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INSTABILITY OF TIHE-PERIODIC FLONS

Philip Hall

Mathematics Department, North Park Road

University of Exeter

Exeter, England

ABSTRACT

The instabilities of some spatially and/or time-periodic flows are

discussed, in particular, flows with curved streamlines which can support

Taylor-G_rtler vortices are described in detail. The simplest flow where this

type of instability can occur is that due to the torsional oscillations of an

infinitely long circular cylinder. For more complicated spatially varying

time-periodic flows, a similar type of instability can occur and is spatially

localized near the most unstable positions. When nonlinear effects are

considered it is found that the instability modifies the steady streaming

boundary layer induced by the oscillatory motion. It is shown that a rapidly

rotating cylinder in a uniform flow is susceptible to a related type of

instability; the appropriate stability equations are shown to be identical to

those which govern the instability of a Boussinesq fluid of Prandtl number

unity heated time periodically from below.

Research was supported by the National Aeronautics and Space Administration
under NASA Contract No. NASI-17070 while the author was in residence at the

Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA 23665-5225.





I. INTRODUCTION

Our main concern is with the nature of the centrifugal instability of

time-periodic flows which interact with curved surfaces. It appears at this

stage that theory and experiment here are in much closer agreement than is the

case for the instability of flat Stokes layers. In the latter problem it

seems that the instabilities which exist experimentally occur at such high

Reynolds numbers that quasi-steady theory applies.and the solution of the full

time-dependent stability equations, being damped, are irrelevant. The reader

is referred to the papers by Cowley and Kerczek, which appear in this volume,

for a detailed discussion of the flat Stokes layer. In contrast to this

situation, for curved Stokes layers the solutions of the time-dependent

equation explain a great deal of the available experimental results, whilst

the quasi-steady solutions of the equations are irrelevant except in the

inviscid or high wavenumber viscous limits.

The existence of a Taylor-Gortler instability in the Stokes layers on a

torsionally oscillating cylinder was demonstrated experimentally and

theoretically by Seminara and Hall (1976). Since Rayleigh's criterion does

not apply to time-dependent flows, there is no simple way of determining

whether a given time-dependent basic flow is inviscidly unstable. Indeed,

since Floquet theory can only be used for equations with time-periodic

coefficients, unless the basic state is varying periodically in time, it is

not even clear how to define instability.

The onset of instability predicted theoretically is consistent with the

available experimental observations; however, at high Taylor numbers it is

found experimentally that a secondary instability which progressively doubles

the axial wavelengths occurs. At some stage in this process the flow acquires
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an azimuthal dependence; there is as yet no adequate theoretical description

of this regime, and it seems likely that only a fully numerical investigation

will reveal its structure.

More recently the instability mechanism found by Seminara and Hall (1976)

has been shown experimentally and theoretically to occur in a wide range of

flows of practical importance. These flows vary (periodically) in time and at

least two spatial directions and exhibit the so-called steady streaming

phenomenon associated with the work of, for example, Rayleigh (1883),

Schlichting (1932), Stuart (1966), and Riley (1967). In these flows the

Reynolds stresses in the boundary layer of the first-order oscillatory viscous

flow drive a mean motion which may or may not be confined to the Stokes

boundary layer. In fact, the structure of the steady streaming depends on the

size of Rs, a Reynolds number associated with the mean motion. The

importance of Rs was first explained by Stuart (1966) who showed that for

R >> i the steady streaming decays to zero in an outer boundary layer ofs

relative thickness R% 1_ . It turns out that the instability of the basic

oscillatory flow also occurs for R >> i and that the steady streaming iss

then driven by both the Reynolds stresses of the oscillatory flow and the

instability. It is likely that in some situations the instability might cause

the premature separation of the steady streaming boundary layer.

The thermal convection analogue of the torsionally oscillatory cylinder

problem has apparently not yet been investigated. The instability equations

for an infinite layer of fluid heated sinusoidally from above or below will be

derived in this paper. It turns out that if the fluid has Prandtl number

unity then the same equations govern the instability of the flow past a

rapidly rotating cylinder in a uniform flow. The analogy between the problems
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is similar to that which is known to exist between the steady rapidly rotating

Taylor vortex and steady B_nard problems. Some preliminary results for the

solution of the eigenvalue problem governing the instability of these flows

are given.

The procedure adopted in the rest of this paper is as follows: In Section

2 the instability of the flow on a torsionally oscillating cylinder is

discussed. In section 3 the generalization of this instability to spatially

varying time-periodic flows is discussed. In Section 4 we discuss the

analogy between the instability problems for the flow around a rapidly

rotating cylinder and that driven by the time-periodic heating of a fluid

layer. Finally, in Section 5 we draw some conclusions.

2. THE TORSIONALLY OSCILLATING CYLINDER PROBLEM

Consider the viscous flow induced by an infinitely long circular cylinder

of radius R rotating about its axis with angular velocity _ cos mt. The

time-periodic boundary layer on the cylinder is taken to be small compared

to R so that,

and the velocity field _B is then given by,

uB : _R(0, V(n, _), 0),

where

T _t, _ {r R} _ -i/2= : _
and



-4-

_(_, T) = COS{T - n}e -n. (2.1)

Thus V(n, T) is the usual Stokes velocity profile and it is convenient to

define the Taylor-G_rtler number T by

_2
T= 2 R

3/2 I/2' (2.2)

and it is assumed from now on that T _ 0(i).

The above time-periodic basic state is then perturbed to a disturbance

2_
which is periodic along the axis of the cylinder with wavelength -_ based on

(_) i_-- the boundary layer thickness. After some manipulation we find that

the radial and azimuthal velocity components U, V satisfy the coupled

system:

22 - k2}U = me2 T_(_, _)V,
_{--_ (2.2a)

=
_U, (2.2b)

where

22 k2
o_ 2 -2--.Dr

_n

The system (2.2) must be solved subject to

_V
--= 0 T]= 0 (2.3)U=V= _11 , ,

and

U = V = O, n = =% (2.4)
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so that the no-slip condition is satisfied at the wall and the disturbance

decays exponentially to zero at infinity. There is, of course, no

justification for a quasi-steady approximation if T is 0(I) since the time

dependence of the partial differential system is in no sense slow.

On the basis of Floquet theory we expect solutions of (2.2) of the form

aT
U = eaT u(n, T), V = e v(n, T)

where u, v are now periodic functions of T. The Floquet exponent a is a

function of k and T and must be chosen such that the partial differential

equations and boundary conditions are satisfied. If we write

inr inr
u = _ e u (n), v = I e v (n),n n

then the eigenvalue a is determined by the system

d2 k2 2in] d2 k2 T [e-n(l+i) e-n(l-i)Vn+l ],
[d_- - a - Ida- km]un - _ Vn-i +

d2 _ k2 _ 2in]Vn -i (l+i)
[d_ - a - [(i + i)e -n + (I - i)e -_(l-l) Un+l]_ Un-i ,

7(2.5)

du

u = v - n _ 0, n = 0,
n n dn

u = v = 0, Q = _,
n n

for n = 0, _ i, ± 2,....
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The eigenvalue problem (2.5) can be solved numerically by truncating n

such that Inl J N and finding a = o(N, K, T). Numerical calculations by

Seminara and Hall (1976) showed that instability occurs for

T > 164.42

and the critical value of the wavenumber is k = 0.859. The neutral curve

calculated by Seminara and Hall is shown in Figure I. The calculations also

showed that un = 0 for n odd and that vn = 0 for n even. These

results are in excellent agreement with the experiments performed by Seminara

and Hall (1976) and Barenghi, Park, and Donnelly (1980) who visualized the

instability using dye visualization.

However, in both sets of experiments a secondary instability at a Taylor

number about 30% above the critical was observed. The linear theory of

Seminara and Hall showed that when instability occurs the function Vo(_) is

zero so that there is no mean flow around the cylinder. When the secondary

instability occurs the vortices initially interact with their neighbours to

generate larger vortices. Subsequently this larger set of vortices interact

to produce an even larger set and this process appears to continue without any

equilibrium state ever being reached. At some stage in this process the

azimuthal velocity field develops a mean component and there are signs of

nonaxisymmetry.

At this time very little is understood theoretically about how and why

this secondary instability takes place. Seminara and Hall (1977) showed that

the first mode bifurcates supercritically at the critical Taylor number. Hall

(1981) showed, using an approximate approach, that an axisymmetric mode with
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twice tilewavelength of the first mode causes the first mode to lose stability

very close to the experimentally observed critical Taylor number. However, it

should be stressed that this approximate approach, which is similar to that

recently used for mode interactions in spatially varying flows, cannot be

rigorously justified; nevertheless, it would appear that it describes very

well the first stages in the secondary instability regime. It is of interest

to note that in the steady Taylor and Gortler vortex instabilities the onset

of the secondary wavy vortex modes leads to a new equilibrium state.

The possible role of nonaxisymmetric modes in the secondary instability

problem is still not understood; certainly it is known from the work of Duck

and Hall (1981) that 0-dependent modes occur quite close to the axisymmetric

critical Taylor number and are more stable than the axisymmetric one.

Moreover, we can show that when nonaxisymmetric modes are present a steady

streaming phenomenon occurs and the instability can no longer be confined to

the boundary layer. In this case the velocity field decays to zero in an

outer layer of relative thickness R I_ where Rs is a steady streamings

Reynolds number.

It would appear that little further theoretical work on the secondary

instability stage is possible until more precise experimental results become

available. The flow visualization methods used previously are not sensitive

enough to determine the detailed flow structure after the secondary

instability occurs.
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3. INSTABILITIES IN FLOWS EXHIBITING STEADY STREAMING

The prototype problem discussed in the previous section shows how a

centrifugal instability mechanism can occur when a Stokes layer interacts with

a curved surface. However, in general it is known that when such an

interaction takes place a secondary steady streaming is set up. The nature of

the steady streaming depends crucially on a steady streaming Reynolds number

Rs whose importance was explained clearly by Stuart (1966). For large values

of Rs the streaming decays to zero in a steady outer boundary layer of

relative thickness Rl_s whilst for small values of Rs the steady motion is

confined to the Stokes layer. We shall see below that the instability

mechanism described in Section 2 occurs for Rs >> 1 and has an 0(I) effect

on the steady streaming boundary layer.

The possibility that the instability described in Section 2 could occur in

spatially varying oscillatory flows over curved walls was overlooked until

Honji (1981) investigated the classical steady streaming flow induced by

oscillating a cylinder transversely along its axis. In addition Honji

investigated flows over wavy walls and over steps and found that a vortex

instability of these time-periodic flows occurred at sufficiently large

amplitudes of oscillation of the fluid velocity at infinity. We will discuss

only the transversely oscillating cylinder problem in detail; related results

for wavy walls, pipe flows, and spheres will be mentioned briefly later.

In his experiment Honji (1981) investigated the classical steady streaming

problem of Schlichting (1932), Stuart (1966), and Riley (1967). For

sufficiently small amplitude high frequency oscillations, he found that the

flow remained two-dimensional and was consistent with theoretical

predictions. However, at a critical frequency dependent amplitude of
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oscillation the flow became three-dimensional in the neighbourhood of the

positions on the cylinder where the tangent plane was parallel to the

direction of motion of the cylinder. At a still higher critical amplitude of

oscillation, Honji found that the flow became "turbulent and separated." We

will show below that a linear stability analysis predicts the first critical

amplitude of oscillation whilst a nonlinear theory suggests that a finite

amplitude instability might cause the basic steady streaming boundary layer to

separate prematurely. The details of the calculation outlined below can be

found in the paper by Hall (1984).

Suppose that a circular cylinder of radius a oscillates with velocity

U0 cos _t along a diameter in a fluid of viscosity v. The parameters which

govern the two-dimensional flow are

2
B - _a (3 la)

U0

X _a' (3. Ib)

2
U

R - 0 _ X2 B. (3.1c)
s _

The frequency parameter B is taken to be large so that the boundary layer on

the cylinder is thin compared to its radius whilst the amplitude parameter X

is taken to be small. Before specifying the size of the steady streaming

Reynolds number Rs we write down the Taylor number T based on (v/m) 1/2

the boundary layer thickness. We obtain
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23/2 2
U0

Tav i12_312'

= 23/2 R B-I_
S

so that if instability occurs at 0(i) values of T we must take Rs

formally to be 0(B-I_ ); thus we take the limit B + = with R B-i_ held
s

fixed. We further note that in this limit % ~ B-I/4 so that the boundary

layer on the cylinder is essentially a Stokes layer. In Figure 2 we have

sketched the cylinder and the various regions of interest. The inviscid slip

velocity for the basic flow has maxima at e = • _/2, and since the curvature

of the boundary is constant we expect that these will be the least stable

locations. A WKB approach to the instability problem quickly shows that

0 = • _/2 are turning points of the expansion. In fact, they are second-

order turning points so that an inner region of angle 0(B -1/8) is needed at

0 = ± _12.

Suppose then that the basic flow is perturbed to a disturbance periodic

2_
along the axis of the cylinder with wavelength _--. The linear stability

equations can be reduced to

22 25/4 sin O -- T I/2

L(--_- km)U = me2 r sin e T0 V - v0nq DU + 0(B-I_)_ DO '

(3.2)

_v0

LV = 4 sin 0 _-_--U + 0(B i_),

where

25/4 1/2

L _ 22 k2 - 2 D T sin 0 T0

Dq2 Dr B I_ DO
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with

_^ = cos T - cos(T - q)e -n. (3.3)
u

The Taylor number T is expanded as

B

T = T0 + B I/4TI + ...

whilst near 0 = _/2 the velocity components U, and V expand as

u = U0(n,T, _) + -I/8 Ul(n' T, _) + "'"

V = V0(n,_, _) + B-I/sV1(n,_, _) + ""

where @ = Bl/8(e - _/2). The functions U0, V0 can be written

(Uo, V0) = A(@)(u0(_, 3), v0(_, T))

where A is an amplitude function to be determined whilst (u0, v0) satisfy

_2 _ k2 _ _2 _ k2}u 0 2k2 TO v0 v0'
{-_ - 2 -_-}{n---_ = --

_2 _ k2 _ _0

{--_ - 2 _}v 0 = 4 _ u0,
(3.4)

_U0

Uo - _n - v0 = O, n = O,

u0, v0 + 0, n + =.



-12-

This eigenvalue problem was solved by Hall (1984) in exactly the same manner

as that described in Section 2. The neutral curve k = k(T0) is shown in

Figure 3; we see that instability is predicted locally near e = _/2 for

TO > 11.99. (3.5)

The amplitude function A(¢) is found at higher order to satisfy

d2 A _ ¢2
+ _[r I ]A = 0. (3.6)

Here _ is a positive constant which must be calculated numerically; the

solutions of this equation, which decay when ¢ . ± _/2 are

A = Un(-n -I/2 , 2_ 1/4¢)

where Un is the nth parabolic cylinder function and

2[n + 1/2] •

T 1 =Tln = /_

The most unstable mode corresponds to n = 0 and gives

Ao = e-_ I/2¢2/2 ,

with

1

TI0 = -- = 5.51.

Thus the critical value of Rs is
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R = R = 4.24[BI/2+ .46BI/4+ ...], (3.7)s sc

or in terms of X the critical oscillation amplitude corresponds to

X = X - 2.06 .23 ..] (3.8)
c B_ 7 [i +---_4 +"B "

In Figure 4 we have plotted the results predicted by (3.8) and Honji's

results; there seems little doubt that the instability mechanism is

responsible for the onset of the three-dimensionality described by Honji.

The development of this instability into a weakly nonlinear region leads

to some surprising results. We choose to write the Taylor number T in the

form

r : r0c + B-I_

where T0c is the critical value of TO. A Stuart-Watson expansion with the

fundamental terms of order B-I/8 shows that the generalization of (3.6) into

the nonlinear stage is

d2 A + _[_ _ 12]A _A3 (3.9)
dO2 "

Numerical calculations by Hall (1984) showed that y is negative so that

finite amplitude solutions bifurcate subcritically at the critical Taylor

number. The determination of y requires the solution of several partial

differential systems so the possibility that a numerical error was made should

not be overlooked. However, if y is indeed negative then it suggests that

experimentally three-dimensionality could be induced by sufficiently large
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subcritical perturbations. The nonlinear theory shows that the steady

streaming boundary layer is, at least in an 0(8 -I/8 ) neighbourhood of

= _/2, driven by both the instability and the basic oscillatory flow. If we

define an outer boundary layer variable _ by

i/4

then the outer steady boundary layer is given by

B3/8 -_ I/4
v = - 0_ _a ' u=--B a

with

_$_ = _ _¢ - _¢ _, (3.10)

which must be solved subject to

_=0, _=0

_ + 0, $ + _ (3.11)

3¢ _ 23/4 T- 1/2A dA
_ + T0c[23--_7_ 4.39 • Oc as-], _ . o.

If we set A = 0 above we obtain the equations governing the attachment of a

steady streaming boundary layer within a _-I/8 neighbourhood of 0 = _/2.

In that case (3.10) is solved subject to

_ = 0, i = 0, (3.12)
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and the symmetry of (3.9) about _ = 0 means that (3.12) can still be applied

dA

since either A or d_ 0 at _ = 0. We note that for large _ the

31

condition (3.11) reduces to _$ + T0c 23/2 , _ . 0, so that, assuming that the

boundary layer remains attached for finite values of _, the extra term

dA

proportional to A_-_ in (3.11) merely produces an origin shift in the large

asymptotic solution of (3.10). The linear eigenfunctions A (1) forn

n # 0 all have intervals where An(1)A_(1) is positive so
that the

possibility exists that in the nonlinear regime the slip velocity in (3.11)

might change sign at some value of i. If the magnitude of the inviscid slip

velocity is sufficiently large where this occurs, then the attached flow

strategy fails and the steady streaming boundary layer will detach prematurely

from the cylinder. This possibility does not occur for more general flows

where the point of attachment of the steady streaming layer and the most

unstable position do not coincide. In this case the steady streaming driven

by the instability is weak compared to that of the basic flow.

For more general steady streaming flows Papageorgiu (1985) has shown that

both concave and convex curvature lead to this local vortex type of

instability. Consider then an oscillatory viscous flow adjacent to the wall

y = 0 induced by a outer potential flow with slip velocity U0 U(x)cos _t.

If the wall has radius of curvature aR(x), we write down the local Taylor

number T_ defined by

23/2 2 U2(x)
U0

T£ - 1/23/2 .a_ R(x)

The mechanism described above for the circular cylinder problem occurs near

x = x if
m



-16-

T£(Xm) _ 11.99,

d
T£ = 0, x = Xm.

Hence with variable curvature the most unstable locations do not necessarily

occur where the inviscid slip velocity has a maximum; this produces some

interesting results. Thus for an ellipse oscillating transversly there can be

two or six local regions of instability depending on the angle of attack and

the eccentricity of the ellipse.

Papageorgiu has shown that for concave curvature the corresponding

condition is

Ir£1 = 7.104,

d
_x IT£I = 0, x = xm

so that a locally concave wall is more susceptible to instability than is a

convex one. The result that either a concave or a convex wall lead to

instability is quite different than the classical results for steady flows;

however, for a time-dependent flow Rayleigh's criterion does not apply so

there is no reason why this should not be the case.

The implications of Papageorgiu's calculations for flows in curved pipes

and over wavy walls are important. For a curved pipe he has shown that an

oscillating azimuthal pressure gradient leads to instability at both the inner

and outer bends; however, the outer bend is the most unstable location. This

instability leads to rapid local variations in the shear stress at the wall

which might have important consequences for aortic blood flow. It should also
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be pointed out that in this problem the turning point structure changes from

that found for the circular cylinder problem; the technical problems

associated with this change were overcome using the expansion procedure

devised by Soward and Jones (1981). A similar difficulty arises when the

instability of the flow due to a torsionally oscillating sphere is considered;

in this problem the instability is localized near the equation. As yet the

generalization of the expansion procedure of Soward and Jones into the

nonlinear regime has not been given.

4. THE LINEAR STABILITY EQUATIONS FOR THE FLOW AROUND A RAPIDLY ROTATING

CYLINDER

Consider the flow of a viscous fluid of kinematic viscosity _ around a

circular cylinder of radius a. The cylinder rotates with angular velocity

V
-- whilst the flow a long way from the cylinder has sped U in the xa

direction. We follow the notation of Moore (1957 ) and define the

parameter _ by

U

V ' (4.1)

and a Reynolds number R by

Va
R - . (4.2)

9

Moore has discussed the above flow in the limit € . 0; here we will also

assume that R >> I. For large values of R it is known from the work of

Glauert (1957), Moore (1957), and Wood (1957) that a boundary layer of

thickness aR-I/2 is set up on the surface of the cylinder. Here we will
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consider the possible instability of this boundary layer to a Taylor-Gortler

vortex type of perturbation. An examination of the effective Taylor-Gortler

number for such a flow suggests that instability is likely for 0(i) values

of the parameter

T = _R I/2-
' (4.3)

hence we limit our investigation to the limit _ . 0 with T, which we will

refer to as the Taylor number, held fixed. On the assumption that € ~ R-I/2

we can show from the work of Moore (1957) that in the boundary layer u and

v, the radial and azimuthal velocity components, are given by

u = V_R-I/2 _(n, O) + 0(R-I/2)}, (4.4a)

v = V{I + gv(n, 0) + 0(R-I)}. (4.4b)

Here n is a boundary layer variable defined by

0 V2a (4.5)

I

whilst _ and v can be obtained from Moore's work; in fact, we shall only

need an explicit form for _ which is given by

= ieie-n(l+i)
+ complex conjugate. (4.6)

m

Thus v

is just the Stokes layer velocity profile with 0 taking the place

! of the time variable. It is this correction to the irrotational flow v = i/r
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which leads to instability. This result follows from the fact that the

irrotational flow v N I/r is neutrally stable according to Rayleigh's

criterion.

Suppose that we define the dimensionless variables T and Z by

V2 z VtZ= a' 3- a'

where z represents distance along the axis of the cylinder and t denotes

time. The flow given by (4.4) is perturbed by writing

= R-I_[_ + 0(R-I_)] + U(q, O _)e ikZ (4 7a)
V ' ' •

V=V [1 + v(q, B) - V_n + 0(R-I)] + V(q, _, _)e ikZ, (4.7b)

w_ = W(q, 8, z)eikZ. (4.7c)V

Thus k is the wavenumber of the vortex type of instability and, unlike the

usual case with a centrifugal instability mechanism, the three components of

the distrubance velocity field are of comparable size. The disturbed velocity

field (4.7) can be substituted into the Navier-Stokes equations, and after

some manipulation we obtain the linear stability equations:

a2 _ k2 a 3 3P 4v, (4.8a)
{aT - 2 e =

3 2 _ k 2 3 3 3v (4.8b)

[aT - 2 gg- 2 _7}v= CgTUa-7'
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_2 _ k2 _ 3

{--_ - 2 _- 2 _}W = ikPi_. (4.8c)

2
Here P is the pressure perturbation scaled on pvR-l_v and terms of

relative order R-I/2 have been neglected. The continuity equation

corresponding to (4.8) is

3U
m

3n + ikW 0. (4.9)

It is convenient at this stage to eliminate P and W from (4.8) and (4.9)

to give the coupled pair of equations:

3 2 _ k 2 3 3 32
{--_ - 2 _- 2 _-_-}{--_- k2}U = 4k2 V,

(4.10)

32 _ k2 3 3 3_

{---A-3__ - 2 _- 2 _V = /_ TU-
3T _ 30'

which must be solved subject to

3U
--= 0, o = 0, _.V=U=3n

Thus we assume that the instability is confined to the boundary layer; this is

to be expected so long as we ignore nonlinear effects.

Suppose next that a viscous fluid of Prandtl number unity and viscosity

occupies the region z _ 0 and that the plane z = 0 has temperature

2T0 cos mr. We define dimensionless variables T and _ by

x = mt, (4.11a)
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{_} 1/2 (4 llb)
T]= z

so that the motionless state has temperature field T given by

T = TO _(T, _) (4.12)

m

where v is as defined by (4.6) with 0 replaced by r. Thus the

temperature is zero except for a thin region of thickness & = {_}_I_ whilst

in the boundary layer the temperature is given by the Stokes layer velocity

profile. In the usual way the basic state is now perturbed by a disturbance

with horizontal wavenumber k scaled on 4-1 . If the Boussinesq

approximation is made then, following Chandrasehkar (1963), Chapter II, we

obtain

a2 a2 a

{--7- k2}{--_ - k2 - 2 _}W = R0, (4.13a)
an an

a2 _ k2 a

{--_ - 2 _}0 = _ w, (4.13b)

where @ is the temperature perturbation and W the z velocity component

of the perturbation. The parameter R appearing in (4.13) is the Rayleigh

number defined by

-2

R = g_A 3 TO v (4.14)

where a is the coefficient of volume expansion. If the plane _ = 0 is

rigid then (4.13) are to be solved subject to

@ = W - aW _ 0, n = 0, =. (4.15)an
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Thus if we seek neutral solutions of (4.10) with _---= 0 we see that the
Dr

resulting eigenvalue problem is identical to that given by (4.13), (4.15) if

we associate T with R/4_ and e with T respectively. Thus there

exists an analogy between the neutral stability problems for the flow past a

rapidly rotating cylinder and a time-periodically heated fluid layer. The

analogy corresponds to that between the steady Taylor vortex instability

between circular cylinders rotating at almost the same speed and B_nard

convection between rigid walls. The eigenvalue problem (4.13)-(4.14) can be

solved using the method outlined in Section 2; so far we have found one mode

of instability with a minimum value of R ~ 54. However, other modes exist,

but it is not yet clear which is the most unstable.

5. CONCLUSION

The instability mechanism found several years ago for the flow around a

torsionally oscillating cylinder exists in many flows of practical

importance. When the basic oscillatory flow which supports the instability is

spatially varying, the instability becomes spatially concentrated near the

most unstable positions. Moreover the instability drives the secondary steady

streaming boundary layer at the same order as does the basic oscillatory

flow. Recently it has been shown by Hall (1985) that this mechanism can lead

to the instability of high frequency Tollmien-Schlichting waves interacting

with a wall of either convex or concave curvature.

There are many flows where the basic state has a steady component of the

same order as the oscillatory part, in such flows there exists the possibility

of interactions between the instability mechanisms associated with the steady
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and unsteady components. An obvious example of this is the Taylor vortex

problem with a fixed outer cylinder and an inner cylinder rotating with

angular velocity _[i + gcos mt]. For s << I, the flow is susceptible to

steady Taylor vortices at sufficiently large vaules of _ whilst for s >> I,

and _ >> i the Stokes layer mode is possible. For intermediate values

of g the modes interact in an as yet undetermined manner; the ratio of the

axial lengthscales for the different modes is large so that some progress

could probably be made asymptotically.

Another interaction problem yet to be investigated is that between the

Tollmien-Schlichting and Taylor-G_rtler modes of instability. Experimentally

it is known that local transition in the flat Stokes layer takes place as

Reynolds numbers as low as 300. It follows from (2.2) that for Stokes layers

on curved walls with local radius of curvature R such that

_- -3
_> ~ io

R

the centrifugal mode will occur first. This effectively means that in most

situations the mode is likely to be dominant.

The preliminary results, which we have obtained so far for the

sinsuiodally heated fluid layer, suggest that a convection mode of instability

similar to that found by Seminara and Hall (1976) exists for that flow. As

yet no experimental investigations of this problem have been made; it will be

interesting to see how this flow evolves at high _ayleigh numbers.
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