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An important objective of the present joint project with Atmospheric and Environ-

mental Research, Inc., is the development of a couple 2-D model of dynamics, radiation

and chemistry. Our existing model (see Ko et al. (1985)) is not fully coupled, in the sense

that net radiative heating, Q, and the isentropic eddy diffusion coefficient, Kvv, have to

be separately specified.

Recent developments (Plumb and Mahlman, 1986; NASA/WMO, 1985) suggest that in

the geostrophic limit, the two quantities may be related. It is, however, rather problematic

to implement such a geostrophic result in a zonally averaged model because (i) the model

is global, while geostrophy breaks down near the equator, and (ii) geostrophy filters out

equatorial waves and gravity waves, which are known to be important components in

the eddy forcing of the mean flow. Furthermore, the common procedure of adopting the

geostrophic result is based on the assumption of conservation of the quasi-geostrophic

potential vorticity along isobaric surfaces. (Newman et al., 1986). It is known that a

better conserved quantity is the (Ertel's) isentropic potential vorticity along isentropic

surfaces.

Our effort during the first six months of the project is to formulate a nongeostrophic

theory that is more compatible with our global 2-D model. By relating the Eliassen-Palm

flux divergence, which represents the net eddy forcing of the mean zonal momentum, to

the flux of the isentropic potential vorticity, we have been able to deduce a nongeostrophic

relationship between Q and Kvv in isentropic coordinates. This work is documented in

Tung (1986), submitted for publication in J. Atmos. Sci..

We have also been able to infer seasonal and latitudinal distributions of Kvy from the

mean momentum budget. The result will be submitted for publication shortly. By adopt-

ing a nongeostrophic theory and using ErtePs isentropic potential vorticity in isentropic

coordinates instead of quasi-geostrophic potential vorticity in pressure coordinates, many
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of the large-scale negative Kvy regions encountered by Newman et al. (1986) disappeared.

The remaining large region of negative Kvv occurs in the easterly region of the summer

hemisphere, but the magnitudes of Kyu there are extremely small due to the inability

of the planetary-stationary waves to significantly penetrate into this easterly region in

stratosphere.

During the next six months, an algorithm based on the above-mentioned nongeostrophic

relationship will be implemented into the AER 2-D model. This will remove Kyv as an

independent input parameter for the model. Self-consistent calculations will be performed

for various chemical species, including ozone.



Bibliography

Ko, M. K. W., K. K. Tung, D. K. Weisenstein and N. D. Sze, 1985: A zonal mean model

of stratospheric tracer transport in isentropic coordinates: numerical simulations

for nitrous oxide and nitric acid. J. Geophys. Res., 90, 2313-2329.

NASA/WMO, 1985: 1985 Ozone Assessment (draft)

Newman, P. A., M. R. Schoeberl and R. A. Plumb, 1986: A computation of the horizontal

mixing coefficients from observational data, in preparation.

Plumb, R. A. and J. D. Mahlman, 1986: The zonally-averaged transport characteristics

of the GFDL general circulation/tracer model, in preparation.

Tung, K. K., 1966: Nongeostrophic theory of zonally-averaged circulation, Part I. Formu-

lation, submitted to J. Atmos. Set..



Nongeostropic Theory of Zonally Averaged

Circulation

Part I: Formulation

Ka Kit Tung

Department of Mathematics,

M.I.T., Cambridge, MA 02139



ABSTRACT

A nongeostrophic theory of zonally averaged circulation is formulated

using the' nonlinear primitive equations on a sphere, taking advantage of

the more direct relationship between the mean meridional circulation and

diabatic heating rate which is available in isentropic coordinates. Possible

differences between results of nongeostrophic theory and the commonly used

geostrophic formulation (e.g. Edmon et al (1980)) are discussed concerning

(a) the role of eddy forcing of the diabatic circulation, and (b) the "non-

linear nearly inviscid" limit (Held and Hou, 1980) vs the geostrophic limit.

Problems associated with the traditional Rossby number scaling in quasi-

geostrophic formulations are pointed out and an alternate, more general

scaling based on the smallness of mean meridional to zonal velocities for a

rotating planet is suggested. Such a scaling recovers the geostrophic balanced

wind relationship for the mean zonal flow but reveals that the mean merid-

ional velocity is in general ageostrophic, analogous to the semi-geostropic

theory of Hoskins and Bretherton (1972).

A set of general diagnostic tools comparable in scope to their geostrophic

counterparts is given in Part I, including (a) a generalized definition of

Eliassen-Palm flux divergence (without restriction to small amplitudes, steady

state or to adiabatic flows), the vanishing of which is a necessary condition

for nonacceleration (Andrews, 1983), (b) a nonlinear formula that relates the

flux of Ertel's potential vorticity to the Eliassen-Palm flux divergence and

(c) a relationship between the Eliassen-Palm flux divergence and isentropic
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mixing coefficient, Kvv, used in chemical tracer transport equations in isen-

tropic coordinates. From the mean momentum budget, we give in Part II an

estimate of the Eliassen-Palm flux divergence using fitted "observed" field

of net radiative heating rate. From this an estimate of the magnitude and

latitudinal/seasonal variation of Kvv is also provided.



1. Introduction

Great progress has been made in our understanding of the zonally aver-

aged circulation in the atmosphere since the introduction of the concept of

residual circulation by Andrews and Mclntyre (1976) and Boyd (1976), which

helps put in a more proper perspective the role of "eddies" (i.e. deviations

from zonal symmetry) in driving the mean (zonally symmetric) circulation.

However, our present understanding is based largely on a geostrophic ver-

sion of the general theory (see Edmon et al (1980), Dunkerton et al (1981),

Palmer (1981ab) and Andrews et al (1983)). In its geostrophic form, the set

of transformed zonally averaged equations of motion shows clearly that, in

the absence of eddies in the form of an Eliassen-Palm flux divergence, eddies

do not accelerate the zonal mean flow, a result first recognized by Charney

and Drazin (1961) and Dickinson (1969). A more controversal consequence of

the geostrophic theory is that at equilibrium, an "almost frictionless" (molec-

ular diffusion only say) stratosphere in the absence of large-scale eddies would

be "extremely close" to radiative equilibrium, in which the absorption of solar

insolation is simply balanced by an increase in local temperature, without

inducing a meridional circulation (see Mahlman et al (1984)). It is therefore

often concluded (see WMO/NASA (1985), Chapter 7) that global pattern of

rising and descending motions in the stratosphere "owes its existence to the

presence of asymmetric motions".

The above cited conclusion appears to have been contradicted by a num-
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her of zonally symmetric calculations based on the nonlinear primitive (i.e.

nongeostrophic) equations that produce realistic looking Hadley circulations

in the absence of large-scale eddies but in the presence of small-scale mixing

(i.e. viscosity) (Schneider and Lindzen, 1977; Schneider, 1977; Nakamura,

1978; Held and Hou, 1980). We can further show that even the small-scale

eddies are not needed by demonstrating that global scale nonlinear out-of-

radiative equilibrium circulations exist in both inviscid and "nearly inviscid"

limits, provided that nongeostrophic equations are used.

While these "thought experiments" of a hypothetical axisymmetric at-

mosphere are useful in highlighting the qualitative difference between the

geostrophic and nongeostrophic formulations, they do not address the more

practical question: Is our atmosphere in the geostrophic regime? Or is the

"nonlinear nearly inviscid" regime (Held and Hou 1980) more applicable?

These issues cannot be addressed using a formulation that adopts the o pri-

ori assumption of geostrophy.

It is important to recognize that there is no a priori justification for the

geostrophic scaling when applied to the zonally averaged zonal momentum

equation. When eddy forcing is absent, the geostrophic form of the mean

zonal momentum equation suggests that the mean meridional velocity, and

so the Coriolis acceleration, vanishes, while geostrophic scaling requires that

Coriolis acceleration dominates relative acceleration terms. Therefore, it is

obvious that one cannot justifiably use the geostrophic equations to deduce

results concerning what happens in the absence of large-scale eddies. On
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the other hand, the above observation does not necessarily imply that the

geostrophic approximation cannot be applied to the stratosphere; given suf-

ficiently strong magnitudes of eddy Eliassen-Palm flux divergence of global

length scales, a scaling based on the smallness of the Rossby number may in-

deed be valid. It is therefore an objective of the present work to (i) point out

the different regimes an atmosphere can be in depending on the magnitudes

of eddy forcing, and (ii) to find out which of these regimes our atmosphere is

in during different seasons. Task (i) is discussed in the present Part I, while

task (ii) is relegated to Part II.

Another objective of the present work is to develop a complete set of

general diagnostic tools that are comparable in scope to the correspond-

ing geostrophic diagnostics.1 In order to make our diagnostics more easily

adaptable to current procedures for data analysis, we have emphasized the

derivation of relationships of various eddy diagnostic quantities to Ertel's

potential vorticity (Ertel, 1942). Mclntyre and Palmer (1983, 1984) have ef-

fectively argued for the usefulness of Ertel's potential vorticity on isentropic

surfaces as a diagnostic tool for visualizing large-scale nonlinear dynamical

processes in the stratosphere. Hoskins et al (1985) have reviewed the use and

significance of isentropic potential vorticity maps in a variety of atmospheric

situations, not necessarily restricted to the stratosphere. In particular, they
1Such a set of diagnostics for nongeostrophic flow is hitherto not available, although a general

(nongeostrophic) definition of the Eliassen-Palm flux divergence in pressure coordinates has

been given by Andrews and Mclntyre (1976, 1978a) and Boyd (1976) and used by Andrews

et al (1983).
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emphasized the Lagrangian conservation principle for Ertel's potential vortic-

ity, which presumably is better conserved than that of the quasi-geostrophic

potential yorticity along isobaric surfaces (Charney and Stern, 1962). In

addition to the two main "principles" associated with the use of isentropic

potential vorticity (namely, the conservation principle just mentioned, and

the "inverterbility" principle (see Hoskins et al (1985)), we add further that

(i) the use of isentropic maps of potential vorticity allows us to diagnos-

tically calculate the Eliassen-Palm flux pseudo-divergence, which represents

the net eddy forcing of the zonal mean flow in isentropic coordinates, and (ii)

the Lagrangian conservative properties of the isentropic potential vorticity

endows it with the property of a passive tracer; the dual (dynamical and pas-

sive) character of the isentropic potential vorticity allows us, in principle, to

deduce the transport characteristics of the atmosphere form its momentum

budget.

Although the relationship between the flux of geostrophic potential vor-

ticity and geostrophic Eliassen-Palm flux divergence is well-known in pressure

coordinates (see Edmon et al (1980), and references therein), the correspond-

ing relationship between the flux of Ertel's potential vorticity along isentropic

surfaces and the Eliassen-Palm flux divergence does not appear to have been

derived.2 In other words, a set of general diagnostic tools for studying waves

and wave-mean flow interactions is not available at the present time except
2However, a weak-amplitude limit of such a relationship appears to have been known to

Andrews (1983), as can be inferred from his Eq. (4.1).
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in the geostrophic limit in pressure coordinates. Partly as a consequence,

Clough et al (1985) have to resort to a comparison of the isentropic maps

of Ertel's potential vorticity with the Eliassen-Palm flux divergence calcu-

lated based on the quasi-geostrophic definition of Edmon et al (1980) for

pressure coordinates. Although this somewhat inconsistent procedure is at

present largely dictated by the retrieval process for the observational data,

it would have been conceptually clearer if the relationship between the flux

of Ertel's potential vorticity along isentropic surfaces and the Eliassen-Palm

flux divergence in the same coordinates had been known and a direct (albeit

approximate) comparison made of these two quantities. This is especially

true for diagnosing model generated data: Although the numerical data are

generated using a primitive equation model, the diagnostics by Dunkerton

et al (1981) are again based on the quasi-geostrophic formulation of Edmon

et al (1980).

A relationship between the flux of Ertel's potential vorticity along isen-

tropic surfaces and the Eliassen-Palm flux divergence is obtained without

quasi-geostrophic approximation. This crucial relationship links the flux of

a quasi-conservative wave property to the net wave forcing of the mean flow

without restriction to small wave amplitudes, thus making it a useful diag-

nostic tools applicable even to the "surf zones" (Mclntyre and Palmer, 1983)

in the stratosphere.

The link between the net eddy forcing term in the mean zonal momen-

tum budget and the Ertel's potential vorticity, which is quasi-conservative,
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allows us to deduce from the mean momentum budget and mean isentropic

gradient of potential vorticity a quantity, Kyv, that appears ubiquitously

in chemical tracer transport equations in isentropic coordinates as the isen-

tropic diffusion coefficient (see Tung, 1982; 1984; Ko et al, 1985). Thus it

appears that an assessment of the magnitude of the Eliassen-Palm flux di-

vergence could also possibly afford us a preliminary look at the magnitude

and latitudinal distribution of Kvv, that has been difficult to obtain by di-

rect evaluation from Eulerian data on transient waves. It also turns out

that the use of Ertel's potential vorticity in isentropic coordinates to deduce

Kvv is less problem prone than a similar procedure in isobaric coordinates

using quasi-geostrophic potential vorticity (Newman et al (1985), personal

communication).

The use of isentropic coordinates turns out to be important in our present

formulation of a nongeostrophic theory of zonally averaged circulation. Al-

though many of our formulae may have their counterparts in pressure coordi-

nates, the role played by the eddy Eliassen-Palm flux divergence in the forcing

of the residual zonal mean circulation becomes more difficult to understand

in pressure coordinates due to the presence of mean ageostrophic meridional

circulations. The simple, direct relations between the Eliassen-Palm flux

divergence and the geostrophic residual mean circulation in pressure coordi-
\

nates, as discussed succinctly by Edmon et al (1980), are no longer available

for nongeostrophic flows. Such a problem does not appear in isentropic co-
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ordinates. For our purposes, the advantage of using potential temperature

„O = T *»
\ P I

as the vertical coordinate (instead of pressure p, say) lies in the direct rela-

tionship between the vertical "velocity", 0 = ^0, and the diabatic heating

rate, Q, as given by the thermodynamics equation

Thus there should be no mean circulation in the latitude-height plane for

an atmosphere in radiative equilibrium. Conversely the presence of a mean"

meridional circulation, driven by, say, eddy forcings in the form of Eliassen-

Palm flux divergence, necessarily induces a diabatic heating, leading to a non-

radiative-equilibrium for the atmosphere. Such a direct relationship between

radiation and dynamics is one of the many reasons why it is convenient to

adopt the isentropic coordinates for our discussions to follow. The relevant

equations will also be recast into log-pressure coordinates later in section 7.



2. The 2-D equations.

A listing of the set of primitive equations in isentropic coordinates can

be found, for example, in Appendix A of Tung (1982). (There is however a

typographical error in Eq. (A4) there, where ^|— should read cosv?]. The

so-called 2-D equations are obtained by taking the zonal average of the 3-D

equations by the operation

(2.1)

where A is the longitude, <p the latitude and 0 is the potential tempera-

ture, used here as-the vertical coordinates. We shall use primes to denote

deviations from zonal average, i.e.

h1 = h - h (2.2)

The primed quantities arise from asymmetric perturbations, and are referred

to here as "eddies" or "waves". In isentropic coordinates it is sometimes more

meaningful to use density-weighted zonal averages, defined as (see Gallimore

and Johnson (1981 a, b)),

h = psh/pg, (2.3)

where

dz
P9 = pde

is the "density" in isentropic coordinates, i.e. it is mass per unit pseudo

volume (with dz replaced by d0). The deviation from the density-weighted
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average is denoted by an asterisk, i.e.

/i* = h - h (2.4)

[Note that p6h* = 0, but h* ̂  0 in general.]

The difference between h* and h' is (p'eh')/pe, which is quadratic in wave

amplitudes. The distinction between the two is significant only for finite

amplitude waves. But since we are interested in deriving relations that hold

in the presence of finite amplitude perturbations, the distinction will be made

in the present work.

As in Tung (1982), we use capital letters to denote mass flow rates, thus

U = pfU, V = pevcost£>,W = pe&- (2.5)

With those definitions, the zonally averaged equations take the following
i

form.

2.1. Equation of mass conservation.

I* + TyV + I* = ° (2'6)

where y = a sin (p.

2.2. Thermodynamics equation.

The thermodynamics equation

jtln9 = Q/T
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can be written as

W = (,/r) * q/f (2.7)

where q = pQ is the diabatic heating rate per unit physical volume divided

by cp, and F is the static stability parameter denned as

r = ~eJ~z

The derivation of (2.7) was previously given by Tung (1982).

[To circumvent any reference to the height coordinate z in our present formulation

in ^-coordinate, we note that

- l_!*i-_L 9 d

T 89 pT QpT 99

where the definition pg = p|| and the hydrostatic relationship

have been used A further use of the ideal gas law; p = pRT, then yields

= c p f dtnT\
'

g J dtnO g \ dtnd

This last expression is the one we will use, assuming T = T ( X , < p , 9 ) . However, in

dealing with observational data, we usually have 9 = 9 ( X , < p , p ) , in which case F can

be obtained from

g dtnO g dT
p = r _^__ = _ _ _L

R dtnp cp

where

H = RT/g.
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2.3. Zonal momentum equation:

o o a _t

— (p f fucos<p] + — (Vucos<p) + — ( V f u c o s < p ) - f V = V - F , (2.8a)v 'dr ' dy v > dO

where / = 2nsin<p is the Coriolis parameter. The derivation of Eq. (2.8) is

given in Appendix A.

a. Eliassen-Palm flux divergence:

Of importance in our present discussion is the right-hand side of Eq.

(2.8a), which represents a generalized version of the so-called Eliassen-Palm

flux divergence. Written in component form (recalling y = asin^>), it is

V . F = —F., -\ Fa*• ^ 1 / ^ ^ / 1 "ay dO

with

Fv = —pfU*v* cos <p

and
•«

p,u*0* - -p*— $' (2-9a)9 dx \

(j^ is defined as acof 3A>
 and $ denotes the Montgomery streamfunction) .

A physical interpretation of V-F can be given, following Andrews (1983)

but generalizing to include diabatic eddies: V • F can be viewed as the

x-component of the force exerted by eddies on a thin tube with its axis

oriented along the x-direction bounded by the fixed lateral sides located at

y and y + dy, and undulating bottom and top isentropes & and 6 + dB. The
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horizontal component of the Eliassen-Palm flux, Fv, represents lateral flux

of zonal momentum into the tube." The first term in the vertical component

Fg represents the vertical, i.e. cross isentropic, flux of zonal momentum into

the tube, while the second term in Fg represents the x-projection of the net

pressure force pushing against the (slanted) isentropes (the so-called form

drag).

The use of ( )* instead of ( )' is necessary in (2.9a) in order for (2.8a)

to hold at finite amplitudes. For small amplitude disturbances, the differ-

ence between ( )* and ( )' becomes asymptotically small so that — Fv ^

—u'v'cos'v? is the usual horizontal momentum flux by the eddies.

The Eliassen-Palm flux divergence defined in (2.9a) appears to be the

most general form possible [It is essentially the same as in Tung (1982), sec-

tion 5, but with several typographical errors corrected]. Like in Andrews

(1983), it is valid without restriction to small amplitude perturbations and

quasi-geostrophic scaling. However, unlike in Andrews (1983), where adia-

batic mean and eddy flows are assumed a priori, the present definition is valid

for a general diabatic atmosphere. Furthermore, due to his use of the zonally

averaged zonal momentum instead of the density-weighted zonal average, the

eddy flux terms in his zonal momentum equation cannot be expressed in a

pure divergence form as is done in our Eq. (2.8a), except under nonaccel-

eration conditions. The present form permits the interpretation that eddy

fluxes act to redistribute mean angular momentum (without net creation),

and that when integrated over a volume bounded by a surface with no net
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outward eddy fluxes, eddy forcing of mean flow vanishes.

Nevertheless, the not-in-divergence form of eddy forcing terms of the

zonally averaged momentum (which cannot be called an Eliassen-Palm flux

divergence) is useful in a different aspect. It turns out that an exact relation-

ship exists between this "Eliassen-Palm flux pseudo-divergence", as we shall

call it, and the flux of Ertel's potential vorticity along isentropic surfaces.

Since the flux of Ertel's potential vorticity is not in general in a divergence

form, no exact relationship exists between it and the Eliassen-Palm flux di-

vergence defined in (2.9a).

b. Eliassen-Palm pseudo-divergence.

We shall now generalize Andrews' (1983) expression for the eddy forcing

term for the zonally averaged zonal momentum to include diabatic terms.

Using the zonal average of u instead of the density-weighted average of u,

we have instead of (2.8a) the following

/% f\ f\

— (peucos<p) + —(Vucos<p) + —(W ucos<p) - fV = f t - 7 , (2.86)

where ^-Q • 7 represents the eddy forcing of the zonally averaged absolute

angular momentum, and is given by

i / ) / ) / » '
— 0 • 7 = —v' cos (p-̂ -u1 cos <p — (f — — u cos <p)v' cos <p—
Pe oy oy pe

"5 i _ a

-$'— u1 cos <p + —p'eP-QQ*- c

By comparing (2.8b) with (2.8a), and noting that

u — u =

15



we see that

7 = V • F - —(V>Xcos<p/P«)ay

- -gg(Wp'$u'cos<p/pe) - —p'gu'cosip, (2.10)

so that in component form, the "pseudo-divergence" is given by

d d d
~o~M/ ~^~ "a/>'" ~f~ "a!dy v 86 dt

where

1.-.-= Fv — —Vp'gu'costp = —V'u'cosip
Pe

1

= — Wu1 cosip -\—j

and

Jt = -p'0U'cos<p (2-n)

The above expressions reduce to those of Andrews (1983) for adiabatic waves.

The presence of the last time-derivative term in (2.10) is what makes Q • 7

not a pure divergence. [The same situation appears also in Andrews' (1983)

expression for adiabatic atmospheres]. In pressure coordinates, there is no

distinction between (2.9a) and (2.9b), because the "density", pp, in pressure

coordinates is — ̂  and so there is no density perturbation, i.e. p'p = 0. In the

present case, fj • J can be put into a divergence form only if it is integrated

with respect to time over a lifecycle of a conservative disturbance.

Conservation of absolute angular momentum:
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A statement of the conservation of angular momentum appears to be

more obvious if Eq. (2.8a) is combined with Eq. (2.6) to yield

a-l*-1-^***1-*-'- (2-12a)

where L a is the absolute angular momentum, with L defined as

L = [u + fla cos <p\ cosy?.

When L is used instead of L, we have

In the following we call complete the listing of the zonally-averaged equa-

tions for use in our later computations. Some of the additional approxima-

tions that will be introduced do not affect our above discussion on Eliassen-

Palm fluxes, which are based only on the zonal momentum equation without

approximation (beyond that made in deriving the primitive equations).

2.4. Meridional momentum equation

It appears, as we will show in section 7, that for a fast rotating planet like

the earth, the dominant terms in the mean meridional momentum equation

is expressed in the following balance

a

/u = -cos<p— $ (2.13)
°y

where

/ = (2D + —-—) s'm<p.
a cos <p
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and $ is the Montgomery stream function. Eq. (2.13) becomes the geostrophic

relationship if / is approximated by /.

Within the same degree of approximation as (2.13), u can be replaced

by u if (2.8a) is used instead of (2.8b).

2.5. Hydrostatic relationship

cPT = 6 — $ (2.14)

2.6. Balanced wind relationship

Combining (2.13) and (2.14), we find a diagnostic relationship between

u and T.

/_ u \ d d -
]s\n<p0—-u = cos<p—- Cr>T. (2.15)

/ oB ay

Again, u can replace u in Eq. (2.15).

When the mean relative angular frequency u/(acosy?) is neglected when

compared with the planetary rotational frequency fi, (2.15) becomes the

thermal wind relationship

/•)

—cpT (2.16)

(2.16) is a good approximation to (2.15) for Earth's atmosphere.
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2.7. Equation of state

Using the hydrostatic equation

9Pt = ~~dep

and the relationship between temperature and pressure from the definition of

potential temperation & = T f^J ", we can obtain a relationship between

density and temperature as

To facilitate the taking of zonal averages, temperature is decomposed into a

radiative equilibrium state, Te(y, 0), and deviations from it, AT, i.e.

and it is assumed that AT is small compared to Te(y,0). (2.18) then yields

]
The assumption that AT/Te(t/, 0) is small appears to be valid in the strato-

sphere even for finite amplitude disturbances.

For future reference, we list the expression for the perturbation density

p ep< ~ "a* R (2'20)

19



3. Nonacceleration theorem.

The mean angular momentum equation (2.12a) is in the form of the

so-called "generalized Eliassen-Palm theorem" (see Andrews and Mclntyre

(1976, 1978 a,b), Killworth and Mclntyre (1985), although we have not shown

that our — j^L has the same quadratic property as their jjA, the rate of

change of the pseudo momentum. This is however not important for our

purpose of obtaining nonacceleration theorems). If we let

be the substantial derivative following the density-weighted mean circulation

(0,0) = ( ,̂|), then Eq. (2.12a) is in the form

Pe j^L-V-F = 0. (3.2)

[To the right-hand side of Eq. (3.2) one may add a term corresponding to a

dissipative force that we have not included in our momentum equation.)

The advantage of using isentropic coordinates becomes clear when we

consider the situation under radiative equilibrium conditions. In the absence

of diabatic heating, the thermodynamics equation W = q/T implies

W = 0. (3.3)

The continuity equation

d d - d -
^Pe + ^-V + —W = 0
at ay do
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together with a polar boundary condition

V = 0 at y = a or — a.

then suggests that

V = 0 (3.4)

at equilibrium. That is, there is no mean meridional circulation at radia-

tive equilibrium. The same conclusion can be drawn in pressure coordinates

only if geostrophic approximation is made in the zonal momentum equation.

In nongeostrophic form in pressure coordinates, the presence of the advec-

tion of mean temperature by ageostrophic mean circulation complicates the

relationship between diabatic heating and the mean meridional circulation.

Because of the direct relationship that exists in isentropic coordinates be-

tween the mean meridional circulation and the presence of nonconservative

process (such as diabatic heating), Eq. (3.2) can be written as

p e — L - V - F = D, (3.5)

where V should vanish in the absence of nonconservative processes (please

note that a local time derivative is used in (3.5)). Using this so-called gen-

eralized Eliassen-Palm relationship, we find that o necessary condition for

nonacceleration in a conservative atmosphere is the vanishing of Eliassen-

Palm flux divergence:

V • F = 0 (3.6)

Since

D'7 = V-F
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under "nonacceleration conditions",

D-^" = 0 (3.7)

is also a necessary condition for nonacceleration.

(3.7) is similar to the condition derived by Andrews (1983) and appears to

be the most general version of nonacceleration theorems presently available

in Eulerian coordinates. It is valid for finite amplitude waves satisfying

primitive equations on a sphere.

It should be pointed out that (3.6) is only a necessary condition for

nonacceleration. Vanishing of the Eliassen-Palm flux divergence is in general

not sufficient for nonacceleration. Furthermore, although adiabaticity, q = 0,

implies V • F = 0 at steady state, as mentioned above, the converse is not

necessarily true. That is, the vanishing of the Eliassen-Palm flux divergence

does not guarantee that at steady state the atmosphere should be in local

radiative (or radiative-convective) equilibrium, with q = 0. This observation

has important implications concerning the presumed role of large-scale waves

in driving the atmosphere out of a radiative equilibrium. We will come back

to this point in a later section.
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4. Relationship between Eliassen-Palm flux pseudo-

divergence and the flux of Ertel's potential

vorticity.

The relationship between the quasi-geostrophic Eliassen-Palm flux di-

vergence in pressure coordinates and the flux of quasi-geostrophic potential

vorticity is well known (Charney and Stern, 1962; Dickinson, 1969; Green,

1970; Edmon et al, 1980). If the quasi-geostrophic potential vorticity can

be assumed to be conserved along isobaric surfaces then a parameterization

of the flux, and hence of the Eliassen-Palm flux divergence can be made

in terms of the mean gradient of potential vorticity along isobaric surfaces.

Such a procedure appears to be problematic because (a) the geostrophic as-

sumption is too restrictive as it cannot account for mixing by gravity waves

in the stratosphere, (b) quasi-geostrophic potential vorticity is in general a

less-well conserved quantity along isobaric surfaces in the stratosphere than

Ertel's potential vorticity along isentropes, and (c) the quasi-geostrophic

scaling requires that the cross-isobaric diffusion terms (such as Kvz and Kzz)

be neglected; this is perhaps not justifiable (see Tung (1984)) in pressure

coordinates, except in limited regions in the mid stratosphere (see Newman

et al (1985), personal communication).

For these reasons it appears to be desirable to obtain a relationship

between the nongeostrophic expression we have for the Eliassen-Palm flux
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divergence and the flux of Ertel's potential vorticity in isentropic coordinates.

Then making use of the quasi-conservative nature of the isentropic potential

vorticity, a parameterization of the eddy momentum forcing term (Eliassen-

Palm flux divergence) can possibly be made.

4.1. Ertel's potential vorticity

Ertel's potential vorticity is denned as (see e.g. Pedlosky (1979)),

n = *±l (4.i)
Pe

where

= JL _ A
~ dx dy

is the relative vorticity, and

dz I dp
= O - = ---

dd gdO

is the "density" in isentropic coordinates. (Recall also, y = as'\n<p, -j^ =

acos<f> 3A J'

It can easily be shown, using (2.4), that the following identity holds for

the perturbation (from its density-weighted average ) potential vorticity

o

p,IT = f; - (/ - — u cos <f>)p'e/-pl. (4.2)

[Note that although (4.2) is of the same form as the linearized expression for

/70IT, no small amplitude approximation is made in deriving it]. Using the

identity that

0*6* = oW,
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we find that the northward flux of Ertel's potential vorticity is given by

l*)v* COS<p = p9pgT\.*v' COS<p

_
-" = —pev1 cos <p ——u1 cos <p — (/ — —-u cos <p)p'ev' cos <p (4-3)

dy dy

The expression in (4.3) is to be compared with the Eliassen-Palm flux

pseudo-divergence, which is, from (2.9b)

a

fj • / = —pev1 cos (f>— — u' cos <p

- (/ - — u cos (p)p'a v
1 cos <p

dy

r° de ^ '" de

4.2. Adiabatic waves

For adiabatic waves, (4.3) and (4.4) are the same, so

a

(4.4)

(4.5)

Eq. (4.5) provides an alternate diagnostic expression for the Eliassen-Palm

flux pseudo-divergence (the net eddy forcing of the mean flow) which should

be valid for time scales less than radiative damping times.. Since no small

amplitude assumption has been made, (4.5) should probably hold even for

large-amplitude "breaking" planetary waves observed in the stratosphere

(Mclntyre and Palmer, 1983, 1984; Leovy et al, 1985), to the extent that

such waves tend to mix predominantly along isentropes. However, the ex-

pression should not be expected to hold in the mesosphere in the presence

of significant breaking gravity waves, which can mix momentum across isen-

tropes.
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4.3. Diabatic waves

To give an estimate of the neglected terms in (4.5), we first write down

the full expression without approximation,

a a

}v* cos <p - pa'O'-^u' cos <p + p'eO'-^u cos <p. (4.6)
Ou OU

The last two terms in (4.6), denoted by A, will be estimated as follows. Since

_ 2 / i d \ _ d , , d _
P°(7*d0U) ^ P°d6U ~ P°d6U>

we have

A = —p«0'—u'cos^? + p'gO'—ucos<p ~ —P0S' I —~57U I
ou ou \ pa do I

\ /

The eddy cross-isentropic velocity 8' is estimated using the Newtonian cooling

expression (see Tung (1984))

6' = =—, where a"1 ~ 5 days

and the vertical derivative of u is estimated using the thermal wind relation-

ship. Thus

_- -
Pe foT Pad<p2

Using a value of T' ~ 10°C and a horizontal scale of a, we find

A « , 9
— ~ 10~6m/s2

Pe

This is about two orders of magnitude smaller than the Eliassen-Palm flux

divergence, which is of the order of

~ 10~4m/52
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during winter, in the extratropics (Clough et al, 1985).

Thus it appears that the relationship (4.5), which was found for adia-

batic waves, should continue to hold for adiabatic waves to a good degree of

accuracy. Thus, we have

(4.7)

This is the diagnostic relationship that we have sought as a generalized ver-

sion of the geostrophic relation commonly used.
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5. A parameterization of Eliassen-Palm flux

pseudo- divergence

To incorporate the effect of diabatic as well as adiabatic eddies, we start

with the nonconservative form of Ertel's potential vorticity equation (see

Pedlosky (1979)):

pejtTi = 5, (5.1)

where

is the diabatic source or sink of potential vorticity. When written in the form

of (5.1), the transport of II obeys the same equation as that for (nonconser-

vative) tracers. It turns out that because of the definition (4.1), the source

term is proportional to the Ertel's potential vorticity itself, i.e.

;j

5 = P9n— 0 (5.2)

To obtain a parameterization of the flux of Ertel's potential vorticity,

we take guidance from the small amplitude theory to derive the form of

functional dependence on the mean quantity. The perturbation form of (5.1)

is

(a) (b) (c) (d) (e)

&ft +*'*&ft = /"n* J?* +p»ft£«* ,.
(f) (g) (h) (i) (5"
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As usual, the advection of II* by the mean meridional circulation (v,6) (terms

(d) and (e)) is to be neglected when compared with the advection by the mean

zonal wind (term (b)). Under the same approximation, term (h) should also

be neglected as it is of the same order as or smaller than, term (e). An

additional assumption is that the time scales of eddies are much shorter than

that of the mean quantities, so term (c) should be neglected when compared

to term (a), resulting in:

-*"^ft+"^'' (5-4)

where we have defined the displacements 77* and <£* in the horizontal and

vertical directions as

Thus,

d A , d
— u* cos ^(p0$*)—II ~h f * cos f>(ps—<^*)ll. (^-^)

Let

•Ir- <"'
= ^(pe^) (5.8)

and
Q

—<i>'). (5.9)

29



(5.6) then becomes

f\ a
= -peKyvcos2<f>—fl-peKvecos<p—fi

ay OP

cos tpl (5.10)

Thus (4.6) implies that

1 a o

— D ' ^ = -P»Kyy cos2 <£>3-n - Ps/C,* cos £>— H + pevE^ (5.11)
P« oy off

Since [] • 7 appears as the eddy forcing for the zonal mean absolute angular

momentum L (see Eq. (2.12b)), (5.11) should also be rewritten in terms L.

This can be accomplished by noting the following identity

p$Il = f + $ = --j-L (5.12)

[In particular, the horizontal gradient of the Ertel's potential vorticity is

given by

_ a « _ a i d a2 _ fat d
Pe^-n = -Pe^- — ̂ -L= --^L+-?r-—L

dy dypgdy dy2 pa dy

d rpe a j

where

f fe
Pe(9) = POO -3-

\ °

Using the parameterization in (5.11), the mean zonal momentum equa-

tion becomes
o o . o

— L + (6 + OB) cos (,p—L + d— L
at ay off
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2 d 1 d •= d 1 d = ,.
<ppfl-x- — —L + Kvecos<pp0 — — — L. (5.14)

dy pg dy v 30 p edy

The coefficients Kvv and .K^ for the diffusion of mean angular momentum

turn out to be the same as those for the diffusion of conservative tracers as

described in, for example, Tung (1982; 1984) and Ko et al (1985). Thus it

appears that an assessment of the mean angular momentum budget or of

the Eliassen-Palm flux divergence could also possibly afford us a preliminary

look at the magnitude and latitudinal distribution of the diffusion coefficients

used in zonally averaged model of tracer transports. These quantities are

difficult to obtain by direct evaluation from data on transient waves in the

atmosphere. Before we give a preliminary estimate of Kvv in Part II, a few

remarks concerning Eq. (5.14) are given in the following.

(i) It is well-known that angular momentum L is not conservative and

so cannot be treated in the same way as a conservative tracer. If L

were a conservative quantity, i.e. if it were to satisfy

TtL = °'

instead of the actual equation

dt ad\ '

which we have used, then the procedure outlined in Tung (1982) for

conservative tracers would have given, for example, for the first term

on the right-hand side of Eq. (5.14),

d d -
—Kvvcos <p—L
dy dy
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instead of

Kvv cos2 <pp6 — ~—L
dy PS dy

actually appearing in Eq. (5.14). The difference should be attributed

to the nonconservative nature of L, and not to the "quasi-adiabatic

eddy approximation" used to obtain (4.6).

(ii) If we assume that the vertical to horizontal gradient of the mean Er'tel

potential vorticity is of the order of the ratio of a scale height to the

radius of the earth, then estimates given in Tung (1984) would suggest

that the magnitude of the Kv9 term in Eq. (5.14) (or (5.11)) is about

10% of the magnitude of the Kvv term in that same equation in the

winter stratosphere in isentropic coordinates [These two terms are

comparable in pressure coordinates under the same circumstances].

Therefore the right-hand side of Eq. (5.14) is dominated by the Kyv

term, during winter,

f\ f\ A f\ r\ ._ f\

— L+ (t) + t)£;)cos<£>—Z + 0 — L — Kyv cos2 <ppt — — — L (5.15)
at oy ov oy p$ dy

(iii) The form of the right-hand side of Eq. (5.14) suggests that large-scale

eddies act to (more or less) diffuse mean absolute angular momen-

tum. It is perhaps important to note here the difference between the

diffusion of mean absolute angular momentum and the diffusion of

mean zonal velocity. The latter mechanism has sometimes been used

as a parameterization of the eddy forcing term in the mean zonal mo-

mentum equation. It can be shown that the right-hand side of (5.15)
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can be written as

„ 2 _ d 1 d
Kvv cos* <ppe -£- — 3-

dy Pe dy
d *t - ^ , /( /-^(ficosyQjr d (p. d \ 2n

-r-r(ucosv?) + v- —-r S-^T-TU
dy2 cos^pe dtnO \TedtnO J a

(5.16)

If the mechanism of zonal velocity diffusion were adopted, the last

term in (5.16),

2H
— Kvv cos (p— (5.17)

a

would have been absent. The presence of this term, which is propor-

tional to the planetary rotational frequency, has important physical

implications. This term is negative independent of the sign of mean

gradients provided that the flux of Ertel's potential vorticity is down

gradient (so that Kyv > 0). Therefore it provides a source of easterly

relative momentum. The first two terms in the right-hand side of

Eq. (5.26) act to diffuse relative angular momentum, thus serving

to smooth horizontal and vertical gradients of the zonal wind u, but

providing no net source of mean relative momentum. The presence

of (5.17) serves to decelerate the westerly jet, balancing the Coriolis

acceleration associated with the poleward mean meridional flow that

exists in the stratosphere in the winter hemisphere. Without the term

(5.17), the stratospheric westerly jet would reach unrealistically large

velocities. By thermal wind, the temperature near the winter pole

would be too low.

The simple parameterization of Rayleigh friction sometimes used (Leovy,
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1964; Holton and Wehrbein, 1980):

^-U-7 = -KRn,
Pe

also provides the needed easterly momentum source in the westerly

region. In this sense, Rayleigh friction is probably a better parame-

terization than the one based on diffusion of u, i.e.

— Q - / ~ M^2u.
Pe

(iv) If the same balance of terms as in Eq. (5.15) were to prevail in the

easterly region in the summer hemisphere, the presence of the easterly

momentum source (5.17) would have led to an unrealistically strong

easterly jet. However, the presence of the same easterlies prevents

most of the stationary planetary waves from penetrating above 30 km,

so that in this region, Kvv should be very small. Also the estimate of

the ratio of Kvg to Kvy terms mentioned earlier for winter stratosphere

probably does not apply to the summer hemisphere. If the eddy

forcing term is dominated by the effect of diabatic gravity waves with

short vertical scales, the Kvg term in Eq. (5.14) may even dominate

over the Kvv term in the easterly region. Since Kvf can have either

sign, the problem of easterly acceleration in a easterly region does

not necessarily arise.

(v) Strictly speaking, one should not treat (5.11) or (5.14) as a parame-

terization of the eddy forcing of the zonal mean flow unless the depen-

dence of the coefficients Kvv and Kve on u or L is also known. This
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situation for the momentum equation should be contrasted with that

for the tracer transport equation, where the K's are independent of

the. concentration of the minor species being transported. Neverthe-

less, Eq. (5.11) or (5.14) is useful for diagnostic purposes as one can

in principle deduce from the momentum budget the same set of X's

that are used in tracer transport equations.
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6. Relation between Eliassen-Palm flux diver-

gence and diabatic heating.

The often-cited linear relationship (see WMO/NASA (1985), Chapter 7)

between Eliassen-Palm flux term and the diabatic heating is obtained only

when the geostrophic approximation is applied to the mean zonal momentum

equation, which becomes,3

-fV =[}.?. (6.1)

The steady state continuity equation is, from (2.6),

& + & = °- <6-2'
[Incidentally, it has been shown in Tung (1982) that (6.2) is a good approx-

imation to (2.6) even without the steady-state assumption). The thermody-

namics equation is, in isentropic coordinates, from (2.7):

W = 9/f (6.3)

Given the eddy forcing, [] • J, Eq. (6.1) determines the meridional velocity

V locally at every point where the eddy forcing is specified. The vertical

velocity W is calculated from V through the continuity equation (6.2), given

a boundary condition on W at some level. The thermodynamics equation

then relates W to the diabatic heating field q.
3Note that under the geostrophic approximation, V F and Q 7 can be used interchangeable

in Eq. (6.1)
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The physical implications of these relations have often been taken to

be that (a) it is the eddies that are responsible for driving the atmosphere

away from local radiative equilibrium, and (b) the degree of deviation from

radiative equilibrium is directly proportional to the strength of the Eliassen-

Palm flux divergence, the last point being inferred from the relationship

r j - 7 , (M

obtained by combining (6.1), (6.2) and (6.3).

There appear to be two points of caution that we wish to inject con-

cerning the interpretation just mentioned. First, as mentioned above, W

and hence q, are influenced by boundary conditions as well as in situ eddy

forcing, and so the above results apply only in the absence of significant

boundary forcing in W. Second, geostrophy is not a good approximation

when applied to the zonally averaged momentum equation in the east-west

direction (It is a better approximation when applied to the meridional mo-

mentum equation, yielding the thermal wind relationship). Results on zonal

mean circulations using the primitive equations are known in some cases to

differ significantly from those obtained using geostrophic equations.

This model difference can be understood by examining the relative im-

portance of various terms in the zonal momentum equation:

- fV = D- 7 (6.5)
ay ov

In geostrophic approximation, the nonlinear advection terms, the first two

terms in Eq. (6.5), are assumed to be much smaller than the Coriolis term,
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the third term in Eq. (6.5). Consequently the balance is between the Coriolis

term and the eddy forcing term on the right-hand side (see Eq. (6.1)). As

Q • 7 is made smaller and smaller, the Coriolis term necessarily decreases

in importance according to the geostrophic balance (6.1). This eventually

leads to the breakdown of the geostrophic approximation as the neglected

relative acceleration terms are no longer small when compared to the Coriolis

force. The unanswered questions are: What is the threshold magnitude

for eddy forcing below which the geostrophic balance (6.1) no longer holds,

and the "nonlinear nearly inviscid regime" (Held and Hou, 1980) applies?

Which regime is our atmosphere in? An assessment of the magnitude of

[] • 7 and the validity of geostrophic approximation as applied to the mean

zonal momentum equation are necessary for an understanding of these issues.

The diagnostic assessments will be given in Part II. In this section, some

conceptual issues concerning the state of the atmosphere in the absence of

eddy forcing will first be addressed.

The steady state zonal momentum equation can be written as

J [*,£]= *, (6.6)

where ^ is the streamfunction of the meridional circulation defined by

and

V = $. (6.7)
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The Jacobian operator appearing in (6.6) is defined by

J[A,B] = AvBe - AeBv.

In (6.6) X represents the large-scale eddy forcing plus small-scale dissipative

terms, i.e.

(6.8)

where fj, is the coefficient of small-scale mixing or molecular diffusion. In

the absence of zonal asymmetries, X is represented by only the (molecular)

diffusion.

6.1. Inviscid symmetric states.

If the hypothetical atmosphere is symmetric (fj • 7 — 0) and inviscid

(ft = 0), (6.6) becomes

j[*,L]=0, (6.9)

which implies that lines of constant absolute momentum should coincide with

the streamline. This is simply a statement that the inviscid symmetric cir-

culation is angular-momentum conserving. There is no constraint from the

momentum equation that the solution should be in local radiative equilib-

rium:

$ = 0 (6.10)

(which implies, from thermodynamics equation,

= 0).
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This situation should be seen in contrast with the geostrophic version of the

zonal momentum equation (6.1), which in the symmetric inviscid case is

fV = 0,

which leads to radiative equilibrium q = 0 in the absence of boundary forcing.

The exact solution to (6.9) is

* = G(L); (6.11)

the functional form of G is to be determined by boundary conditions. If the

horizontal boundaries are in radiative equilibrium, i.e.

W = 0 at 00 and 61, (6.12)

we have, without loss of generality

\& = 0 at 00 and 0j. (6.13)

If every line of constant L touches either the upper or lower boundary,

then (6.11) becomes, when evaluated using (6.13),

V = G = Q (6.14)

This is the radiative equilibrium solution, with q = 0. The zonal momentum

is related through the balanced wind (or thermal wind) relationship to the

radiative equilibrium temperature Te satisfying q(Te) = 0.

However, if in the interior of the domain there exists a region of closed

contours of L, then there will exists ttmodon"-like solutions for which G is not
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necessarily zero. There is in general a meridional circulation in such a region

(an out-of-radiative equilibrium situation). Also, inside the closed circula-

tion region the zonal momentum is no longer constrained by the radiative

equilibrium temperature, and can thus in principle attain any distribution.

The inviscid symmetric circulation is nonum'que because neither the

shape of the closed region, the functional form of G, nor the distribution

of L inside this region is determined without the imposition of additional

constraints. A common misconception has been that the radiative equilib-

rium solution (6.14) is the only solution in the absence of eddies or friction.

[Ironically, even Held and Hou (1980), who have established that a realistic

looking Hadley circulation can exist even in the absence of large-scale eddies,

chose to interpret their deduced circulation as due to the presence of small

but nonzero viscosity as a singular perturbation to the inviscid solution,

which they assumed to be in radiative equilibrium.]

However, that the inviscid steady state recirculating solution can be

nonunique is well known in other areas of fluid mechanics (see e.g. Batche-

lor (1956) in the case of vorticity distribution in steady laminar flow, Stern

(1975) for "modons", and Tung et al (1982) for internal waves of "permanent

form"). There are at least two ways of removing the arbitrariness. These

depend on whether the steady inviscid solution is treated as the limit of

H —»• 0 and then t —> oo, or as the limit of t —»• oo and then p. —> 0. In the

first approach, one considers the "quasi-steady" limit of an inviscid flow (see

Benney and Ko (1978) and Tung et al (1982)) and G can take any arbitrary
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form depending presumably on initial conditions (if these are stable). In the

second approach, one considers the "nearly inviscid" limit of a steady flow

(see Batchelor (1956)). The presence of even a small amount of viscosity

(which however acts for an infinitely long time) can place severe constraints

on the distribution of G inside a recirculating region.

6.2. The nearly inviscid limit.

The presence of a small amount of viscosity eliminates the radiative equi-

librium solution (6.10). More precisely, (6.10), or an order fj. modification

of (6.10), cannot remain as a solution to the viscous equation even in the

limit as /z —>• 0. The argument was given by Held and Hou (1980) using a

version of Hide (1969)'s theorem and assuming that the imposed radiative

equilibrium temperature decreases poleward for all heights.

When a small amount of viscosity is present, the inviscid recirculating

solution mentioned above it remains valid to leading order except in certain

"boundary layers", in which it may be modified in different ways depending

on the boundary condition. If the imposition of viscous boundary conditions,

such as no-slip, is inconsistent with the inviscid solution, a (thin) boundary

layer is needed. Inside the boundary layer, the effect of viscosity is important

and (6.9) no longer holds. Here, the constraint from (6.11) that streamlines

follow lines of constant absolute angular momentum is broken. Consequently,

the streamlines can be closed, as demanded by mass conservation, while lines

of constant angular momentum can be open and intersect the lower boundary,
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as required for example by the no-slip condition, u = 0 (i.e. L = fiacos2 tp).

Outside the boundary layer, the interior solution is almost inviscid, i.e.,

* s* G(L) (6.15)

except now G is to be determined by matching to the boundary layer solution,

and not by evaluating (6.15) at the boundary itself (where ^ = 0).

The detail matched asymptotic solution will be presented in a separate

paper. Here we only wish to emphasize the fact that the interior nearly

inviscid solution (6.15) can be very close to one of the inviscid recirculating

solutions (6.11). And it is therefore more natural to interpret the nearly

inviscid solution to be a small perturbation (at least in the interior ) from

a recirculating inviscid solution,4 instead of it being a singular perturbation

(with order one change) from the radiative equilibrium solution as suggested

by Held and Hou (1980).

The conclusion that one can draw from the above discussion appears

to be that eddies (large or small scales) are not "needed" to "drive the

atmosphere out of radiative equilibrium". Nevertheless, sufficient viscosity

may be "needed" to maintain some form of stability for these nearly inviscid
4 In this case the inviscid solution can be taken as a modon-like recirculating configuration

with the lower interface brought arbitrarily close to the lower boundary. The lower interface

will in general be a region of discontinuity in which the lines of constant L will complete the

closed contour. The addition of a small amount of viscosity will introduce a thin boundary

layer around the discontinuity and, depending on the lower boundary condition, lines of

constant L do not necessarily have to close via this boundary layer.
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steady symmetric circulations.
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7. A modified scaling appropriate for zonal

mean circulations

In sectiion 6, two extreme circulation regimes are discussed. One, the

inviscid or nearly inviscid regime, pertains to the mean circulation in the

presence of no or small eddy momentum forcing. The other, the geostrophic

regime applies away from the equator when eddy momentum forcing is

strong. It was clear from the discussion that the geostrophic approxima-

tion, obtained using Rossby number scaling, is of only limited validity when

applied to different zonally averaged circulation regimes.

In this section, a somewhat different scaling based on the smallness of

the ratio of mean meridional and zonal velocities is proposed. It turns out

that the result is more general and can cover both extremes of circulation

regimes mentioned above.

Since the following discussions are not restricted to isentropic coordinates

only, the more commonly used equations in pressure coordinates will be used

first, with modifications for isentropic coordinates given later.

7.1. Implications of Rossby number scaling

Implicit in scalings based on the smallness of Rossby number

- "OP/I (7 ,\

where u00 is a typical value of the horizontal velocity,5 £ a typical horizontal
5 Note that Rossby number scaling does not distinguish between the magnitudes of merid-
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length scale of the flow, and 2nsin<p0 a typical (midlatitude) value for the

Coriolis parameter /, is the assumption that the gradient of relative momen-

tum be much smaller than the gradient of planetary momentum, resulting in

the approximation

D 3
— -L~v—(fiacosV) = -/« (7.2)

where

D d d d rr A .poo. d
7^ = -^ + v^- + ®5~> z = H°°in ' w = 77Z
Dt at ay az P <«

and

L = u cos (p + Qa cos2 <p.

(7.2) is the so-called geostrophic approximation, and by its nature necessarily

excludes the kind of absolute-angular-momentum-conserving flow cited pre-

viously and by Held and Hou (1980), which, by approximately conserving

absolute angular momentum, L, generates in its northward branch west-

erly zonal flows as the planetary angular momentum, nacos2£>, decreases

northward. Therefore, a characteristic of such a flow is that the variation

(with latitude) of the relative zonal angular moemntum is comparable to the

variation in the planetary angular momentum (even though u/(flacos<p) is

small). In other words, the Rossby number for such a flow should be order

one and so cannot be used as an asymptotic parameter for this case.

In our present problem of calculating the zonal mean circulations, the

scale of the mean circulation should be obtained as part of the solution

instead of specified a priori.

ional and zonal velocities.
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7.2. An alternate scaling

We propose an alternate scaling based on the assumption that for a

rapidly rotating planet, such as the Earth, the zonally averaged flow should

predominately be in the zonal direction. Therefore, the ratio

e HE (7.3)

should be small. In (7.3) , VQQ and UQO are the typical magnitudes of the zonally

averaged meridional and zonal velocities respectively. [Note that there is no

assumption that | ̂  | be small]

If, as is usually done, one nondimensionalizes both horizontal velocities,

u and u, by the same UQO, then the following scalings should result:

U, = U U Q Q = UQ + £Ui + £U2 +

and

v, = V/UOQ = evi + e2v2 H ---- (7.4)

Let £tf and tx be the typical meridional and vertical length scales, then

based on the continuity equation, the mean vertical velocity w should have

the scale (|*voo), and so the usual dimensionless quantity

u>, = tu I — I
\L*J

should be of order e, i.e.

iw, = eibi + e2u>2 + • • • . (7.5)
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For mean transports in the meridional plane, time t should be scaled by

^V/VOD, and so we define,

'• s ' (T)\ cv /

Starting with the zonally averaged zonal momentum equation, which we

write in the following form

where X includes the Eliassen-Palm flux divergence (if in pressure coordi-

nates, the residual quantities are used for t) and w), and dividing by

we have

a

e
at* ay«

-(ev! H ---- )/, = eXi + £2X2 H ----

where

y, = y/£tf and /. = /(£tf/u00). (7.7)

In (7.7), we have also defined and scaled

X. = X/(ulQ/iy} = eXi + e*X2 + • • • (7.8)

[The scaling with X* being order one would have violated our assumption of

| v/u | small. This exceptional case will not be discussed here]. Therefore,

to leading order in e, (7.7) yields

( a a a \

— + t>i-^ + u>i— (u0 cos ̂ -ih /. = *i (7.9)
at* ay. ozt J
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Note that both the relative acceleration and Coriolis force are retained in

this approximation. In the y-direction, we start with the following zonally

averaged meridional momentum equation

£-.v + h = ---j-* + Y, (7.10)
Dt a dtp

where Y is the eddy forcing for the j/-momentum and / = (2H + ac°s ) sin <p.

The same procedure as before yields

= - cos

where

ft \
/o = /« + u0 — tan

A = fii I — tan V3.
V a /

To leading order in e, (7.11) is

d
/Ouo = - cos <f>—— $0, (7.12a)

which is the balanced wind relationship. Modification to (7.12) from the

mean meridional advection terms arises at order e2. Thus, the balanced

wind relations (7.12) holds to high accuracy provided the eddy meridional

momentum forcing is not too strong (i.e. if YI = 0).
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Eq. (7.12) reduces to the geostrophic relation if one further assume that

the Rossby number based on the radius of the earth a,

is small. This is generally true for a rotating planet whose planetary rota-

tional frequency, fl, is larger than the relative angular frequency, u/(acos^>),

of the flow on it. [Note that this ratio does not involve the unknown length

scale £„.] Thus a special, relevant case of (7.12) is

a
/,u0 = -cost?-;-— §0 (7.14a)

This geostrophic relationship for the zonal flow is obtained without the Rossby

number scaling, i.e. the smallness of the Rossby number defined in (7.1) is

not assumed.

Assuming YI = 0, the next order in (7.11) is

(£ \ Q
-1 tan <p }u1 = - cos <p $lt (7.126)
a J dyt

and if furthermore (7.13) is small, (7.12b) becomes again the geostrophic

relation:

d
dyt

The energy equation,

when rewritten in log-pressure coordinates, becomes

—T - —
dt cp TOO
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where TOO is the reference temperature associated with the reference scale

height, HQO = RToo/g, used in the definition of 2. The zonal mean of the

above equation is

where Z contains the eddy heat fluxes. We shall assume that (v,u>) is the

residual mean circulation, so that Z is not of dominant importance in the

energy equation. This assumption will be reflected in our scaling for Z to

follow.

We choose

f, = r/Too = To + £?! + •••

- - - (7.16)

and 0* = Qtv/(uooT0o) = Qo + eQi + • • •

For our present purpose, we shall assume that the mean radiative heating

rate Q is a function of the mean temperature, viz,

0 = Q(f).

Therefore,

Q. = Q.(T.) = Q.(T0) + e j Q . f a W + ••• (7.17)
O!Q

and thus

Oo = Q.(Tb) (7.18o)

a

.(fo)-?i, etc. (7.186)
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Eq. (7.15), when divided by (uooTbo)/&/, becomes

= Qo + eQi + --- + £Zl + £2Zz + --- (7.19)

The leading term in (7.18) is

Qo s 0, (7.20)

which defines the leading order temperature field via (7.18a) as

TO = Ttt (7.21a)

where

0, (7.216)

In other words, T0 is the radiative equilibrium temperature Te satisfying

(7.21b). At the next order in e, (7.19) yields

\dt, dy, dz t j \TooCpJ

= Oi + Zlt (7.22)

which together with (7.18b), should determine T\, the mean temperature

change (from radiative equilibrium) induced by the mean meridional circu-

lation (vi, u>i).
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7.3. Summary of scaled mean equations in isobaric co-

ordinates

In dimensional form, we write the zonal mean temperature and zonal

flow as

f = Te(y, z) + AT (7.23)

u = ue(y,z) + Au (7.24)

where Te is the local radiative equilibrium temperature determined from

Q(Te) = 0 (7.25)

And ue is related to Te through the balanced wind relationship

(~ u \ d R -, ,
2 fl H sm <p—u = cos<p0——T (7.26)

\ acos<pj oz HQQ

(Substitute ue for u and Te for f in (7.26)) (7.26) is obtained by combining

the hydrostatic relation

tfoo^U = RT, (7.27)

with the balanced equation

\ a cos <p

which is correct up to and including order e.

The zonal momentum equation is

) s 'mip-u = -costp—$, (7.28)
j ay

(A+ .-1+.-Ik «.*-/•-* (7.29)\dt dy dz) v

53



Knowing ue from (7.25) and (7.26), this is a linear equation for the meridional

circulation (v,w) assuming that the eddy momentum forcing, AT, is known.

v and w are related to each other by the continuity equation, which is

, (7.30)

where p0(z) = p0(Q)e~'/H°°.

Knowing v and w, the energy equation

Q(Tt] • AT (7.31)

then yields the dynamically induced part of the mean temperature AT. And

from AT", the balanced wind relation gives diagnostically the dynamical cor-

rection to ue. Note that the solution procedure outlined above for the scaled

equations is linear in every step, while the original set of mean equations is

nonlinear.

Note also that the above set of equations includes the geostrophic equa-

tions as a subset; one can make the additional assumption of small Rossby

numbers, RQ \t, and the geostrophic equations will result from the above set.

It also includes the nearly inviscid regime mentioned in section 6; even for

small or zero eddy forcing X, a mean meridional circulation (u,u>) and an

out of equilibrium temperature distribution Te + AT can still be the solution

of our scaled set of equations, given appropriate boundary conditions.
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7.4. The scaled mean equations in isentropic coordi-

nates

The set of scaled mean equations in isentropic coordinates is the same

as stated in section 2, except

(i) with the radiative equilibrium temperature Te(y,0) replacing T in the

static stability parameter appearing in the thermodynamics equation

(2.7).

(ii) with ue replacing u in zonal the momentum equation (2.8a) and u in

(2.8b), and similarly in (2.12a) and (2.12b).

(iii) with q(T} approximated by q = ^q(Tt) • (f - Tt). and

(iv) under the present scaling, there is no difference between V • F and
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8. Conclusions

A formulation is given for a nongeostrophic theory of zonally averaged

circulation. Motivations for extending the commonly used geostrophic ver-

sion of the general theory are many, some of them are

(a) Geostrophy does not hold at and near the equator and so is not

uniformly valid in a model of zonal mean global circulation.

(b) Although there is some consensus that the mean zonal velocity is

in geostrophic balance, there is no a priori justification for applying

the geostrophic approximation for the zonally averaged north-south

velocity. This is the case even if the nonaveraged north-south veloc-

ity can be considered as in geostrophic balance with the east-west

gradient of pressure (or height) field.

(c) In the eddy forcing terms for themean circulation equatorial wave

and gravity waves, which are important components of the forcing,

are filtered out in the geostrophic version of the theory.

(d) The constraint of geostrophy is so strong that one is prevented from

addressing some fundamental problems concerning zonally averaged

circulations using the set of geostrophic equations. For example, it is

probably not appropriate in using the set of geostrophic equations to

deduce the state of the atmosphere in the absence of zonal asymmetry,

because while these equations would lead one to conclude that the

symmetric atmosphere is extremely close to radiative equilibrium,
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while the original primitive equations suggest otherwise.

A major hindrance in the past in adopting the more general"(i.e. non-

geostrophic) formulation of zonally averaged circulations lies not in technical

difficulties associated with the formulation but in clear interpretation of the

role of various eddy forcing terms. This problem is largely circumvented

when the zonal averaging is performed on isentropic surfaces, as it is done

in the present work. The role of eddies in the forcing of the mean flow is

much better defined in isentropic coordinates without the presence in isobaric

coordinates of mean temperature advection by the ageostrophic circulation.

The more general formulation suggests that a hypothetical atmosphere

can be in different circulation regimes depending on the strength of the

eddy Eliassen-Palm flux divergence. When the eddy strength is strong, the

mean circulation may be in the geostrophic regime away from the equator.

However, when the eddy strength is weak, the circulation may be close to

the "nearly inviscid nonlinear regime" of Held and Hou (1980), which is not

a continuation of the geostrophic regime as the eddy strength is reduced.

In Part II, we will address the question of which regime our atmosphere

is in. Furthermore, we will use our present isentropic formulation and the

derived relation between Eliassen-Palm flux pseudo divergence and the flux

of Ertel's isentropic potential vorticity to deduce the isentropic diffusion co-

efficient, Kyv that is useful in tracer transport studies.
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Appendix A.

The zonally averaged momentum equation in isentropic

coordinates on a sphere.

Starting from the zonal momentum equation:

d u du v d • d
alu H ~a\ + ~a~u + 0~xZu
at acos<pdX ad(p oB

( \ i ft
2fl +—?—} smipv = — $ (A.I)

acosipj acostpdX

and the equation for the conservation of mass:

I d I d ^ d . - . , A .
) •+• -^(Piiv) = 0, (A.2)*\ t * " *\ \ • * *^dt acos<pdX acos<pd<p

one has

9 I d I d , , . d
— peu H -- -^rpeuu H -- r— — (p^uucos (f>) + ^
dt a cos <p aX a cos2 <p dip do

-2Cls'm<ppev = -- — — -$ (A3)
acostpdX
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Taking the zonal average: ( ) = /0
2T( )dA, one obtains the zonally averaged

momentum equation:

o i a o
—-pju + — — (pjuvcos2<f>) + — (peu'e) - 2fisin<ppjv
at acos2<pa<p 60

Pe (A.4)
a cos <p d\

We let, as in Tung (1982):

U = lpl)U,V = pjvcos<£>, and W = p66 (-A-5)

be the zonally averaged mass circulation, and define, as in Gallimore and

Johnson (1981a) the density-weighted zonal average

u =

and deviation from zonal average

u* = u -u . (A.6)

Then

peuv cos2 tp = pf [u + u*] — -h v* cos <p cos <p
IP' J

= uV cos <p + pgu*v* cos2 <p + —peu* cos <pV + u cos2 <ppgv*
Pa

The last two terms are zero from definition (A.6). Eq. (A.4) now becomes

f) 1 <9 f)
—P0UH ——— (ucos^V") + — (uW) — 2fls\n.<pV / cos(p
at a cosj <p a<p ̂  ' do ̂  '

1 I d \ 1 d
3\ ~ I ro o a \ro~ U* COS2 £>) — —

a cos <p a A J acos*<po<p do
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The right hand side of (A.7) can be written as

1 — — 1 F 1 d d
V • F = —Fy + — Ftcosip costp [acostp dip dff

where

Fv = —pgu*v* cos2 <p,

and

Fe = - Uu'0' - -p — $ . (A.8)
[ g acosipdX \

In order to write the first term on the right-hand side of (A.7) into a vertical

derivative term, we have made use of the hydrostatic equation

and the relationship between the Montgomery streamfunction $ and pressure

a / p \R/Cp

d0* = c» l- ]

Finally, by multiplying both sides of Eq. (A.7) by cos^>, we obtain

— (pgu cos tp] H —— (u cos <pV} + —— (ucos <pW) — 2fl sin <pV = V • F
At n. rr»s in r)tr> \ ' rlH \ /dO

(A.9)

Next, the mean momentum equation expressed in terms u (instead of u

as in Eq. (A.9) is derived. We start with Eq. (A.I) and perform the zonal

average,

r\ r\ r\

— (ucos<p) + -——ucos<p + 0—ucos<p — 2nsin<pucos¥? = 0 (A. 10)
at a dip off
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We let v = v + v*, but u = u + u', then

v d v d v* d v* d
-——UCOStp = --^—UCOS(p -\ —— U1 COStp -\ -r— UCOStp
a dtp a dtp a dtp a dtp

Since

v* = v' -

from the definition of v*, and so

a*V = a'61,

we have

v d v d v1 d 1 _j—1 d _
-——ucostp = — ——ucostp H —— u'costp — —p'f lv'--r—ucostp.
a dtp a dtp a dip pg a dtp

Similarly,

*% ^ o f\ •» __^^^_ II

9 a^u cos ^ = ^ aZS cos ^ + ̂ 'aZu' cos ^ ~ ~^tf^'3ZS cos
ov OP ov g at/

Substituting

into (A. 10), we find

= v-

d , . e d id _ n . A— (ucostp) H — •—— costp + 0— ucostp — zflsin^ucos tp

v' d • d
= —— u'cosip — &'—-u1 costp

a dtp dO

( 1 a \ -I a
2ris'mtp -r—ucos^? I pgv'costp/pg H p'Jd'-—.-ucostp (A. 11)

a costp dtp J p9 " 88

Using the zonally averaged continuity equation (from (A.2)):

« 1 O J3 / A v

37P* + 5~ (p«t> cos y>) + — (pee} = 0 (
dt a costp dtp 80 \ J
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we rewrite (A. 11) finally into the form

— (pgU COS <{>) H —- (pgV COS <£>U COS <p)
at a cos tpo<p

+ — Ipe8ucos<p] — 2Q sin <pv cos <p = Q- 7, (A.13)

where
1 I .O O

—Q• J s —— u'cos^ — 0'—u'cos<p
PJ a a^? off

( 1 a \ -I Q
2f}sinv? ——it cos <p \ p'gv'cosip/pg H p'gd'—u cos tp (-A.14)

a cos<p dtp I ps 80
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