## NASA <br> Technical Memorandum

NASA TM -86530

## AURORAL THERMOSPHERE TEMPERATURES FROM OBSERVATIONS OF 6300 \& EMISSIONS

By John C. Bird, Gary R. Swenson, and Richard H. Comfort

Space Science Laboratory Science and Engineering Directorate
(NASA-TM-86530) AUFOLAL TEEFMCSPHEAE N86-15755
temperaidaes frcy cbsefvaticis cf 6300 a EMISSICNS (NASA) $65 \mathrm{p} \mathrm{HC} \mathrm{AC4/MFAO1}$

CSCL 04a
Unclas G3/46 j5J36

November 1985

National Aeronautics and
Space Adm.n.stration
George C. Marshall Space Flight Center

TECHNICAL REPORT STANDARD TITLE PAGE

| 1. REPONT NO. <br> 2. GOVERNMENT ACCEBSION NO. <br> NASA TM- 86530 | 3. RECIPIENT'S CATALOG NO. |
| :---: | :---: |
| 4. TITLE AND SUBTITLE <br> Auroral Thermosphere Temperatures from Observations of 6300 A Emissions | 5. REPORT JATE <br> November 1985 <br> 6. performing organizai ion cuoe ES53 |
| 7. AUTHOR(8) John C. Bird, ${ }^{*+}$ Gary R. Swenson, ${ }^{++}$and Richard H. Comfort ${ }^{* *}$ | 8. PERFORMING ORGANIZATION REPORT \# |
| 9. performing organization mame and address <br> George C. Marshall Space Flight Center <br> Marshall Space Flight Center, Alabama 35812 | 10. WORK UNIT. NO. |
| 12. SPONSORING AGENCY NAME ANO ADDRESS <br> National Aeronautics and Space Administration Washington, D.C. 20546 | 13. TYPE OF REPORi \& PERIOD COVERED <br> Technical Memorandum <br> 14. SPONSORING AGENCY CODE |
| 15. SUPPLEMENTARY NOTES <br> Prepared by Space Science Laboratory, Science and Engineer <br> *Department of Mechanical Engincering, The University of Al <br> **Department of Physics, The University of Al=jama, Huntsvil | ng Directorate bama, Huntsville e |

16. Abstract

Doppler temperatures determined from observations of the atomic oxygen OI 6300 A line during March 1984 at the University of Alaskā/Fairbanks are presented. Temperatures were obtained from Fabry-Perot Interferometer pressure scans using a Fourier transform smoothing and fitting technique; this technique is presented in detail. The temperatures and the spread ir the temperatures were consistent from day tc day. On the clear nights of March 10-i3, the temperatures wera 800, 750, 750, and 800 K , respectively, with a spread of +100 K . These temperatures are compared to the MSTS (84) model atmosphere for similar geomagneiic conditions and found to be in general agreement; they are also consistent with results obtained by other investigators.
${ }^{+}$Now at York University, Toronto, Canada
${ }^{++}$Now at Lockheed Missiles and Space Company, Inc., 'alo Alto, California

| 17. KEY WORDS <br> Fabry-Perot Interferometer Thermosphere Temperatures Auroral Thermosphere |  | 10. Distribution statement <br> Unclassified - Unlimited |  |
| :---: | :---: | :---: | :---: |
| 19. SECURITY CLASSIF. (of thle report) Unclassified | 20. SECURITY CLASSIF. (of thit page) Unclassified | $\begin{gathered} \text { 21. NO. OF PAGES } \\ 66 \end{gathered}$ | 22. PRICE NTIS |

## TABLE OF CONTENTS

Page
I. INTRODUCTION ..... 1
II. INSTRUMENTATION ..... 1
III. OBSERVATIONS ..... 2
IV. DATA REDUCTION ..... 3
V. RESULTS AND DISCUSSION ..... 6
A. MSIS ..... 7
B. SHADOW HEIGHT ..... 7
C. VOLUME EMISSION RATE PROFILES PREVIOUSLY MEASURED ..... 8
vI. FUTURE WORK ..... 10
VII. CONCLUSION ..... 10
REFERENCES ..... 12
APPENDICES
A. THEORETICAL GAUSSIAN PROFILES ..... 27
B. SOLAR GEOPHYSICAL DATA ..... 30
C. MSIS EXAMPLE OUTPUT ..... 31
D. PROGRAM AND EXAMPLE OUTPUT ..... 32
E. SHADOW HEIGHT ..... 49
F. EXAMPLE OF RAW DATA ..... 59
G. VERIFICATION OF EQUATION (A-1), APPENDIX A ..... 60

## LIST OF ILLUSTRATIONS

Figure Title Page

1. Fabry-Perot Interferometer Control Schematic ..... 14
2. Fabry-Perot Interferometer Piston Diagram ..... 15
3. Fabry-Perot Interferometer Controller and Data Acquisition and Display System Schematic ..... 16
4. Optimization of Number of Fourier Coefficients ..... 17
5. Comparison of Theoretical Gaussian Profiles to Smoothed Data ..... 18
6. Comparisons of Jbserved Temperatures with MSIS Temperatures, Plotted Versus Universal Time.
(a) March 7, 1984, (b) March 10, (c) March 11, (d) March 12, (e) March 13, (f) March 14, (g) March 15 ..... 19
7. Shadow Height as a Function of Local Time in Different Look Directions for Days Encompassing the Period of the Observations ..... 26
E-1. Local Shadow Height Geometry ..... 57
E-2. Global Geometric Parameters Used in Shadow Height Program ..... 58

## I. INTRODUCTION

This report summarizes the results of a set of observations of the atomic oxygen OI $15,867 \times 6300 \AA^{3} 1$... D thermospheric emission to determine the temperature of the emitting species using a Fabry-Perot interferometer at the Universicy of Alaska Geophysical Institute (64.86 latitude, $-147.85^{\circ}$ longitude) during March 1984. Spectral profiles obtained from the interferometer are used to determine the Doppler temperature by means of the technique reported by Hays and Roble [1] and Roble [2].

This general concept of using Doppler widths of airglow lines to find temperatures has been used by many investigators such as Wark [3], Nilson and Shepherd [4], Turgeon et al. [5], Zwick and Shepherd [6], Hernandez [7], Hernandez and Roble [8-11], and Smith et al. [12]. Analytical descriptions of Fabry-Perot spectrometers have been presented by Borri and Wolfe [13] and Hernandez [14]. A review of temperatures and winds measured by Fabry-Perot spectrometry was done by Hernandez [7].

## II. INSTRUMENTATION

The Fabry-Perot interferometer was located on the top floor of the Geophysical Institute, Fairbanks, Alaska, allowing observations through a variable geometry periscope system and a Plexiglass dome. The interferometer is described by Roble [2] and Sivjee et al. [15] and is shown in Figures 1 and 3. Spectral profiles were obtained by pressure scanning of the etalon in steps. A stepper motor controlled the piston (shown in Figure 2), and position data were provided by an $A / D$ encoder. During a pressure scan, the refractive index in the etalon changed. This caused the light in the center of the interferometer pattern to change intensity, creating an intensity/pressure fringe. This light from the interferometer was reflected through a $1 / 8$-inch aperture, then filtered, and finally detected by a photomultiplier tube. Simultaneously, a photometer recorded the intensity of the $6300 \&$ lines in the same direction as the interferometer observation. Also, the etalon temperature was monitored. Pressure scanning, mirror positioning, and integration times were controlled by computer. Times, pressures, observation directions,
temperatures, and counts were automatically stored in the format shown in Appendix $F$.

An He-Nt (6328 \&) frequency-stabilized Tropel laser was used for calibration. To prevent photomultiplier tube saturation, the beam was incident on a ground glass sphere above the interferometer. The glowing sphere simulated the sky, so pressure scanning produced fringes without changing the experimental setup from the sky observation configuration. If, during calibration, the fringes were found to be asymmetric, the aperture or, in extreme cases, the etalon plates were adjusted. Neither of these adjustments were required between the observations included in this report, although such adjustments were required between earlier trial runs.

## III. OBSERVATIONS

Observations were made at an inclination of $30^{\circ}$ from the horizontal in the north, south, east, and west magnetic directions. Observations were also made at local zenith. All observations were made between sunset and sunrise from March 6 to March 16, 1984. At the beginning of this period the moon was only $9 \%$ full; but by March 16 , it was $97 \%$ full.

Most nights were clear, and slight to moderate auroral activity was observed in the zenith and to the north. On clear nights, diffuse aurorae were usually seen to the north. Data were also taken on cloudy and foggy nights, even though the observed light was scattered from all sky sources prior to detection. If there is mass average velocity with the emitting atoms, the temperature measurement is still ccrrect. Winds could cause an error if they were unusually strong under these cloudy conditions.

In addition, the raw data were monitored during all runs. For example, an $X-Y$ plotter was used to record the intensity of the interferometer image as a function of pressure to monitor the fringes and to provide a quick look at the raw data. After each night of observations, the records stored in the computer were transferred to disks. The parameters that were monitored and the formatting of this data are discussed in the following section.

The computer program for data analysis included: reading of data from disk, temperature and pressure compensations, normalization, Fourier transform smoothing, deconvolution, and least squares fitting to theoretical profiles. A listing of this program is included in Appendix D along with a sample output.

## A. Data Format, Reading Data

Each pressure scan of 64 steps included one free spectral range or fringe, which covered only 34 steps. The other 30 steps corresponded to other fringes and were, therefore, ignored. These fringes occurred as variations in photomultiplier counts as functions of pressure. Data at each step included etalon pressure and temperature, photometer reading, and photomultiplier reading. Times were recorded at the beginning of each pressure scan. All these data were stored in files such as the one shown in Appendix $F$. The first step in the data analysis program was to read the data corresponding to one fringe.

## B. Data Modification

First, the reading of the etalon pressure was adjusted to compensate fcr variations of etalon temperature. Then the photomultiplier counts (i.e., intensity) were adjusted to account for temporal intensity variations of the sky by dividing by the photometer reading, which was recorded in kilorayleighs. Finally, the background signal was subtracted.

## C. Fourier Cosine Transform Smoothing

The Fabry-Perot interferometer produces a series of concentric rings. The center of this image is monitored by a photomultiplier tube and as the etalon pressure is changed, the measured intensity changes. A series of 34 different pressure readings were taken in each scan. The resulting observed profile is a convolution of the actual sky profile and the
instrument function, with noise superimposed. To extract this noise a Fourier technique was used.

A Fourier cosine transform is fit to the data from one fringe. When the first six coefficients are used to reconstruct the curve, the result is a smoothed version of the data as shown in the equations below. If not enough coefficients are taken, the data are not accurately represented. On the other hand, if too many coefficients are taken, the resulting curve fits statistical noise as well as the source variation.

For a theoretical emission profile which is perfectly smooth, the coefficients decrease as the wavenumber (1.e., $\mathbb{m}$ in equation (1)) increases, as shown by Hays and Roble [1]. For our data, the coefficients decrease until $m$ is 6, whereupon it begins to increase, as shown in Figure 4. Therefore, to represent the actual data with a curve that is as accurate as possible with minimum noise, the optimum number of coefficients is 6. Each of the three curves shown in Figure 4 are from different pressure scans, all taken successively; therefore, each curve corresponds to a different fringe.

The smoothed profiles of the observed data are given by:

$$
\begin{equation*}
Y=\sum_{m=1}^{6} Y_{m} \cos (m x) \tag{1}
\end{equation*}
$$

where the $Y_{m}$ 's are the Fourier coefficients from fits to the observed data. These coefficients are found using:

$$
Y_{m}=1 / \pi \sqrt{Y_{c m}^{2}+Y_{s m}^{2}}
$$

where

$$
\begin{gathered}
Y_{c m}=\sum_{i=1}^{34} \frac{C}{m}\left[2 \sin \left(c 2 P_{i}\right)\left(\sin c 2 \frac{D P S}{2}\right)^{2}\right. \\
\left.+\cos \left(c 2 P_{i}\right) \sin (c 2 D P S)\right]
\end{gathered}
$$

where

$$
\begin{aligned}
C & =\text { counts at ith step } \\
P_{i} & =\text { pressure at ith step } \\
c 2 & =\frac{2 \pi x m}{S R S} \\
S R S & =f r e e \text { spectral range, pressure units } \\
\text { DPS } & =P_{i}-P_{i-1} ;
\end{aligned}
$$

and similarly,

$$
\begin{gathered}
Y_{s m}=\sum_{i=1}^{\sum_{1}} \frac{C}{m}\left[2 \cos \left(c 2 P_{i}\right)\left(\sin c 2 \frac{D P S}{2}\right)^{2}\right. \\
\left.-\sin \left(c 2 P_{i}\right) \sin (c 2 \mathrm{DPS})\right] . \\
\text { D. Deconvolution }
\end{gathered}
$$

The smoothed profile is assumed to be a convolution of the theoretical Doppler profile of the sky emission (D) and the instriment profile (L) (obtained by observing through the instrument a diffuse illumination provided by an He-Ne laser); i.e.,

$$
Y_{m}=D_{m} * L_{m}
$$

To deconvolve the laser profile from the observed data, the coefficients from the observed data were divided by the laser coefficients using the convolution theorem (e.g., see Reference 16); i.e.,

$$
D_{m}=Y_{m} / L_{m},
$$

where the laser coefficients are found by running a slightly modified version of the program (in Appendix D) independently for the laser fringe coefficients only.

## E. Least Squares Fit

After fitting the data to a smoothed profile using the Fourier coefficients and deconvolving the instrument function, the prosile is then compared to a series of theoretical Gaussian emission profiles. These theoretical profiles are discussed in Appendix A. They have a known Doppler width for any given temperature. These theoretical profiles are convolved with a Gaussian instrument function obtained by calibrating with an He-Ne laser (as in equation (2)). The theoretical curve that gives the least square error with the smoothed data was used to obtain the temperature.

To ensure that the deconvolved profiles are Gaussian, they are plotted with theoretical Gaussians as shown in Figure 5. Non-Gaussian results were $\therefore$ included in temperature plots. Also, the half widths of all deconvolved profiles have been compared to those in Table A-1, Appendix A to ensure that no major errors occurred in the deconvolving calculation.

## V. RESULTS AND DISCUSSION

After converting the fringes to temperatures, the temperatures were plotted as a function of time for eacin night of observation, as shown in Figures 6a-g. Each direction of observation: zenjth, north, south, east, and west (all magnetic) were insluded. The times given are in Universal Time (UT), where local time was 9 hours behind UT.

It is apparent from the results in Figures $6 a-g$ that the data points are scattered, but are typically within a band that is $\pm 100 \mathrm{~K}$ about the mean. The data for March 7 (Figure 6a) are highly scattered, but on March 10 , the temperature is seen to be about $800 \pm 100 \mathrm{~K}$. The next three nights give temperatures of 750,750 , and 800 K . All the above data were taken on clear nights. March 14 was cloudy and the apparent temperature was found to be 750 K . March 15 was foggy and the apparent temperature was found to
be 700 K . On March 16, only four zenith points were taken and three of these were at about 680 K .

Contributions to the spread in the data may be from both the instrument and actual variations in OI emission intensity. It is difficult to determine the fractional contributions of these components, although it has been considered by Hays and Roble [1].

## A. MSIS

Also plotted in Figures 6a-g are the temperature profiles derived from the MSIS (Mass Spectrometer Incoherent Scatter) model of the neutral atmosphere [17-18]. Parameters utilized in this model include local time, altitude, location, 3-month average $\mathrm{F}_{10.7}$ flux, daily $\mathrm{F}_{10.7} \mathrm{flux}$, and daily $A_{P}$ value (see Appendix B). An example of the MSIS output is given in Appendix C.

The purpose of running MSIS was to deduce the predicted model thermospheric temperature for the geomagnetic conditions at the observing location. Comparisons of the MSIS temperatures with our results show that ours are in a reasonable range.
table 1. Plot summary

| Date (UT) | MSIS Height <br> $(\mathrm{km})$ | Temp. <br> $(\mathrm{K})$ | Sky |
| :---: | :---: | :---: | :---: |
| March 7 |  | high dispersed | clear |
| Maich 10 | 180 | $800 \pm 100$ | clear |
| March 11 | 170 | $750 \pm 100$ | clear |
| March 12 | 170 | $750 \pm 100$ | clear |
| March 13 | 170 | $80 \pm 100$ | clear |
| March 14 | 170 | $750 \pm 100$ | cloud |
| March 15 | 150 | $700 \pm 100$ | fog |
| March 16 | minimal data | 680 | clear |

B. Shadow Height

In order to determine whether the observed volumes were sunlit, the Earth's "shadow height" was calculated. Heights for zenith, north, south, east, and west (magnetic) observations were calculated. It was determined
that the observed volumes in some of the observations (taken shortly after sundown and shortly before sunrise) were sunlit. Plotted in Figures 6a-g are heights of the Earth's shadow. This shadow height is the distance from the point where the line of observation intersects the surface between sunlight and shadow to the ground directly below. (See Appendix E for a detailed explanation of how shadow height is determined.)

Each curve corresponds to a given direction of sbservation (e.g., east). Where the curve intersects an MSIS altitude curve, the corresponding time indicates when the shadow height was at the altitude of the MSIS curve. For example, in Figure 6a, the vertical curvr shown corresponds to observation toward the east. This curve intersects the MSIS 170 km curve at 1400 UT , indicating the shadow height at that time. As shown, the shadow height passed through lower altitudes at later times. The overall curve indicates sunrise, because observation points to the left of the curve are in darkness, while observation points to the right, i.e., later in time, are sunlit. In the following figures, different directions of observation are included. $N$ represents north, while $W$ and E represent west and east, respectively, Also shown in the figures are the curves for sunset. Of all directions observed, points to the west were the last to remain sunlit on any given night, and points to the east were the first to become sunlit.

For sunrise observations, the lowest shadow heights were to the east It can be seen that on March 11 and 13 , observations to the east, an hous after the emission region passed into sunlight, indicate pre-dawn temperature enhancement. After sunset, the lowest shadow heights were to the west, but sunlit dusk observations were made only on March l4, which was a cloudy night.

Shadow height calculations were based on Chamberlain's work [19]. Figure 7 shows the resulting shadow heights as a function of time for all directions observed. Programs in Appendix E were used to obtain these results.

## C. Volume Emission Rate Profiles Previously Measured

Altitude profiles of the $6300 \AA$ volume emission rate have been reported by various investigators using data from the Atmosphere Explorer
program. Selected results are noted here for comparison with the results presented in the previous section. For example, Abreau et al. [20] found altitude profiles of the volume emission rate using a photometer onboard the AE-E satellite. From November 1980 to February 1981, averaged data gave a peak rate al altitudes of $250-280 \mathrm{~km}$.

Hays et al. [21] reported altitude profiles of the 6300 A volume emission rate for various solar zenith angles during evening twilight. Peak emissions were in the $220-250 \mathrm{~km}$ altitude region. Their theoretical models using $0_{2}$ photodissociation and phot lectron impact indicated that below 200 km , the dominant mechanism of excitation was photodissociation.

Mid-latitude orbit data for summer and winter were examined by Torr et al. [22]. Theoretical and measured peak emission altitudes were approximately 200 km in winter and 200 km in summer.

Hernandez and Roble [10] obtained temperatures from the $6300 \&$ emission as a function of time. Their temperatures were found to be greater than MSIS model predictions for an altitude of 250 km during summer and equinox nights. Their data for March 1976 (the same month as our data) were scattered to about the same degree as our data, and their data were centered on 800 K in agreement with our results. Further results were 1ater reported by Hernandez and Roble [11]. They found that the $6300 \AA$ line peak emission rate occurred below the $F_{2}$ peak at 250 km , at about 100 $R$, decreasing throughout the night.

Recently, Sipler et al. [23] also measured the neutral F-region temperature using a Fabry-Perot interferometer. During geomagnetically quiet nigh': from 1975 to 1979, equinox solar minimum average temperatures were found to be about 750 K .

Emission rate profiles for 6300 dayglow were reported by Killeen et al. [24]. They reported that a typical profile had a peak of $180 \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ at about 210 km altitude.

The above results indicate a peak volume emission rate at altitudes of 200-300 km. As discussed earlier, these results are in rough agreement with the present observations, given the spread in our temperatures and the combined uncertainties of MSIS temperatures, as well as our lack of statistical data. Assuming the glow intensity is originating from 200 km , our data suggest the MSIS model is predicting slightly higher temperatures than observed.

Many improvements could be made to the apparatus. With CCD arrays now readily avaılable, it is possible to image the Fabry-Perot fringes. Imaging of fringes has been done by Sivjee et al. [15] and Rees and Greenaway [25]. The latter investigators developed a Doppler imaging system (DIS) which used a Fabry-Perot interferometer and a $120^{\circ}$ field of view all-sky camera. The multiring image contains spectral and spatial information. By imaging the fringe from the interferometer (of this investigation), all the information could be digitized and analyzed by computer. By using the entire image of the fringe rather than just the central fringe, a much stronger signal is obtained. This system would provide a convenient means of monitoring winds using the Doppler shift. Yet another advantage of this system would be that fringes would be made much more quickly than with pressure scanning. Further, integration times could be easily varied to an oprimum duration. This system could be further enhanced by using a pyramid with mirror surfaces rather than a scanning mirror. This would allow monitoring of all four directions simultaneously. With both of the above modifications, all moving parcs would be eliminated, greatly simplifying the entire system and reducing its size.

An extension of the pyramid system would be to use an all-sky lens so that all directions could be monitored simultaneously. This lens could be coupled to an interference filter, an image intensifier, and finally to a CCD array via a fiber optic plug. In this arrangement, the apparatus could be considerably reduced in size compared with the current system. However, as size decreases, integration time increases. An image intensifier could be used to reduce integration iime.

Cooling of the array would be imperative to reduce noise accumulation. A Peltier electric cooler, for example, would be convenient for this task.
VII. CONCLUSION

The temperatures of the 6300 line on the clear nights of March 10, 11, 12 , and 13 were $800,750,750$, and 800 K , respectively, with a spread of
$\pm 100 \mathrm{~K}$. Despite the large spread in the data, the temperatures and the spread in the temperatures were consistent from day to day, and consistent with previous observations.

## REFERENCES

1. Hays, P. B. and Roble, R. G.: A Technique for Recovering Doppler Line Profiles from Fabry-Perot Interferometer Fringes of Very Low Intensity. Applied Optics, Vol. 10, 1971. p. 193.
2. Roble, R. G.: A Theoretical and Experimental Study of the Stable MidLatitude Red Arc (SAR-ARC). Ph.D. Thesis, University of Michigan, 1969.
3. Wark, D. Q.: Doppler Widths of the Atomic Oxygen Lines in the Airglow. Astrophys. J., Vol. 131, 1960, p. 491.
4. Nilson, J. A. and Shepherd, G. G.: Upper Atmospheric Temperatures from Doppler Line widths--I. Some Preliminary Measurements on OI 5577 A in Aurora. Planet. Space Sci., Vol. 5, 1961, p. 299.
5. Turgeon, E. C. and Shepherd, G. G.: Upper Atmospheric Temperatures from Doppler Line Widths--II. Measurements on the OI 5577 and OI 6300 A Lines in Aurora. Planet Space. Sai., Vol. 9, 1962, p. 295.
6. Zwick, H. H. and Shepherd, G. G.: Upper Atmospheric Temperatures from Doppler Line Widths--V. Auroral Electron Energy Spectra and Fluxes Deduced from the 5577 and 6300 A Atomic Oxygen Emissions. Planet. Space Sci., Vol. 21, 1973, p. 605.
7. Hernandez, G.: Measurement of Thermospheric Temperatures and Winds by Remcte Fabry-Perot Spectrometry. Opt. Eng., Vol. 19, 1980, p. 518.
8. Hernandez, G. and Roble, R. G.: Direct Measurenents of Nighttime Thermospheric Winds and Temperatures. 1. Seasonal Variations During Geomagnetic Quiet Period. J. Geoph's. Res., Vol. 81, 1976, p. 2065.
9. Hernandez, G. and Roble, R. G.: Direct Measurements of Nighttime Thermospheric Winds and Temperatures. 2. Geomagnetic Storms. J. Geophys. Res., Vol. 81, 1976, p. 5173.
10. Hernandez, G. and Roble, R. G.: Direct Measurements of Nighttime Thermospheric Winds and Temperatures. 3. Monthly Variations During Solar Minimum. J. Geophys. Res., Vol. 82, 1977, p. 5505.
11. Hernandez, G. and Roble, R. G.: Thermospheric Dynamics Investigations with Very High Resolution Spectrometers. Applied Optics, Vol. 18, 1979, p. 3376.
12. Smitin, R. W., Sivjee, G. G., Stewart, R. D., McCormac, F. G., and Deehr, C. S.: Polar Cusp Ion Drift Studies Through High-Resolution Interferometry of $0^{+} 7320-A$ Emission. J. Geopinys. Res., Vol. 87, 1982, p. 4455.
13. Born, M. and Wolf, E.: Principles of Optics. McMillan Co., New York, 1964.
14. Hernandez, G.: Analytical Description of a Fabry-Perot Spectrometer. Applied Optics, Vol. 5, 1966, p. 1745.
15. Sivjee, G. G., Kiallinan, T. J., and Swenson, G. R.: Fabry-PerotInterferometar Imaging Systen for Thermospheric Temperature and Wind Measurements. $\langle$ spplied Optics, Vol. 19, 1980, p. 2206.
16. Bracewell, R.: The Fourier Transform and Its Applications. McGeaw-hill, New York, 1965.
17. Hedin, A. E., Mayr, H. G., Reber, C. A., Spencer, N. W., and Carignan, G. R.: Empirical Model of Global Thermospheric Temperature and Composition Based on Data from the Ogo 6 quadrupole Mass Spectrometer. J. Geophys. Res., Vol. 79, 1974, p. 215.
18. Mayr, H. G., Harris, I., Hedin, A. E., Spencer, N. W., and Wharton, L. E.: Thermospheric Supercotation Revisited. J. Geophys. Res., Vol. 89, 1984, p. 5613.
19. Chamberlain, J. W.: Physics of the Aurora and Airglow. Academic Press, New York, 1961.
20. Abreau, V. J., Schmitt, G. A., Hays, P. B., and Dachev, T. P.: Volume Emission Rate Profiles of the 6300-A Tropical Nightglow Obtained from the AE-E Satellite: Latitudinal and Seasonal Variations. J. Geophys. Res.. Vol. 87, 1982, p. 6346.
21. Hays, P. B., Rusch, D. W., Roble, R. G., and Walker, J.C.G.: The GI ( 6300 A) Airglow. Rev. Geophys. Space Phys., Vol. 16, 1978, p. 225.
22. Torr, D. G., Richards, P. G., Torr, M. F., and Abreau, V. J.: Further Quantification of the Sources and Sinks of Thermospheric $0^{1}(D)$ Atoms. Planet. Space Sci., Vol. 29, 1981, p. 595.
23. Sipler, D. P., Luokkala, B. B., and Biondi, M. A.: Fabry-Perot Determinations of Midlatitude F-Region Neutral Winds and Temperatures from 1975 to 1979. Planet. Space Sci., Vol. 20, 1982, p. 1025.
24. Killeen, T. L., Hays, P. B., Spencer, N. W., and Wharton, L. E.: Neutral Winds in the Polar Thermosphere as Measured from Dynamiss Explorer. Geophys. Res. Lett., Vol. 9, 1982, p. 957.
25. Rees, D. and Greenaway, A. H.: Doppler Imaging System; an Optical Device for Measuring Vector Winds. 1: General Principles. Applied Optics, Vol. 22, 1983, p. 1078.
26. Griem, H. R.: Plasma Spectroscopy. McGraw Hill, New York, 1904.

ORIGNAL PAGE IS
OF POOR QUALITY


Figure 1. Fabry-Perot Interferometer control schematic.

Figure 2. Fabry-Perot Interferometer piston diagram.



Figure 4. Optimization of number of Fourier coefficients.


Figure 5. Comparison of theoretical Gaussian profiles to smoothed data.

Figure 6. Comparisons of observed temperatures with MSIS temperatures, plotted versus Universal Time. (a) March 7, 1984, (b), Ma:ch 10, (c) March 11, (d) March 12, (e) March 13, (f) March 14,
(x) 34กLVy3dW31
$\square$
 (g) March 15.


Figure 6b. March 10




$(6)$



Fiqure 7. Shadow height as a function of Local Time in different look directions for days encompassing the period of the observations.

## appendix a. theoretical gaussian profiles

A Doppler shift of wavelength results from the motion if a radiating particle towards or away from an observer. In gas or plasmas, the random thermai motions of all particles lead to a Maxweliian velocity distribution. This results in a Gaussian distribution in observed frequency due to the Doppler shifting. Hence, the spectral profile has a Doppler broadened component that is a function of temperature. From Griem [26], the Doppler shape is given by

$$
I(\Delta \lambda)=\left\{\frac{M^{2}}{2 \pi k t \lambda_{0}^{2}}\right\}^{\frac{1}{2}} \quad \exp \left\{\begin{array}{l}
-M_{c}^{2}  \tag{A-1}\\
2 k y \lambda_{0}^{2}(\Delta \lambda)^{2}
\end{array}\right\}
$$

where $\lambda_{0}=6300 \AA=6.3 \times 10^{-7} \mathrm{~m}, \mathrm{c}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}, M=$ mass of emitting species ( 0 ) $\left(=2.6776 \times 10^{-26} \mathrm{~kg}\right.$ ), $k=$ Boltzman's sonstant $(=1.38$ $\left.x 10^{-23} \mathrm{~J} / \mathrm{K}\right)$, and $\mathrm{T}=$ temperature in K .

Normalized intensity as a function of $T$ and $\Delta \lambda$ is found from:

$$
\text { Normalized Intensity }=\exp \left\{-2.19682568 \times 10^{26} \frac{(\Delta \lambda)^{2}}{T}\right\}
$$

The above equation is verified as shown in Appendix $G$, by comparing it with Wark's [3] version of this equation.

## Theoretical Gaussian Profiles

To convert the form of this equation to one in terms of etalon pressure instead of wavelength, $\lambda$, the conversion

$$
\begin{equation*}
\Delta \lambda=\frac{1.98 \times 10^{-11} \mathrm{mFSR}}{74.09 \text { pressure units FSR }} \times \quad \Delta \text { pressure units } \tag{A-2}
\end{equation*}
$$

is substituted into equation ( $\mathrm{A}-1$ ) to obtain:

$$
\text { Normalized Intensity }=\exp \left\{-15.689416 \quad \frac{\text { (Dpressure units) }}{T}\right\}
$$

where FSR is Free Spectral Range and $T$ is temperature in $K$.

The factor ( $1.98 \times 10^{-11} \mathrm{~m}$ FSR) is a fixed instrument parameter. The FSR observed with the calibration was 75.53 pressure units, and this value is used throughout the program and in the calculations except in the above step. Here, a slightly smaller FSR was used to compensate for the lact that the 6328 A laser was used tur calibration, white the observations were of 6300 A. Since the $\operatorname{FSR}$ is proportional to the square of the acident wavelength, the 6328 He-Ne laser which gave a FSí $5: 75.53$ would, at 6300 A, have given an FSR of:

$$
75.53\left(\frac{6300}{6328}\right)^{2}=74.86
$$

So the FSR of 75.53 was $75.53-74.86=0.67$ pressure units too high. To compensate for this, the FSR used in the above step (equation (A-2)) is approximately 75 pressure units.

To input $\Delta$ pressure units in radians $x 100$ (where $2 \pi$ rad of trans: inmed data corresponds to 1 FSR of data), the conversion for each set of data

$$
\begin{equation*}
\frac{75.53 \mathrm{Fi}}{2 \pi \mathrm{rad}} \frac{\text { ssure units }}{\times 100}=\frac{12.02097}{100} \tag{A-3}
\end{equation*}
$$

is substituted into equation (A-2) to obtain:

$$
\text { Normalized Intensity }=\exp \left\{0.2267 \frac{(\Delta \mathrm{rad})^{2}}{\mathrm{~T}}\right\},
$$

where the numerical factor 0.2267 is labeled " $C 0$ " in the program. The reason for scaling the pressure units by the factor 100 is to make a unit change in input (equation (A-3)) small enough to allow many ( $628 \sim 100 \times 2$ $x \pi$ ) steps per fringe. This facilitated programming of the graphics.

To check the results of the program, the HWHMs of the laser and theoretical Gaussians can be easily convolved. The laser width of 3.5 pressure units was obtained from a pressure and temperature compensated laser calibration scan. To find the HWHM of the theoretical Gaussians start with equation (A-2).

$$
\text { Normalized Intensity }=\exp \left\{-15.689 \frac{(\text { pressure units) }}{}{ }^{2}\right\}
$$

Let normalized intensity $=0.5$ (i.e., HWHM), then solve for pressure units to obtain:

HWHM in pressure units $=\sqrt{\frac{T \ln 0.5}{-15.689}}$.

Convolving this with the laser calibration scan width provides a quick look determination of the temperature from the observed width. Examples are shown in Table A-1.

TABLE A-1. QUICK-LOOK DETERMINATION OF TEMPERATURE FROM OBSERVED WIDTH

| Temperature <br> (K) | Theoretical Gaussian HWHM <br> (pressure units=psi) | Convolution of Theoretical <br> Gaussian and Laserv HWHM ${ }^{2}+3.5^{2}$ <br> (pressure units=psi) |
| :---: | :---: | :---: |
|  |  |  |
| 1000 | 6.646 | 7.51 |
| 1100 | 6.97 | 7.80 |
| 1200 | 7.28 | 8.078 |
| 1300 | 7.57 | 8.3477 |
| 1400 | 7.86 | 8.608 |
| 1500 | 8.14 | 8.8611 |
| 1600 | 8.407 | 9.107 |
| 1700 | 8.666 | 9.346 |
| 1800 | 8.917 | 9.5799 |
| 1900 | 9.162 | 9.8077 |
| 2000 | 9.400 | 10.030 |

APPENDIX B. SOLAR GEOPHYSICAL DATA

Mean $\mathrm{F}_{10.7}$ for December 1983, January 1984, February 1984, and March 1984 was 90.5, 112.4, 137.2 , and 120.8 , respectively.

## APPENDIX C. MSIS EXAMPLE OUTPUT

## MARCH 7 UT

## 84067

INPUT UNIVERSAL TIME IN SEC
14440 (0400 UT)
INPUT MIN, MAX ALTITUDES AND ALT. STEP IN KM
130,290 20
INPUT GEODETIC LAT., EAST LONG. IN DEG
64.9,212.2

INPUT LOCAL APPARENT SOLAR TIME IN HRS
18.2

INPUT 3-MO. AVE. OF F 10.7 FLUX
112
INPUT DAILY F 10.7 FLUX FROM PREVIOUS DAY
109.5

INPUT DAILY AP VALUE 26
DATE UT(SEC) LATITUDE LONGITUDE LOCAL TIME $\boldsymbol{F}_{10.7} \boldsymbol{\gamma}_{10.7} \quad \mathrm{~F}_{10}$ AP $\begin{array}{llllllll}84067 & 14440 & 64.9 & 212.2 & 18.2 & 112.0 & 109.5 & 26\end{array}$
ALT
[HE]
[0]
[N2]
[02]
[AR]
[H] T
130. 1.7502E+07 3.2964E+10 1.1277E+11 2.0486E+10 4.8818E+08 1.4128E+06 524. 150. 1.2866E+07 1.3711E+10 3.0166E+10 4.7443E.09 8.6045E+07 5.0339E+05 692. 170. 1.0393E+07 7.1768E+09 1.1209E+10 1.5684E+09 2.2538E+07 2.5966E+05 806. 190. 8.8380E $+064.2385 \mathrm{E}+094.8880 \mathrm{E}+096.1621 \mathrm{E}+08 \quad 7.1885 \mathrm{E}+06 \quad 1.7916 \mathrm{E}+05 \quad 883$. 210.7.7383E+06 2.6843E+09 2.3331E+09 2.6699E+08 2.5662E+06 1.4700E+05 936. 230. 6.8957E+06 1.7755E+09 1.1773E+09 1.2287E+08 9.8243E+05 1 3188E+05 972. 250. 6.2138E+06 1. $2081 \mathrm{E}+096.1598 \mathrm{E}+08 \quad 5.8823 \mathrm{E}+07 \quad 3.9375 \mathrm{E}+051.2358 \mathrm{E}+05996$. 270. $5.6406 \mathrm{E}+068.3788 \mathrm{E}+08 \quad 3.3030 \mathrm{E}+08 \quad 2.8927 \mathrm{E}+07 \quad 1.6285 \mathrm{E}+05 \quad 1.1829 \mathrm{E}+051013$. 290. $5.1460 \mathrm{E}+06 \quad 5.8885 \mathrm{E}+081.8022 \mathrm{E}+081.4498 \mathrm{E}+07 \quad 6.8877 \mathrm{E}+04 \quad 1.1441 \mathrm{E}+051025$.

```
.TYPE G.G
    PROG TO GENERATE THEORETICAL GAUSSIAN PROFILES
    AND PLOT OBSERVED PROFILES AND FIND TEMPERATURE
    Followinst is the startins point &sp) value used to
    establish the place in the deta to slart resdina.
    SP=1668.
C Following is a table that apzears in the report, and is not essential
to this prosram. It is included here for reference only.
GENERATE A TABLE TO FIND APPROX TEMP FROM HWHM OF RAW DATA
CC TE=700.
CC WRITE(5,*)'*******
C X IS TEMP, XX IS HWHM PSI, XXX IS HWHM CONVOLUTED WITH 3.5 PSI LASER
CC WRITE(S,*``TEMP, HWHM THEORETICAL HWHM CONUOLUTEI.
C3 X=((TE*(ALOG(.5)))/-15.689 )**.5
C }\textrm{CX=X*315./27.67
C XXX=((X*X)+(3.5*3.5))**.5
    WFITE(S,*)TE,X,XX,XXX
    TE=TE+100.
    IF (TE.LE, 1700) GO TO 3
    ************************************************************************
    The frosram starts here. YSM, YSSM, and YSCM are the fourier coffacients
    IIIMENSION YSM( 15),YSCM( 15),YSSM( 15)
    FEAL F(10)
C The followins stef 1s reauired for grafhing only and ls not essential
    CALL INITT(30)
C RETREIVE OBSERVED IIATA
C RETKEIUE ORSERUEI TEMP(TL), PRESSURE(PL.) COUNTS(CL.),
    KILORAYLEIGHS(NL), NF IS NEW FRESSURE, NC IS NEW % OF COUNTS
    FEAL TL(34)
    REAL PL(34)
    REAL CL(34)
    REAL KL(34)
    REAL NF(34)
    REAL NC(34)
    OFEN(UNIT=3,NAME='FW2:FP16. LIAT', REALONLY,TYFE='OLI'')
C REAII: TEMF FRES CDUNTS KRAYS
C FEAI BLANKS UNTIL START DF IIESIREII DATA*********************
    ZW=1
    WRITE(5,*)'ZW Z5'
    187 FEA[M 3;*,ERR=187)
C WRITE(5,*)ZW,ZS
    ZW=#ZW+1
C MAX ZW UALUE (SF) HELOW DETEFMINES STARTING FT TO REAII IIATA
C For convenzence, the followins gtef was moved to neer begining of fros.
C SF=1185.
    IF (ZW .LE. SP) GO TO 187
    ZY=1
    ZY=ZY+1
C
```

| C | Blanks have now been read to begining of data. Start readins data now. ZZ=1 |
| :---: | :---: |
| 189 | READ ( 3,150 )TL( ZZ), PL( Z2), CL( 22$)$, KL( ZZ) |
| C |  |
|  | NP( ZZ )aPL( ZZ ) W ( 298./( $273 .+T L\langle Z Z)$ ) |
|  | NC( ZZ ) =CL( ZZ)/KL( ZZ) |
| C |  |
|  | $Z Z=Z Z+1$ |
| C | The following step tells computer to read 34 lines of data (the frinse). |
|  | IF (ZZ .LE. 34) 60 T0 189 |
| 150 | FORMAT (9X,F6, 3,F7,2,15X,F6.0.4X,F5.3) |
| C | CALCULATE BACKEROUND INTENSITY ZBIAUERAGE OF $15 T$ AND LAST PTS |
| C | OF NC AFTER COMPENSATIONS, BEFORE SUBTRACTION OF BG AND NORMALIZATION |
|  | 28=( NC( 1 )+NC( 34 ) $/ 12$ |
|  |  |
|  | WRITE( S\%*)' BACKGROUND INTENSITY IS' |
|  | WRITE( 5 **)ZB |
| C | Followins step not reauired, so isnore. |
| C | WRITE(5r*)'NP( 34 )-NP( 1 )=' |
| C | Following is spacification of free spectral range in presgure units |
|  | SRS $=75.53$ ( 53 |
|  | WRITE( 5 **)SRS |
| C | NORMALIZE NUMBER OF COUNTS AND SUETRACT BACKGROUND |
| C | NORMALIZE BY DIUIDING BY 11TH ELEMENT OF NC (18TH FOR 34ELEMENTS ASEELOW) |
|  | WRITE( $5 ; *)$ 'NC GEFORE NORMALIZING AND AFTER SUBTRACTION OF BG' |
|  | ZA=1 |
| 149 | WRITE(5,*) NC( ZA)-ZB |
|  | $Z A=Z A+1$ |
|  | IF ( ZA . LE. 34) GO TO 149 |
| C | NOKMALIZE TO NN=NC (11)-ZB=MIDLLE NO, OF COUNTS - Z BACKGROUND |
|  | WX=NC(18)-ZB |
|  | WRITE (5,*)'WX IS' |
|  | WRITE(S,*)WX |
| C | The next 4 steps are uged as checks only andmay be innored. |
| C | NN=NC(18)-2B |
| C | NN=WX |
| CC | WRITE(5\%*)'WX IS' |
| CC | WRITE( 5,*)WX |
| C | The next 4 lines are the normalization degeribed 15 lines above |
|  | ZW=1 |
| 152 | NC( ZW) $=($ NC( $Z W)-Z B) / W X$ |
|  | $\mathbf{Z W} \mathbf{W} \mathbf{Z} W+1$ |
|  | IF (ZW .LE. 34) GO TO 152 |
|  | WRITE(S.*)'PRESSURE, COUNTS. KILORAYLEIGHS, IN RAW DATA FORM' |
|  | WRITE(5.*)'LAST 2 COLUMNS ARE NEW PRESSURE ANJ NEW COUNTS' |
|  | WRITE(5,*)' PL CL NL NC. |
|  | ZA $=1$ |
| 151 | WRITE(5,*)PL( ZA), CL( $2 A)$ ) KL( $2 A)$, NP( ZA ) , NC( $Z A)$ |
|  | $Z A=Z A+1$ |
|  | IF ( ZA .LE. Js) GO T0 151 |
|  |  |
| C | $100+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+$ |


| C | Next two lines are free spectral ranse in pressure units |
| :--- | :--- |
|  | WRITE(S, |
| CRITE SRS' |  |

## ORIGINAL PLAEE IS DE POOR QUALITY

WRITE(5.*)YSM(7) WRITE( 5 .*)YSM( 8 ) WRITE(5,*)YSM(9) WRITE (5.*)YSM( 10) WRITE(5,*)YSM(12) WRITE (Sp*)YSM(13) WRITE (5,*)YSM(14)

## WRITE(5,*)YSM( 15)

 WRITE(5,*)'NJW PLOT OBSERUED DATA USING FOURIER COEFFS'
CALL INITT(30)
CALL IIWINIOC(0.,629.,-1.,1.)
CALL TWINDO( $50,900,50,800)$
CALL MOVEA(0..0.)
$X=.01$
C FIND FIRST VALUE FW ANLI CENTRAL CW TO N PLOT ONLY
FW=YSM( 1)*COS (.01/100)+YSMK 2 $3 * C O S(2 * .01 / 100)$

*     + YSM $(3) * \operatorname{COS}(3 * .01 / 100)+Y \operatorname{SM}(4) * \cos (4 * .01 / 100)$
*+YSM( 5)*COS(5*.01/100)+YSM( 6)*COS (6*.01/100)
*     + YSM ( 7 ) $\operatorname{*COS}(7 * .01 / 100)+Y \operatorname{SM}(8) * \operatorname{Cos}(B * .01 / 100)$
$C W=Y S M(1) * \operatorname{COS}(F I)+Y S M(2) * C O S(2 * P I)+Y S M(3) * C O S(3 * F I)$
*     + YSM ( 4 ) *COS $(4 * F I)+Y S M(5) * \operatorname{COS}(5 * F I)+Y S M(6) * \operatorname{COS}(6 * P I)$
*     + YSM ( 7 ) *COS ( $7 * P I$ ) + YSM ( 8 )*COS $(8 * F \cdot I)+Y S M(9) * C O S(9 * P I)$
$Y=((Y S M(1) * \operatorname{COS}(X / 100)+Y S M(2) * \operatorname{COS}(2 * X / 100)+Y \operatorname{SM}(3) * \operatorname{COS}(3 * X / 100)$
* $+\mathrm{YSM}(4) * \operatorname{COS}(4 * X / 100)+Y \operatorname{SM}(5) * \operatorname{COS}(5 * X / 100)+Y \operatorname{SM}(6) * \operatorname{COS}(6 * X / 100)$
$*+Y \operatorname{SM}(7) * \operatorname{CoS}(7 * X / 100)+Y \operatorname{SM}(8) * \operatorname{Cos}(8 * X / 100)+Y \operatorname{SM}(9) * \operatorname{CoS}(9 * X / 100)$
*+YSM( 10 )*COS (10*X/100)+YSM(11)*COS(11*X/100)
*+YSM(12)*COS(12*X/100)+YSM(13)*COS(13*X/100)
*+YSM( 14 ) *COS( $14 * X / 100$ ) + YSM ( 15 ) $* \operatorname{COS}(15 * X / 100))$ )
C910 CALL LIRAWA $X, Y$ )
$x=x+1$
C IF (X.LE. 629) CO TO 900
C NOW FLOT LASER PROFILE WITH FOURIER COEFFS
$X=.01$
REAL L(10)
C LASER COEFFS FOK FSF OF 75.7332 PSI
L(1) $=.2254809$
$L(2)=.1613598$
L( 3 ) $=.1071364$
$L(4)=.094267033$
$L(5)=.074299119$
$L(6)=.055807292$
$L(7)=.029683163$
$L(8)=.02919389$
$L(9)=.018680153$
$L(10)=.018559434$
 LASER FIRST VALUE (LF), LASEF CENTRAL VALUE (LC) TO N FLDT ONLY FF $=. \because 633933$
C $\quad C=-i) .1496794$
$Y=((L(1) * \cos (X / 100)+L(2) * \cos (2 * X / 100)+L(3) * \cos (3 * X / 100)$

```
920 YaL(1)*COS(x/100)+L(2)*COS(2*x/100)+L( 3)*Cos( 3*x/100)
    *+L(4)*COS( 4*x/100)+L(5)*COS(5*x/100)
    *+L(6)*\operatorname{cos}(6*x/100)+L(7)*\operatorname{cos}(7*x/100)
```



```
    *+L(10)*COS(16.X/100)
        CALL DRAWA( }X,Y
        x=x+1
        IF (X .LE. 629) 60 T0 920
```



```
        10 Fourier coeffs were found but any number up to 10 mey be used
        Now select the number of Fourier coeffy to be used:
        YSM, 3)=0.
        YS., (4)=0.
        YSM( 5 ) =0.
        YSM(6)=0.
        YSM( 7)=0.
        YSM(8)=0.
        YSM( 9)=0.
        YSM(10)=0.
C FLOT CONVOLUTED PROFILE
        CALL MOVEA( 0.,O.)
        DO 940 M=1,10
C DECONUOLUTE LASEF FROM OBSEFUED UATA (/20 NOFMALIZES ONLY)
    040 YSM(M)=(YSM(M)/L(M) )/20
    WRITE(5,*)'DECONUDLUTED COEFFS ARE'
    WRITE(5,*)YSM(1)
    WRITE(S,*)YSM( 2)
    WRITE(S,*)YSM( 3)
    WRITE(5,*)YSM(4)
    WFITE(S,*)YSM(5)
    WFITE(5,*)YSM(6)
    WRITE(5,*)YSM(7)
    WRITE(5,*)YSM( 8)
    WRITE(5,*)YSH(9)
    WRITE(5,*)YSM( 10)
    WKITE(\Psi,*)'THIS TEXT CAUSES LAST LINE TO F.KINT
    TO AUERAGE COEFFS WITH ANOTHEF: FROFILE IJJIJJJJJIJIJJJJJIJJIJIJ
    C1=8.738/100
    C2=4.583/100
    C3=2.346/100
    YSM(1)=( YSM(1)+C1)/2
    YSM(2)=(YSM(2)+C2)/2
    YSM( 3) =( YSM( 3)+C3)/2
    WFITE(5,*)'AVERAGE COEFFS ARE'
    WRITE(S,*)YSM( 1)
    WRITE(5,*)YSM( 2)
    WRITE(5,*)YSM( 3)
    |コココココココココココココココココココココココココココココココココココココココココココココココココココココココココココココゴ
```



```
    YSM(1)=. 2433401
    YSM(2)*.1676189
    YSM( 3)=.1367357
``` unk

```

    X=.01
    C FIRST PLOT IS NON NORMALIZED VERSION
950 Y=YSM( 1)*COS(X/100)+YSM(2)*COS(2*X/100)+YSM( 3)*C0s( 3*X/100)
*+YSM(4)*COS(4*X/100)
*+YSM(S)*COS(5*X/100)
*+YSM( 6 )*COS(6*X/100)+Y5M( 7 )*COS(7*X/100)+YSM( 8 )*Cu5( 8*X/100)
CC CALL URAWA(X,Y)
C WRITE(S,*)X,Y
C FINL FIRST ANL CENTRAL VALUE.S TO NORMALIZE IN STEP 980
IF (X .NE. .O1) GO TO 960
FV=Y
960 IF (X,NE, 315.01) GO TO 970
C WRITE(S,*)X,Y
C WRITE(S,*)'*********************
CU=Y
C WRITE(S,*)'CENTRAL VALUE IS CU='
C WRITE(5.*)CU
C WFITE(5,*)'******************'
9 7 0 ~ X = X + 1
IF (X .LE. 629) GO TO 950
WRITE(5,*)'FIRST UALUE, FV, CENTFAL UALUE, CU'
WRITE(5,*)FV,CV
C WRITE(S,*)'CU IS'
C WFITE(5,*)CV
WRITE(5,*)' THIS TEXT CAUSES LAST LINE TO FRINT*
CO=(15.689416*((SFS/(2*FI))**2))/10000
WFITE(5,\#)'CO'
WRITE(5,*)CD
WRI TE( S, *)'%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'
CALL MOVEA(S .O.)
CALL LIKAWA( 629.,0.)
CALL MOVEA(0...2)
CALL IIRAWA( 629.,.2)
CALL MOVEA(0.,.4)
CALL DRAWA( 629.,.4)
CALL MOVEA( 0...5)
CALL JRAWA( 629...S )
CALL MOUEA(0.,.6)
CALL IIKAWA( 629...6)
CALL MOUEA( 0.0.8)
300tt+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+t+tt
CALL IRAWA(629.,.8)
CALL MOUEA(0..1.)
CALL GRAWA(629.,1.)
NOW FLOT NOFMALIZED CONUOLUTED DATA
CALL IWINDO(-31S.,315.,0.,1.)
X=.01 - 315.
980 Y=((YSM(1)*COS((X/100))+YSM(2)*COS(2*X/100)
*+YSM( 3)*COS(( 3*X/100))

```
```

    *+YSM( 4 )*COS(4*X/100)
    *+YSM(5)*COS(5*X/100)
    *+YSM( 6)*COS( 6*X/100)
    *+YSM( 7 )*COS((7*X/100))+YSH( 8)*COS( 8*X/100)
    *+YSM(9)*COS(9*X/100)+YSM(10)*COS(10*X/100)
    *)-CU)/(FU-CU)
    CALL DRAWA(X,Y)
    C WFITE(5,*)X,Y
X=X+1
IF (X .LE. 315) GO TO 980
C PLOT THREE REFERENCE CURUES T=800,1200,1600
CALL MOVEA(0.,1.)
C Followins is temperature of first reference curve
T=800
984 X=0.
CALL MOVEA(0.,1.)
C Below is the theoretical gaussian fringe profile
985 Y=EXF(-CO*(X*X)/T)
CALL IRAWA(X,Y)
x=x+10
C In the followins line 315 15 used because fi radians of fringe plotted
IF (X .LE. 315) GD TO 985
T=T+400
IF (T .LE, 1600) GO TO 984
C FINII SQUARE ERKOR FOF: T=
C Start searching for correct temferature at the temperature below
T=4nc
WFI:E(5,*)'TEMF, ERRGR'
986 EF=0.
x=0.
987 EF=EF+(i(((YSM(1)*COS((X/100))+YSM(2)*COS(2*X/100)
*+YSM( 3)*COS( ( }3*X/100))+YSM(4)*\operatorname{COS(4*X/100)
*+YSM(5)*COS((5*X/100))+YSM( 6)*COS(6*X/100)
*+YSM( 7)*COS((7*X;100))+YSM( 8)*COS( 8*X/100)
*+YSM(9)*COS(9*X/100)+YSM(10)*COS(10*X/100)
* )-CU)i(FU-CU))-
*( EXF(-CO*(X*X)/T ) ) ***2)
X=x+10
IF( X .LE. 315.) GO TO 987
C WRITE(5,*)'TEMF, ERFOR'
WRITE(5,*)T,EF
C WRITE(5,*)'THIS TEXT CAUSES LAST LINE TO FRINT*
T=T+10
IF (T .LE. 1700) GO TO 986
CLOSE(UNIT=3,IISF'OSE='SAVE')
C Next line apflies to graphing on termanal
CALL FINITT(0.76C)
ENI

```
.TYFE G.COM
    FOFTRAN/LIST:FW2:C.LST/SHOW:3 G.G
    LINK G/LINKLIERAKY:FSFLIE
    F G
```

\&0
- FORTRAN/LIST:FW2:G.LST/SHOW:3 G.G
.M.RIiv.
LINK G/LINKLIBRARY:FSPLIB
fliNK-W-Undefined globals:
*UIRSZ
in RG
ZW 2S
11+Tf+t+9ff
BACKGROUNII INTENSITY IS
988.7231
75.53000
NC BEFORE NORMALIZING AND AFTER SUBTRACTION OF BG
41.25928
136.7249
11.27686
120.3678
72.98279
119.8583
125.0291
4 1 3 . 9 3 9 1
433.7892
816.1156
1174.443
1839.478
2851.599
4722.567
6891.408
8991.732
10968.37
11536.11
11110.94
9288.200
6731.890
4509.587
2715.975
1797.112
918.6843
663.2294
319.3577
169.7096
303.6644
149.3887
141.9388
114.2964
104.1340
-41.25934

```

\section*{WX IS}
11536.11

FFESSUFE, COUNTS, KILOKAYLEIGHS. IN RAW IIATA FOKM LAST 2 COLUMNS ARE NEW FRESSURE ANLI NEW COUNTS
\begin{tabular}{|c|c|c|c|c|}
\hline PL & CL & KL & NP NC & \\
\hline 957.1900 & 584.0000 & 0.5670000 & 960.7752 & 3.5765325E-03 \\
\hline 954.9500 & 628.0000 & 0.5580000 & 958.5333 & 1.1851901E-02 \\
\hline 952.7000 & 555.0000 & 0.5550000 & 956.2716 & 9.7752654E-04 \\
\hline 950.3500 & 610.0000 & 0.5500000 & 953.9160 & 1.0434001E-02 \\
\hline 948.1900 & 585.0000 & 0.5510000 & 951.7607 & 6.32646J5E-03 \\
\hline 940.2000 & 633.0000 & 0.5710000 & 949.7921 & 1.0389834E-02 \\
\hline 943.8500 & 656.0000 & 0.5890000 & 947.4012 & 1.0838059E-02 \\
\hline 941.6300 & 843.0000 & 0.6010000 & 945.1664 & 3.5882030E-02 \\
\hline 939.2400 & 872.0000 & 0.6130000 & 942.7611 & 3.7602723E-02 \\
\hline 937.3100 & 1119.000 & 0.6200000 & 940.8429 & 7.0744425E-02 \\
\hline 934.8000 & 1339.000 & 0.6190000 & 938.3013 & 0.1018058 \\
\hline 932.5200 & 1745.000 & 0.6170000 & 936.0159 & 0.1594539 \\
\hline 930.6400 & 2381.000 & 0.6200000 & 934.1635 & 0.2471890 \\
\hline 928.0900 & 3541.000 & 0.0200000 & 931.5568 & 0.4093725 \\
\hline 925.7500 & 4799.000 & 0.6090000 & 929.2112 & 0.5975770 \\
\hline 923.8500 & 6128.000 & 0.6140000 & 927.3290 & 0.7794423 \\
\hline 921.5500 & 7246.000 & 0.6060000 & 925.0110 & 0.9507859 \\
\hline 419.3300 & 7565.000 & 0.0040000 & 922.7765 & 1.000000 \\
\hline 717.4700 & 7163.000 & 0.5920000 & 920.9374 & 0.7631442 \\
\hline 414.9400 & 6012.000 & 0.5850000 & 918.3515 & 0.8051413 \\
\hline 912.7600 & 4532.000 & 0.5870000 & 916.1720 & 0.5835493 \\
\hline 710.6800 & 3255.000 & 0.5920000 & 914.0910 & 0.3909105 \\
\hline 908.3000 & 2208.000 & 0.5960000 & 911.0835 & 0.2354324 \\
\hline 906.3900 & 1652.000 & 0.5930000 & 909.7880 & 0.1557814 \\
\hline 904.0000 & 1:35.000 & 0.5940000 & 907.3646 & 7.7635531E-02 \\
\hline 901.9500 & 773.0000 & 0.5890000 & 905.3192 & 5.7491589E-i) \\
\hline 399.3400 & 777.0000 & 0.5940000 & 902.66こ9 & 2.7683303E-02 \\
\hline 897.0800 & \$80.0000 & 0.5870000 & 900.4006 & 1.4711161E-02 \\
\hline 395.0400 & 747.0000 & 0.5780000 & 898.3924 & 2. \(5322946 \mathrm{E}-02\) \\
\hline 892. 6400 & 651.0000 & 0.5720000 & 895.9683 & 1.2949656E-02 \\
\hline 890.3300 & 549.0000 & 0.5740000 & 893.6648 & i. 2303872E-02 \\
\hline 888.2900 & 621.0000 & 0.5630000 & 891.6171 & 9.9077048E-03 \\
\hline 385.7800 & 612.0000 & 0.5000000 & 889.0557 & 9.0267882E-03 \\
\hline 883.5200 & 523.0000 & 0.5520000 & 886.7994 & -3.5765378E-03 \\
\hline
\end{tabular}

THIS TEXT CAUSES LAST LINE TO H-FINT
SKS
75.53000

YSM
0.3696032
0.2238235
(. 1115526
\(4.6207257 E-02\)
1.669949EE-02
Э. 2267537E-03
1.83935~6E-OJ
1.2564.i64E-03

ORIGINAL PAEE IS OF POOR QUALITY

\author{
3.5860834E-03 \\ 3.0901073E-03 \\ ROWQPLOT OBSERUED DATA USING FOUFIER COEFFS
}

7 e

\begin{abstract}
IIECONUOLUTEI COEFFS ARE
\(8.1958868 \mathrm{E}-02\)
3. \(935541 \mathrm{JE}-02\)
5. 2061040E-02
2.4508704E-02
1.1238017E-02
4.6828589E-03
0.0000000
0.0000000
0.0000000
0.0000000
this text causes last line to frint
FIFST UALUE, FU, CENTKAL VALUE, CU
\(0.2438049 \quad-4.6711199 \mathrm{E}-02\)
THIS TEXT CAUSES LAST LINE TO FRINT
CO
0.2267180

Z\%\%REy

 in_at@u\&yC)









 Y+32G
\end{abstract}


TEMF: ERFOR
400.0000
410.0000
420.0000
430.0000
440.0000
450.0000
460.0000
470.0000
480.0000
490.0000
500.0000
510.0000
520.0000
530.0000

ت40.0000
550.0000
560.0000
570.0000
580.0000
590.0000
\(\$ 00.0000\)
510.0000 - 20.0000 \(\$ 30.0000\) \(\$ 40.0000\) 650.0000 060.0000 570.0000 380.0000 590.0000 700.0000 710.0000 720.0000 730.0000 740.0000 \(-50.0000\) 760.0000 770.0000 780.0000 790.0000 800.0000 810.0000 320.0000 830.0000 840.0000 850.0000 860.0000 870.0000 +C880.0000 \(\uparrow\)

TYFE 0.0
C PROG TO FEAD ANI MONIFY LASER PROFILES
C TEMP(LASEK) FRESSURE(LASER) COUNTS(LASER) IIMENSION YSM ( 35 ), YSCM ( 35 ), YSSM ( 35 )
REAL TL(130)
REAL FL( 130 )
REAL CL( 130)
REAL NP( 130)
REAL NC( 68 ) OPEN( UNIT=3, NAME='FW2:FP11.DAT', READONLY,TYFE=' OLII') WRITE(5,*) TL NF* CL NC' DO \(100 \mathrm{I}=1,68\) FEAIK 3,50 ) TL( I ),FLL (I),CL(I)
IF (I .LE. 4 ) GO TO 100
C START TEMFERATURE COMFENSATION
C . NEW FRESSURE (NF )=FFESSURE OF LASEFK(FL)*TEMP FACTOR NP(I)=FL(I)*(298.; (273.+TL(I)))
C NORMALIZE THE COUNTS \(\mathrm{NC}(\mathrm{I})=\mathrm{CL}(\mathrm{I}) / 32350\)
WRITE(5,*)TL(I),NF(I),CL(I),NC(I)
50 FOKMAT ( 9 X, FG. \(3, F 7.2,15 \mathrm{X}\), F6.0)
100 CONTINUE
C NOW SMOOTH THE LASEF SCAN USING FOURIEF/ROELE METHOII FI \(=3.1415926535\)
CITE(5,*)'NP AT 1,2,3,4,5'
WFITE(5,*)NF(1)
WFITE (5,*)NF(2)
WFITE (5.*)NF(3)
WFITE(5,*)NF(4)
WFITE (5,*)NF(5)
WFITE(S.*)'NF AT 68.69'
WRITE (5,*)NF: 68 )
WRITE(5,*)NF(69)
\(N P^{\prime}(1)=N F(5)\)
\(\operatorname{NF}(20)=\operatorname{NF}(68)\)
\(N F(2)=N F(17)\)
\(\operatorname{NF}(3)=\operatorname{NF}(19)\)
\(N F(4)=N F(21)\)
\(N F(5)=N F(23)\)
\(N F(6)=N F(25)\)
\(N F(7)=N F(27)\)
\(N F(5)=N F(29)\)
\(\operatorname{NF}(9)=N F(31)\)
\(N F(10)=\operatorname{NF}(33)\)
\(N F(11)=N F(35)\)
\(N F(12)=N F(37)\)
```

    NF(13)=NF(39)
    NP(14)=NP(41)
    NF(15)=NF(43)
    NF(16)=NP(45)
    NF(17)=NF(47)
    NP(18)=NP(49)
    NP(19)=NP(51)
    W=1
    WFITE(5,*)'NEW FRESSURE VALUES IWP'
    103
    WRITE(5,*)W,NF(W)
    W=W+1.
    IF (W.LE. 20) GO TO 103
    IO 106 M=1,21
    FSF IN FRESSURE UNITS
    C SRS=53.2464
C SRS=43.3838
SRS=75.5332
SUNC=O.
SUNS=0.
C2=6.28318*M/SRS
DO 107 I=5,08
IF (I .NE. 5 ) GO TO }10
IHFS=NF:(I+1)-NF(I)
GO TO 105
104 CONTINUE
LIFS=NF(I)-NF(I-1)
105 CONTINUE
IF (M .NE. 1) GO rO 116
WFITE(S,*)IIFS
CC WFITE(5,*)NF(I)
116 CONTINLE
SUNC=SUNC+(NC(I )/M)*(2.*SIN(C2*NF(II )*((SIN(C2*ILFS/2. ) )**2
*)+COS(C2*NF(I ) )*SIN( C2*IIPS ))
SUNS=SUNS+(-NC(I )/M)*(2.*COS(C2*NF(I) )*((SIN(C2*DFSS/2.))**2
*)-SIN( C2*NF(I ) )*SIN( C2*IIPS ))
107 CONTINUE
YSM(M)=SORT( SUNS*SUNS+SUNC*SUNC )/FI
YSCM(M)=SUNC/FI
YSSM(M)=SUNS/FII
106 CONTINUE
WFITE(5,*)'YSM'
WFITE(S,*)YSM(1)
WRITE(5,*)YSM(2)
WFITE(5,*)YSM( 3)
WFITTE(5,*)YSM(4)
WFITE(5,*)YSM(5)
WRITE(5.*)YSM(6)
WKITE(5%*)YSM(7)
WFITE(S,*)YSM( 8)
WFITE(5.*)YSM(9)

```
```

    WFITE(5;*)YSM( 10)
    WRITE(5,*)YSM(11)
    WRITE(5.*)YSM(12)
    WRITE(5,*)YSM( 13)
    WRITE(5.*)YSM( 14)
    WRITE(5,*)YSM( 15)
    WRITE(5,*)YSM( 16)
    WFITE(5,*)YSM(17)
    WFITE(SP*)YSM( 18)
    WFITE(5,*)YSM( 19)
    WFITE(5;*)YSM( 20)
    WRITE(5,*)YSM( 21)
    CALL INITT(30)
    CALL [IWINDOC0.,629.,-1.,1.:
    CALL TWINIO(50,900,50,800)
    CALL MOUEA(0.,O.)
    X=.01
    Y=Y5M(1)*COS(X/100)+YSM( 2)*COS( 2*X/100)+YSM( 3)*COS( 3*X/100)+YSM( 4 )
    **COS(4*X/100)+YSM( 5)*COS( 5*X/100 )+YSM( 6)*COS( 6*X/100)+Y5M( 7)*COS
    *(7*X/100)
    *+YSM( 8)*COS( 8*X/100)
    *+YSM( 9)*COS(9*X/100)+YSM( 10)*COS
    *(10*X/100)
    *+YSM(11)*COS(11*X/100)+YSM( 12)*COS(12*X/100)
    C *+YSM(13)*\operatorname{COS(13*X/100)+YSM(14)*COS(14*X/100)+YSM(15)*COS(15*X/100)}
c *+YSM(16)*COS(16*X/1CO)+YSM(17)*COS(17*X/100)+YSM(18)*CCS(18*X/100)
c *+YSM(19)*COS(19*X/100)+YSM(20)*COS(20*X/100)+YSM(21)*COS( 21*X/100)
C IF (X.GE. 2) GO TO 910
WFITE(5,*)'X,Y'
WFITE(5.*)X,Y
910 CALL IIFAWA(X,Y)
x=x+1
IF (X .LE. 629) GO TD 900
CLOSE(UNIT=3,IISFOOSE='SAVE')
CALL FINITT(0,760)
END

```
.TYFE O.COM
FORTRAN/LIST:FW2:O.LST;SHOW:3 0.0
LINK O/LINKLIEKAFY:FSFLIB
R 0
- eo
.MAIN.

FORTRAN/LIST:FW2:0.LST/SHOW:3 0.0
- LINK O/LINKLIBRAFY:FSPLIE
?LINK-W-Uncjefined slobals: sUIFSZ

\begin{tabular}{llll}
23.77200 & 939.0898 & 3509.000 & 0.1084699 \\
23.88800 & 940.5798 & 3409.000 & 0.1053787 \\
23.99800 & 941.9172 & 3434.000 & 0.1061515 \\
24.10500 & 943.1827 & 3317.000 & 0.1025348 \\
24.21600 & 944.3544 & 3374.000 & 0.1042968 \\
24.31800 & 945.4357 & 3304.000 & 0.1021329 \\
24.44800 & 946.3330 & 3333.000 & 0.1030294 \\
24.64100 & 946.7205 & 3189.000 & \(9.8578051 E-02\) \\
24.72700 & 947.6982 & 3211.000 & \(9.9258117 E-02\) \\
24.77300 & 948.9128 & 3386.000 & 0.1046677 \\
24.81400 & 950.1931 & 3363.000 & 0.1039567 \\
24.84900 & 951.4221 & 3287.000 & 0.1016074 \\
24.88700 & 952.6312 & 3385.000 & 0.1046368 \\
24.97300 & 953.2164 & 3454.000 & 0.1067697 \\
24.99300 & 954.5724 & 3323.000 & 0.1027202 \\
25.02300 & 955.7662 & 3642.000 & 0.1125811 \\
25.05100 & 956.8363 & 3622.000 & 0.1119629 \\
25.06800 & 957.8914 & 3722.000 & 0.1150541 \\
25.07500 & 959.3185 & 3837.000 & 0.1186090 \\
25.08100 & 960.7289 & 4064.000 & 0.1256260 \\
25.10700 & 961.6247 & 4104.000 & \(0.1268 c 24\) \\
25.11100 & 963.1113 & 4476.000 & 0.1383617 \\
25.11600 & 964.4546 & 4941.000 & 0.1527357 \\
25.12700 & 965.7284 & 5274.000 & 0.1630294 \\
25.12900 & 967.0714 & 5498.000 & 0.1699536 \\
25.13400 & 968.3645 & 6284.000 & 0.1942504 \\
25.14800 & 969.1286 & 6991.000 & 0.2161051 \\
25.14300 & 970.1844 & 8488.000 & 0.2623802 \\
25.13200 & 971.5097 & 11030.00 & 0.3409583 \\
25.12700 & 972.7354 & 16357.00 & 0.5056260 \\
25.12600 & 974.1231 & 24998.00 & 0.7727357 \\
25.12400 & 975.5840 & 32280.00 & 0.9978362 \\
25.12700 & 976.8936 & 32312.00 & 0.9988254
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 25.14000 & 977.7606 & 28974.00 & 0.8956414 \\
\hline 25.14000 & 979.2099 & 22393.00 & 0.6922102 \\
\hline 25.14600 & 980.5896 & 16566.00 & 0.5120866 \\
\hline 25.15100 & 981.8824 & 12226.00 & 0.3779289 \\
\hline 25.15600 & 983.2053 & 9171.000 & 0.2834930 \\
\hline 25.15900 & 984.4948 & 7474.000 & 0.2310355 \\
\hline 25.16800 & 985.0446 & 6617.000 & 0.2045441 \\
\hline 25.16500 & 986.5237 & 5754.000 & 0.1778671 \\
\hline 25.16200 & 987.8430 & 5349.000 & 0.1653478 \\
\hline 25.15800 & 988.9757 & 4901.000 & 0.1514992 \\
\hline 25.15800 & 990.1851 & 4684.000 & 0.1447913 \\
\hline 25.16000 & 991.4576 & 4362.000 & 0.1348377 \\
\hline 25.16000 & 992.7970 & 4224.000 & 0.1305719 \\
\hline 25.15200 & 993.5732 & 4035.000 & 0.1247295 \\
\hline 25.15100 & 994.8059 & 3970.000 & 0.1227202 \\
\hline 25.14900 & 996.0220 & 3882.000 & 0.1200000 \\
\hline 25.14500 & 997.3847 & 3711.000 & 0.1147141 \\
\hline 25.14300 & 998.7208 & 3633.000 & 0.1123029 \\
\hline 25.14100 & 999.9669 & 3773.000 & 0.1166306 \\
\hline 25.14200 & 1000.813 & 3606.000 & 0.1514683 \\
\hline 25.13800 & 1002.316 & 3611.000 & 0.1116229 \\
\hline 25.13900 & 1003.622 & 3613.000 & 0.1116847 \\
\hline 25.14200 & 1004.941 & 3541.000 & 0.1094590 \\
\hline 25.14500 & 1006.290 & 3732.000 & 0.1153632 \\
\hline 25.15300 & 1007.503 & 3567.000 & 0.1102628 \\
\hline 25.15700 & 1008.749 & 3707.000 & 0.1145904 \\
\hline 25.15800 & 1009.5i5 & 3607.000 & 0.1114992 \\
\hline 25.15800 & 1011.004 & 3609.000 & 0.1115611 \\
\hline 25.16200 & 1012.160 & 3605.000 & 0.1114374 \\
\hline 25.15600 & 1013.529 & 3551.000 & 0.1097682 \\
\hline 25.14300 & 1014.623 & 3434.000 & 0.1061515 \\
\hline \multicolumn{4}{|l|}{NF AT 1,2,3.4.5} \\
\hline \multicolumn{4}{|l|}{0.0000000} \\
\hline \multicolumn{4}{|l|}{0.0000000} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{. 0000000}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{939.0898} \\
\hline \multicolumn{4}{|l|}{NF AT 68,69} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{1014.023
0.0000000}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{NEW FFEESSUFE UALUES NP} \\
\hline 1.000000 & 939.0898 & & \\
\hline 2.000000 & 952.6312 & & \\
\hline 3.000000 & 954.5724 & & \\
\hline 4.000000 & 956.8363 & & \\
\hline 5.000000 & 959.3185 & & \\
\hline 6.000000 & 961.6247 & & \\
\hline 7.000000 & 964.4546 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 8.000000 & 0714 \\
\hline 9.000000 & 969.1286 \\
\hline 10.00000 & 971.5097 \\
\hline 11.00000 & 974.1281 \\
\hline 12.00000 & 976.8936 \\
\hline 13.00000 & 979.2099 \\
\hline 14.00000 & 981.8824 \\
\hline 15.00000 & 984.4948 \\
\hline 16.00000 & 986.5237 \\
\hline 17.00000 & 988.9757 \\
\hline 18.00000 & 991.4576 \\
\hline 19.00000 & 993.5732 \\
\hline 20.00000 & 1014.623 \\
\hline SM & \\
\hline 0.2254809 & \\
\hline 0.1615598 & \\
\hline 0.1071364 & \\
\hline \(9.4267033 \mathrm{E}-02\) & \\
\hline 7.4299119E-02 & \\
\hline 5.5807292E-02 & \\
\hline 2.9683163E-02 & \\
\hline 2.8193893E-02 & \\
\hline \(1.8680153 \mathrm{E}-02\) & \\
\hline 1.8559434E-02 & \\
\hline 4.4040936E-03 & \\
\hline 9.1322120E-03 & \\
\hline 4.7645955E-03 & \\
\hline 7.8142360E-03 & \\
\hline 4.0516402E-03 & \\
\hline 2.6422290E-03 & \\
\hline 5.1584304E-04 & \\
\hline 2.9768483E-03 & \\
\hline 3.2191928E-03 & \\
\hline 3.7323066E-03 & \\
\hline 1.9601721E-03 & \\
\hline \(X, Y\) & \\
\hline 9.9999998E-03 & 0.8134672 \\
\hline \(X, Y\) & \\
\hline 1.010000 & 0.8127617 \\
\hline \(X, Y\) & \\
\hline 2.010000 & 0.8106764 \\
\hline \(X, Y\) & \\
\hline 3.010000 & 0.8072207 \\
\hline \(X, Y\) & \\
\hline 4.010000 & 0.8024113 \\
\hline \(X, Y\) & \\
\hline 5.010000 & 0.7962701 \\
\hline \(X, Y\) & \\
\hline ¢. 010000 & 0.7888262 \\
\hline \(x, Y\) & \\
\hline 7.010000 & 0.7801136 \\
\hline \(X, Y\) & \\
\hline 9.010000 & 0.7701731 \\
\hline \(x, r\) & \\
\hline 9.010000 & 0.7590501 \\
\hline \(X, Y\) & \\
\hline 10.01000 & 0.7467955 \\
\hline \(X \cdot Y\) & \\
\hline 11.01000 & 0.7334650 \\
\hline \(X, Y\) & \\
\hline 710.01000 & 0.7191188 \\
\hline
\end{tabular}

\section*{APPENDIX E. SHADOW HEIGHT}

\section*{Shadow Height in Two Dimensions}

To explain the concept of shadow height, this section shows how shadow height is calculated for the simplified case of two dimensions.

The first step is to find:
\(M=\) distance from observer to shadow along line of observations from \(\alpha\) and \(\theta\), where
\(\alpha=\) angle from local vertical to line of observation, where positive values are toward the Sun, and
\(\theta=\) change in latitude between observer and sunset as shown.

M is found in terms of \(\alpha\) and \(\theta\). Then, shadow height will be found in terms of \(M\) and \(\alpha\).

Let \(\beta \equiv \alpha-\theta, \quad h \equiv M \cos \beta\)
\(M=\frac{h}{\cos \beta}=\frac{h}{\cos (\alpha-\theta)}=\frac{r-r}{\cos (\alpha-\theta)}\)
which applies for \(\alpha \pm 90^{\circ}\).

Shadow height (SH) is determined from \(M\) and \(\alpha\) (see Figure \(E-1\) ), using the cosine law, where \(\psi \equiv 90-|a|\)
\[
\begin{aligned}
(S H+r)^{2} & =r^{2}+M^{2}-2 r M \cos (90+\Psi) \\
S H+r & =\left[r^{2}+M^{2}-2 r M \cos (90+\Psi]^{\frac{1}{2}}\right. \\
S H & =\left[r^{2}+M^{2}-2 r M \cos (90+\Psi]^{\frac{1}{2}}-r\right. \\
S H & =\left[r^{2}+M^{2}-2 r M \cos |\alpha|\right]^{\frac{1}{2}}-r
\end{aligned}
\]
```

because $\cos (90+\Psi)=\cos (90+(90-|\alpha|))$
$=\cos (180-|\alpha|)$
$=-\cos |\alpha|$

```

\section*{Shadow Height Program Rotations Used}

Two shadow height programs are included. One of these programs (L. S . ) is a simple version, but it requires the solar depression angle \(T\), and the azmuth (or bearing, i.e., E from N) angle from the Sun of the observation be input (in degrees). These two angles may not be known, but they are not required in the more complex version of the program (M.SH). Instead, the time and place are input and these two angles are calculated in M.SH. The rest of M.SH is the same as program L.SH.

The components of the vector from the Farth to the Sun in "inertial space" are found in M.SH. This vector is called VI. By performing a serfes of rotations, this vector is transformed into the frame of the observer, so the resulting vector VL gives the direction to the Sun from the observer in terms of local zenith and azmuth.

To demonstrate this, an example is shown beiow. In Figure E-2 the components of VI are \(X, Y\), and \(Z\). With an angle of \(66^{\circ}\) for \(\phi\), these components are \(0,0.9\), and 0.4 , respectively. The next rotation produces the "Geographic Vector," VG, which is fixed with respect to Earth and points toward the Sun. The amount of rotation, -GSTR, depends on the time.

The next rotation is the longitude rotation. If the observer is at the \(0^{\circ}\) longitude, in England, as he is in this example, the rotation is 0 .

The next rotation is the latitude rotation. Here, the coordinate system is rotated \(90^{\circ}\) about \(Y\); then the coordinate system is rotated through an angle that equals latitude, so the \(Z\) axis is in the local vertical. The \(X\) axis points south and the \(Y\) axis points east. As in the other rotations, the new components for the unit vecter pointing to the Sun In this rotated coordinate frame ere computed. These new vector components are VL(1), VL(2), and VL(3).

Finally, the observer has the components of a unit vector pointing toward the Sun in terms of local zenith, south, and east, so he can easily
calculate the zenith and bearing angles to the Sun. The zenith angle;
i.e., the angle from thia zenith to the Sun is
\[
\phi=\tan ^{-1} \sqrt{y^{2}+x^{2}} \frac{z}{z}
\]
which can be visualized by translating the \(X Y\) plane component along \(Z\) to the maximum 2 value.

To find the bearing, or azimuth angle,
\[
\theta=\tan ^{-1} \frac{y}{x}
\]
is computed, where \(\theta\) is measured to the \(E\) from \(S\). To convert this to a "bearing" angle which is defined as angle \(E\) of \(N\),
\[
\text { Azimuth }=\text { Bearing }=180-\theta
\]

TABLE E-1. SHADOW HEJCHT PROGRAM VECTOR COMPONENTS
\begin{tabular}{lllll}
\hline & \(X\) & \(Y\) & Z & \\
\hline & & & & \\
VI & 0 & 0.9 & 0.4 & inertial vector \\
VG & 0.9 & 0 & 0.4 & geographic vector \\
VJ & 0.9 & 0 & 0.4 & after longitude rotation \\
VL & 0.05 & 0 & 0.95 & after latitude rotation
\end{tabular}
```

TYFE M.SH
C m.sh SHADOW HEIGHT FRROG. BASEII ON LOCAL TIME
LIMENSION UI(3),BU(3),VG(3),VL(3),VJ(3),FU(3),ZZ(3,3)
[IIMENSION C(3,3),CT(3,3)
CALL INITT(30)
CALL IIWINDO(7200 ,67000.,0.,250.)
CALL TWINDO(50,900,50,800)
CALL MOVEA(0.,0.)
CALL MOVEA(3600.,0.)
CALL LIRAWA( 3600.,10.)
CALL MOVEA(7200..0.)
CALL IIRAWA(7200.,0.)
RAD=57.295779
C LATITUIE AND LONGITUDE OF OESERUER IS
ALA=64.86001/RAII
ALO=-147.84711/RAD
C ALA=49./RAL
C ALO=-122./RAD
1 IAYY=61
C INAY=46
IYK=1984
3 SECS=0.
CALL MOVEA(0.,0.)
C 4 WFITE(5,*)'ENTER YEAF (INTEGEK), UAY (INTEGER), SECONIS (FEAL)"
4 MS=1
C **************\#\#\#

```

```

C 5 KEAIM(5,*) IYF,IDAY,SECS
IF (IYF.LT.1901.0F.IYF.GT.2099) STDF'
CALL SUN(IYF,IIIAY,SECS,GST,SLONG,SRASN,SIECC)
C WRITE(5,200)
C WFITE(5,300) IYF,ILAY,SECS,GST,SLONG,SAEC
C GO TO S
COO FOKMAT(2I4,F1O.2)
200 FORMAT(8X,'IYF',OXX,'ILAY',GX,'SECS',TX,'GST',5X,'SLONG',
*5X,'SLEEC')
300 FORMAT(1X,2I10,4F10.3)
c ****************************************************************
C NOW FINI INEFTIAL COORIIS (VI) FROM SIEC ANLI SLONG
F=((3.141592/2)-( SIEC/KAII ))
SLONG=SLONG/FAI
UI1=SIN(F)*COS(SLONG)
UI2={ SIN(P)*SIN( SLONG))
U13=COS(F)
UI(1)=VII
UI(2)=VI2
UI(3)=VI3
C WFITE(5,*)'INEFTIAL VECTOK UI X Y z COMPS ARE'
C WFITE(5,*)UI
C ***************************************************************
C NOW TRANSFORM THE INERTAIL COOFIIINATES (UI) TO GEOGRAFHIC (UG)
GSTK=GST/FALI
CALL FOTXYZ(-GSTF,ZZ,3)

```
```

    CALL TRF(UI,ZZ,VG)
    C WRITE(5,*)' GEOGRAFHIC VECTOR UG X Y Z COMFS TO SUN FROM EARTH'
C ARITE(5.*)UG
C ***********************************: ********************************
C NOW TRANSFORM THE GEOGRAPHIC COOFIS (VG) TO LOCAL AZIMUTH ANII ZENITH
C NEXT ROTATE LONG ABOUT Z AXIS
XI=90./RAD
CALL ROTXYZ(-ALO,ZZ,3)
CALL TRF(UG,ZZ,U.J)
C WFITE(5**)' UJ IS'
C WRITE(5,*)V.J
C NEXT ROTATE LAT, ANLI 90 nEGREES ABOUT Y
E=-ALA+XI
CALL ROTXYZ(E,ZZ,2)
CALL TRF(UJ,ZZ,VL)
C WRITE(5,*)'ZENITH FFOM ACOS Z TO SUN IS *
X=VL{1)
Y=VL(2)
Z=VL(3)
SQ=SQRTi(X**2 )+(Y**2))
AZ=( ATANŻ(SQ,Z ))*FAI
C WFITE(5,*)AZ
TH=( ATAN2( Y,X) )*FAII
E=180-TH
C WFITE(5,*)'AZIMUTH TH IS'
C WFITE(5,*)TH
C WFITE(S,*)'REAFING TO SUN IS'
C WFITE(5,*)H

```

```

C FINLI SOLAF LIEFRESSION ANGLE
TI=AZ-00.
C TI=45.
C WKITE(5.*)'SOLAR LEFFESSION ANGLE IS'
C WFITE(5,*)TI
C INFUT GEOGRAFHIC GEARING ANGLE OF OSEFVATION
C WRITE(5,*)'INFUIT GEOGFAFHIC EEAFING ANGLE OF OBS (IIEG)'
C FEALK5%*)GB
GE=.01
C WRITE(5,*)' ========================================'
COO WFITE(5,*)'GEOGFAF'HIC GEAFING ANGLE OF OES IS'
C WFITE(5,*)GE
900 MS2=1
C INFUT ENITH OF OESEFUTION (LEEGFEES)
C WFITE(5,*)'INFUT ZENITH OF OES'
C FEALI( 5,*)ZI
ZI=60.
C WFITE(5.*)'ZENITH OF OESERUATION IS*
C WFITE(5,*)RI
C CALCULATE HEAFING ANGLE OF OFSEFVATION FFOM SUN
910 SI=GE-G
C SI=45.
C WRITE(S,*)'GEAFING ANGLE OF OESERUATION FROM SUN 15'
C WFITE(5,*)ST

```

```

c WFITE(5.*)IINAY
GO TC \Xi
CALL FINITT(0.760)
ENII
.TYFE M.COM
FORTRAN/LIST:FWI:M.LST/SHOW:3 M.SH
LINK MoHLLII'LIEFAKY:FSFLIE
$K M$
.TYFE SUN.CAL
SUBFCUTINE SUN I IYK, IIAAY,SECS,GST,SLONG,SKASN,SUEC ) [IATA FIALI:57.29578;
HOUELLE FFEEISION [I.J, FIAY
IF (IYK.LT.1901.OK.IYF.GT. 2099) RETUFN
FLIAY $=$ SECS $/ 96400$.
IIJ = 365* $I Y F-1900)+(I Y F-1901) / 4+I I A Y+F$ IAAY-0. $5 I L 0$
$T=[1] / 36525.$.
UL $=$ IMOLI $279.696078+0.9856473354 *[1], 360.110$.
GST $=$ IMMOLIC $279.070983+0,985 \dot{6} 473354 *[1]+360 . * F I A Y+180$. , 360. IIO)

```

```

SLQNG $=$ UL + (1.91940-0.004789*T)*CIN(G)+0.020094*SIN( 2.*G)
UBLI $\mathrm{I}=(23.45229-0.0130125 * T) / \mathrm{FAI}$
SLF $=($ SLONG-0.005686:/KALI
SINI=SIN( OHLI() *SIN(SLF)
COSI=SQFT(1.-SINH**2)
SLIEC=FAII*ATAN SINT:COSII)
COTAN=COS(OELIQ)/SIN(OELIR)
SFASN=180. -FAI *ATANZ (COTAN*SINI/COSI, -COS SLF ) ;COSII) FETURN
ENII

```
```

    SUBFOUTINE TRF(X,A,XT)
    DIMENSIDN X(3),A( 3,3),XT( 3)
    n0 1 I = 1,3
    XT( I )=0.0
    n0 1 J=1,3
    XT(I )=XT(I)+A(I,J )*X(.J)
    CONTINUE
    RETURN
    EN[I
    SUEROUTINE ROTXYZ(A,E,IFOT)
    LIMENSION E(3,3)
    A1=COS(A)
    AZ=SIN(A)
    GD TO (1,2,3),IROT
    ROTATION AROUT THE X-AXIS
    E(1,1)=1.0
    E(1,2)=0.0
    E( 1,3)=0.0
    E( 2,1)=0.0
    B( 2, 2)=A1
    E(2,3)=-A2
    E( 3,1)=0.0
    E ( 3,2)=A2
    E( 3,3)=A1
    FETURN
    EROTATIIRY AHOUT THE Y-AXIS
    E(1,2)=0.0
    F(1,3)=-A2
    E(2,1)=0.0
    E(コっこ)=1^
    E(2,3)=0.0
    E( 3,1)=A2
    E( 3,2)=0.0
    E( 3, 3)=A1
    RETURN
        ROTATION ABOUT THE Z-AXIS
    B(1,1)=A1
    E(1,2)=-A2
    E( 1,3)=0.0
    E(2,1)=A2
    F(2,2)=A1
    E(2,3)=0.0
    E(3,1)=0.0
    E( 3,2)=0.0
    E( 3,3)=1.0
    FETTURN
    ENII
    ```


Figure E -1. Local shadow height geometry.


APPENDIX F. EXAMPLE OF RAW DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Scan \\
Numb
\end{tabular} & & & \({ }^{\circ} \mathrm{C}\) Pr & essur & & Encoder Posicion & & Counts & Photo & meter & & & & & & Mirror osition \\
\hline 1 & 24 & 29 & 246 & 097.7 & & 3878 & 0 & 458 & 0 & 208 & 0 & 0 & 0000 & 00 & & 1 \\
\hline 3 & 35 & 24 & 248 & 899 & 89 & 3968 & -3 & 476 & 0 & 208 & 0 & 0. & 0000 & 0 & - & 1 \\
\hline 3 & 36 & 24 & 245 & 502 & 33 & 4050 & 0 & 330 & 0 & 203 & 0 & 0 & 0000 & 0 & ) & 1 \\
\hline \(?\) & 3? & 24 & 248 & 904 & \& 7 & 4150 & 143 & 691 & 0 & 211 & 0 & 0 & 0000 & 0 & - & 1 \\
\hline ? & 38 & 24 & 251 & 908 & 8 \% & 4240 & & 783 & 0 & 203 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 39 & 24 & 240 & 908 & 46 & 4330 & 9 & 1067 & 0 & 205 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline ? & 4.3 & 24 & 247 & 911 & 79 & 4420 & 6 & 1347 & 0 & 210 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 11 & 24 & 254 & 914 & 02 & 4510 & 3 & 1064 & 0 & 213 & 0 & 0 & 0000 & 0 & - & 1 \\
\hline 3 & 42 & 24 & 251 & 916 & 51 & 4600 & -3 & 2013 & 0 & 214 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 43 & 24 & 250 & 918 & 92 & 4690 & 3 & 2172 & 0 & 212 & 0 & 0 & 0000 & 00 & 0 & 1 \\
\hline ? & 14 & 24 & 250 & 920 & 89 & 4778 & 3 & 2065 & 0 & 211 & 0 & 0 & 0000 & 00 & 0 & 1 \\
\hline 3 & 45 & 24 & 340 & 923 & 32 & 4864 & -3 & 1754 & 0 & 225 & 0 & 0 & 0000 & 0 & 0 & : \\
\hline 3 & 46 & ¢ 4 & \(2: 9\) & 925 & 82 & 4952 & 12 & 1438 & 0 & 215 & 0 & 0 & 0000 & 00 & 0 & 1 \\
\hline ; & 47 & 27 & 342 & 828 & 33 & 5040 & 137 & 1008 & 0 & 218 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 48 & 24 & 250 & 930 & 42 & 5124 & 0 & 835 & \(\checkmark\) & 213 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 49 & 24 & 243 & 932 & 99 & 5210 & 6 & 656 & 0 & 219 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline : & 50 & 24 & 246 & 935 & 17 & 5292 & 6 & 627 & 0 & 212 & 0 & 0 & 0000 & & 0 & 1 \\
\hline 3 & 5: & 24 & :4! & 937 & 18 & 5376 & -3 & 498 & 0 & 211 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & \(\leq 2\) & 24 & 242 & 939 & 55 & 5458 & -3 & 514 & 0 & 215 & 0 & 0 & 0000 & & 0 & 1 \\
\hline 3 & 53 & 24 & 235 & \(9+2\) & 09 & \(5: 42\) & 3 & 492 & 0 & 211 & 0 & 0 & 0000 & - & 0 & : \\
\hline 3 & 54 & 29 & 240 & 944 & 49 & 3624 & -3 & 437 & 0 & 210 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 55 & 24 & 239 & 946 & 89 & 5704 & 15 & 417 & 0 & 218 & 0 & - & 0000 & 0 & 0 & 1 \\
\hline : & 56 & 24 & こ36 & 948 & 87 & 5789 & -6 & 437 & 0 & 218 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & :? & 24 & 2?8 & 951 & 23 & 5862 & 3 & 434 & 0 & 213 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & \(\bigcirc 9\) & 24 & 227 & 953 & 86 & 5942 & 125 & 412 & 0 & 217 & - & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 59 & 24 & 235 & 956 & 00 & 6024 & -3 & 409 & 0 & 215 & 0 & 0 & 0000 & 0 & 0 & , \\
\hline : & \(65^{5}\) & 24 & 191 & 958 & 33 & 6104 & -3 & 385 & 0 & 215 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 5 : & 24 & 198 & 961 & 14 & 6184 & 3 & 435 & 0 & 217 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 62 & 24 & 225 & 963 & 30 & 8284 & -6 & 474 & 0 & 217 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 3 & 69 & \(\geq 1\) & 226 & 965 & 85 & 6342 & 0 & 468 & 0 & 221 & 0 & 0 & 0000 & 0 & 0 & + \\
\hline 3 & 64 & 24 & 228 & 967 & 97 & 6410 & 3 & 930 & 0 & 221 & 0 & 0 & 0000 & 00 & 0 & 1 \\
\hline Scam & AT & T: & & 9495 & 56 & PERIS & Cope az & AND EL & & 000 & 0 & 00 & forib & back & & 1 \\
\hline 1 & E & 19 & 174 & 987 & 70 & \(E 420\) & -6 & 449 & 0 & 227 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline C & F 6 & 29 & 182 & 989 & E5 & 6347 & 6 & 43 A & 9 & 231 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 67 & 24 & 191 & 961 & 94 & 6266 & -121 & 441 & 0 & 234 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline ; & 63 & ? \({ }^{\text {a }}\) & \(09 ?\) & 959 & 66 & 6188 & 0 & 448 & 0 & 238 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 89 & 29 & 070 & 957 & 59 & 6110 & -6 & 458 & 0 & 24: & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 7 C & 29 & 077 & 955 & 10 & 6032 & 0 & f69 & - & 250 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 1 & 7: & 24 & 072 & 952 & 75 & 5952 & 0 & 414 & 0 & 252 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 72 & 24 & 063 & 950 & 31 & 5072 & - 6 & 498 & 0 & 249 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 73 & 24 & 069 & 947 & 69 & 5782 & -3 & 430 & - & 254 & 0 & . & 0000 & 0 & 0 & 1 \\
\hline 4 & 74 & 24 & 059 & 945 & 43 & 5712 & -3 & 441 & - & 244 & - & 0 & 0000 & - & 0 & 1 \\
\hline \(t\) & 75 & 23 & 057 & 943 & 18 & 5630 & -3 & 498 & 0 & 250 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 76 & 24 & 05? & 941 & 01 & 5548 & 0 & 479 & 0 & 2:2 & 2 & 0 & 0000 & - & 0 & 1 \\
\hline 1 & 77 & 24 & 070 & 938 & 32 & 5464 & -3 & 503 & - & 246 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 78 & 24 & 063 & 936 & 10 & 5380 & -6 & 502 & 0 & 242 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 79 & 24 & D6P & 933 & 47 & 5290 & -6 & 889 & 0 & 239 & 0 & - & 0000 & - & 0 & 1 \\
\hline 4 & 80 & 24 & 063 & 931 & 01 & 5210 & -134 & 872 & - & 234 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 1 & 21 & 24 & 057 & 928 & 77 & 5126 & 3 & 1103 & 0 & 236 & 0 & 0 & 0000 & 0 & 1 & 1 \\
\hline 4 & 02 & 24 & 03: & 926 & 63 & 5040 & -3 & 1429 & 0 & 240 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & d 3 & 24 & 067 & 924 & 20 & 4954 & -134 & 1881 & 0 & 292 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 9 & 84 & 24 & 065 & 921 & 94 & 4870 & 3 & 2234 & 0 & 242 & 0 & 0 & 0000 & 00 & 0 & 1 \\
\hline 4 & 85 & 24 & 059 & 919 & 70 & 4784 & -3 & 2502 & 0 & 242 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline \% & 86 & 24 & 089 & 917 & 21 & 4698 & -134 & 2414 & 0 & 233 & , & - & 0000 & 0 & 0 & 1 \\
\hline 4 & 87 & 24 & 065 & 914 & 99 & 4612 & 3 & 2248 & 0 & 233 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 89 & [4 & 060 & 913 & 03 & 4526 & -6 & 1771 & 0 & 240 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 89 & 24 & 079 & 910 & 42 & 4438 & -8 & 1350 & 0 & 237 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline 4 & 90 & 24 & 077 & 908 & 00 & 4346 & 0 & 1019 & 0 & 235 & 0 & - & 0000 & 0 & 0 & , \\
\hline 4 & 91 & 24 & 0.2 & 905 & 73 & 4256 & -9 & 848 & 0 & 227 & 0 & 0 & 0000 & 0 & 0 & 1 \\
\hline
\end{tabular}

We can find the temperature \(T\) in terns of width by substituting \(\frac{1}{2} I_{\max }\) for 1 in equation ( \(A-1\) )
\[
\text { where } I_{\max }=\left\{\frac{M_{c}^{2}}{2 \pi k T \lambda_{o}^{2}}\right\}^{\frac{1 / 2}{2}}
\]

Substituting into equation (A-1) gives:
\[
\frac{1 / 2}{2}\left\{\frac{M_{c}^{2}}{2 \pi k T \lambda_{0}^{2}}\right\}^{\frac{1}{2}}=\left\{\frac{M_{c}^{2}}{2 \pi k T \lambda_{0}^{2}}\right\}^{\frac{1}{2}} \exp \left\{\frac{-M_{c}^{2}}{2 k T \lambda_{0}^{2}}(\Delta \lambda)^{2}\right\}
\]

Solving for \(T\), we obtain:
\[
\begin{aligned}
\ln \left(\frac{1}{2}\right) & =\frac{-2.196825683 \times 10^{26}}{T}(\Delta \lambda)^{2} \\
T & =3.169349519 \times 10^{26}(\Delta \lambda)^{2}
\end{aligned}
\]
where \(\Delta \lambda\) is the HWHM in meters.

To input A rather than \(m\), we have:
\[
T=3.169349519 \times 10^{6}(\Delta \lambda)^{2}
\]
where \(\Delta \lambda\) is the HWHM specified in \(\AA\).

To put the formula in terms of FWFM, multiply the numerical constant by \(\left(\frac{1}{2}\right)^{2}=\frac{1}{2}\)
\[
T=7.92337 \times 10^{5}(\Delta \lambda)^{2}
\]
where \(\Delta \lambda\) is the FWHM in \(\stackrel{\circ}{\AA}\).

This is consistent with the result of Wark [3] who obtained \(T=7.89 \times 10^{5}\) \((\Delta \lambda)^{2}\). To find a characteristic value for \(\Delta \lambda\), we solve for HWHM ( \(\AA\) ) from above:
\[
\begin{aligned}
(\Delta \lambda)^{2} & =\frac{T}{3.16 \times 10^{6}} \\
\text { HWHM }(\mathrm{A})=\Delta \lambda & =\frac{T}{3.16 \times 10^{6}}
\end{aligned}
\]

For \(T=1000 \mathrm{~K}\), HWHM \((\mathrm{O})=0.01776_{\mathrm{O}}^{\circ}\)
\[
=17.76 \mathrm{~mA}
\]

By John C. Bird, Gary R. Swanson, and Richard H. Comfort

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassitied.

A. J. DRESSER

Director Space Science Laboratory```

