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INTRODUCTION 

A radiometer is a system designed to measure the electromagnetic radiation re

sulting from thermally-induced molecular motion in matter. Radiometers are basically 

power-measuring receivers in which the most critical performance parameters are gen

erally held to be sensitivity and linearity. Man-made radio-frequency interference 

(RFI) constitutes a potential error source for microwave radiometry that is generally 

underestimated. RFI is an insidious problem in that it may be impossible to know 

that interference is present until it becomes so large that the radiometer output is 

grossly erroneous. 

RFI may be classified as being either in-band or out-of-band relative to the 

radiometric channel bandpass. While this paper is concerned with minimizing the 

deleterious effects of out-of-band RFI on radiometer performance, it is worth noting 

that it may be possible to establish the presence of RFI, of either category, by 

observing any characteristics of the interference which differ from the geophysical 

signal. In this manner, it should be possible to achieve some degree of data 

correction. 

Out-of-band interference can produce radiometric errors through several system 

imperfections. The first and most obvious is non-ideal, i.e., not rectangular, 

channel selectivity wherein one or more nearby but still out-of-band interfering 

signals reach the detector along with the desired signal. This is a linear effect 

which can, in principle, be reduced to any desired degree by improved selectivity. 

In practice, sensitivity considerations usually result in the bulk of the selectivity 

being located well down the signal processing chain (e.g., after the amplifier and 

mixer stages) where bandpass filter insertion loss does not significantly degrade 

system sensitivity. However, this arrangement leaves the system elements preceding 

the primary selectivity susceptible to the nonlinear effects of desensitization and 

in-band spurious generation from out-of-band RFI. These nonlinear effects are ir

revers able unless the RFI is clearly identifiable so that it can be "removed" from 



the data. Prevention is much preferable to after-the-fact data correction. However, 

prevention by preceding potentially nonlinear front-end elements, such as amplifiers 

and mixers, with additional selectivity incurs a cost in sensitivity. 

This study examines the trade-offs between sensitivity and interference immunity « 

associated with front-end bandpass filtering. The results are presented in a form 

that defines the radiometric sensitivity degradation factor, ~T'/~T, in terms of 

various filter characteristics. Additionally, the "optimum" filter configuration can 

be totally defined once the independent (filter) variables of percentage bandwidth, 

q-factor(s), and desired band-edge rejection are specified. 

LIST OF SYMBOLS 

numerator coefficient of t(s) 

Ap numerator coefficient of td(s) when predistortion is applied 

a magnitude of real part of poles closest to jw-axis (in main body) 

a attenuation constant (in Appendix A) 

B bandwidth of bandpass filter between attenuation points 

Bno radiometer output low-pass noise bandwidth 

BR arbitrary reference bandwidth 

Bs statistical bandwidth 

Bsi statistical bandwidth of predetection input filter 

S phase constant 

C constant modifying gain of predistorted filter realization (C < 1) 

d dissipation factor 

~T unmodified radiometer sensitivity 

~T' 

2 

modified radiometer sensitivity with degradation 

frequency variable, Hz 

band-pass center frequency 

lower band edge frequency 
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upper band edge frequency 

radiometer amplifier power gain 

net input reflection function 

load reflection coefficient 

net output reflection function 

source reflection coefficient 

RMS load current 

Boltzmann's constant 1.38 x 10-23 J/K 

power dissipative loss function 

integrated loss factor 

frequency variable, rad/sec 

imaginary part of an arbitrary pole Pk 

Pav available source power 

r 

s 

Ok 

Sav(f) 

8i (f) 

8
0
(f) 

8p (f) 

an arbitrary pole of t(s) 

filter output power 

low-pass unload element quality factor 

band-pass loaded resonator quality factor 

passband ripple in dB 

bandedge attenuation in decibels 

load resistance 

image impedance when it is real 

source resistance 

Laplace variable 

real part of an arbitrary pole Pk (crk < 0) 

available power density of source 

incident power density at filter input 

output load power density 

available internal noise power density 
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t(s) transmission function 

t'CS) modified transmission function 

td(s) transmission function with dissipation 

tt(jw) predistorted lossless transmission function 

T2 integrated transmission factor 

TA antenna brightness temperature 

TINJ injected noise 

TiNJ modified injected noise after filter is added 

To filter output noise temperature 

Tp physical temperature of filter 

TR receiver noise temperature 

TREF reference noise temperature 

Ts equivalent source noise temperature 

TSYS system noise temperature 

6 image propagation constant 

Vs RMS source voltage 

Y21 short-circuit filter transfer admittance 

Zin(jw) input impedance of filter 

Zo image impedance 

Zout(jw) output impedance of filter 

NOISE MODEL FOR FILTER 

The manner in which the noise introduced by the dissipative elements within a 

filter interacts with the radiometer input signal will be developed in this section. 

Consider the block diagram of a filter with source and load terminations as shown in 

figure 1. Assume that all dissipative elements within the filter are at a physical 

temperature Tp' 
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The frequency-dependent reflection functions at the input and output are denoted 

as Yi(jw) and Yo(jw) respectively. These functions represent the net effect of 

all multiple reflections and could be expressed in terms of the simpler frequency 

independent terminal reflection coefficients based on the source and load resistances 

and the image impedance. However, it is not necessary to express an image impedance 

explicitly, and this is rarely done with s-plane filter designs, such as were used in 

this study. A development of the relationship between the terminal reflection coef-

ficients and these net functions is given in Appendix A. 

Let t(jw) denote the transmission function defined on a magnitude-squared 

basis as: 

1 t (j w) 12 = _o.;;..u~t:;..tp ..... u;;.,;t~l.;;;.o.:;;.ad~p;,..;o:..;.w;.:;e...;;.r--.;;.de.;;..n..;;.;s>-,i:..;;t~y...,...,.._ 
available source power density 

In the development that follows, it is convenient to define a modified 

transmission function It'(jw)1 2 as 

output load power density 
incident power density 

where the incident power density is the fraction of the available power density 

accepted by the filter. 

(1) 

(2) 

Let Sav(f) represent the source available power density, and assume that it is 

flat over the frequency range of interest and therefore representable in terms of an 

effective source temperature Ts. Thus, 

S (f) = kT W/Hz av s (3) 

where k = Boltzmann's constant = 1.38 x 10-23 J/K. 

Let Si(f) and So(f) represent the incident and output spectral densities 

respectively. The power density reflected at the filter input is hi(jw) 12 S 
avo 
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Thus, the incident power spectral density is related to the available power density 

by 

(4 ) 

The modified transmission function is 

(5) 

The transmission function is 

(6 ) 

Comparing (5) and (6), the following relationships between It'(jw)1 2 and It(jw)1 2 

may be deduced: 

or 

The manner in which noise associated with the dissipative elements within the 

filter interacts with the input noise is illustrated by the block diagram of 

figure 2. Let Sp(f) represent the available internal noise power density, and 

assume that 

S (f) kT W/Hz 
P P 

6 

(7) 

(8) 

(9) 



The noise power propagates in both directions. At the input, the source resistance 

accepts from the filter a power density [1 - h i Uw)1 2
]Sp(f). For thermal equi

librium, this power must be subtracted from the source power, so the net power 

accepted by the filter from the source is 

as shown to the right of the input summing junction. This power density is altered 

by the modified transmission function. The effect of the output mismatch on this 

noise has already been considered in the definition of Yi(jw). 

In addition to internal noise propagating to the left as already considered, 

internal noise propagates to the right. At the load junction, power density 

IYo(jw)1 2 Sp(f) is reflected back to the network, so the net contribution of the 

internal noise to the load is [1 - IYo(jw)1 2 ]Sp(f). 

Combining all the preceding sources, the net output spectral density So(f) can 

be expressed as 

S (f) 
o 

(10) 

As shown underneath the block diagram in figure 2, this expression can be simplified 

to 

S (f) = It(jw)1 2 S (f) + [1 - It(jw)1 2 - Iy (jw)1 2 ]s (f) o av 0 p 
(11) 

A loss function It(jw)1 2 will now be defined as 

It(jw)1
2 (12) 
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It is interesting to note that while the focus of analysis is on transmission from 

source to load, the pertinent reflection function is the output function. However, 

for networks initially designed on a loss less basis with resistive termination at 

both ports, it is shown in Appendix B that yo(jw) = Yi(jw), so either port could be 

used to establish the loss function in that case. This situation is not true in 

general. 

Utilizing the preceding definition, the output power density can be expressed as 

S (f) = It(jw)1 2 S (f) + It(jw)1 2 S (f) o av p 
(13) 

INTEGRATED FILTER FUNCTIONS 

Based on the preceding development, assume that the differential output power 

~Po in a differential bandwidth ~f is to be determined. This quantity is readily 

expressed as 

(14) 

The total power Po in a bandwidth B = f2 - fl is determined by changing the 

differential formulation to integral form, and the result is 

(15) 

It is convenient to express the result in terms of an effective temperature To' 

defined over a rectangular bandwidth B according to 

P = kT B o 0 
(16) 
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Substitution of (16) in (IS) and cancellation of common factors yield 

T 
o 

(17) 

The integrated transmission factor ,2 and the integrated loss factor L2 will 

be defined as the symbol , in the definition of T2 should not be confused with 

the integration time parameter appearing in radiometer sensitivity equations. 

2 1 f 2 
It(jw)1

2 
df T = -f 

B f 
(18) 

1 

L2 1 f2 
1R,(jw)1

2 
df -f 

B f 
(19) 

1 

With these definitions, To can be expressed as 

T 
o 

iT (20) 
s 

DEGRADATION FACTOR 

The preceding definitions will now be used to determine the degree to which the 

interference-rejection filter degrades the radiometer sensitivity. This development 

is limited to the closed-loop noise injection feedback radiometer, the configuration 

of primary interest. The corresponding effect in a total power radiometer is sub-

stantially different. 

The interference rejection filter is located after the directional coupler and 

is designed to provide a specified attenuation R (in dB) at two specified band-

edges. The basic form of a typical response is shown in figure 3. It is assumed 

that the primary predetection bandwidth selectivity is obtained after several stages 

of gain and has a much more ideal, i.e., rectangular, response over B = f2 - fl. 

9 



The attenuation of the interference rejection filter will thus be specified at these 

frequencies, and the amplitude response will be assumed to be truncated abruptly as 

shown by the dashed lines. This realistic assumption considerably simplifies the 

integration process as will be demonstrated later. 

The pertinent portion of the system affected by the filter is shown in figure 4. 

The system without the filter is shown in figure 4(a). Sufficient injected noise 

temperature TINJ is added to the antenna temperature TA such that 

TA + TINJ = TREF , where TREF is the reference temperature. This power balancing 

condition is maintained by the closed loop. 

When the dissipative filter is added as shown in figure 4(b), the resulting 

integrated transmission function is constrained by the inequality T2 < 1. The 

injection noise TiNJ increases to a level such that the filter output equals 

TREF as before. Thus, the effective overall noise level at the Dicke switch is not 

changed. However, the loop gain has been reduced by T2. In order to maintain the 

same loop time response and low-pass output noise bandwidth, a gain of 1/T2 must be 

added to the loop as shown. Since 1/T2 > 1, the fluctuations within the loop are 

accentuated by this process, and the sensitivity is degraded. 

The second effect of the filter is to reduce the statistical bandwidth. The 

statistical bandwidth Bs in general is defined by 

B 
s 

[( 1 t(jw) 12 dff 
[( It(jw)1

4 df] 

This quantity is the bandwidth that should be used in the radiometer sensitivity 

(21) 

equation. Based on the assumed ideal overall predection filter characteristic, the 

statistical bandwidth used in this study is therefore: 

10 
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(22) 

Let ~T represent the idealized sensitivity of the radiometer without regard to 

the interference filter. This widely used definition is 

~T 
no ~

B 
2TSYS -B

si 
(23) 

where the system temperature TSYS is TSYS = TR + TREF and TR is the receiver 

temperature. The quantities Bsi and Bno represent, respectively, the detector 

input statistical bandwidth and the output noise bandwidth. For the ideal rect-

angular bandpass Bsi = B. Thus, without the interference filter, the sensitivity is 

~T = 2 TSYS j2:no (24 ) 

Let ~T' represent the sensitivity as degraded by the interference filter. 

Since the effective statistical bandwidth is now Bs' and the noise fluctuations are 

accentuated by a factor 2 lIT , 

~T' 2 TSYS tBno 

2 B 
T S 

equation (23) is modified by 

Division of (25) by (24) results in 

~T' 1 
~T = 

(25) 

(26) 
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This ratio will be referred to in all subsequent work as the degra~ation 

factor. It is a measure of the degradation in the sensitivity resulting from the 

loss in gain and the non-rectangular bandshape response of the interference filter. 

FILTER FUNCTIONS 

The actual interference rejection filter used in a radiometer is normally a 

band-pass filter. However, the vast majority of band-pass filters are designed from 

low-pass prototypes using the low-pass to band-pass geometric transformation. 

Further, the analytical properties of the band-pass response may be mapped to the 

low-pass region with a resulting one-to-one correspondence between the regions. 

The approach used in this study was to perform all the analysis with the low-

pass prototype functions. As previously mentioned, the various properties tabulated 

are invariant with respect to the trans.formation. The number of poles listed for the 

low-pass prototypes must be interpreted as the number of resonators (or, equiv-

alently, the number of pole-pairs) when translated to the band-pass case. 

The number of low-pass poles was varied from _two to seven in the study, thus 

allowing band-pass filters with from two to seven resonators to be included. Filter 

types included Butterworth and Chebyshev with ripple ranging from 0.1 dB to 3 dB. 

The effects of losses were included, and both non-distorted and pre-distorted designs 

were considered. 

Let t(s) represent the s-domain transmission function. For a low-pass filter 

with all transmission zeros at s =~, this function for n poles may be expressed 

as 

t(s) (27) 
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where Ao is a constant and the various Pk = ok + jWk represent the poles. The 

quantities ok are the real parts (ok < 0) and wk are the imaginary parts. The 

poles and constants of the filter types considered are tabulated in Appendix C. 

Assume that there is uniform dissipation occurring in all the band-pass 

resonators. In the low-pass prototype, this is accounted for by defining a 

transmission function td(s) with dissipation as 

t(s + d) (28) 

where d is an appropriately defined dissipation factor. With non-predistorted 

filter designs, the dissipation factor is applied as given in (28). 

When predistortion is desired, a modified lossless transmission function 

t~(s) is first defined as 

t(s - d) (29) 

which amounts to shifting all poles of t(s) to the right. The maximum value of d 

is limited to the smallest real part of any of the poles. This function is then 

realized as a lossless network. Because of maximum power constraints, the practical 

realization of the associated peaked response results in Ct(s - d), where C < 1. 

When dissipation is subsequently applied, the function td(s) now becomes 

Ct(s + d - d) Ct(s) (30) 

The effect, the desired passband response shape is preserved through the process. 

Unfortunately, predistorted designs suffer more midband loss as a result of the pole 

shifting, with possible deleterious consequences in radiometer applications. 

The magnitude-squared transmission function for any t(s) may be expressed as 

t(s) t(-s)1 . s=]W 
(31) 

13 



The resulting function is a rational function of w2 and may be easily formulated on 

a geometrical basis in terms of the pole locations, the frequency w, and the dis

sipation factor d. 

For predistorted designs, a significant loss occurs·because the initial shift of 

the poles to the right creates a more underdamped response with significant peaking. 

Let Ao represent the numerator constant of T(S). It can be shown that a very good 

approximation to the corresponding constant Ap for the predistorted filter is 

A 
p 

where a is the magnitude of the real part of the pair of poles closest to the 

j<lraxis. 

COMPUTATION OF DEGRADATION FACTORS 

(32) 

Several computer programs were developed for evaluating the degradation factor 

as a function of the number of poles, the pole values, dissipation losses, and band

edge attenuation. The various programs evolved over a period of time as data were 

plotted and evaluated. 

The two major programs used in the final tabulation of data are defined as 

"FILTER1" and "FILTER2", and they are written in BASIC. Listings of these programs 

are provided in Appendix D. 

Both programs perform a numerical integration of the transmission function 

magnitude-squared and magnitude to the fourth power so that statistical bandwidth and 

degradation factor may be computed. 

PRESENTATION OF GENERAL RESPONSE CURVES 

The program "FILTER1" was used to generate a large quantity of data for various 

filter types, order, attenuation, and dissipation factor d. The results are shown 

graphically in Appendix E. Each figure represents a different filter order and type. 

14 



Let q represent the unloaded "Q-factor" for the normalized low-pass prototype 

design. Since w = 1 rad/s was assumed as the normalized reference, 

1 
q=(f (33) 

The dissipation factor was used as the parameter in generating the curves, but 

was converted to the equivalent q value for plotting. 

The band-pass filter Q is related to the low-pass prototype q by 

f 
o Q = - q 

BR 
(34) 

where fo is the band-pass center frequency and BR is the low-pass reference 

bandwidth. 

Although the data of Appendix E are useful and display some interesting trends, 

there is a subtle point that must be considered in interpreting the results. The 

value of d (and subsequently of q) is based On the bandwidth of the reference 

definition of the particular filter type. For example, assume that a O.S-dB 

Chebyshev filter is to be modified with a dissipation d = 0.1. This means that 

q = 10 at a frequency w = 1 rad/s in the low-pass prototype. Unless the design is 

predistorted, however, there is no simple way of predicting the exact shape of the 

response after disSipation is added. This poses some difficulty in making a "fine" 

interpretation of the results of Appendix E. 

A somewhat different approach was used in the development of the program 

"FILTER2" , and these results are tabulated in Appendix F. All of the curves obtained 

in these presentations were based on a specified attenuation of either 10 dB or 

20 dB. The two frequencies producing these values of attenuation with dissipation 

added are determined numerically. The value of q is adjusted so that the value 

plotted corresponds to the exact q at the bandedge where the desired attenuation is 

IS 



achieved. For example, with R = 20 dB and q = 30, the low-pass prototype filter 

has q = 30 at the exact frequency where R = 20 dB. 

For Appendix F, therefore, the relationship between low-pass prototype q and 

band-pass Q is 

(35) 

where B is either the 10-dB or 20-dB bandwidth. 

Some summary results are provided in the three figures of Appendix G. Figures 

G1 and G2 provide some curves of degradation factor versus the number of poles with 

q as a parameter for 10 dB and 20 dB respectively. Although the independent vari-

able is obviously restricted to integer values, the curves are enhanced by 

extrapolating between points. 

Figure G3 provides a macroscopic range of operating conditions between three 

poles and seven poles with low-pass q between 30 and 00. The lowest order (two 

poles) was not used beca~se it is felt that three poles would represent the lowest 

order of practical interest. 
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SUMMARY AND CONCLUSIONS 

This paper quantifies the sensitivity loss which results from the presence of 

interference-rejection bandpass filters in the front-end of noise injection feedback 

radiometers. This sensitivity loss was expressed in terms of a "radiometric sensi

tivity degradation factor", which is the ratio of the actual sensitivity ~T' to the 

theoretical sensitivity ~T. Sensitivity degradation results from the combined 

effects of changes in the input statistical bandwidth and changes in the transmission 

function resulting from the filter. Both of these changes are determined from 

integration of the appropriate frequency-dependent functions. 

In the course of the investigation, various models concerning noise and dissi

pative effects were developed. Some of these models show promise for additional 

investigations on radiometer sensitivity. Computer programs employing numerical 

techniques were developed for processing the data. Numerous data were generated and 

plotted. Several common filter types were employed and various unloaded resonator 

quality factors were assumed. This resulted in a comprehensive compilation of data 

having potential use in radiometer system design and analysis. The results of this 

paper allow the radiometer system designer (a) to make an intelligent choice with 

regard to the number of poles, and passband ripple in the front-end filter, given the 

inherent Q of the filter elements, and (b) to recognize the radiometric penalty 

incurred by the interference immunity gained with the input filter. 
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Fig. 1. Block diagram of filter with source and load terminations. 
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Fig. 2. Block diagram of filter showing interaction 
of dissipative losses and input noise. 
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Fig. 4. Block diagram of portion of radiometer showing 
addition of filter and compensation. 



APPENDIX A 

INTERACTION OF REFLECTIONS 

Consider the transmission system shown in figure Al with a source resistance 

Rs and a load resistance RL• Using image parameter network theory, the image 

propagation constant is e = a + j8, where a is the attenuation constant and 8 

is the phase constant. The image impedance is assumed to be Zoo The source reflec-

tion coefficient 

- Z o 
+ Z 

o 

is defined as 

The load reflection coefficient YL is defined as 

Let Zin(jw) represent the complex impedance reflected to the input. This 

function can be shown to be 

(A-I) 

(A-2) 

(A-3) 

Let Zout(jw) represent the complex impendance reflected to the output. This 

function is 

Zout(jw) = zof! [1 (A-4) 
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An effective frequency-dependent input reflection function Yi(jw) can be 

defined as 

Rs - Zin(jw) 

Rs + Zin (jw) 

Substitution of (A-3) in (A-S) and subsequent simplification yield 

An effective complex output reflection function Yo(jw) can be defined as 

RL - Zout(jw) 

~ + Zout(jw) 

Substitution of (A-4) in (A-7) and subsequent simplification yield 

(A-S) 

(A-6) 

(A-7) 

(A-8) 

The quantities Ys and YL relate to reflections of a single wave incident on 

the particular boundry. However, Yi(jw) and Yo(jw) are effective reflection 

functions that take into consideration the effects of multiple reflections. 

Several special cases should be noted. 

In this case YL = 0, and when this value is substituted in (A-3), (A-6) , and 

(A-8), there results 

(A-9) 

23 



-26 = -y e: s 

(A-lO) 

(A-ll) 

Thus, when the image impedance is real and the load 'end is matched, the input 

impedance is simply the image impedance, and the effective input reflection 

coefficient is simply the source reflection coefficient. 

(b) Z = R o 0 
R 

s 

In this case Ys = 0, and when this value is substituted in (A-4), (A-6) , and 

(A-8) 

(A-ll) 

(A-l2) 

(A-13) 

Thus, when the image impedance is real and the source end is matched, the output 

impedance is simply the image impedance, and the effective output reflection 

coefficient is simply the load reflection coefficient. 

(c) ~ Rs 
----

In this case, Ys = YL' It can then be shown from (A-6) and (A-8) that 

Y i (jw) (A-l4) 
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Fig. Al_. Model used in formulating reflection functions. 



APPENDIX B 

RECIPROCITY OF TRANSMISSION FUNCTION 

Consider the passive bilateral circuit model shown in figure B1(a). A source 

with RMS voltage Vs and internal resistance Rs excites the circuit, and the 

output is connected to a load RL• The output power Po expressed in terms of the 

RMS load current IL is 

P o 

The maximum available source power Pav is 

P av 

The transmission function /t/ 2 is defined as 

P I22~ 
/ t /2 = pO = --=-_-_L 

av v2/4R 
s s 

where Y21 is the transfer admittance. 

Assume now that the network is turned around as shown in figure B1(b). The 

output power 

pI 
o 

pI is now 
o 

The available source power is now 

26 

pI 
av 

(B-1) 

(B-2) 

(B-3) 

(B-4) 

(B-5) 



The new transmission function IT'12 is 

(B-6) 

By reciprocity, however, Yil = Y21 • Comparing (B-6) and (B-3), it can be concluded 

that the transmission function obeys reciprocity for a linear bilateral circuit. 

If, in addition, the network is lossless, the reflection functions IYi(jw)1 2 

and IYo(jw)1 2 are expressible as 

. 2 
lyi(jw)1 (B-7) 

since ITI2 is the same in both directions. Thus, for a linear, bilateral lossless 

network, the reflection functions at both ports are identical. 
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Fig. Bl. Network models used in reciprocity development. 



APPENDIX C 

POLES FOR LOW-PASS PROTOTYPE FILTERS 

The following definitions are used in the tables that follow: 

r = pass band ripple in decibels. Table C-l (r = 0) corresponds to the 
Butterworth case, and all other cases correspond to Chebyshev types. 

n = number of poles in low-pass prototype filter. 

= number of resonators in band-pass filter. 

Transmission Constant = numerator of IT(jw)1 2 when denominator 
coefficient of s2n term is unity. 

The value w = 1 rad/s on a normalized basis is the frequency 
corresponding to the band-edge last ripple bound point. 
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Table C-1. Poles for r = 0 (Butterworth case) 

r = 0 

n Poles Tra.nsmission 
Constant 

2 -0.7071068 ± jO. 7071068 1 

3 -0.5000000 ± jO. 8660254 1 
-1.0000000 

4 -0.3826834 ± jO.9238795 1 
-0.9238795 ± jO.3826834 

5 -0.3090170 ± jO.9510565 1 
-0.8090170 ± jO.5877852 
-1.0000000 

6 -0.2588190 ± jO.9659258 1 
-0.7071068 ± jO.7071068 
-0.9659258 ± jO.2588190 

7 -0.2225209 ± jO.9749279 1 
-0.6234898 ± jO.7818315 
-0.9009689 ± jO.4338837 
-1.0000000 
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Table C-2. Poles for r = 0.1 dB 

r = 0.1 dB 

Poles Transmission n Constant 

2 -1.1861781 ± j1.3809484 10.7328410 

3 -0.4847029 ± j1.2061553 2.6832106 
-0.9694057 

4 -0.2641564 ± j 1.1226098 0.6708026 
-0.6377299 ± jO .4650002 

5 -0.1665337 ± j1.0803720 0.1677006 
-0.4359908 ± jO.6677066 
-0.5389143 

6 -0.1146934 ± j1.0565189 0.04192516 
-0.3133481 ± jO.7734255 
-0.4280415 ± jO.2830934 

7 -0.08384097 ± jl.0418333 0.01048129 
-0.2349172 ± jO.8354855 
-0.3394651 ± jO.4636595 
-0.3767779 
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Table C-3. Poles for r = 0.5 dB 

r = 0.5 dB 

Poles Transmission n Constant 

2 -0.7128122 ± jl.0040425 2.0488703 

3 -0.3132282 ± j1.0219275 0.5122176 
-0.6264565 

4 -0.1753531 ± jl.0162529 0.1280542 
-0.4233398 ± jO.4209457 

5 -0.1119629 ± jl.0115574 0.03201359 
-0.2931227 ± jO.6251768 
-0.3623196 

6 -0.0776501 ± jl.0084608 0.008003395 
-0.2121440 ± jO.7382446 
-0.2897940 ± jO.2702162 

7 -0.0570032 ± j1.0064085 0.002000849 
-0.1597194 ± jO.8070770 
-0.2308012 ± jO.4478939 
-0.2561700 
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Table C-4. Poles for r = 1 dB 

r = 1 dB 

n Poles 
Tn:msmission 

Constant 

2 -0.5488672 ± jO.8951286 0.9655292 

3 -0.2470853 ± jO.9659987 0.2413823 
-0.4941706 

4 -0.1395360 ± jO.9833792 0.06034558 
-0.3368697 ± jO.4073290 

5 -0.0894584 ± jO.9901071 0.01508638 
-0.2342050 ± jO.6119198 
-0.2894933 

6 -0.0621810 ± jO.9934115 0.003771601 
-0.1698817 ± jO.7272275 
-0.2320627 ± jO.2661837 

7 -0.0457089 ± jO.9952839 0.0009428962 
-0.1280736 ± jO.7981557 
-0.1850717 ± jO.4429430 
-0.2054141 
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Table C-5. Poles for r = 2 dB 

r = 2 dB 

Poles Transmission 
n Constant 

2 -0.4019082 ± jO.8133451 0.4274285 

3 -0.1844554 ± jO.9230771 0.1068571 
-0.3689108 

4 -0.1048872 ± jO.9579530 0.02671428 
-0.2532202 ± jO.3967971 

5 -0.0674610 ± jO.9734557 0.006678567 
-0.1766151 ± jO.6016287 
-0.2183083 

6 -0.0469732 ± jO.9817052 0.001669642 
-0.1283332 ± jO.7186581 
-0.1753064 ± jO.2630471 

7 -0.0345566 ± jO.9866139 0.0004170907 
-0.0968253 ± jO.7912029 
-0.1399167 ± jO .4390845 
-0.1552958 
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Table C-6. Poles for r = 3 dB 

r = 3 dB 

Poles Transmission n Constant 

2 -0.3224498 ± jO.7771576 0.251190075 

3 "'0.1493101 ± jO.9038144 0.06279750 
-0.2986202 

4 -0.0851704 ± jO.9464844 0.01569938 
-0.2056195 ± jO.3920467 

5 -0.0548531 ± jO.9659238 0.003923656 
-0.1436074 ± jO.5969738 
-0.177 5085 

6 -0.0382295 ± jO.9764060 0.0009812111 
-0.1044450 ± jO.7147788 
-0.1426745 ± jO.2616272 

7 -0.0281456 ± jO.9826957 0.0002453029 
-0.0788623 ± jO.7880608 
-0.1139594 ± jO.4373407 
-0.1264854 
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10 INPUT "NUMBER OF POLES";NP 
15 DSHIFT=O 
20 FOR N=l TO NP STEP 2 

APPENDIX D 

PROGRAM LISTINGS 

FILTER1 

30 INPUT "TRANS DENOM:SIGMA,OMEGA(+VALUES)";SIGMAD(N),OMEGAD(N) 
40 SIGMAD(N)=-SIGMAD(N) 
50 NEXT N 
55 T2MULT=1 
60 FOR N=2 TO NP STEP 2 
70 SIGMAD(N)=SIGMAD(N-1) 
80 OMEGAD(N)=-OMEGAD(N-1) 
90 NEXT N 
100 INPUT "TRANS CONSTANT";T2CON 
110 INPUT "VALUE OF D";D 
120 INPUT "FREQ INCREM";DELW 
130 INPUT "INTEGER OF HIGHEST FREQ";KMAX 
132 FOR N=l TO NP 
134 SIGMAD(N)=SIGMAD(N)+DSHIFT 
136 NEXT N 
138 T2CON=T2CON*T2MULT 
140 LPRINT "POLES" 
150 FOR N=l TO NP 
160 LPRINT SIGMAD(N),OMEGAD(N) 
170 NEXT N 
180 LPRINT 
190 LPRINT "NUMBER OF POLES ="; NP, "D ="; D, "NUM CON ="; T2CON 
200 LPRINT 
210 LPRINT "FREQUENCY", "TRANS SQ", "ACCUM TRANS", "ACCUM 4" 
220 LPRINT,"DB RESPONSE","ACCUM NOR TRAN","STAT NOR BW","DEGRAD" 
230 W=O 
240 INTTSQ=O 
250 INTT4=0 
260 A2=0 
270 A4=0 
280 TRANS=O 
290 BSTATN=O 
300 DEGRAD=O 
310 FOR K=O TO KMAX 
320 DF1=1 
330 FOR N=l TO NP 
340 DF2=(SIGMAD(N)-D)A2+(W-OMEGAD(N»A2 
350 DF1=DF1*DF2 
360 NEXT N 
370 TSQ=T2CON/DF1 
380 TDB=4.34294*LOG(TSQ) 
390 T4=TSQA2 
400 IF K=O THEN 460 
410 INTTSQ=INTTSQ+.5*(TSQ+A2)*DELW 
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420 INTT4=INTT4+.5*(T4+A4)*DELW 
430 TRANS=INTTSQ/W 
440 BSTATN=INTTSQ A2/(INTT4*W) 
450 DEGRAD=l/(TRANS*SQR(BSTATN» 
460 LPRINT W,TSQ,INTTSQ,INTT4 
470 LPRINT,TDB,TRANS,BSTATN, DEGRAD 
480 W=W+DELW 
490 A2=TSQ 
500 A4=T4 
510 NEXT K 
520 LPRINT 
530 LPRINT 
540 INPUT "ANOTHER RUN (Y OR N)";B$ 
550 IF B$="N" THEN 630 
551 FOR N=l TO NP 
552 SIGMAD(N)=SIGMAD(N)-DSHIFT 
553 NEXT N 
554 T2CON=T2CON/T2MULT 
555 DSHIFT=O 
556 T2MULT=1 
560 INPUT "DO YOU WANT TO PREDISTORT (Y OR N)";C$ 
570 IF C$="N" THEN 110 
580 INPUT "VALUE OF D SHIFT";DSHIFT 
590 C1=SIGMAD(1)A2 
600 C2=(SIGMAD(1)+DSHIFT)A2 
610 T2MULT=C2/C1 
620 GOTO 110 
630 END 
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10 INPUT "NUMBER OF POLES";NP 
15 DSHIFT=O 
20 FOR N=l TO NP STEP 2 

FILTER2 

30 INPUT "TRANS DENOM:SIGMA,OMEGA(+VALUES)";SIGMAD(N),OMEGAD(N) 
40 SIGMAD(N)=-SIGMAD(N) 
50 NEXT N 
55 T2MULT=1 
60 FOR N=2 TO NP STEP 2 
70 SIGMAD(N)=SIGMAD(N-1) 
80 OMEGAD(N)=-OMEGAD(N-1) 
90 NEXT N 
100 INPUT "TRANS CONSTANT";T2CON 
110 INPUT "VALUE OF Q";Q 
115 D=l/Q 
120 DELW=.Ol 
132 FOR N=l TO NP 
134 SIGMAD(N)=SIGMAD(N)+DSHIFT 
136 NEXT N 
138 T2CON=T2CON*T2MULT 
140 LPRINT "POLES" 
150 FOR N=l TO NP 
160 LPRINT SIGMAD(N),OMEGAD(N) 
170 NEXT N 
180 LPRINT 
190 LPRINT "NUMBER OF POLES =";NP,"Q=";Q,"NUM CON =";T2CON 
200 LPRINT 
210 LPRINT "FREQUENCY","MODIFIED Q,"DEGRAD" 
220 RCOMP=-lO 
230 W=O 
235 TDB=O 
240 INTTSQ=O 
250 INTT4=0 
260 A2=0 
270 A4=0 
275 ADEG=O 
280 TRANS=O 
290 BSTATN=O 
300 DEGRAD=O 
310 FOR K=l TO 2 
320 DF1=1 
330 FOR N=l TO NP 
340 DF2=(SIGMAD(N)-D)A2+(W-OMEGAD(N»A2 
350 DF1=DF1 *DF2 
360 NEXT N 
370 TSQ=T2CON/DF1 
380 TDB=4.34294*LOG(TSQ) 
390 T4=TSQA2 
410 INTTSQ=INTTSQ+.5*(TSQ+A2)*DELW 
420 INTT4=INTT4+.5*(T4+A4)*DELW 
430 TRANS=INTTSQ/W 
440 BSTATN=INTTSQ A2/(INTT4*W) 
450 DEGRAD=l/(TRANS*SQR(BSTATN» 
460 IF TDB(=RCOMP THEN 504 
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470 ADB=TDB 
480 W=W+DELW 
490 A2=TSQ 
500 A4=T4 
501 ADEG=DEGRAD 
502 GOTO 320 
504 ADJ=(RCOMP-ADB)/(TDB-ADB) 
506 WMOD=W-DELW+ADJ*DELW 
508 DMOD=D/WMOD 
509 QMOD=l/DMOD 
510 LPRINT WMOD,QMOD,DEGRAD 
512 RCOMP=RCOMP-10 
514 ADB=TDB 
516 W=W+DELW 
518 A2=TSQ 
520 A4=T4 
521 ADEG=DEGRAD 
522 NEXT K 
525 LPRINT 
530 LPRINT 
540 INPUT "ANOTHER RUN (Y OR N)";B$ 
550 IF B$="N" THEN 630 
551 FOR N=l TO NP 
552 SIGMAD(N)=SIGMAD(N)-DSHIFT 
553 NEXT N 
554 T2CON=T2CON/T2MULT 
555 DSHIFT=O 
556 T2MULT=1 
560 INPUT "DO YOU WANT TO PREDISTORT (Y OR N)";C$ 
570 IF C$="N" THEN 110 
580 INPUT "VALUE OF D SHIFT";DSHIFT 
590 C1=SIGMAD(1) "2 
600 C2=(SIGMAD(1)+DSHIFT)"2 
610 T2MULT=C2/C1 
620 GOTO 110 
630 END 
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APPENDIX E 

CURVES OF DEGRADATION FACTOR VS BAND-EDGE ATTENUATION WITH q AS A PARAMETER 

All curves contained in Appendix E are plots of the degradation factor vs band

edge attenuation. To simplify the presentation, each caption provides only the pass

band ripple and the number of poles for the particular set of curves. 

In general, the following low-pass reference q values were considered: ~, 

100, 30, and 10. The values of q were established at the lossless low-pass proto

type "cutoff" frequency corresponding to the filter type. For Butterworth filters 

(r a dB) and 3-dB Chebyshev filters (r = 3 dB), this corresponds to the frequency 

at which the response is down 3 dB. For other ripple levels, it is the highest 

frequency at which the response crosses the ripple bound. 

For the three lossy q values, both standard and predistorted designs were con

sidered. For lower order filters and higher values of q, the standard and pre

distorted cases essentially coincided. For higher order filters and lower values of 

q, the curves were off the scales and are not shown. 

The low-pass reference q values are denoted in a row above, and in the same 

sense as, the curves. 

The pole values in Appendix E were not adjusted to compensate for shifts in 

reference frequencies as the dissipation increased. 

NOTE: In all cases, solid curves represent standard designs, and broken lines 

represent predistorted designs. 
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APPENDIX F 

CURVES OF DEGRADATION FACTOR VS q WITH RIPPLE AS A PARAMETER 

All curves contained in Appendix F are plots of the degradation factor vs low

pass reference q for two specific values of band-edge ~ttenuation: 10 dB and 

20 dB. To simplify the presentation, each caption provides only the attenuation and 

the number of poles for the particular set of curves. 

The poles were adjusted by the computer program so that the q values obtained 

in the data represent the actual low-pass q at the frequency at which the attenua

tion is the specific level (i.e., 10 dB or 20 dB). 

NOTE: In all cases, solid curves represent standard designs, and broken lines 

represent predistorted designs • 
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APPENDIX G 

SUMMARY CURVES 

A summary of the minimum degradation factor that can be obtained (with the 

filter types investigated) as a function of the number of poles for 10 dB specified 

bandedge attenuation is provided in figure G1. A similar summary for 20 dB 

specified bandedge attenuation is provided in figure G2. 

The range of minimum degradation factor based on the bounds of three resonators 

and seven resonators is provided in figure G3. 
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