found in technical shell
theories, which essentially use linear constitutive relations.
As we have indicated above, the process of numerically
constructing solution branches can be quite tricky. It would
seem that nodal properties on solution branches could give
an extra control on numerical computation. But, to our

knowledqge, no such use of nodal properties has bcen attempted.
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§9. APPENDIX A. FORMULATION OF THE GOVERNING EQUATIONS.

In this appendix we describe a special director theory
for a nonlinearly elastic axisymmetric shell undergoing an
axisymmetric deformation. Let {%,2,5} be a right-handed
orthonormal basis for the Euclidean space E® .

In the special Cosserat theory we employ, a shell is
regarded as a surface together with a unit vector field,
called the director field, defined on it. For such an
axisymmetric shell undergoing an axisymmetric deformation, the
surface is generated by a plane curve rotated about the
E-axis and the director field is likewise generated by

rotating a director field coplanar with the generating curve.

!
k
~ -
r,g = a*(s,9)
b* (s, ¢)
N p*(s)
le—— r* (s ___}
'Q\ /
éf\g // z* (s)
?f?&)
M Fig. 9-1
Reference Configuration
Let
(9.1) e1(¢) = cos ¢i + sin ¢J '

(9.2) gz(¢) -sin ¢i + cos ¢g .
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The position r*(s,¢) of a typical material point
on the (mid)surface of an axisymmetric shell in its unde-

formed reference configuration is (see Fig. 9-1),

(9.3) E*(s,¢) = r*(s)ei1(¢) + z*(S)§ '

where ¢ 1is the meridional angle and s measures arc length

parameter. (s,¢) identify each material point of the

(mid) surface. We let s ¢ [0,L] . Define
(9.4) a*(s,¢) = cos Y*(s)ei(¢) + sin yY*(s)k '
(9.5) b*(s,¢) = - sin y*(s)e1(¢) + cos Y*(s)k .

where Y*(s) 1is the angle between the direction of the tan-

gent vector to the curve «1r*(-,0) at s and that of e;(9¢)

Deformed Configuration

The axisymmetrically deformed configuration of an
axisymmetric shell is determined by a pair of continuously

differentiable functions

(9.6) (o,L] x [0,27] 3 (s,9) = r(s,¢), b(s,d)
where

(9.7) r(s,¢) = r(s)ei(9) + z(s)k '

(9.8) b(s,¢) = -sin w(s)§1(¢) + cos w(s)g .
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(9.9)
(9.10)

(9.11)

where E's(s’¢)
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cos w(s)§1(¢) + sin w(s)E ’
r,g(s,¢) = v(s)a(s,¢) + n(s)b(s,¢) ,

(s,¢)= r(S)gz(cb) ’

(s,¢) are partial derivatives of

r(s,¢) with respect to s and ¢ . (See Fig. 9-2)

x

-~

?1(¢)477
Fig. 9-2.

Deformed Configuration

The strain variables ( which do not all vanish in the

reference configuration ) consist of invariants ( namely the

scalar product and scalar triple products ) of

(9.12) f.s(s,Cb)

P'S(s'¢)

vg(s,¢) + n?(s,¢) ;

-w'é(s,¢) H
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f.¢(s,¢)/r*(5) [r(s)/x*(s)lez(d) ;

§.¢(s,¢)/r*(S) -[sinw(S)/r*(s)lgz(¢) .

These invariants depend only on

e (9.13) w(s) = (v,7,n,u,0) ,
where
(9.14) T(s) = r(s)/xr*(s) ;
(9.15) u(s) =y' = (y*)' ;
(9.16) o(s) = sin yY(s)/r*(s) - sin y*(s)/r*(s)

and the prime denotes the derivative with respect to s .

REMARKS. (1) In the case of a spherical shell of radius 1,
where yY*(s) = s , r*(s) =sins , we have v=1= 1,
n=0,0¢ =1u=0 1in the reference configuration. Thus

v - 1 1s a measure of longitudinal strain, T - 1 the
meridional strain, n the shear strain and ¢ and u are
the circumferential and longitudinal bending strains respec-
tively. Note that u + 1 and ¢ + 1 are almost curvatures.

(2) In the uniform contraction and expansion of
a spherical shell into one of different radius, v - 1 and
T -1 change but u and ¢ remain zero, so that p and

0 1isolate the effects of bending.
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EQUILIBRIUM EQUATIONS.

We suppose the shell is subjected to a uniform external
hydrostatic pressure of constant intensity A per unit actual
area. Accordingly, the corresponding force per unit reference

area of the shell is

L,s %0 S, 75,0 X T,s I
(9.17) A . =
* * *
LS P Y : :

Let

n, be contact force resultant per unit reference length
acting across s = constant.

n,; be contact force resultant per unit reference length
acting across ¢ = constant.

my be contact couple resultant per unit reference length
acting across s = constant.

m2 be contact couple resultant per unit reference length
acting across ¢ = constant.

The equilibrium of total force on the material of

{(s,9): 53 < s <s; ; ¢ £ ¢ < ¢, } implies

d2
(9.18) [ [n,(s;,¢)r*(s;)-ny(s;,¢)r*(s;)1de¢ +
d1 - ~
S2
+ J [no(s,92) - ny(s,¢;1)] ds +
Si - ~
b2 (S2
+ Tig X f'¢
A r* ddéds = 0.
$1 ‘s, r*
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If n; and n; are continuously differentiable, we can

differentiate (9.18) with respect to ¢, and s, and then

replace ¢, and s, with ¢ and s to get

31’12
(9.19) [r*(s)ni(s, )], + 33-(s,8) +Ar, (s,6)x

X EI¢(SI¢) = 0

~

The equilibrium of total moments on the same shell element

implies

S2
deo + [ (r x n + m,)
S1 h h -

S2
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(9.20) f (r X ny + my)r*(s)
b ~ ~ .

¢, b2 rS2
ds + X [ [ r x (g,s b §,¢)dsd¢ = 9 .
$1 $1

S

Thus, if m1 and mz are continuously differentiable, we
obtain
(9.21) [r x mr*(s)],g + [r*(s)ml, o + (£ x nz + mz),, +

+Ar x (r,  x £,¢) =0
Substituting (9.19) into (9.21), we get

(9.22) [r*(S)Tl(s,¢)],s + g,s(s,¢) x r*(s)ny(s,¢) +

+ m,, =0 .

¢
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We seek axisymmetric solutions, for which we require

(9.23) ny(s,¢) = N(s)a(s,¢) + H(s)b(s,¢) '
(9.24) na2(s,¢) = T(s)ez(¢) '
(9.25) Tl(s’¢) = - M(S)gz(¢) '
(9.26) TZ(S’¢) ce2 =0
Thus

m; = (m, » a)a + (m, « b)b with components regarded
independent of ¢. Then

Bmz
(9.27) 5%— = (m, - a)cos ye,(¢) - (m; - b)sin ye,
= k x msp

Thus (9.19) and (9.22) become

(9.19a) {r*(s) [N(s)a(s,¢)+H(s)b(s, )1}, - T(sle,(¢) +
+ Ar(s)r(s,¢),  x e2(9) =0
(9.22a) [x* (s)M(s) ], s+r* (s) [VE(s)-nN(s) - (k x m;) - e

Now we set (TZ . g)cos W(S)-(Tz' E)sin Y(s)= g(s)cos Y (s)
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to obtain
(9.22b) [r*(s)ﬁ(s)]'+r*(s)(vﬁ-n&) - g(s)cos PY(s) = 0 .

SPECIALIZATION TO SPHERICAL SHELLS.

Without loss of generalitw we take the shell radius
to be 1. Thus r*(s) = sin s, Yy*(s) = s , z*(s) = -cos s,
L =1 , and equilibrium equations (9.19a) and (9.22b)

become

A A

(9.28a) [ﬁ(s)sin s]'-T(s)cos Y(s)- Arn -H(s)sin sy'(s)=0 ,
(9.28b)  [H(s)sin s]'+T(s)sin y(s)+ Arv +N(s)sin sy'(s) = 0 ,
(9.28c) [ﬁ(s)sin s}'-g(s)cos w(s)+(vﬁ-nﬁ)sin s =0 .

In order to understand the component I occuring in

(9.22b) , it is convenient to have recourse to the principle

of virtual work.

Let vy(s,9), x(s,¢) ¢ C2(R) with compact support,
where Q = [si1,b] x [¢1,8], 0 <b <L, 0<B < 2m . The

principle of virtual work requires that

B b
(9.29) 0 = J J {r*n; -y, _+n,-y, +(rxn;+m,)r*x, _ +
o1 Jsy T TS T Ee - T em o8

+(pxmatme) X, SA(EgXEr ) (YA (ZygxTy ) -x}dsdy

¢
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It 1s convenient to use the traditional notations. Let

v , 8n and 6y be in C?(Q2) with compact supports and

set

(9.30) y = 8r - (rxe2)éy ; x = -Sye, ,
where

(9.31) (615),S = Gf’s = §va + dnb + (vb-na)dy
Thus,

(9.32) 6£,¢= 6r§2 = (8vcos Y-8nsin Y-vsin Y8y-ncos wdw)gz

Also, we get

(9.33) St = 4% '
(9.34) 60 = s cos v,
(9.35) Su = &y ’
(9.36) X, 4= Sve .

Thus (9.29) becomes



(9.37)

This is the
with I as

variable o

69

o
I

B (b
J f (NSVv+HSN+TST+M8u+L80) r*dsd¢ -
$1’s)

B (b

—AJ J (r,g X §,¢) * d0r dsd¢ .
$1’ 82

traditional form of the principle of virtual work

the generalized force corresponding to the strain

that in the expression (m2 +« a)cos yYy-{m: * b)

¥, we do not imply that £ = m, * a and that

~
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