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Abstract

An approximate theoretical method is
presented which determines the limit cycle
behavior of a helicopter model which has

one or two nonlinear dampers. The
relationship during unstable ground
resonance oscillations between lagging

motion of the blades and fuselage motion
is discussed. An experiment has been
carried out on using a helicopter scale
model. The experimental results agree with

those of the theoretical analysis.

Notation
H geometrical length of the mode,
see Fig.l
I mass moment of inertia of blade

relative to drag hinge

Jenr g, mass moment of inertia of fuse-
lage about X and Z axis through
A

Jox'Isz mass moment of inertia of shaft
about X and Z axis through A

Ke, coupling spring coefficient be-
tween fuselage and shaft

Lyn distance from the axis of rota-

: tion center to drag hinge center

M, hydraulic damping moment coef-
ficient

LN N nondimensional hydraulic damping
coefficients

Mg dry friction moment coefficient

Max'Maz nondimensional dry friction
damping coefficients

my, mass of the blade

n number of blades

ny damping coefficient of blade

R radius of the rotor blade

S static mass moment relative to
drag hinge

t time

(A-model)

ng fuselage damping coefficient

Pg natural frequency of fuselage

£ hinged mass ratio

. nS2H2/21\J g5+ gz +nmpH?)

(B-model)

n,--n dgamping coefficients

P%--Pg natural frequencies

& hinged mass ratio
ns2H%/21 (I, +nm H
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(C-model)
ny,ngz fuselage damping coefficients
Py,P; natural frequencies of fuselage
€. hinged mass ratig

- nS2H2/21 (Jg+nmpH?)
efx'efz angular motion coordinate of

fuselage about X and Z( axis
LR S angular motion coordirate of
shaft about X and Z axis

] .0 angular amplitude of fuselage
efxo efzo about X and Z axis
' angular amplitude of shaft

S aal about X and Z axis

¥ angular orientation of different
rotor blades

$x angular deflection of k-th blade

Wg natural frequency of rotating
blade relative to drag hinge

Pc distance of center of gravity of
the blade from drag hinge

NS coordinate of the center of gra-
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vity of the blade system in
fixed reference frame

vo nondimensional blade parameter
Q Ly.nS/1
rotor speed

Introduction
Helicopter ground resonance is a
self-excited vibration phenomenon rather
than a forced vibration. The safety
standards for helicopter strength require
that a helicopter with an articulated

rotor must have enough stable margin when
it is in contact with the ground,
especially, in case of rough landing. Such
standards are based on linear theory, but
in fact the most common design of the
landing gear has nonlinear damping
characteristics. How much of an effect on

ground resonance will be induced? Does the
nonlinear damping characteristic tend to
increase stability or not? These questions

are waiting for investigators to solve.
The present authors [1,2] and Tongue [3]
have engaged in such research. The purpose
of this paper is to further study such
problens.

The nonlinear damping in the landing gear
of a helicopter brings into action both
roll and pitch motion of the fuselaga. 1In
a series of puolications [3-13] about
helicopter ground resonance instability,
this aspect was not taken into account by
many authors. Also in the past, many
investigators have used Coleman' classical
multi-blade coorainate theory to simplify



the study of the rotor blade dynamics.
Most previous authors have <considered
linear dynamic models.

In the present paper, an approximate
method has been used to calaulate the
limit cycle behavior of a given helicopter
model which has a nonlinearity in the
landing gear such as a hydraulic
resistance which is approximately
proportional to the square of velocity or
dry friction resistance. An experimental
investigation has been carried out as
well. The test apparatus is an improved
version of Bielawa's rotor model [4]. The
experimental results are in good agreement
with those of the theoretical analysis.

In the present paper, we study the effect
of combined roll and pitch fuselage
motions, and consider the relationship
between the lagging motion of the blades
and the fuselage motion. Also discussed
are the differences in the unstable
boundary between the linear and the
nonlinear model. We believe that these
results will be helpful in further
understanding the physical essence of
helicopter ground resonance instability,
and in protecting against such an
instability.

Approximate method of nonlinec. analysis

The analysis is based on a helicopter
model with an articulated rotor. A sketch
of this model is shown in Fig.l. We will
assume that the blades in the plane of
rotation are rigid but articulated; the
spring and damping coefficients of the
fuselage and the shaft are isotropic, but
their mass moments of inertia are
anisotropic. Nonlinear damping includes
hydraulic resistance which is proportional
to velocity sgquared and also dry friction
resistance; these can be represented by

M, 1616 and Mg sign@, respectively. The
equations of motion for the model are six
nonlinear differential equations with
unknown functions 7, $, 8¢y x and
8;, . These are as tollous (lce Ref [1?

n+2nbn +usn-2n(» + r.b§ ) =nSHesz/21
€+2n § +uls+2Q(+n,n) =-nsHE __ /21
" 2 2..2 .
es§+2nzesz+(p2+p4)esz-2n49fz
-P49fz=SHﬁ/J

sz
. . 2 2 .
es +2nlesx+(Pl+P3)esx-2n3efx (1)
-pio. =-sH¥/J__
37 fx
" 2 2
Ogyt2ng 9 +(P +p )9 -2n795x-P795x

+mhx f)!efxﬁm slgne
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9fz 8°sz 8 sz
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In order to simplify the problem, we will
discuss two special cases:

l. A model with a single nonlinear
damper.

We suppose that the motion in the X
direction is constrained, i.e, =0,
and the subscript 2z in 6 and ﬁf is thus

eliminated, and define that-

5s-mhzes o 8gm 0

n=nmthH, sz’ §=§mthH/sz

Thus (1) becomes:

= : L 2 2 e B

7 +2n0 +wsr¢-2n(?+nb§ )=§8_
< 2~ J

§+2nb<+ugs+2n(i+nbﬁ)=o

8 +2n 8 + (P3+0)8 ~2n,8 -p25 =} (2)

§f+2n6§ +(p2 +pe)e +3t:9€+-¢sxgn9f
-2ng® -P8§s=0

where al=mhzmdz

For the nonlinear terms éfléfland signéf '
we apply an approximate procedure which is
called quasi-linearization.

Let: B¢ =18¢1cosAt

Representing the above nonlinear terms by
a Fourier series and retaining the first
harmonic produces(see Ref.[3],[14])

821851 =~ 8/3mA% 10,4 sinat

sign5f=-4/x*sinxt
Let:

-7 _iat
Moe
S

& it
= esOe
Once again let:
~ iAt

9 =040°
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Substitute these expressions into Egs.(2),
and require the determinant of
coefficients to be zero for nontrivial
solutions. The final characteristic
equations are:

real part:
a§ oA -b§2 -cG A6+(d§ #Ob)A +e3
-(féfo+'d)k3-géfoA +!£A+h§ (3)

lwaginary part:

2,8
A
a.® +b1§f

1°£0 ~(e gfo bya) A° 4,84
(e)8F,+c))n +£18¢0" “91§fo*'°1)*
-hlngA- g,=0 (4)



The coefficients a,b,c...etc. of the above
Egs. are given in Appendix B of Ref.[l].

For the case of Ksf-00, 8g=0¢= i.e the

shaft 1is connected togetger with fuselage,
the differential equations become a
simpler nonlinear mathematical model for

analysing helicopter ground resonance.

~ 2~ ~ ~ -~
*2n Nt -2Q($+n, S) =€ §
+2né§+m§?+zn(ﬁ+nbﬁ)-o (5)

[T Y TH

8 + 2505 + 8181+ 8 =7

where:
n. = :J:u) 7= =
By =ny/Por =44/ By Tiy=ng/Py, B=0/P,
For this case, the final characteristic

equation is the same as in Ref{3].

anplitude nowv appears
explicitly. This means that the limit
cycle amplitude of the nonlinear system 1is
directly related to A, the frequency of
oscillation, and both must be solved for
simultaneously.

Eq. (3 or (4) is eighth order in A. Also,
the angular

The Broyden method [15] was used to solve
the above simultaneous uations. Let

functions f£;(8gg,A) and £ (8gg,A) be equal
to the lef% hand sides of Eg.(3) and
Eq. (4), respectively.

£) (8gg ™) =0
£2(650,~)=0

2. A
dampers.

model with two nonlinear

We suppose:

K =00 , 6_=6_=0_, 6 =8

sf sx fx "x sz fz z

and define:

Jo=(3,+3,)/2, & =6, §,=80,. i=qsn/ao 5
= / = =

3 ’SH’JO ¢ I et Iex ¢ I2"9¢2% sz
'7=J0/Jx ! %=JO/J2

The general equations of motion for the

model are given by Egs.(6).

A +2n i +olf-20@+n,3)=¢5,
g +2nb§ M2§+20(;'+ n)= ‘3
1 nb’l) ’E (6)

"é‘x«»Znx x*Px"x"“mée 18, +m
2 2 _ 2
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signgxﬂ-ézg
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Egs.(6) is a set of nonlinear differctial
equations for determinjing four unknown
functions 7, ¢, 8, and 8,.

Using the method of harmonic balance and
retaining only the fundamental harmonic,
we take

-~ -~

L x0COSAE

8,76,.cosAt+E, sinrt=§ 0c0s (At=g,)

-~

?i-ic cos&t+5f slnAt-Q cos (At- ?)
s

=S cosht+f sxnkt-go cos (At- 3})

Here‘f ] ‘!,' '
dxfference of

¢ are rcspectxvely the phage
2 nano < with respect to 9

low we consider the term sign8,anc & | 8, 1.
As .was mentioned previously [2], we can
obtain the following approximate result:

For A, §zd>0

At=8 sina
COSAt ezc inAt)

: A~ ~ 4 o
singf_=
99,% 5re— (ezs
z0

T 2

~ ~ - A -~ ~ . -~

M Lol sinat=-6__cosAt

'ezlez 3w ezo(ezc * zs )
into Eq.(6) we obtain a
systen of eight simultaneous nonlincar
algebraic equations for determining the

uuant1t1e~,qc,ns,§c,;s,éxo,ezc,ézs and A,

Inserting Eq.(7)

By elimination of the first four unknowns,
the equations can be rewritten more
compactly as a matrix eguation with four
unknowns, 8y0:8,c.8,5, A

Let:
(F} =(u} +[vl'1{§} ={o} (8)
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a=(w?/a%-1) /€, £
f
b=2n_ /€ A 2
> /l a® trk = £3
c=20Q &
M’ ®1 £,
d=29/€1A
In order to solve Eg.(8), the elements of
P} must be zero. Here we also apply
Broyden's method to solve the above
equation.
Experimental Investigation

1. Experimental equipment

An overall view of the test model and
recording equipment wused in this study is
shown in Figs.2 and 3. The details of the
various components of the model appear in
Ref.[1] and [2]. The A-model has only one
degree of freedom for fuselage motion. The
B-model has two degrees of freedom for
shaft and fuselage motion. The C-model has
two degrees of freedom for the roll and
the pitch motion of the fuselage. The
characteristic curves of the hydraulic and
dry friction damping are shown in Fig.4(a)
and (b). The method of determining these
parameters is described in Ref.[1].

2. Measurement system

The X and 2Z( angular displacements and
velocities of the fuselage and the shaft
are obtained by RVDI, R30D, velocity

transducers located near the dry friction
dampers, and a LVDT located near the
gimbal support assembly. The output
voltage of the transformers and velocity

transducers is proportional to angular
displacement and velocity of the roll and
the pitch of the fuselage and the shaft.
The output from the transformers are
amplified and recorded on a multiple
channel tape recorder, HP3968A.

In order to obtain a one per revolution
signal and the 1lagging motion of the
individual blades during rotation of the
blades, we mount a 13-ch brush and slip
ring assembly on the shaft between the
electric motor and hub, see Fig.5. One of

these slip rings is not a closed ring. It
gives an impulsive signal once per
revolution, 8o a very accurate measurement
of rotor speed can be provided. Three
angular transducers, R30A, are mounted on

the drag hinges. The signals for lagging
motion of each blade were amplified and

recorded through brush and slip ring
assemblies. The 8 channel signals were
recorded simultaneously on a tape
recorder, and further analysed by a
Frequency Spectral Analyzer, HP3582A.
Finally, the phase plane plots and

frequency spectral plots were plotted by a
X-Y recorder.

u8

The stability test needs an initial
disturbance, so two electro-magnets were
mounted on the test equipment. Those are
used to generate a disturbance in the
direction of roll or pitch of the
fuselage.

The device for angular ampl itude
calibration is shown in Fig.6. An electric
motor with stepless variable speed

provides a vibration source, and drives a

cam which can generate a sine wave, such
that the relationship between output
voltage from the transducers and the

actual angle can be determined.
3. Frequency response test

The purpose of the frequency response test
is to determine the natural frequencies of
the system, and to provide an independent
check on the system parameters, Before the
test, the drag hinges are fixed, and a
known block mass (3 oz) is put on a drag
hinge. A centrifugal force caused by the
bias mass will excite the system, and the
frequency response versus rotor sneed can

be found.
4. Stability test

Testing the model for self-excited
instability regions was accomplished by
slowly varying the rotor speed until

instability was observed in response to an
initial disturbance.

Results and Discussion

Fig.7 shows the limit cycle behavior when
only the hydraulic nonlinearity is present
in the A-model. The figure shows that the
maximum 1limit cycle amplitude occurs near

the critical rotor speed of the linear
system, and that the dominant response
occurs in the region, (1.7-2.0)*Q .
Furthermore, there is an abrupt change in
response from (1.9-1.95)*Q in Fig.7. This
means that the amplitude response is very
sensitive to small changes in rotor speed

in this range of rotor speed.

Fig.8 shows the limit cycle behavior with
both hydraulic and dry friction
nonlinearities. The c¢urve has a shape
similar to that of Fig.7, but the response
amplitude is smaller than that in Fig.7.
Physically the action of dry friction is
to increase the equivalent viscous damping
in the 1landing gear. The instability
region becomes narrower, and the response
amplitude reduces.

Fig.9 shows the 1limit cycle behavior of
the B-model. There are two instability
regions in the figure. The first one is
dominated by the shaft motion. Because the
effect of nonlinear damping of the
fuselage on the shaft is weak, the shaft
has a large 1limit cycle amplitude (for

R . |



some range of o beyond the measurable
angle). In contrast with the first region,
in the second instability region there is
not a large limit cycle amplitude because
of the direct effects of nonlinear damping
of the fuselage on the fuselage motion.

As far as the C-model is concerned, Fig.l0
shows the results of frequency spectral
analysis of the fuselage motion at a rotor
speed of 1.2(HZ). The mode shape of the

unstable motion is dominated by roll of
the fuselage, and the osuillation
frequency is equal to the rell natural

frequency of the fuselage. Simultaneously,
there is a small limit cycle amplitude in

the pitch motion; its oscillation
frequency is not equal to the pitch
natural frequency, but is equal to the
roll natural frequency. The phase angle
between roll and pitch is equal to 519

corresponding to a frequency of 0.84(HZ).
The phase curve in the wvicinity of
0.84 (HZ) |is almost parallel to the
frequency axis, and the phase angle is
quite incsensitive to frequency.

Fig.11-12 show theoretical and
experimental results of the 1limit cycle
amplitude and phase angle behavior. A
reasonable experimental verification of
the theory is achieved. Because of the
experimental complexity and calculation
approximation, the quantitative accuracy
of the verification is not very high.
However, the general features of the
experimental results are well predicted by
the theory. For reference, in Fig.13 the
stability boundary results from linear
theory are shown and compared to
experimental data obtained with the
nonlinear dampers removed. The agreement
between theory and experiment in this case
is good.

Fig.14 shows a phase plane
directly plotted by a X-Y recorder. The
measurement point of displacement and
velocity 1is located at the same position.
Their phase difference approximates to 90°
the pattern displays an ellipse
approximately, and the higher order
harmonic components are included in the
ellipse curve. From this pattern, we also
can see the transient process leading to
the steady state 1limit cycle amplitude.
Different disturbances have different
unstable processes. In this case the roll
oscillation of the fuselage tends to a
limit after about 7 pseudo cycles, and the

plot which is

transient process includes more higher
order harmonic components.
Fig.15 shows the results of a frequency

spectral analysis of the lagging motion of
the individual blades at a rotor speed of
2.04(HZ) . It is found that in the
instability region the individual blades
have an identical oscillation frequency,
P, which is -equal to the difference
between the rotor speed and the
oscillation frequency, A, of the fuselage.
This result is in agreement with
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conclusion which is derived by classical
linear theory. However, the individual
blades have different amplitudes and phase
angles due to the actual small different
hlade damping characteristics.
The equation of motion of the k-th blade
can be written as follows:

- . 2 - Va s o
gk+2n£’k+wsfk- s (X sxnvk-Zcosﬁk)

The periodic term
can be removed by
co-ordinates.

n
71 = glfksinwk
5= t 5, cosy

k=1 x

If it is expected that 7 and $ are well
represented by a fundamental harmonic with

oscillation frequen A th
Sfinsdase T e Xy My be

5\ =$%cos (Pe+27ik/n )

in the above equation
using the Coleman

i.e the following conditions must be
satisfied:

* p=Q-A

* the amplitudes of the individual

blades are identical.

* the phase angle of the k-th blade
equal to 2k7/n. ts

In the present experiment, only the first
condition is satisfied. The modest
violations of the latter two conditions
are the main reasons for the error between
theoretical and experimental results.

In order to provide a better physical
understanding of the unstable motion, we
discuss the relationship between motion of
the hub center and the center of gravity
(C.G) of the blades. In the fixed
coordinate system X0Z, the motion of the
common center of gravity of the blade
system is expressed by

cos\. t
i=1 x01
2= B3
j.-lezcicos(Alt ?l)

Fig.16 shows the time history of and S .
The test curves include components with
frequency (2Q9-A), and A, in addition, a
Ccos At component. This also can be clearly
found from Fig.17. The motion locus of the
C.G of the blades is not exactly an
ellipse, but a somewhat more complicated
curve. The starting point at t=0 does not




coincide with the end point at t=2(sec.),
however over a much longer time interval,
the motion does appear periodic. The phase
angle between hub center and C.G of blades

is equal to 46° from calculation, and 15}
from test. The phase angle depends upon
the dampings of the fuselage and blades,

as well as rotor speed.

Fig.18 shows the theoretical and
experimental results for a rotcor speed of
1.2(HZ). The test curves are approximately

cosine waves. The motion locus of the C.G
of the blades approximates to an ellipse,
and excellent agreement of calculation
with test is achieved for the motion locus
of the hub center. As compared with Fig.l17
and 18, we find that the difference
between theory and experiment for the hub
center motion mainly comes from the
variation of blade motion from one blade
to the next.

Fig.19 shows the test results for a rotor
speed of 1.96(HZ). All higher order
harmonic components are included in the
motion of the fuselage and blades. Their
motion 1loci have guite complex shapes, but
they always tend to a limit amplitude.

Conclusions
A number of conclusions may be reached.

1. Unstable motion of a helicopter in
ground resonance can occur only when the
rotor speed is within a certain region,
and at the came time a initial disturbance
acts on it. This conclusion 1is suitable
for both linear and nonlinear systems.

2, During unstable motion the
oscillation frequency is equal to the
natural frequency of the linear system, or
approximately the natural frequency for a
nonlinear system.

3. The nonlinear dynamic rotor system
with multiple nonlinear dampers has more
complex motions than the system with a

single nonlinear dampe:. The coupled
motion of roll and pitch of the fuselage
is due to blade 1lagging motion. This
coupling motion is important in

understanding ground resonance of an

actual helicopter.

4. The agreement of theory with the
experimental results verifies that the
analytical method which is described in
this paper is useful and reliable.

5. The different characteristics of
individual 1lag blade dampers w!ll lead to
different limit cycle behavior.

6. The results show that a landing
gear with  hydraulic nonlinear damping
characteristics and dry friction damping

may be advantageous for protecting against
ground resonance instability. It is
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unlikely, perhaps, that a
resigner would rely on a
for primary protection
resonance. However, such a
useful as a failsafe
benign failure mode
linear damper become
inadequate under
conditions.

helicopter
nonlinear damper
against ground
damper may be
device to ensure a
should a primary
inoperable or prove
some operating

7. It 1is expected that the design and
operation of blade dampers will also be
very important for avoiding ground
resonance. This is a 1logical topic for
future study.
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Fig.5. measurement system of rotor blade
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Fig.l4. phase plane plot
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DISCUSSION
Paper No. 4

NONLINEAR DYNAMICS OF A HELICOPTER MODEL IN GROUND RESONANCE
D. M. Tang
and
E. H. Dowell

Jerry Miao, Sikorsky Aircraft: I would like to make a comment. Earlier Jing Yen said tha* we
may not be able to anmalyze ground resonance, but apparently from this paper we can see with a
nonlinear damper we can even calculate the amplitude of the oscillation. Therefore, if you orly
know what numbers to put into the analysis you will be able to calculate it. Thank you.
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