1

4

STUDY OF THE LITHOLOGY, PETROLOGY, AND ROCK CHEMISTRY FOR THE PYRAMID MOUNTAINS, NEW MEXICO by Sheldon Kerry Grant Professor of Geology University of Missouri-Rolla N86-16794 (NASA-CR-176473) STUDY OF THE LITHOLOGY, PETROLOGY AND ROCK CHEMISTRY FOR THE PYRAMID MOUNTAINS, NEW MFXICO (Missouri Univ.) 21 p HC A02/MF A01 CSCL 08G Unclas G3/46 05302 Part 1: Sample Locations Part 2: Hand Specimen Descriptions Part 3: X-Ray Chemical Analyses

Contract No. NAS13-251 University Proposal #420057-1 Report Parts 1-3 submitted October 25, 1984

801 - 586 - 1268

Part I Location of Sample Sites

Rock and soil samples were collected at 24 sites within the Pyramid Mountains of southwestern New Mexico in late September, 1984. The site locations are specified as 10-acre plots within the Section, Township, and Range land survey system. They are shown on copies of portions of $7\frac{1}{2}$ -minute quadrangle topographic maps (Lordsburg, Gary, Pyramid Peak, Table Top Mountain, and South Pyramid Peak). Sample Site Location

- 1 U SW¹/₄ SE¹/₄ NE¹/₄ Sec. 6, T23S, R18W; ridgetop 1 mi NE of Shakespeare townsite
- $2 \bigvee$ NE¹/₄ SE¹/₄ NW¹/₄ Sec. 6, T23S, R18W; pipeline road .75 mi N of Shakespeare townsite
- 3 V SE¹/₄ SW¹/₄ NW¹/₄ Sec. 31, T22S, R18W; Wildcat Hill, 2 mi W of Lordsburg
- 4 NE $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 18, T23S, R18W; hilltop south of paved road, .5 mi SW of Atwood Mine
- $5 \lor$ SE¹/₄ SE¹/₄ SW¹/₄ Sec. 14, T23S, R19W; 300 ft S of Nellie Gray Mine
- SE¹/₄ SE¹/₄ NW¹/₄ Sec. 14, T23S, R19W; .5 mi N of Nellie Gray Mine. Sample 6' is from the tailings pond immediately south of site 6.
- 7 ✓ SE¼ NW¼ NE¼ Sec. 19, T23S, R18W; hilltop .5 mi SE of Lady Mary Mine
- 8 \checkmark NE¹/₄ SE¹/₄ SE¹/₄ Sec. 7, T24S, R18W; .75 mi SW of Pyramid Peak. Sample 8' was collected 200 ft north of site 8.
- 9 ✓ SW¼ NE¼ NW¼ Sec. 17, T24S, R18W; Rockhouse Seep, 1 mi S of Pyramid Peak
- 10 ✓ SW¼ NW¼ SW¼ Sec. 9, T24S, R18W; Rockhouse Canyon, 1 mi SE of Pyramid Peak
- 12 V NE¹/₄ SE¹/₄ NE¹/₄ Sec. 16, T24S, R18W; McWirter Canyon, .5 mi NE of Cedar Mountain Well
- 13 ✓ SE¼ NW¼ SE¼ Sec. 16, T24S, R18W; 1000 ft E of Cedar Mountain Well
- 14 レ NE¹/₄ SW¹/₄ SE¹/₄ Sec. 16, T24S, R18W; 400 ft S of site 13
- 15 ✓ SE¼ SW¼ SE¼ Sec. 16, T24S, R18W; .25 mi SE of Cedar Mountain Well
- 16 V NE¹/₄ SW¹/₄ SE¹/₄ Sec. 26, T25S, R19W; 1.5 mi S of Woodhaul Canyon and 2 mi W of Animas Road
- 17 NE¹/₄ NE¹/₄ Sec. 35, T25S, R19W; Holtkamp Canyon, 1 mi W of Hightower Well. Sample 17' was collected 100 ft S of site 17, and 17" 500 ft S of site 17.
- 18 NW¹/₄ NE¹/₄ SE¹/₄ Sec. 30, T25S, R18W; Holtkamp Canyon, .25 mi E of Rainbow Well
- 19V
- $SE_{4}^{\frac{1}{4}} NW_{4}^{\frac{1}{4}}$ Sec. 24, T25S, R19W; Woodhaul Canyon, 2.5 mi E of Animas Road. Samples 19' and 19" were collected 800 ft west of site 19.

Sample	Site Location
20 🗸	$NE_{\frac{1}{4}}^{\frac{1}{4}} SE_{\frac{1}{4}}^{\frac{1}{4}} NW_{\frac{1}{4}}^{\frac{1}{4}} Sec. 25, T23S, R1BW; NE of Hughes Windmill.Sample 20A was collected across road NE of site 20.$
21 V	NW $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 26, T23S, R19W; SE of Polyanna Mine
22 /	SE $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 26, T23S, R19W; S of Polyanna Mine
23 1	unknown
24	SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 28, T24S, R18W; S of North Linn Tank
26	NE_{4}^{1} SW $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 22, T25S, R18W; S of South Uhl Draw

· ·

.

•

• • • •

.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Part II Hand Specimen Descriptions

Samples from the 24 sites in the Pyramid Mountains of New Mexico were examined under a binocular microscope for their mineral content. As a rule, only grains 1mm or larger could be recognized. Identifications are tentative and should be verified by thin section techniques.

Rock colors are tied to the Munsell Soil Color Charts of the Munsell Color Company, Inc. of Baltimore, Maryland, 1954 Edition. Form of the parent igneous body sampled was obtained from field observations and published maps. Rock names were derived from chemical analyses for silica, potash, and lime. Better names might result from thorough study of all the oxides.

Samples from sites 20-26 were quite altered and could not be as thoroughly described as at the other sites. These were not collected by the UMR representative, and their correlation to rock bodies on the published maps is not firm.

- Sample Hand Specimen Description
- Ir Very dark gray; lava flow; groundmass aphanitic 90-95%; phenocrysts ½mm 5-10%: plagioclase 0-5%, olivine 0-5%; basalt or andesite; Taa of Thorman and Drewes
- 2r Dark reddish gray; lava flow; groundmass aphanitic 95%; pods of secondary quartz and calcite 1mm 5%; dacite to dellenite; Kas of Thorman and Drewes
- 3r Mottled light brownish gray; silicified volcanic; very fine grained secondary quartz with ghosts of prismatic quartz crystals and rounded quartz relict masses; Tib of Thorman and Drewes
- 4-1r Dark gray; chilled phase of pluton; phaneritic 1-2mm: plagioclase 20-30%, quartz 5-25%, biotite 5-25%, Kspar 0-10%, some altered hornblende(?); granodiorite; Tap of Thorman and Drewes
- 4-2r Pinkish gray; pluton; phaneritic variable from 1mm in some spots to 5mm in others: altered feldspar 25-50%, altered biotite(?) 5-25%, quartz 5-25%; altered granodiorite; Tap
- 5-1r Gray; margin of pluton; phaneritic 1-2mm: plagioclase 25-50%, biotite 5-25%, Kspar 5-25%, quartz 0-5%; diorite to quartz diorite; Tgd of Thorman and Drewes
- 5-2r Dark gray; same as 5-1r
- 5-3r Brownish gray; same as 5-1r
- 6r Light gray; plug or flow dome; groundmass aphanitic 100%; contains quartz veins 1mm wide; rhyolite; Tib of Thorman and Drewes
- 7-1r Light gray; volcaniclastic conglomerate; groundmass (clasts) aphanitic 100%, slightly silicified; rhyolite(?) clasts; QTg of Thorman and Drewes
- 7-2r Mottled light and dark yellowish brown; same as 7-1r
- 8-1r Pinkish gray; lava flow; groundmass aphanitic 95%; phenocrysts 1mm 5%: sanidine 0-5%, biotite 0-5%; pods 1mm of deuteric minerals; rhyolite; Tpf of Deal and Elston
- 8-2r Brown; same as 8-1r except contains plagioclase 0-5%
- 8-3r Mottled reddish gray and orange pink; same as 8-1r except somewhat altered
- 8'r Pinkish gray; same as 8-1r
- 9r Pale red; ash-flow tuff; groundmass aphanitic 50% contains sparce white pumice fragments; phenocrysts 2-4mm 50%: quartz 5-25%, sanidine 5-25%, hornblende 0-5%, biotite 0-5%, plagioclase (?); rhyolite; Trt6 of Deal and Elston

- Sample Hand Specimen Description
- 10-1r Dark reddish gray; lava flow; groundmass aphanitic 100%; streaky flow layered; dacite; Trb2 of Deal and Elston
- 10-2r Dark gray; same as 10-1r except contains phenocrysts 1mm 5-10%: quartz 0-5%, plagioclase 0-5%
- 12r Light gray; ash-flow tuff; groundmass aphanitic 85% has some pumice fragments; phenocrysts 1mm 15%: quartz 5-25%, sanidine 5-25%, altered biotite 0-5%; rhyolite; Trt7 of Deal and Elston
- 13r Light gray; ash-flow tuff; groundmass aphanitic 80% has abundant altered pumice fragments; phenocrysts 2mm 20%: quartz 5-25%, sanidine 5-25%, altered biotite 0-5%; rhyolite; Trt4 of Deal and Elston
- 14r White; ash-flow tuff; groundmass aphanitic 70% has abundant altered pumice fragments; lithic fragments 5mm 5%; phenocrysts 2mm 25%: quartz 5-25%, sanidine 5-25%, altered biotite 0-5%; rhyolite; Trt3 of Deal and Elston
- 15r Very gray dark; lava flow; groundmass vesicular aphanitic 95-100% (vesicles 1mm have thin coating of light mineral matter); phenocrysts 1mm 0-5%: olivine(?); dacite; Trb1 of Deal and Elston
- 16-1r Weak red; ash-flow tuff; groundmass aphanitic 80% has faint pumice streaks; phenocrysts 3mm 20%: plagioclase 5-25%, sanidine (?) 0-5%, oxides 0-5%; rhyolite to rhyodacite; Tw of Deal and Elston
- 16-2r Weak red; same as 16-1r except some thin carbonate veins
- 17-1r Reddish gray; ash-flow tuff; groundmass aphanitic 85-90% has small altered pumice; lithic fragments 5mm 0-5%; phenocrysts 1mm 10%: biotite 0-5%, sanidine 0-5%, quartz 0-5%, plagioclase 0-5%; rhyolite; Tw of Deal and Elston
- 17-2r Reddish brown; same as 17-1r
- 17'r Black; same as 17-1r except groundmass is glass and phenocrysts are 2mm
- 17"r Dark gray; same as 17-1r except more pumice and lithic fragments
- 18r Dark gray; lava flow; groundmass aphanitic 75%; phenocrysts 3mm 25%: hornblende 5-25%, plagioclase 5-25%, sanidine 0-5%, biotite 0-5%; dacite or rhyodacite; Th of Deal and Elston

- Sample Hand Specimen Description
- 19-1r Pale brown; flow or flow dome; groundmass aphanitic 95-100% has streaky flow bands and disseminated oxides .05mm; phenocrysts 1mm 0-5%: sanidine; rhyolite; Tj of Deal and Elston
- 19-2r Gray; same as 19-1r
- 19'r Gray; altered lava flow; groundmass aphanitic 75%; phenocrysts 2-3mm 25%: altered plagioclase 5-25%, altered mafic mineral 5-25%; rhyodacite or dellenite; megabreccia block (Th of Deal and Elston(?))
- 19"r Very dark gray; altered lava flow; groundmass aphanitic 95-100% has quartz veins 1mm wide; phenocrysts 1-2mm 0-5%: plagioclase; dacite; megabreccia block (not mapped by Deal and Elston)
- 20-1r Gray; silicified volcanic; very fine grained secondary quartz; alluvial clast; Qgt of Thorman and Drewes
- 20-2r Mottled olive yellow and gray; unknown origin; grains 2mm of quartz and carbonate; alluvial clast; Qgt
- 20-3r Olive; altered porphyry; unknown origin; alluvial clast; Qgt
- 20-4r Dark gray; altered porphyry (?); unknown origin; alluvial clast; Qgt
- 20-5r Olive gray; like 20-3r
- 20A-1r Light brownish gray; altered volcanic; 1mm quartz and sanidine may be present; unknown origin; alluvial clast; Qgt
- 20A-2r Grayish brown; altered volcanic; groundmass aphanitic 70%; phenocrysts 1mm 30%: biotite 5-25%, plagioclase 5-25%, oxides 0-5%; rhyolite(?); alluvial clast; Qgt
- 21-1r Light olive gray; altered chilled pluton(?); equigranular 1mm; minerals unknown; diorite(?); Tgd of Thorman and Drewes
- 21-2r White; altered pluton; equigranular 1-2mm; mostly feldspar and lesser mafics; granite(?); Tgd
- 21-3r Very pale brown; same as 21-2r
- 21-4r Pale brown; same as 21-5r except plagioclase visible (remaining minerals altered)
- 21-5r Dark gray; altered porphyry; groundmass 75%; phenocrysts 1-2mm 25%: quartz 5-25%, plagioclase 5-25%; tonalite (?); Tgd

- Sample Hand Specimen Description
- 22-1r Brownish gray; altered pluton(?); equigranular 1-2mm minerals: plagioclase and lesser biotite; granodiorite or adamellite; Tgd of Thorman and Drewes
- 22-2r Light brownish gray; altered or weathered pluton; equigranular 2mm minerals: feldspar and lesser biotite; like 22-1r
- 22-3r Light olive gray; altered porphyry(?); Tgd
- 22-4r Gray; like 22-3r
- 22-5r Gray; like 22-3r
- 23-1Br Light gray; altered igneous rock 1mm grains
- 23-1Gr Light gray; same sample as 23-1Br
- 23-2Dr Light olive gray; altered igneous rock 1mm grains
- 23-2Lr Light olive gray; altered porphyry; groundmass aphanitic 90-95%; phenocrysts 2mm 5-10%: feldspar 0-5%, biotite 0-5%; dellenite(?)
- 23-3r Black; altered rock with $\frac{1}{2}$ mm biotite 5-10%
- 24-1r Pale red; ash-flow tuff; groundmass aphanitic 80% has tiny pumice streaks; lithic fragments 3-5mm 5%; phenocrysts 1mm 15%: biotite 5-10%, sanidine 5-10%, quartz 0-5%, hornblende 0-5%; dellenite; Trt2 of Deal and Elston
- 24-2r Pale red; same as 24-1r except slightly altered
- 24-3r Light reddish gray; same as 24-1r except more altered than 24-2r
- 26-1r Pale gray; altered flow; groundmass aphanitic 70% has visible quartz between grains; phenocrysts 1-2mm 30%: plagioclase 5-25%, biotite 5-25%, altered hornblende (?); dellenite; Tjr of Deal and Elston
- 26-2r Pale gray; same as 26-1r
- 26-3r Gray; same as 26-1r
- 26-4r Pale gray; same as 26-1r
- 26-5r Gray; same as 26-1r

Part III Chemical Analyses by X-ray Fluorescence

Rocks from the 24 sample sites in the Pyramid Mountains of New Mexico were analyzed by XRF at the University of Missouri-Rolla. The instrument was a Philips 1410 wavelength dispersive vacuum spectrometer equipped with a Chromium tube and LiF, PE, and TLAP crystals. Power settings were 30 KVP and 40 ma. Counting times were 10 to 30 seconds. Detectors included both scintillation and gas-flow proportional counters, arranged in series. Special features included gas-flow stabilization, automatic PHS, and a sequential rock-slab monitor. Samples were run as pelletized powders pressed into boric acid cups at 10,000 psi after two-minute grinds in a shatterbox. Standards were ten USGS reference rock powders. Supplementary standards were made by fusing seven of the Pyramid rocks into beads in an induction furnace and comparing these to USGS rocks similarly prepared.

The analyses are presented as weight percent oxides, normalized to a total of 100% for the ten oxides. The raw total, before normalizing, is also given. The raw values for each oxide can be obtained by multiplying the normalized values by the raw total. The analyses are generally very precise. The accuracy is within about 1-10 parts per hundred of the stated value for most of the major elements. Some of the samples are outside the concentration range of the USGS standards, leading to less accuracy. The analyses involved are enclosed in parentheses.

The analytical technique was designed to obtain good analyses for silica. The other elements were run so that matrix factor logic could be used to adjust the silica intensities, to compensate for the interaction of elements. For this purpose, it was not necessary to obtain maximum accuracy for the matrix oxides.

	Sample		Si02	Al203	Fe ₂ 03	MgO	Ca0	Na ₂ 0	K20	TiO2	P205	Mn0	Raw Total
5	1s 1r 2r 3r 4-2r 5	BV.2 (((546689666665557775787777777766667777766 .394657634663769149529030123322134555564 .00))	1676.243) 1676.243) 1676.243) 1676.243) 1676.243) 111111111111111111111111111111111111	88442((54556653182(1212211166661111166 ((2122111166661111116)))))	8922((4234555232(((000000111000001) 	$10.22 \times 10.12 \times 10.1$	3.94 3.94 (1.2)	1032(()333112334()(14444554222544643)) 32()333112334()(14444554222544643)) 33112334()(14444554222544643))	$\begin{array}{c} 1.27\\ 1.28\\ .700\\ (.64)\\ .54\\ 1.052\\ .64\\ 1.052\\ .64\\ .544\\ 1.052\\ .290\\ (.554)\\ .64\\ .544\\ 1.052\\ .20\\ .228\\ .0034\\ .226\\ .0034\\ .226\\ .0034\\ .226\\ .0034\\ .206\\ .178\\ .78\end{array}$	(.47) .360 .212) (.12) (.35523344 .35523344 .3252334 .3210) (.2210) (.23095322) .125680 .3004 .3004 .12500 $.1250$.09 .12 .06 (.0) (.01) .06 .12 .08 .07 .12 .08 .07 .12 .08 .07 .12 .08 .07 .12 .08 .07 .12 .08 .07 .12 .08 .07 .12 .08 .07 .00 .01 .02 .00 .01 .02 .00 .01 .00 .00 .01 .00 .00 .00 .00 .00	94.2 994.3 994.0 994.0 994.0 990) (1004.25669640) (1999999999999999999999999999999999999
	15r		61.7	17.1	6.1	2.5	5.2	3.4	2.9	•77	.16	.09	98.0

-

•

.

5

Sample	Si02	A1203	Fe203	MgO	CaO	Na ₂ 0	K20	Ti02	P205	MnO	Raw Total
16s 16-1r 16-2r 17s 17-1r 17-2r 17'r 18s 18r 19s 19-1r 19-2r 19'r 19'r 19"r 20s	72.1 77.7 72.6 72.6 72.7 72.7 72.7 72.7 72.7	$15.4 \\ 16.7 \\ 13.4 \\ 14.6 \\ 14.6 \\ 14.6 \\ 14.2 \\ 17.3 \\ 15.1 \\ 15.2 \\ 14.9 \\ 15.0 \\ $	$2.7 \\ 3.5 \\ 2.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 2.2 \\ 4.5 \\ 1.1 \\ 2.2 \\ 1.1 \\ 2.2 \\ 1.1 \\ 2.2 \\ 1.1 \\ 2.2 \\ 1.0 $	0.9 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.1 1.0 0.2 0.1 1.0 0.2 0.1 1.0 0.2 0.1 1.0 0.2 0.1 1.0 0.2 0.1 1.0 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	1.3 1.4 0.6 0.7 2.3 3.3 2.0 0.0 1.3 0.0 3.5 6.	2.1 5.5 2.6 5.1 8 0.1 8 4.6 5 8 7 2.2 3.7 1.2 2.2 3.7 1.2 2.2 3.7 1.2 2.2 3.7 1.2 2.2 3.7 1.2 2.2 3.7 1.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 3.7 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	4 4 4 5 4 4 4 6 4 3 4 4 4 3 2 1 (4 3 4 4 4 3 2 1)	.45 .68 .426 .224 .224 .224 .2300 .78 .29 .170 .907 1.27	.18 .24 .17 .09 .09 .04 .12 .04 .04 .04 .04 .19 .41	.07 .07 .05 .05 .05 .08 .05 .08 .05 .08 .03 .02 .07 .08 .03	96.9 988.9 988.2 988.9 9999999999999999999
3 20-1r	(92.2)	(3.9)	(.0)	(.6)	(.2)	(1.4)	(.4)	(1.19)	(.00)	(.oō)	(100)
20-2r $20-3r$ $20-4r$ $20-5r$ $20A-1r$ $20A-2r$ $21s$ $21-1r$ $21-2r$ $21-3r$ $21-4r$ $21-5r$ $22s$ $22-1r$ $22-2r$ $22-3r$ $22-4r$	70.3 n 55.1 57.30 76.7 71.5 72.2 64.2 64.2 64.2 61.5	(10.3) 13.6 15.1 15.1 14.0 17.0 18.4 (19.4) 16.1 17.5 17.5 16.7 17.5 17.5 17.5 17.3	2.1 7.0 <i>5.</i> 9 10.7 8.6 (12.4) 9.6 2.1 5.9 8.2 7.8 7.8 7.8 3.7 4.0 3.7 4.0 3.7 4.0 3.7 4.0 3.6 4.6	3 3.14 2.60) (11.4 2.774478678762 03.4 03.678762 1.762	(14.8)	0.9 3.5 4.5 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	0.31.9 0.100926263832364 0033532234553.64	1.30 1.35 1.35 1.42 1.37 .26 .65 1.33 .25 .20 1.01 1.03 .61 .53 .73 .71	.49 .49 .44 .38 .24 .30 .32 (.83) .19 .46 .32 .42 .42 .40	.110.0 .10 .11 .11 .12 .04 .03 .09 .03 .01 .09 .07 .07 .10 .06 .08 .09	7 101.5 99.5 94.0 95.2 95.8 94.7 96.4 96.4 96.8 98.7 97.4 100.1 97.2 999.7 999.7 98.2 97.1
22-5r	60.0	17.0	5.3	5.4	3.2	5.2	3.4	. 31	•55	.11	96.7

•

Sample	Si02	Al ₂ 03	Fe203	MgO	CaO	Na ₂ 0	К20	Ti02	P205	MnO	Raw Total
23s 23-1Br 23-1Gr 23-2Dr 23-2Lr 23-3r 24s 24-1r 24-2r 24-3r 26s 26-1r 26s 26-1r 26-2r 26-3r 26-4r	68.9 69.9 70.5 72.4 70.3 71.1 69.0 68.0 71.4 68.0 71.4 68.9 68.0 68.7	(19.1) 18.0 17.8 17.0 17.8 17.5 16.2 15.6 15.6 16.4 17.1 18.4 17.8 (19.2) 18.2	2.7 2.0 2.1 1.8 2.0 2.1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.7 2.0 2.9 2.7 2.0 2.1 2.9 2.7 2.0 2.7 2.0 2.1 1.8 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.4 1.0 0.9 1.0 0.9 1.1 0.6 0.8 0.7 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.9 0.9	1.0 1.9 1.6 0.4 1.7 1.1 1.5 1.8 1.3 1.2 1.2 1.2 1.2 2.2	1.8 1.7 2.36 2.3 2.5 3.8 2.7 6 0 2.9 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	· 35 · 28 · 26 · 26 · 26 · 26 · 27 · 59 · 61 · 340 · 40 · 40	P205 .15 .12 .11 .12 .11 .12 .11 .12 .18 .18 .21 .15 .12 .15 .12 .12 .11	.06 .04 .03 .02 .03 .05 .08 .05 .08 .05 .08 .05 .08 .06 .05 .03 .03 .03 .03	Raw Total 96.3 97.1 97.0 99.0 97.6 97.9 97.5 98.6 99.2 98.5 98.3 98.3 98.3 98.3 98.3 98.3 98.1
26-5r	70.5	17.3	2.7	0.6	1.3	2.9	4.2	.42	.13	.02	100.2

.

.

•