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Abstract

Summer research at NASA Lewis Research Center gave the opportunity
to incorporate new control volumes in the Denton 3-D finite-volume time-
marching code. For duct flows, the new control volumes require no
transverse smoothing and this allows calculations with large transverse
gradients 1in properties without significant numerical total pressure
losses.

The summer research also pointed to possibilities for improving the
Denton code to obtain better distributions of properties through
shocks. Much better total pressure distributions through shocks are
obtained when the interpolated effective pressure, needed to stabilize
the solution procedure, 1is used to calculate the total pressure. This
simple change largely eliminates the undershoot in total pressure down-
stream of a shock. Overshoots and undershoots in total pressure can
- then be further reduced by a factor of 10 by adopting the effective
density method, developed at VPI&SU, rather than the effective pressure
method. Use of a Mach number dependent interpolation scheme for pres-
sure then removes the overshoot 1Iin static pressure downstream of a
shock,

The stability of interpolation schemes used for the calculation of
effective density 1s analyzed and a Mach number dependent scheme, the
M&M formula, is developed. This formula combines the advantages of the
correct perfect gas equation for subsonic flow with the stability of 2-
point and 3-point interpolation schemes for supersonic flow.
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PART 1

SUMMER WORK AT NASA LEWIS RESEARCH CENTER

INVISCID FLOW CALCUIATIONS USING THE DENTON CODE

1.1 NEW CONTROL VOLUMES IN THREE DIMENSIONS

A new control volume has been introduced (1) which allows the
calculation of transonic flow in ducts using the finite-volume
method without the smoothing of flow properties that is usually
needed(2). Previous work(l) using these new control volumes has
been limited to two dimensions. The first part of the work at
NASA Lewis this summer was to extend these new control volumes to
three-dimensional flow calculations, This was thought important
since the three-dimensional version of the Denton finite-volume
code is the one typically used at NASA.

An example of a typical new three dimensional control volume
is shown in Fig. 1. The locations of control volume boundaries
are specified in the input data and the control volume surfaces
are constructed from this information. Once the control volume
boundaries are known then the grid points are placed in the
middle of the ubstream and downstream faces of the control
volume. The fluxes through the transverse faces of the control
volume needed for the continuity and momentum balances are
determined from interpolated properties using the nodes adjacent
to the face. Fig. 2 shows two adjacent control volumes of

different sizes., The procedure for calculating the properties to
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be used in calculating the fluxes on the common boundary(face I)
can be shown in the following way. For face I, any property, X,
is determined from the average of the property at points A and

B, where the values of the properties X, and XB are determined by

A
linearly interpolating between the values of the property at
nodes 1 and 2, and between the values of the property at nodes 3
and 4, respectively.

Assuming that face IT corresponds to a solid boundary, the
values of a property at points C and D are determined by linear
extrapolation using the values of the property at nodes 1 and 2,
and 3 and 4 ; respectively. For the present calculations, only
the pressure needs to be calculated at the solid boundaries since
the fluxes of mass are set equal to zero through these solid
boundaries.

Additional adjustments were made to NASA's finite volume
code to allow the calculation of cascade geometries with the new
control volumes . Fig.b3 shows a two dimensional projection of a
typical grid system up to the leading edge of a cascade blade.
Note that a grid point islnotvlocated along the periodic boundary
when the new control volumes are used . The computational domain
extends from the lower periodic boundary to the upper periodic
boundary. The missing calculation points outside the
computational domain are replaced by the corresponding points
adjacent to the other periodic boundary. For the calculations
made this summer the leading and trailing edges were modeled as

shown in Fig. 4.
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1.2 SAJBEN'S DIFFUSER CALCULATIONS USING THE NEW CONTROL VOIUMES

Sajben's diffuser(3) was used as a test case to test the
effect which the new control volumes have on the calculation of
transonic flow. The results from calculations using NASA's
current finite-volume code are used for comparison.

The geometry and grid used in the calculations are shown in
Fig. 5. There were 34 axial grid points and 10 equally spaced
radial grid points. The current NASA code requires input in
X-r-6 coordinates. This requires that the two dimensional nozzle
geometry be input either in the x-6 coordinates or in the x-r
‘coordinates. Both were used successfully. The current
calculations are made essentially two dimensional by inputing the
coordinates of gpe diffuser at a very large radius (900 m.) in
x-r coordinates. The calculations begin at x/h=-3.6 and end at
x/h=7.9, where h is the throat height. The inlet total pressuré
is 135 kPa and the inlet total temperature is 300 K. The exit

static pressure is 108 kPa. The gives a P =0,800.

t/Pt

With these conditions, one dimensional isentropic flow gives a

exi inlet

shock with an upstream Mach number of 1.495 at the location
marked in Fig. 5. Multigridding is used to improve the
convergence speed. A copy of the input file used for these
calculations is in Appendix A.

Fig. 6 shows a comparison of bottom flat wail_static /
pressures obtained using the old control volumes and using the
new control volumes( "o0ld": will refer to the type of control

volumes used in NASA's current finite volume code and "new" will

refer to the type of control volumes shown in Fig. 1). A one
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dimensional analytical calculation was made for the Sajben
diffuser geometry using the above specified boundary conditions;
Fig. 6 includes the static pressure distribution of this
one—-dimensional calculation for comparison with the numerical

solutions. The agreement is good except through the shock.
1.3 EVAIUATION OF TOTAL PRESSURE IN THE DENTON CODE

Fig. 7 shows a comparison of the calculated bottom flat wall
total pressures and the one dimensional analytical solution .
Both calculations show overshoots and a large undershoot in total
pressure in the region through the shock. The exit total
pressures, howevef, are essentially the same for both the
calculations and are close to the one-dimensional analytical
solution.

The overshoots and undershoots in total pressure arise
because the pressure used in the momentum equation, an
interpolated effective pressure, is not used to calculate the
total pressure. The current code uses the thermodynamic pressure,
determined from the ideal gas equation of state, to evaluate the
total pressure.

Because of the way that the effective pressure is calculated
in NASA's current finite-volume code, the shock is smeared out
over several grid points. One byproduct of this smearing is that
the maximum Mach number before the shock shown in the
calculations is lower that the one dimensionai value (1,385 and
1,433 compared with 1.495) and should therefore not be used to

predict the total pressure loss across the shock. However the
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total pressure loss through the shock agrees well between the one

dimensional solution and the calculation., Pt

/Pt from

exit
the one-dimensional solution was .,9304 . This compares well with

inlet

the computed value of .931 using the new control volumes and
reasonably well with the value of .93 4 using the old control
volumes.

The effective pressure is used to stabilize the calculation
procedure and reduces overshoots and undershoots in static
pressure and Mach number through the shock. From Fig. 7, it was
seen that the local total pressure undershoots considerably
because of this but that the net total pressure loss through the
shock is calculated with good accuracy. If the local total
pressure is calculated from the effective pressure rather than
the thermodynamic pressure then the total pressure is much better
behaved as can be seen in Fig, 8. This demonstrates the advantage
of being consistent by choosing the pressure for use in
evaluating the total pressure to be the same as the pressure used
in the momentum equation. Since the effective pressure is equal
to the thermodynamic pressure at the exit the value of the

calculated Pt /Pt

exit is still .91, Fig. 9 shows a

inlet
comparison of the effective pressure and the thermodynamic
pressure for this test case . Perhaps the effective pressure
should be considered the best representation of the "actual™
static pressure,

It was attempted to remove the pressure inconsistency brought
about in the transonic calculations by the way that the effective

pressure is calculated. The program currently uses Egs. 2-4

given in Table 1 to calculate the effective pressure, and for the
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Table 1 Effective Pressure Calculation

Pressure Interpolation

FUP= 1.7 (1)

A= (FUP-LOMpry =pry) @
1
0.0< A < 0.9

= - * * <A)* * -
CFP_ = (1.-RF)*CFP_ + RF*(1.-A)*.333%(P,_,- P_ )  (3)

where RF= 0.02 to 0.05 typically and CFP is updated
every 5 iterations

= : 4
PEFFI PI+1 + CFPI (4)

In the limit when convergence is reached,
= ' “A) * * -
PEFFI PI+1 + (1.-A)*0.333 (PI—l PI+2)

Relaxation to Ideal Gas

CFP_= (1.-RF)*CFP  + RF#(P  -P (5)

I+l)

P =
EFFI PI+1 + CFPI 6

in the limit when convergence is reached,

PEFFI = PI
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calculations in Figs. 5-9 the pafameter FUP was set equal to 1.7
(Eq. 1). TIf Egs. 5-6 are used instead, as the solution
approaches a steady state the thermodynamic pressure would equal
the effective pressure, But this procedure causes large
overshoots in the static pressure as can be seen in Fig. 10. The
solution also did not converge and the static pressures shown in
Fig. iO are after 2200 iterations. Many different ways of
applying equations 5-6 were tried for the transonic case but none
of ﬁhem got rid of the overshoot problem. However, equations 5
and 6 could be used to obtain a stable solution if the Mach

number throughout the duct remained subsonic.

1.4 THE INFIWUWENCE OF TRANSVERSE SMOOTHING ON A STEP

PROFILE IN A STRAIGHT DUCT

Transverse smoothing is required in the current Denton
method with the o0ld control volumes because there are more grid
points across the duct (unknowns) than there are control volumes
(equations). Smoothing formulae are used to add non-physical
"extra equations™., Two forms of transverse smoothing are used in
the Denton code; these are linear smoothing, described in Table
2, and non-linear smoothing, described in Table 3 and Fig. 11,
This transverse smoothing of properties causes numeriéal
viscosity to be introduced into the solution when large gradients
in the properties are seen across the duct.

‘For the Sajben diffuser test case, there are no large
gradients of properties across the duct so you would expect

little numerical viscosity. This lack of significant numerical
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Table 2 Linear Smoothing of Flow Properties

D(J)= (1.~SF)*D(J)+SF*(D(J+1)+D(J-1))

2.

the variable D at node J is smoothed using this

equation.
0.01 - 0.02.

then smoothed.
smoothed are/),/ovx,/QVY,FvVe, and/Oe.

The smoothing factor is SF, typically
The variables are updated and
‘The varitables that are

Table 3 Procedure for Non-Linear Smoothing

1)

2)

3)

4)

5)

an average value of a property D is determined from
the neighboring nodes using linear interpolation.
AVG(J)  (see equation 1 Fig. 11 )

the difference between the actual and average value of
a property D at a node is determined and assigned the
variable name CURVE(J) (see equation 2 Fig. 11 )

a variable SCURVE is determined from the average of the
variable CURVE from the neighboring nodes.
(see equation 3 Fig. 11 )

the variable D at node I is smoothed using equation 4

in Fig. 11 .

The smoothing factor is SF, typically 0.01-0.02.

this non~linear smoothing procedure results in no
smoothing added to linearly or parabolically varying

properties.
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viscosity is seen by the agreement between the calculations made
using the new control volumes without smoothing and old control
volumes with smoothing(see Fig. 6 and 7). As a severe test case,
calculations were made for a step profile in inlet properties in
a straight duct. The geometry can be seen in Fig. 12. A step

inlet profile of total pressure is specified. The total pressure

at the centerline is 135 kPa and the total pressure is reduced to

120 kPa (Ptside/Pt =0.889) at the sides(see Fig. 13) .

centerline
The exit static pressure in the duct is 108 kPa

(0.8*Pt ).

.Fig. 14 shows Mach number profiles at three axial locations

centerline

along the duct for the case where linear smoothing was used (with
SF=0,02) . The inlet step profile(x=0.0m) is quickly altered
into a parabolic type profile{x=4.0m). This parabolic profile
then changes relatively little until the end of the duct
(x=21.,0m). Fig. 15 presents the total pressure distribution
along the duct., The step profile causes an almost step change in
the total'presSure at the beginning of the duct and then the
total pressure decreases as in a viscous flow., Fig. 16 compares
the Mach number profiles at the end of the duct for calculations
using linear smoothing (SF=0.02) and non-linear smoothing
(SF=0.02). Non- linear smoothing did not improve the profile.
Additional calculations were made using the same boundary
conditions as aboveAbut using the new control volumes and no
smoothing. Fig., 17 compares the inlet Mach number and exit Mach
number profilés for this case . The improvement over the previous
results is dramatic. The total pressure distribution has also

improved especially along the centerline of the duct as can be
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seen in Fig, 18, These results show conclusively that the
numerical scheme used to calculate flows with large traﬁsverse
gradients in properties, like those seen in turbulent boundary
layers, must not have smoothing of properties in the transverse

direction.
1.5 SHOCK LOSSES IN AN INCLINED DI FFUSER

One of the possible sources of inaccuracy in the calculation
of total pressure in transonic compressor calculations is due to
the possibility of smoothing through the shock due to a inclined
flow path, In the Sajben diffuser calculations for Figs. 6-10
the property gradients across the duct were not large and
transverse smoothing did not add noticeable numerical viscosity
into the calculations. However, if the diffuser were inclined at
an angle, the shock would become oblique to the grid and would
introduce large transverse gradients in properties there, Fig.
19 shows Sajben's diffuser inclined at an angle of 40 degrees
with respect to the horizontal axis. This geometry would cause a
normal shock to cross about 4 transverse grid lines. The Sajben
geometry used previously(see Fig. 5) has been extended with
constant area sections added on to the inlet and exit of the
duct, The same inlet and exit boundary conditions were specified
as in the previous Sajben diffuser calculations. The input file
used in these calculations is in Appendix A,

The effective pressures along the flat wall are plotted in
Fig. 20 for the o0ld and new control volumes, with and without

smoothing respectively. The wall pressures using the new control
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volumes were determined by linearly extrapolating from the
interior points, The effective preésures for the o0ld control
volumes are displaced downstream of the effective pressures using
the new control volumes. Fig. 21 presents the total pressures
along the bottoﬁ wall calculated using the effective pressures,
The exit total pressures are approximately the same(0.941 for new
C.V. and 0,944 for old C.V.) for both calculations but the local
total pressures from the calculation using the new control
volumes are better behaved. In both cases, however, the exit

total pressure ratios of 0.941 and 0,944 are dJifferent from the

exit total pressure of 125.7 kPa (Pt /Pt

exit inlet
calculated for the horizontal sajben diffuser,

=0.931)

Further comparisons of the inclined and horizontal results,
using the old and new control volumes, are shown in Figs.
22,23 ,24,and 25. The minimum static pressure for the inclined
calculations is greater than that obtained from the horizontal
calculations. The total pressure behavior is also poorer for the
inclined calculations when compared with the horizontal solution.
The total pressure losses through the shock for the inclined
calculations are approximately 15% less than ﬁhose for the
horizontal calculations. The oscillations in total pressure at
the exit of the inclined diffuser (with the old control volumes)
are perhaps the result of the long thin control volumes that are
seen there.

It was difficult to obtain a converged solution for the
inclined geometry with either control volume. So the results
presented here are after 1000 itefations. At this point in the

calculations the maximum error in mass flow rate with the old
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control volumes is 0.2% and the maximum change in axial velocity
was ,00009 of the mean flow velocity. For the new control
volumes, the corresponding error is 0.2% and the corresponding

change is ,00019.,
1.6 EFFECTIVE DENSITY CALCULATIONS

The method presented in reference‘l uses a different
procedure to update the'pressure and density. The pressure is
updated directly from the continuity error and then the density
is updated using the ideal gas equation of state. This procedure
was necessary because of the multi-volume approach used in the
boundary layer region., This updating procedure was also
implemented in tﬁe three dimensional version of the finite volume
code at NASA lewis.

If the dehsity is updated in the calculations such that the
effective density becomes the actual‘density at a node the same
overshoot phenomena in static pressure and Mach number appeafs
here as did when the effective pressure was used (see Fig. 10).
The solution would also not converge., Therefore an effective
density which does not use the actual pressure at a node, but
uses an interpolated pressure, is used and is described in Table
4, This effective density reduces the overshoot problem and
results in a stable solution. The following results use this
effective density. Just as the interpolation procedure before
introduced an inconsistency between the thermodynamic and
effective pressures, the ideal gas equation of state is not

satisfied completely when the effective density is used.
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Table 4 Effective Density Calculation

= - * * -
CFPI (1.-RF) CFPI + RF/3. (PI+1 PI—Z)

P+ = (Bp + CFRY)
*
R* T4

in the limit when convergence is reached
P T S TS )

3
RT;

1.14
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Fig, 26 compares the bottom flat wall static pressures for
calculations of transonic flow in Sajben's diffuser (Fig. 5)
using the effective pressure method and the effective density
method with the same boundary conditions as in our previous test
cases and the new control volumes (the effective pressure is
shown for the effective pressure method) . Fig. 27 compares the
total.pressures for these two caseé. The effective density
method gives a much more uniform total pressure upstream and
downstream of the shock; there ére no overshoots in total
pressure when the effective density method is used.

To obtain a stable solution using the effective
density, it was found necessary to assume a constant total
temperature rather than use the energy equation in its full
form, If may be that an interaction between the continuity
error and the energy equation was_responsible for this

instability.
1.7 CASCADE GEOMETRIES

Some additional calculations were made, using the new control
volumes and the effective pressure method, on some simple cascade
geometries. The purpose of these runs was to check out the
periodicity condition and the treatment of the leading and
trailing edges which were discussed earlier, The geometries are
shown in Figs. 28 and 29. The inlet total pressure was 101,352
kPa, the inlet total temperature was 288,166 K, and the exit
‘static pressure was 85.44 kPa, Fig., 30 shows the Mach numbers

calculated along grid lines which are closest to the pressure and
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suction surfaces., A copy of the input data is in Appendix A.

The only difficulty encountered in these cascade flows was a
problem with the flow properties oscillating at the inlet about
some mean value between adjacent grid points. This was due to
the periodicity condition and the absence of smoothing to damp
out these oscillations. This problem was found to occur only
. when there were an even number grid points across the inlet. An
odd number of transverse grid points seems to decouple the

odd—even oscillations,
1.8 CALCUILATIONS FOR AN INLET GUIDE VANE

Fig, 31 shows the geometry and grid for an inlet guide vane
that was my final test for the summer work. The total pressures
along the streamline closest to the suction surface are presented
in Fig. 32. The new control volumes are used for both
calculations, one uses the effective pressure method and oﬁe uses
the effective density method. The total pressure distributions
in Fig. 32 ;, which use the new control volumes ,can be compared
with the results ,from the Denton code using the o0ld control
volumes, shown in Fig. 33. Both the calculations using the
effective pressure method have large oscillations in total
pressure around the leading edge whereas the caiCUlations using
effective density method give better total pressure behavior,

The effective density method is much better at calculating the
total pressure than the effective pressure method even when the
effective pressure is used to calculate the total pressure as was

done for the results shown in Fig. 32 .
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Figs. 34 and 35 present Mach numbers along grid lines
through the inlet guide vane for calculations using the effective
density method with the new control volumes and the effective
pressure method with the o0ld control volumes ,respectively . It
was found necessary to use a small amount of smoothing(SF=0.005),
even using the new control volumes ,for this inlet guide vane,
This need for smoothing is perhaps the result of an incorrect

treatment of the pressure at the trailing edge.

SUMMARY

The work at NASA lLewis Research Center involved using and
modifying the Denton finite-volume time-marching code. The

results can be summarized as follows.

1. The new control volumes developed at V.P,I. & S.U. can
be extended to a three dimensional geometry. For duct
flows the new control volumes require no transverse

smoothing.

2., The results for Sajben's diffuser were essentially the

same for both control volumes,
3. If the effective pressure is used to calculate the total
pressure the total pressures are much better behaved

through the shock.

. Even though the total pressure is incorrectly calculated
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9.

in the shock, the overall total pressure loss through the

duct is calculated accurately.

Ptexit/Ptinlet
A, One dimensional solution 0.9304
B. 01d control volumes 0.934
C. New control volumes 0.931

An interpolated effective pressure is needed to stabilize

the solution.

For calculations where large transverse gradients in
properties are observed, transverse smoothing cannot be

used if an accurate solution is to be expected.

The new control volumes with no transverse smoothing
allow calculations with large transverse gradients in

properties without significant numerical total pressure

. losses.

Good convergence was not obtained for the inclined Sajben

with either control volume.

Calculations which use the effective density method,
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developed at V.P,I. & S.U,, rather than an effective
pressure method give a much more uniform total pressure
upstream and downstream of the shock. Overshoots and
undershoots were a factor of 10 smaller with the

effective density method.
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D
2)
3)

4)

D(J+1)

y X2

FU(J)= X2/ (X1+X2)

FD(J)= X1/ (X1+X2)

AVG(J)=FD(J)*D(J+l)+FU(J)*D(J—l)
CURVE(J)=D(J)~-AVG(J)
SCURVE(J)=FU(J)*CURVE(J—1)+FD(J)*CURVE(J+1)

D(J)= (1.-SF)*D(J)+SF*(AVG(J)+SCURVE(J))

Fig. 11 Non-Linear Smoothing
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Fig. 19 Sajben's Diffuser Inclined at 40° Angle
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PART 2
1-D STABILITY ANALYSIS OF DENSITY-PRESSURE RELATIONS
USED IN THE COMPUTATION OF TRANSONIC FLOW

2.1 Rackground

When calculations of 1-d or 2-d choked flow with a shock were

*
attempted with equations that were relaxed to perfect gas (i.e.
so that when converged, the ideal gas equation of state would be
satisfied with the same density and pressure as used in the
momentum and continuity equations) convergence was not obtained.
Eventually, as more and more iterations were taken wobbles
appeared in the pressure solution which grew and continuity
errors grew worse instead of better.

The following analysis explains the cause of the instability.
Further analysis then shows the stability of the 3 point
interpolation scheme used for the calculation of effective

pressure. Still further analysis suggests a Mach number dependent
~interpolation scheme.

2.2 1-D Flow Example

- ——— ———— i ———————— — — T~ — —————— T ————— A — T _— - = ———— T — T~ —— ——————

We are seeking a 1-d steady flow solution for continuity and
momentum

¥'puy = 0 - (1)

Vipuu =-9p (2)

for a perfect gas with constant total temperature.

* Using either an effective pressure (Denton) or an effective
density (Nicholson/Moore) finite-volume time marching method.
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2.3 Continuity

Continuity between grid points i and i+1, in discretized
form, when a converged solution is obtained, is simply

fi+1uf A - pf.uf.A. =0 (3)

p i+1%i+1 i” iYi

where superscript £ stands for final.
Now consider an intermediate solution, p and u, which does not

satisfy continuity and changes, 8p and 5u, so that continuity is
satisfied. Then

(pi41*8p ) (U g ¥8u, A, — (p+8p ) (u +8u )A; = 0 (4)
Rearranging,
PioaByagUyyg = PABUY ¥ Uy pAy L8Ry, ~ uA;Bey

T PiUiAL T PiagUierByag Y0P BUGR; 78Ry 00 4Ry (5)

The first two terms on the right hand side represent the current

continuity error and the last two are of order 82 and so will be
negligible when the computation is nearly converged and 8p<<p and
du<<u. Therefore we may write this equation as

A

- p;,A,bu, +
plAlsul u A

i+1B54+18P 541 ~ UsR 8P,

_pi+1 i+18ui+1

= f + small (6)

error, i

In the density update time marching calculation procedure
(Denton), when there is a continuity error, the density on the
downstream side of the control volume is changed.

5p = h [ 8t/Vol, (7)

i+1 error, 1

The density change affects continuity directly, but it also acts
through the perfect gas equation to change the pressure which acts
through the momentum equation to change the velocity.

In the pressure update time marching calculation procedure
(Nicholson/Moore), when there is a continuity error, the pressure
on the upstream side of the control volume is changed.

8p; = M, 8t RT/Vol, (8)
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This pressure change acts through the momentum equation to change
the velocity and through the perfect gas equation to change the
density.

2.4 Momentum

The .steady state momentum equation discretized over the
control volume between points i and i+l is

(pud) .

1419541 (puA)iui = -[pi+1Ai+1 T PyA; - ps(Ai+1-Ai)] (9)

where P is the pressure acting on the sides of the control
volume. Traditionally,

Py = (pi+1+pi)/2 (10)
therefore,

(pud) (puA)iui = -(pi'+1 - pi)(Ai+1+Ai)/2 (11)

i+1%i+1 7
We may write this as

R - pi)Voli/Sxi (12)

B A SR 2 O

i+1gi+1

where f=puA is the mass flow rate, Voli=8xi(Ai+1+Ai)/2 is the

volume of the control volume and 8xi=x. ~Xs is the grid spacing.

i+1
Eq. 12 may be rewritten as

(u.+1fui)(mi+1+mi)/2 + (mi+1-mi)(ui+1+ui)/z = -(pi+1—pi)v°lilsxi

i
(13)
or

thu. —ui) + u fh

i+l —pi)VoliISxi (14)

error,i - ~Pi+1

In the Nicholson/Moore method the cohtinuity error term is
omitted and the change in velocity on the downstream side of the
control volume is proportional to the momentum error,

8u]'_-l-l =10- (piA+1+8pi+1—pi-6pi)VOli/SXi

where 8p is the chahge in pressure calculated from the continuity

error. In the Denton method, the continuity error is not omitted
in the momentum equation and the change in pu is calculated from
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the momentum error,

Slpu)y gy = Uj,98P541 * P1418u544

{ -(pi+1+Spi+1—pi—6pi)Voli/8xi

- m(ui+1—ui) - ufn )| St/Voli (16)

error,i

Taking the mean velocity u approximately equal to the velocity on
the downstream side U;,q+ We may subtract u times Eq. 7 from Eq.

16 and so for the Denton method we get
- m(ui+1-ui)]8t/(pi+1Voli) (17)
the same as for the Nicholson/Moore method.

If at the beginning of a time step the momentum equation is
balanced except for the continuity error,

m(ui+1-ui) = -(pi+1-pi)Voli/8xi (18)

then for both methods we have
In general , in the density update (Denton) method, the time
- step is calculated from the CFL condition

8t = 8x/ (u+c) . (20)

where ¢ is the speed of sound. In the pressure update method the
time step for momentum is obtained‘fpom the coefficient of Usq
in the steady flow equation so that

8t = 8x/u. _ (21)
We may combine these two equations by saying
8t = &x/(u+ec) (22)

where e=1 for the’density update method and e=0 for the pressure
update method. Combining Egs. 18 and 15 then gives

p du, = (Spi - 8pi+1)/(u+ec)i+1. (23)

i+1 " "i+1
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2.5 Change in Continuity for Ong‘Time Step

The left hand side of Eq. 6 may be used to evaluate the. change
in continuity for one time step. Substituting Egq. 23 into this
expression to eliminate pdu yields

Ai+1(5pi—8pi+1)/(u+ec)i+1 - Ai(Spi__l—Spi)/(u+ec)i

+ . - o . . = . PRy -
ui+1Ai+18p1+1 u1A18pl mchange.l (24)

Rearranging to order the coefficients of the 8p’s and 6p's

- Ai/(u+ec)i 5p; _4
+ [Ai+1/(u+éc)i+1+Ai/(u+ec>i] Bpi - uyA; 5p;
= Ajyq/lurec) 8Pj+1 f Uie1Bie1 BPj4g
B mchange.i (25)

For stability we require that the change in continuity be of
the same sign as the continuity error. Note that this is a
necessary condition for stability but may not be a sufficient
condition to ensure stability.

2.6 Stability of Density Update Method Using Perfect Gas

For an intermediate solution where there is a continuity error
only between i and i+l1l, Eq. 7 yields

8pi+1 = merror.iSt/VOIi (26a)
Spi =0 (26b)
8p;_4 = 0 - (26¢)
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and from perfect gas, assuming temperature changes over the time
L 3
step are negligible ,

5pi+1 = 8pi+1RT = merror.iRT I.‘»t/Voli : (27a)
8p, = 8p;,RT =0 (27b)
8p;_y = 8p;_4RT = 0. (27¢)
For this case then Eq. 25 reduces to
- Ai+1RT/(u+C)i+1 * ui+1Ai+1 ] merror.iSt/VOIi N ﬂlchange.i (28)
Since for stability we require merror and mchange to have the same
sign, we must have
[ - RT/(u+c)i+1 *usy, ].Ai+1 > 0. (29)
Substituting c>/y for RT yields
2 .
c /[7(u+c)i+1] Uy, > 0 (30)
or
2
T Usg (u+c)i+1 > ¢, (31)
Evaluating for v = 1.4 we need
u > 0.48 c. (32)

Thus for low Mach number flow this density update method is
unstable.

2.7 Stability of Pressure Update Method Using Perfect Gas

For a continuity error only between i and i+l, Eqg. 8 yields

8p; = My, o, iOtLRT/VOl, (33a)

8pi+1 =0 (33b)

. ® If at this point the alternative assumption was made that the
changes were isentropic, then &6p = yRT8p and less conservative
stability criteria would be obtained, equivalent to setting v=1.0
in the following analysis.
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8p; 4 = 0 , (33¢)

and from perfect gas assuming temperature changes over the step
are negligible

Spi

8p, /RT (34a)

8p 8p;,,/RT = 0. (34b)

i+1

Therefore, in this case, Eq. 21 becomes

. +A./u, -u,A, . , = .

(Ai+1/u1+1 Al/u1 ulAllkT)merror,18tcRT/V°11 &change,l (35)

For merror and mchange to have the same sign, we require
Ai+1/ui+1 + Ai/ui - uiAi/RT > 0, (36)

Assuming the values at i are approximately the same as the values
at i+1, and again using c2/7 for RT yields

2/u - 7u/c2 > 0 (37)
or

2¢2 > yul. (38)

For vy = 1.4 then we need
u < 1.2 c; (39)

thus for high Mach numbers this pressure update method is
unstable.

2.8 ind i i cti D

If an inconsistency in the pressure-density relation is
introduced such that the pressure used in the momentum equation is
offset by 1 grid point from the density used in the continuity
equation, the equation of state may be written as

P; = P;41RT (40)

In a density update method this may be viewed as an effective
pressure evaluated downwind of its point of use in the momentum
equation. Similarly, in a pressure update method the equation
represents an effective density evaluated upstream of its point of
use in the continuity equation.
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For both the density and preséure update methods, Eq. 21 now
becomes

- (Ai/(u+ec)i + uiAi/RT)(StRT/Voli_ )

1 l‘herror.i—l

+ (Ai+1/(u+ec)i+1 +Ai/(u+ec)i +ui+1Ai+1/RT)(8tRT/Voli) merror.i

- (A;,,/(u+ec), ) (BLRT/VOl,, ) Rerror, i+l

N @hange.i (41)

From this equation we can see that the coefficient of merror i is
always positive and so this pressure-density relation passes the

simple stability criterion (mchange,i same sign as merror,i) for

all Mach numbers. Note also that the coefficients of # = . 4
and merror.i+1 are of opposite sign to the coefficient of merror,i

and in general of smaller magnitude; this further assures the
stability of Eq. 40.

While the pressure-density relation, Eq. 40, is stable,
testing has shown that it results in poor shock capturing as the
calculated shock is spread over numerous grid points. Fig. 1
shows the calculated and theoretical pressure distribution for a
1-d calculation with a nominal shock Mach number of 1.45,.
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One of the pressure-density relations used in the density
update method is a three point interpolation of density to obtain
the effective pressure. For approximately uniform T we may write
this as

P; = (Py41 ~ (1/3)Cp; 5 = P3j_4) ) RT _ (42)

so that for the change in p we have

8p; = (8pi+1 -(1/3)8pi+2 +(1/3)8pi_1)RT. (43)

Substituting into Eg. 25 and neglecting variations of A, u
and ¢ with i, we obtain

- (Ac/(y(ure)) ( Bp, —(1/3)8p,,  +(1/3)8p, ,)

+ (2Ac?/(rlure)) (8p, . =(1/3)8p,,, +(1/3)8p, ) - uh 8p,

- (Ac?/(yluve))  8p, . —(1/3)8p, 5 +(1/3)8p,) + ul 8p,
- ﬁlchange.i (44)

Collecting terms and substituting the Mach number, M for u/c

+ Ac/(3y(M+1)) 6pi+3
- 5Ac/(3y(M+1)) 6pi+2
+ Ac(7/(3y(M+1))+M) §p.

i+l
Ac(4/(3y(M+1))+M) Spi

2Ac/ (3y(M+1)) A 8p; 4
Ac/ (3y(M+1)) 8P = f

+

change,i (45)

we can see that the change in cbntinuity for the control volume
between i and i+1 is now dependent on the change in density at 6
grid points.

Eq. 45 passes the first simple test for stability; the
coefficient of &p, is positive for all Mach numbers and so a

i+1
continuity error, f » will result in a change in

error,i

continuity., ® of the same sign. However, since the

change,i’
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coefficients of 8p,; 5 and 3p, are also positive, it is

-1
appropriate to apply a more sophisticated stability criterion. The
criterion we will apply is:

the center point coefficient must be greater than the sum of
the other positive coefficients.

Coefcenter > Sum Coef+ (46)

Applying this to Eq. 45, we require
Ac(7/(3y(M+1))+M) > 3Ac/(3y(M+1)) (47)

which is always true. Thus, Eq. 42 should be stable for all Mach
numbers. The experience of Denton and other users of his code
confirms this.

2.10 gstability of 3-point Interpolation for Effective Density

A similar analysis can be done for the pressure-update
effective-density method using a three point interpolation of
pressure to obtain the effective density.

p = Ip; + (1/3)(p, =P, _,) 1/RT (48)

i+1
Substituting the change in density

8piyr = (Spi + (1/3)8p,;

41 - (173)8p; ,)/RT  (49)

into Eq. 25, gives

+ (A/C)(-1/M + yM/3) 8p. ..
+ (A/C)( 2/M + 2yM/3) 8p;

(A/c)( 1/M + M ) 8p, ,

(a/c) ( YM/3) 8p._,

(A/c) ¢ YM/3) 8p._, = f

(50)

+

change,i

The center point coefficient is the coefficient of Spi. since
this is proportional to merror.i
In Eq. 50, the coefficient of api is positive and greater than

the sum of the other positive coefficients; therefore Eq. 48
should be stable for all Mach numbers.

in the pressure update method.
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2.11 Mach Number Dependent Intgggdlétign Formula
for Effective Density

In section 2.7 it was indicated that when the Mach number is
low, the pressure update method is stable with the ideal gas
equation of state satisfied at each grid point. Since this is the
correct pressure-density relation for ideal gases it should be
used where feasible. In this section we will start with a
generalized pressure interpolation equation for effective density

Pier = Py * 3,(P3,37Py) + a;(py,,7P;4)/2
+ az(pi+1—pi_2)/3 1/RT (51)

and seek Mach number limitations to ays 24 and a, using criterion
(Eq.) 46. Comparing equations 40 and 51, the upwind effective

density corresponds to a0=a1=a2=0. the 3 point interpolation, Eq.

48, corresponds to a =a,;=0, a,=1, and ideal gas to a =1, a;=a,=0.

" Substituting

‘8pi+1 = [(l-ao)Spi + (ao +a /2 +a2/3)8pi+1
- (ay/2)8p; 4 - (a,/3)8p;_, 1/RT (52)

into Eq. 25 and rearranging in terms of the ceofficients of each

ép, ay, a4 and a, ., yields

(A/c) { (-1/M + rMag + (yM/2)a; + (yM/3)a,) 8P; 41
+( 2/M +yM - 27Mao - (7M/2)a1 - (7M/3)a2) 8Pi
+(~-1/M -yM + ‘{Mao - (‘{M/Z)a1 ) 8pi_1
+( + (7M/2)a1 - (yM/3)a,) Sp;_,
+( + (yM/3)a,) Spi_3

- mchange,i (53)

Let us first consider the case when a1=a2=0 and find limiting
values of a: From Eq. 51, it is obvious that we should consider

only values in the range

0« a, <1, (54)
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The coefficient of 8pi is positive when
2/M + yM - 27Ma° > 0. (55)

This gives a limit on a, which is a function of Mach number,

a, ¢ 1/GM%) + 172, (56)
But the coefficient of 8pi+1 is positive when
-1/M + yMa_ > 0, or M’ > 1/(ray) | (57)

In this region, from Eq. 46, we require

2/M + yM - 27Mao > -1/M + 'yMao (58)
or

a, < 1/(yM%) + 1/3. (59)

Valid values of a, based on these criteria are shown as a function
of Mach number in Fig. 2.

Let us next consider limiting values of a, when a, and a, are

1
zero. From Eq. 53 the coefficient of 8p;

2/M + yM - 7Ma1/2 > 0 (60)
is positive for all Mach numbers in the range

0 a, £1, (61)

1

The coefficient of 8p._ , is positive for all M and the
coefficient of 8p; ., is positive when

~1/M + yMa /2 > © or M2 > 2/(va,) . (62)

For M2 < 2/(ya1) we then require the coefficient of 8pi to be
greater than the coefficient of 8pi_i,

2/M + yM - 7Ma1/2 > 7Ma1/2. (63)
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With a, £ 1, this is always satisfied. For M2 > 2/(7a1) we
require the coefficient of Spi to be greater then the sum of the

coefficients of Spi_2 and 6pi+1’

2/M + yM - yMa /2 > yMa; -1/M (64)
or

a, < 2/(sM%) + 2/3, (65)

Thus we can have a1=1 up to M2=6/7 or up to M=2.,07 for y=1.4,.
Fig. 3 shows the valid range of ay based on these criteria.

We now consider combinations of a a

if

0’ 21 and a,. In particular

ag ta; ta, - 1. (66)

the interpolation scheme is second order accurate. (See Appendix
A.)

For Mach numbers less than 2, a1=1 is stable. Therefore, for

M £ 2, we will choose
a, = 0

ag +a; = 1. (67)
From similar stability analyses to those already given

a. < 2/(yM%) - 1/3 (68)

0

should be stable for M £ 2.
For M > 2, we will choose

ag = 0

a1 + a2 =1, (69)

The stability analysis suggests acceptable values of a, are

a; < 0.4 + 3.6/(ym?), (10)

The stability criteria, Eqs. 68 and 70, are shown on Fig. 4.
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A set of equations for a a, and a, . which satisfy Eq. 66 and

0’ "1
so give second order accurate interpolation, and which satisfy
Egs. 67-70 so that they satisfy the stability criteria, have been

selected. These are:

(0.8/3) (4/M> -1)

for M { 2 a, =
a; =1 - a, (71)
a, = 0;

for M > 2 ' a, = 0
a, = 4/M° (72)
a, = 1 - ay .

These Mach number dependent formulations for ag. a4 and a, are

shown in Fig 5. These equations are tested in Part 3 where they
are referred to as the M&M formula.
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DENTON 1D
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Fig. 2 Acceptable values of a, as a function of Mach number

based on Egqs. 54, 56, 57, and 59 (for v = 1.4).
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STABILITY LIMITS, RO+A1=1,RA2=0; RAO0=0,R1+A2=1
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MACH NUMBER DEPENDENT R'S WITH RO+R1+RA2=1
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Fig. 5 - M & M Mach number dependent values (Eqs. 71 and 72)
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PART 2
APPENDIX A. TRUNCATION ERROR OF PRESSURE INTERPOLATION EQUATION

The truncation error of the interpolated pressure used to
calculate the density in Eq. 51 may be determined using Taylor

series analysis. The interpolated pressure'pe is given by
e = - — - -
P ij41 =Py *ag(Py,7Py) * ay(py 7Py 2 + a,(py Py _,)/3

and to determine the accuracy of pe we will look at the magnitude
of pei+1—pi+1. With grid spacing h, and expanding about i+1l, we
have

p - 3hp’ + 9(h2/2)p’’ - o)

pi-2 =
’ 2 [N 4 - 3
Piy =P~ 2hp’ + 4(h"/2)p = 0(h™)
' 2 ' 3
P; =P - hp' + (h"/2)p’’ - O(h™)
pi+1 = P
Therefore,
' 2 . 3
pei+1—pi+1 = hla,+a +a,~1)p’ = (h"/2) (ay+2a,+3a,-1)p’" + O(h”).
And if

then the difference between Pe and p is of the order of h2. S50
that pe is a second order accurate approximation for p.
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PART 3
1-D COMPUTATIONAL TESTS OF SHOCK CAPTURING USING PRESSURE
INTERPOLATION FORMULAE TO CALCULATE EFFECTIVE DENSITY

3.1 -Denton's 1-D Nozzle for Testing Shock Capturing

Denton [1] has tested shock capturing with his finite-volume method
in a convergent-divergent nozzle (see Fig. 1) designed to produce a
linear variation of Mach number with distance for 1-D isentropic flow.
The equation for the Mach number variation with distance is

= 10. + 45. (M - 1) (1)

Denton considered flow between x = 1, M = 0.8 and x = 46, M = 1.8; the
throat, M = 1.0, 1is at x = 10. He used three back pressures with

exit/Pt fnlet = = 0.85, 0.80, and 0.75, respectively. The theoretical 1-

D solutions for these three flows are shown in Fig. 2. The maximum Mach
numbers, just upstream of the shock, are 1,267, 1.455, and 1.578, re-
spectively; this is a range of shock Mach number typical of turboma-
chinery flows.

We have used these three pressure ratios for Denton's 1-D nozzle to
test shock capturing with three of the pressure interpolation methods
discussed in Part 2.

3.2 Effective Density Method

This annual report (Parts 1, 2, and 3) includes the results of
calculations made with three different methods:

(a) The Effective Pressure Method as currently programmed in Denton's
code at NASA Lewis.

(b) The Effective Density Method incorporated into Denton's code at
NASA Lewis by S. Nicholson; this method uses the same time steps
for the continuity and momentum equations,

(¢) The Effective Density Method developed at VPI&SU with different
time steps for continuity and momentum [2,3]; this is incorporated
in the Nicholson/Moore time-marching codes at VPI&SU,

These methods are outlined to show their similarities and differences in
Table 1.

In Part 1, results from methods a and b were preseanted and com-
pared. The stability analysis in Part 2 was applied to methods a and
c. Here 1n Part 3 the calculations are performed using method c.

3.3 Pressure Interpolation Schemes

The effective density methods (b and ¢ in Section 3.2) use an
interpolated approximation for the pressure in the evaluation of the
density. A general form of the interpolation formula considered in this
report is

e 21
Pi+1 = Pi + ao(P1+1 - Pi) + 5_(Pi+1 - Pi—l
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and this is used to evaluate the dengity as

P

i+1
o, =il (3)

i+1 RTi+1
This general form is a linear combination of a single-point interpola-
tion, Py4y - Py, a 2-point interpolation, Py.; - Py_1, and a 3-point
interpolation, Py, - Py_5. The single-point interpolation, of course,
really gives the correct perfect gas equation aand involves no approxi-

mation.

The coefficients a., ay;, and a., are here taken to be constants or
functions of Mach number. Combinations, including individual terms o
pairs of terms, for which the sum of the coefficients :

ao+al+a2=1_
are second order accurate, as shown in Appendix A, Part 2.

Correct Perfect Gas Equation (a, =1, a; = 0, a, = 0)

This scheme has the advantage that 1t involves no iaterpolation or
approximation for the pressure. Experience has shown (see Part 1) that
it is stable for subsonic flow. But the stability analysis of Part 2
shows that for Mach numbers above about 1.2 this scheme becomes un-
stable. Thus 1t could not be used for the test cases of Denton's 1-D
nozzle.

These observations about the use of the correct perfect gas equa-
tion are in agreement with Denton's findings for his scheme B [1]. 1In
that method changes of density were sent to the upstream corners of the
element, which is equivalent to our sending pressure changes upstream.
The method "proved stable, without any correction factors or damping, at
low Mach numbers but Instability was found to develop at Mach numbers
around unity and above.”

2-Point Interpolation (a, = 0, a; =1, a5 = 0)

The stability analysis of Part 2 shows the 2-point scheme to be
stable for Mach numbers up to about 2.0. Use of a 2-point scheme or a
3-point scheme has been- suggested by Denton in his recent ASME and AGARD
Lecture Notes [4,5].

3-Point Interpolation (a, = 0, a; = 0, a, = 1)

3-point schemes have been shown in Part 2 to be the most conserva-
tive (in terms of stability) of the schemes considered in this report.
Perhaps for this reason, such a method is used to stabilize the current
NASA version of the Denton code. Both 3-point and 2-point schemes
provide second order accuracy for a contlinuously changing pressure; they
gilve correct 1interpolated values for 1linear varlations 1in pressure
(assuming equally spaced grid points).
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M&M Mach Number Dependent Interpolation

The advantages of the three schemes just considered are:

(1) the accuracy and stability of the perfect gas equation for subsonic
flow;

(2) the stability of the 3-point interpolation at Mach numbers greater
than 2.0;

(3) the stability and reduced smearing of properties of the 2-point
interpolation at supersonic Mach numbers up to 2.0,

These advantages have been combined in a single Mach number depen-
dent interpolation scheme in Part 2. 1In this method

0.8/4

a, = —3—(;§ - 1) ; 0 < a, <1
M < 2.0
a, =1-a
1 o
a, = 0 (4)
a =20
o
a1=iz‘ M > 2.0
M
a, = 1 - a,

The values of the three coefficients are shown graphically in Fig. 3.
Note, once again, that the sum of the coefficlents 1Is equal to one for
all Mach numbers, so that this scheme 1is also second order accurate.
For the calculations presented here M was taken as the larger of M on
the upstream side or downstream side of the coatrol volume.

3.4 Computational Tests of Three Pressure Interpolation Schemes

Of the four schemes just considered, three are stable in the Mach
number range 1.0 to 2.0.. These are the 2-point, 3-point, and M&M inter-
polation methods. In this section, results of shock capturing with
these three methods are presented and compared for Denton's 1-D nozzle.

Calculation Details

Number of Axial Grid Points = 46 , §x =1

At inlet 1i=1 , M= 0.80

For air k=1.4 |, R = 287. J/kg K
Pexit/Pt inlet =0.85, 0.80 , 0.75

Figures

The variations of static pressure, Mach number, and total pressure
are plotted for each interpolation scheme using the same scales as for
the theoretical solutions, Fig. 2. Fig. 4 shows the results for the 3-

C -~
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point scheme, Fig. 5 for the 2-point scheme, and Fig. 6 for the M&M
method. The results from the 3-point and M&M schemes are shown together
with the theoretical solution on Fig. 7 for the pressure ratio of 0.80.

Table
The calculated values of maximum Mach number upstream of the shock
and total pressure ratio are compared with the values from the theoreti-

cal 1-D solutions in Table 2.

Shock Losses

The total pressure ratlos across the shocks are well calculated by
all three interpolation formulae as shown in Table 2b. This is in spite
of the fact that the calculated values for the maximum Mach numbers
upstream of the shocks are significantly different from the theoretical
values. For example, at the lowest back pressure, the theoretical Mach
number upstream of the shock is 1.578 while the 3-point interpolation
formula gives 1.502, the 2-point formula gives 1.528, and the M&M for-
mula gives 1.534. TFor this case the calculated values of total pressure
ratio are all in the range 0.9027 to 0.9028, compared with the theoreti-
cal value of .0.9032. In general the M&M formula gives the closest
agreement with the upstream Mach number while the 3-point formula gives
the worst results. Based on the maximum calculated upstream Mach anumber
for these cases, the M&M formula would give shock losses from 16 to 42
percent too small, while the 3-point formula would give values from 27
to 62 percent too small. Interestingly the agreement for shock losses
based on maximum upstream Mach number improves (for all three formulae)
as the Mach number increases. However, these results show that peak
calculated Mach number should not be used to predict shock losses and
that the calculated total pressure loss across the shock is accurate to
better than 0.1% and 1t should be used.

Smoothing Upstream of Shock

The results in Figs. 4, 5, and 6 show that the interpolation formu-
lae all act to smooth properties upstream of the shocks. The smoothing
is most noticeable in the static pressure and Mach number distributions,
especially with the 3-point interpolation scheme. The 2-point scheme
glves less smoothing while the M&M formula gives the sharpest and most
accurate upstream distributions.

Overshoots and Undershoots Downstream of Shock

Both the 3-point and 2-point interpolation schemes give overshoots
in static pressure and undershoots in Mach number downstream of the
shocks. Only the M&M interpolation formula shows no noticeable over-
shoots and undershoots and this 1s because 1t has a better formulation
for subsonic flow; 1in fact, from Eq. 4, 1t can be seen that the M&M
formula reduces to the correct perfect gas equation for Mach numbers
less than 0.918.
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Table 2. Results of Calculations for Denton's 1-D Nozzle.
Table 2a: Maximum Mach number upstream of shock

Interpolation Formula

P
5—2515—— Theoretical 3-Point 2-Point Mach Number
t inlet Dependent
0.85 1.267 1.173 1.193 1.216
0.80 1.455 1.375 1.395 1.408
0.75 1.578 1.502 1.528 1.534
Table 2b: Total pressure ratio, Py oxit/Pt inlet
Interpolation Formula
Pe it
F——E———— Theoretical 3-Point 2-Point Mach Number
t inlet Dependent
'0.85 0.9847 0.98487 0.98492 0.98494
0.80 0.9433 0.94331 0.94335 0.94338
0.75 0.9032 0.90271 0.90277 0.90281
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Shock Location

The M&M formula captures the shocks over about four grid points
centered around the theoretical shock locations. This 1Is seen for the
pressure ratio of 0.8 in Fig., 7. 1In contrast, Fig. 7 shows the 3-point
scheme smearing the shock over about ten grid points with the shock
displaced slightly downstream due to inadequate resolution of the sub-
sonic flow. Once again the 2-point scheme gives results intermediate
between those of the M&M and 3-point schemes.

3.5 Conclusions - Progress in Shock Capturing

Significant improvements have been made in the finite-volume time-
marching method to allow more accurate calculations of the distributions
of flow properties through shocks. In Part 1, the Effective Density
Method was introduced to reduce undershoots and overshoots 1in total
pressure in the region of the shock. A stability analysis in Part 2 was
then used to develop a Mach number dependent Iinterpolation scheme for
pressure which combines the advantages of the correct perfect gas equa-
tion for subsonic flow with the stability of 2-point and 3-point inter-
polation schemes for supersonic flow. The M&M interpolation formula,
representing this new scheme, when used in the Effective Density Method,
further removes the overshoot in static pressure in the subsonic flow
downstream of a shock.
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DENTON 1D EXAMPLE 12/85

1.40

1.20

.00

1

ARER

©0.00 0.20 0.40 0.60 0.80
I
]

o

10.0. 20.0 30.0 40.0 ' 50.0

Fig. 1 Denton's convergent-divergent nozzle with a linear
variation of Mach number with distance for 1-D

isentropic flow, x = 10. + 45.( M - 1. ).
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DENTON 1D EXAMPLE THEORETICAL 12/85
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Fig. 2 Theoretical 1-D solutions for Denton's nozzle
for three exit static pressures at x = 46.,
Pexit/Pt,inlet = 0.85, 0.80, and 0.75.

Fig. 2a PW = P/Pt,inlet'

3.11



DENTON 1D EXAMPLE THEORETICAL 12/85
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Fig. 2b Mach number.
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DENTON 1D EXRMPLE THEORETICAL 12/85
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Fig. 2c PTOT = Pt/Pt,inlet'
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MACH NUMBER DEPENDENT R'S WITH RO+R1+R2=1
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Fig. 3 M & M Mach number dependent values (Eq. 4)

- for the coefficients in Eq. 2.°
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DENTON 1D EXAMPLE 3 PT P INTERP, 12/85

PW
o 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.300

.0 10.0 20.0 30.0 40.0 50.0

Fig. &4 Calculated 1-D solution for Denton's nozzle
using 3-point interpolation, Eq. 2 with

ag = al = Q and a2 =1.

Calculations for three exit static pressures at x = 46.

Pexit/Pe inler T 0-85, 0.80, and 0.75.

Fig. 4a PW = P/Pt,inle;'
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DENTON 1D EXRAMPLE 3 PT P INTERP, 12/85
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Fig. 4b Mach number.
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DENTON 1D EXAMPLE 3 PT P INTERP, 12/85
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Fig. 4c PTOT = Pt/Pt,inlet'
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DENTON 1D EXAMPLE 2 PT P INTERP, 12/85

1 r : ! l T I | —l |

PW
0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 6.900
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Fig. 5 Calculated 1-D solution for Denton's nozzle

using 2-point interpolation, Eq. 2 with

ag =3, = O-and a; = 1.
Calculations for three exit static pressures at x = 46.,
exit/Pt,inlet = 0.85, 0.80, and 0.75.

Fig. 5a PW = P/Pt,inlet'
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DENTON 1D EXAMPLE 2 PT P INTERP, 12/85
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Fig. 5b Mach number.
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DENTON 1D EXAMPLE
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12/85
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Fig. 5c¢c

PTOT = Pt/P

10.0 20.0

t,inlec” -

3.20

30.0 4o.

0

o0

.0



DENTON 1D EXAMPLE - INTERP (MRCH) 12/85

V T i I 1 I i I 1

PK
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o
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Fig. 6 Calculated 1-D solution for Denton's nozzle
using M & M formula, Eq. 4.
Calculations for three exit static pressures at x = 46.,

/P = 0.85, 0.80, and 0.75.

Pexit t,inlet

Fig. 6a PW = P/Pt,inlet'
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DENTON 1D EXAMPLE
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DENTON 1D EXAMPLE

INTERP (MARCH) 12/85
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Fig. 6¢
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DENTON 1D EXAMPLE PEXIT/PTINLET=0.8 12/85

o 0-000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

= 4
Q. —
—
| I ] l ] l | J 1
.0 10.0 20.0 30.0 40.0 50.0
X
Fig. 7 Comparison of calculated results with the theoretical
1-D solution for Pexif/Pt,inlet = (0.80.
Thin line. - theoretical solution:
Medium lineé - calculated using 3-point interpolation:
Thick line - calculated using M & M formula.

Fig. 7a PW = P/Pt,inlet'
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DENTON 1D EXAMPLE . PEXIT/PTINLET=0.8 12/85
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Fig. 7b Mach number.
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DENTON 1D EXAMPLE
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