FOR THE PYRAMID MOUNTAINS, NEW MEXICO
by

$$
\begin{aligned}
& \text { Sheldon Kerry Grant } \\
& \text { Professor of Geology } \\
& \text { University of Missour }
\end{aligned}
$$

```
(NASA-CR-176473) STUDY OF THE LITHOLOGY,
N86-16794
PETROLOGY AND RCCR CHEMISTRY FOR THE PYRAMID
MOUNTAINS, NEW MEXICO (M1ssouri Univ,) 21 p
HC A02/MF A01 CSCL 08G
Unclas
```


Contract No. NAS13-251
University Proposal \#420057-1
Report Parts $1-3$ submitted October 25, 1984

$$
801-586-1268
$$

Part I Location of Sample Sites

Rock and soil samples were collected at 24 sites within the Pyramid Mountains of southwestern New Mexico in late September, 1984. The site locations are specified as 10-acre plots within the Section, Township, and Range land survey system. They are shown on copies of portions of $7 \frac{1}{2}$-minute quadrangle topographic maps (Lordsburg, Gary, Pyramid Peak, Table Top Mountain, and South Pyramid Peak).

Sample	Site Location
1 L	SW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 6, T23S, R18W; ridgetop 1 mi NE of Shakespeare townsite
$2 V$	NE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 6, 123 S , R18W; pipeline road .75 mi N of Shakespeare townsite
$3 V$	SE $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 31, T22S, R18W; Wildcat Hill, $2 \mathrm{mi} W$ of Lordsburg
$4 \checkmark$	$N E \frac{1}{4} N E \frac{1}{4} N W \frac{1}{4}$ Sec. 18, T23S, R18W; hilltop south of paved road, .5 mi SW of Atwood Mine
$5 \cup$	SE $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ Sec. 14, T23S, R19W; 300 ft S of Nellie Gray Mine
6	SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 14, T23S, R19W; .5 mi N of Nellie Gray Mine. Sample 6' is from the tailings pond immediately south of site 6 .
$7 ノ$	SE $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 19, T23S, R18W; hilltop .5 mi SE of Lady Mary Mine
8	NE $\frac{1}{4}$ SE $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 7, T24S, R18W; 75 mi SW of Pyramid Peak. Sample 8^{\prime} was collected 200 ft north of site 8 .
9	SW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 17, T24S, R18W; Rockhouse Seep, 1 mi S of Pyramid Peak
10	SW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ Sec. 9, T24S, R18W; Rockhouse Canyon, 1 mi SE of Pyramid Peak
12^{\prime}	NE $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4} \mathrm{Sec} .16$, T24S, R18W; McWirter Canyon, .5 mi NE of Cedar Mountain Well
$13 \checkmark$	SE $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 16, T24S, R18W; 1000 ft E of Cedar, Mountain Well
1	NE $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 16, T24S, R18W; 400 ft S of site 13
15 J	SE $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 16 , T 24 S , R18W; .25 mi SE of Cedar Mountain Well
16 V	$\mathrm{NE} \frac{1}{4} \mathrm{SW} \frac{1}{4} \mathrm{SE} \frac{1}{4} \mathrm{Sec} .26$, T25S, R19W; 1.5 mi S of Woodhaul Canyon and $2 \mathrm{mi} W$ of Animas Road
17	NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 35, T25S, R19W; Holtkamp Canyon, 1 mi W of Hightower Well. Sample 17^{\prime} was collected 100 ft S of site 17 , and $17{ }^{\prime \prime} 500 \mathrm{ft} \mathrm{S}$ of site 17.
18	NW $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ Sec. 30, T25S, R18W; Holtkamp Canyon, 25 mi E of Rainbow Well
19	SE $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ Sec. 24, T25S, R19W; Woodhaul Canyon, 2.5 mi E of Animas Road. Samples 19^{\prime} and $19^{\prime \prime}$ were collected 800 ft west of site 19 .

> ORIGPAAR PAGE IS OF POOR OUALITY

TABLE TOP MOUNTAIN QUADRANGL NEW MEXICO-HIDALGO CO
75 MINUTE SERIES (TOPOGRAPHIC)

UNITED STATES

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Samples from the 24 sites in the Pyramid Mountains of New Mexico were examined under a binocular microscope for their mineral content. As a rule, only grains 1 mm or larger could be recognized. Identifications are tentative and should be verified by thin section techniques.

Rock colors are tied to the Munsell Soil Color Charts of the Munsell Color Company, Inc. of Baltimore, Maryland, 1954 Edition. Form of the parent igneous body sampled was obtained from field observations and published maps. Rock names were derived from chemical analyses for silica, potash, and lime. Better names might result from thorough study of all the oxides.

Samples from sites 20-26 were quite altered and could not be as thoroughly described as at the other sites. These were not collected by the UMR representative, and their correlation to rock bodies on the published maps is not firm.

Sample	Hand Specimen Description
1 r	Very dark gray; lava flow; groundmass aphanitic 90-95\%; phenocrysts $\frac{1}{2} \mathrm{~mm} 5-10 \%$: plagioclase $0-5 \%$, olivine $0-5 \%$; basalt or andesite; Taa of Thorman and Drewes
2 r	Dark reddish gray; lava flow; groundmass aphanitic 95\%; pods of secondary quartz and calcite $1 \mathrm{~mm} 5 \%$; dacite to dellenite; Kas of Thorman and Drewes
3 r	Mottled light brownish gray; silicified volcanic; very fine grained secondary quartz with ghosts of prismatic quartz crystals and rounded quartz relict masses; Tib of Thorman and Drewes
$4-1 r$	Dark gray; chilled phase of pluton; phaneritic $1-2 \mathrm{~mm}$: plagioclase $20-30 \%$, quartz $5-25 \%$, biotite $5-25 \%$, Kspar $0-10 \%$, some altered hornblende(?); granodiorite; Tap of Thorman and Drewes
4-2r	Pinkish gray; pluton; phaneritic variable from 1 mm in some spots to 5 mm in others: altered feldspar 25-50\%, altered biotite(?) 5-25\%, quartz 5-25\%; altered granodiorite; Tap
$5-1 r$	Gray; margin of pluton; phaneritic 1-2mm: plagioclase $25-50 \%$, biotite $5-25 \%$, Kspar 5-25\%, quartz 0-5\%; diorite to quartz diorite; Tgd of Thorman and Drewes
5-2r	Dark gray; same as 5-1r
5-3r	Brownish gray; same as 5-1r
6 r	Light gray; plug or flow dome; groundmass aphanitic 100\%; contains quartz veins 1 mm wide; rhyolite; Tib of Thorman and Drewes
7-1r	Light gray; volcaniclastic conglomerate; groundmass (clasts) aphanitic 100%, slightly silicified; rhyolite(?) clasts; QTg of Thorman and Drewes
7-2r	Mottled light and dark yellowish brown; same as 7-1r
8-1r	Pinkish gray; lava flow; groundmass aphanitic 95\%; phenocrysts $1 \mathrm{~mm} 5 \%$: sanidine $0-5 \%$, biotite $0-5 \%$; pods 1 mm of deuteric minerals; rhyolite; Tpf of Deal and Elston
8-2r	Brown; same as 8-1r except contains plagioclase 0-5\%
8-3r	Mottled reddish gray and orange pink; same as 8-1r except somewhat altered
$8^{\prime} \mathrm{r}$	Pinkish gray; same as 8-1r
$9 r$	Pale red; ash-flow tuff; groundmass aphanitic 50% contains sparce white pumice fragments; phenocrysts $2-4 \mathrm{~mm} 50 \%$: quartz $5-25 \%$, sanidine $5-25 \%$, hornblende $0-5 \%$, biotite $0-5 \%$, plagioclase (?); rhyolite; Trt6 of Deal and Elston

Sample	Hand Specimen Description
10-1r	Dark reddish gray; lava flow; groundmass aphanitic 100\%; streaky flow layered; dacite; Trb2 of Deal and Elston
10-2r	Dark gray; same as $10-1 r$ except contains phenocrysts 1 mm 5-10\%: quartz 0-5\%, plagioclase 0-5\%
12 r	Light gray; ash-flow tuff; groundmass aphanitic 85% has some pumice fragments; phenocrysts $1 \mathrm{~mm} 15 \%$: quartz $5-25 \%$, sanidine $5-25 \%$, altered biotite $0-5 \%$; rhyolite; Trt? of Deal and Elston
$13 r$	Light gray; ash-flow tuff; groundmass aphanitic 80\% has abundant altered pumice fragments; phenocrysts $2 \mathrm{~mm} 20 \%$: quartz $5-25 \%$, sanidine $5-25 \%$, altered biotite $0-5 \%$; rhyolite; Trt 4 of Deal and Elston
$14 r$	White; ash-flow tuff; groundmass aphanitic 70% has abundant altered pumice fragments; lithic fragments $5 \mathrm{~mm} 5 \%$; phenocrysts $2 \mathrm{~mm} 25 \%$: quartz $5-25 \%$, sanidine $5-25 \%$, altered biotite $0-5 \%$; rhyolite; Trt3 of Deal and Elston
$15 r$	Very gray dark; lava flow; groundmass vesicular aphanitic $95-100 \%$ (vesicles 1 mm have thin coating of light mineral matter); phenocrysts $1 \mathrm{~mm} 0-5 \%$: olivine(?); dacite; Trb1 of Deal and Elston
16-1r	Weak red; ash-flow tuff; groundmass aphanitic 80% has faint pumice streaks; phenocrysts 3 mm 20\%: plagioclase 5-25\%, sanidine (?) $0-5 \%$, oxides $0-5 \%$; rhyolite to rhyodacite; Tw of Deal and Elston
16-2r	Weak red; same as 16-1r except some thin carbonate veins
17-1r	Reddish gray; ash-flow tuff; groundmass aphanitic 85-90\% has small altered pumice; lithic fragments $5 \mathrm{~mm} 0-5 \%$; phenocrysts $1 \mathrm{~mm} 10 \%$: biotite $0-5 \%$, sanidine $0-5 \%$, quartz $0-5 \%$, plagioclase $0-5 \%$; rhyolite; Tw of Deal and Elston
17-2r	Reddish brown; same as 17-1r
$17^{\prime} \mathrm{r}$	Black; same as 17-1r except groundmass is glass and phenocrysts are 2 mm
17"r	Dark gray; same as 17-1r except more pumice and lithic fragments
18 r	Dark gray; lava flow; groundmass aphanitic 75\%; phenocrysts $3 \mathrm{~mm} 25 \%$: hornblende $5-25 \%$, plagioclase $5-25 \%$, sanidine $0-5 \%$, biotite $0-5 \%$; dacite or rhyodacite; Th of Deal and Elston

Sample	Hand Specimen Description
19-1r	Pale brown; flow or flow dome; groundmass aphanitic 95-100\% has streaky flow bands and disseminated oxides .05 mm ; phenocrysts $1 \mathrm{~mm} 0-5 \%$: sanidine; rhyolite; Tj of Deal and Elston
19-2r	Gray; same as 19-1r
$19^{\prime} \mathrm{r}$	Gray; altered lava flow; groundmass aphanitic 75%; phenocrysts $2-3 \mathrm{~mm} 25 \%$: altered plagioclase $5-25 \%$, altered mafic mineral 5-25\%; rhyodacite or dellenite; megabreccia block (Th of Deal and Elston(?))
$19^{\prime \prime} \mathrm{r}$	Very dark gray; altered lava flow; groundmass aphanitic 95-100\% has quartz veins 1 mm wide; phenocrysts $1-2 \mathrm{~mm} 0-5 \%$: plagioclase; dacite; megabreccia block (not mapped by Deal and Elston)
20-1r	Gray; silicified volcanic; very fine grained secondary quartz; alluvial clast; Qgt of Thorman and Drewes
20-2r	Mottled olive yellow and gray; unknown origin; grains 2 mm of quartz and carbonate; alluvial clast; Qgt
20-3r	Olive; altered porphyry; unknown origin; alluvial clast; Qgt
20-4r	Dark gray; altered porphyry (?); unknown origin; alluvial clast; Qgt
20-5r	Olive gray; like 20-3r
20A-1r	Light brownish gray; altered volcanic; 1 mm quartz and sanidine may be present; unknown origin; alluvial clast; Qgt
20A-2r	Grayish brown; altered volcanic; groundmass aphanitic 70%; phenocrysts $1 \mathrm{~mm} 30 \%$: biotite 5-25\%, plagioclase 5-25\%, oxides $0-5 \%$; rhyolite(?); alluvial clast; Qgt
21-1r	Light olive gray; altered chilled pluton(?); equigranular 1 mm ; minerals unknown; diorite(?); Tgd of Thorman and Drewes
21-2r	White; altered pluton; equigranular $1-2 \mathrm{~mm}$; mostly feldspar and lesser mafics; granite(?); Tgd
21-3r	Very pale brown; same as 21-2r
21-4r	Pale brown; same as $21-5 r$ except plagioclase visible (remaining minerals altered)
21-5r	Dark gray; altered porphyry; groundmass 75%; phenocrysts $1-2 \mathrm{~mm} 25 \%$: quartz $5-25 \%$, plagioclase $5-25 \%$; tonalite (?); Tgd

Sample	Hand Specimen Description
22-1r	Brownish gray; altered pluton(?); equigranular $1-2 \mathrm{~mm}$ minerals: plagioclase and lesser biotite; granodiorite or adamellite; Tgd of Thorman and Drewes
22-2r	Light brownish gray; altered or weathered pluton; equigranular 2 mm minerals: feldspar and lesser biotite; like 22-1r
22-3r	Light olive gray; altered porphyry(?); Tgd
22-4r	Gray: like 22-3r
22-5r	Gray; like 22-3r
23-1Br	Light gray; altered igneous rock 1mm grains
23-1Gr	Light gray; same sample as 23-1Br
23-2Dr	Light olive gray; altered igneous rock 1mm grains
23-2Ir	Light olive gray; altered porphyry; groundmass aphanitic 90-95\%; phenocrysts $2 \mathrm{~mm} 5-10 \%$: feldspar $0-5 \%$, biotite $0-5 \%$; dellenite(?)
23-3r	Black; altered rock with $\frac{1}{2} \mathrm{~mm}$ biotite $5-10 \%$
24-1r	Pale red; ash-flow tuff; groundmass aphanitic 80% has tiny pumice streaks; lithic fragments $3-5 \mathrm{~mm} 5 \%$; phenocrysts $1 \mathrm{~mm} 15 \%$: biotite $5-10 \%$, sanidine $5-10 \%$, quartz $0-5 \%$, hornblende $0-5 \%$; dellenite; Trt2 of Deal and Elston
24-2r	Pale red; same as 24-1r except slightly altered
24-3r	Light reddish gray; same as $24-1 r$ except more altered than 24-2r
26-1r	Pale gray; altered flow; groundmass aphanitic 70% has visible quartz between grains; phenocrysts $1-2 \mathrm{~mm} 30 \%$: plagioclase 5-25\%, biotite 5-25\%, altered hornblende (?); dellenite; Tjr of Deal and Elston
26-2r	Pale gray; same as 26-1r
26-3r	Gray; same as 26-1r
26-4r	Pale gray; same as 26-1r
26-5r	Gray; same as 26-1r

Part III Chemical Analyses by X-ray Flıorescence

Rocks from the 24 sample sites in the Pyramid Mountains of New Mexico were analyzed by XRF at the University of Missouri-Rolla. The instrument was a Philips 1410 wavelength dispersive vacuum spectrometer equipped with a Chromium tube and LiF, PE, and TLAP crystals. Power settings were 30 KVP and 40 ma . Counting times were 10 to 30 seconds. Detectors included both scintillation and gas-flow proportional counters, arranged in series. Special features included gas-flow stabilization, automatic PHS, and a sequential rock-slab monitor. Samples were run as pelletized powders pressed into boric acid cups at $10,000 \mathrm{psi}$ after two-minute grinds in a shatterbox. Standards were ten USGS reference rock powders. Supplementary standards were made by fusing seven of the Pyramid rocks into beads in an induction furnace and comparing these to USGS rocks similarly prepared.

The analyses are presented as weight percent oxides, normalized to a total of 100% for the ten oxides. The raw total, before normalizing, is also given. The raw values for each oxide can be obtained by multiplying the normalized values by the raw total. The analyses are generally very precise. The accuracy is within about 1-10 parts per hundred of the stated value for most of the major elements. Some of the samples are outside the concentration range of the USGS standards, leading to less accuracy. The analyses involved are enclosed in parentheses.

The analytical technique was designed to obtain good analyses for silica. The other elements were run so that matrix factor logic could be used to adjust the silica intensities, to compensate for the interaction of elements. For this purpose, it was not necessary to obtain maximum accuracy for the matrix oxides.

```
1= soil
```

Sample	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Mgo	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	TiO2	$\mathrm{P}_{2} \mathrm{O}_{5}$	MnO	Raw Tota
1 s	50.3	16.9	8.6	8.0	10.2	3.2	1.1	1.27	. 47	. 09	94.2
1 r	49.9	17.6	8.5	9.2	8.2	3.9	0.8	1.28	. 50	. 12	99.3
2 s	64.4	16.2	4.5	2.8	4.5	3.4	3.0	. 70	. 36	. 06	94.6
2 r	65.0665	16.415 .4	4.54 .23	2.92 .38	3.33.61	4.23,52	2.93 .13	. 690.72	2.210 .194	. 070.05	97.8
53 s	8v.2 (87.8)	(4.3)	(2.5)	(.9)	(1.7)	(1.4)	(.2)	(1.15)	(.12)	(.0)	(100)
3 r	(96.3)	(1.0)	(.1)	(.5)	(.2)	(1.2)	(.0)	(.67)	(.0)	(.01)	(100)
45	63.4	17.4	5.1	4.1	2.2	3.3	3.4	. 64	. 35	. 06	94.7
4-1r	64.9	16.6	4.4	2.5	3.1	4.1	3.7	. 58	. 25	. 12	98.4
$4-2 r$	66.3	15.7	5.0	3.6	0.8	3.7	3.9	. 54	. 32	. 08	99.2
5 s	63.2	16.9	5.0	4.3	3.4	3.3	3.0	. 64	. 33	. 07	95.5
5-1r	57.9	16.7	6.5	5.7	6.0	3.9	1.8	1.01	. 44	. 12	99.6
5-2r	56.9	17.2	6.6	5.8	5.9	4.3	1.6	1.05	. 44	. 08	98.6
5-3r	59.8	16.6	5.6	5.2	5.0	3.8	2.7	. 82	. 37	. 08	97.9
6 s	71.9	16.9	3.2	2.5	1.1	0.1	3.8	. 29	. 11	. 06	98.6
6 r	74.9	15.6	1.6	3.9	0.3	0.0	3.6	. 10	. 04	. 04	98.4
6's	59.2	18.4	8.9	2.7	4.7	0.2	4.5	. 80	. 31	(.30)	96.0
7 s	(75.0)	(19.0)	(2.8)	(.1)	(.3)	(1.0)	(.8)	(.79)	(.20)	(.01)	(95.2)
7-1r	(82.0)	(15.5)	(.0)	(.1)	(.2)	(1.3)	(.2)	(.59)	(.21)	(.00)	(97.6)
7-2r	(79.7)	(15.8)	(1.8)	(.1)	(.3)	(1.3)	(.0)	(.63)	(.36)	(.00)	(98.3)
8 s	70.4	17.0	2.5	0.3	1.1	3.4	4.7	. 46	. 09	. 04	97.4
8-1r	73.2	15.3	1.9	0.4	0.8	3.1	4.9	. 30	. 05	. 04	98.7
$8-2 r$	70.9	16.4	2.4	0.4	1.5	3.2	4.6	. 47	. 13	. 05	97.2
$8-3 r$	71.5	16.1	2.4	0.8	1.4	2.7	4.6	. 42	. 12	. 04	97.1
8'r	72.8	15.7	1.6	0.4	0.8	3.1	5.2	. 31	. 05	. 06	97.8
9 s	73.7	14.5	1.7	0.5	1.4	2.6	5.0	. 25	. 36	. 06	96.1
9 r	73.4	14.8	1.7	0.8	1.4	3.0	4.7	. 26	. 08	. 05	97.1
10s	62.1	18.0	6.3	1.2	4.8	3.7	2.4	. 98	. 40	. 04	96.5
10-1r	61.8	17.8	6.5	1.2	5.1	3.8	2.4	1.06	. 35	. 07	97.9
10-2r	63.3	17.0	6.0	1.2	4.8	3.9	2.4	1.03	. 30	. 08	98.5
12 s	74.2	14.0	1.6	0.2	0.9	3.2	5.3	. 24	. 22	. 06	98.5
12 r	75.5	13.0	1.1	0.1	1.9	3.4	4.8	. 14	. 12	. 06	98.4
13 s	75.6	14.1	1.4	0.1	0.7	2.9	4.9	. 20	. 07	. 06	98.2
13 r	75.3	13.5	1.3	0.3	0.9	2.3	(6.1)	. 16	. 04	. 06	99.0
14 r	76.3	13.5	1.5	0.9	2.5	0.7	4.5	. 17	. 00	. 06	95.2
15 s	64.1	17.2	6.2	1.5	4.0	2.8	3.2	. 78	. 20	. 06	96.3
$15 r$	61.7	17.1	6.1	2.5	5.2	3.4	2.9	. 77	. 16	. 09	98.0

Sample	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Mg 0	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K} 2^{\mathrm{O}}$	TiO_{2}	$\mathrm{P}_{2} \mathrm{O}_{5}$	MnO	Raw Total
16 s	72.1	15.4	2.7	0.9	1.3	2.1	4.7	. 45	. 18	. 07	96.9
16-1r	67.5	16.7	3.5	0.3	1.3	5.0	4.8	. 68	.24	. 07	98.3
16-2r	72.7	13.6	2.7	0.1	2.4	3.5	4.4	. 45	.17	. 04	98.7
17 s	74.6	15.4	1.5	0.2	0.4	2.6	5.0	. 26	. 05	. 05	96.2
17-1r	75.6	14.4	1.7	0.2	0.6	2.6	4.6	. 22	. 09	. 05	98.5
17-2r	74.5	14.6	1.7	0.3	0.6	3.1	4.9	. 24	. 05	. 05	98.9
$17^{\prime} \mathrm{r}$	74.3	14.6	1.7	0.2	0.9	3.8	4.3	. 24	. 04	. 08	95.4
$17^{\prime \prime} \mathrm{r}$	73.1	14.2	2.1	0.1	0.7	3.0	(6.3)	. 30	. 12	. 08	98.5
18 s	66.5	17.9	4.2	1.0	1.2	4.1	4.1	. 70	. 33	. 05	97.7
18 r	66.7	16.3	4.5	0.8	3.3	3.8	3.5	. 78	. 31	. 08	99.3
19s	74.7	15.2	2.0	0.2	0.3	2.4	4.8	. 29	. 06	. 04	98.4
19-1r	76.5	14.1	1.4	0.2	0.3	2.6	4.7	. 18	. 04	. 03	99.6
19-2r	77.5	13.9	1.1	0.1	0.2	2.5	4.6	. 17	. 02	. 02	99.5
$19^{\prime} \mathrm{r}$	68.5	16.0	3.2	0.6	3.3	3.8	3.9	. 50	. 16	. 07	97.8
$19^{\prime \prime} \mathrm{r}$	59.8	16.9	7.2	3.4	5.0	3.7	2.9	. 90	. 19	. 08	96.7
20 s	51.6	15.0	11.0	(11.2)	6.6	1.7	1.1	1.27	(.41	. 13	(194.2
53 20-1r	(92.2)	(3.9)	(.0)	(.6)	(.2)	(1.4)	(.4)	(1.19)	(.00)	(.00)	(100)
20-2r	70.373	$3(10.3) 10.1$	17.059 .93	3.14 .28	8.05 .85	0.70 .74	0.31 .94	. 130.13	. 080.221	. 110.07	101.5
20-3r	55.5	13.6	10.7	2.6 ((14.8)	0.9	0.0	1.35	. 49	.10	99.5
20-4r	53.1	15.1	8.6	(11.0)	5.3	3.0	2.1	1.35	. 44	. 11	94.0
20-5r	47.3	15.1 ((12.4)	5.4	(16.4)	1.5	0.0	1.42	. 38	. 11	95.2
20A-1r	54.0	14.0	9.6	2.4 ((17.7)	0.6	0.0	1.37	.24	.12	95.8
20A-2r	70.7	17.0	2.1	0.7	1.0	4.1	3.9	. 26	. 30	. 04	94.7
21 s	66.7	18.4	5.9	0.7	0.4	3.8	3.2	. 65	. 32	. 03	96.4
21-1r	57.0	(19.4)	8.2	3.4	1.3	2.8	5.6	1.33	(.83)	. 09	96.4
21-2r	73.3	16.1	1.8	0.4	0.3	4.5	3.2	. 25	. 11	. 03	96.8
21-3r	71.4	16.6	2.8	0.7	0.5	5.0	2.6	. 20	. 19	. 01	98.7
21-4r	62.5	17.9	7.2	3.8	1.0	3.8	2.3	1.01	. 46	. 09	97.4
21-5r	62.5	17.6	7.8	1.6	1.3	3.9	3.8	1.03	. 36	. 07	100.1
22 s	64.2	17.5	4.0	3.7	1.5	3.8	4.3	. 61	. 42	. 07	97.2
22-1r	66.2	16.4	3.9	1.8	1.6	3.9	5.2	. 58	. 33	. 10	99.2
22-2r	67.0	16.7	3.7	1.7	1.4	3.5	5.3	. 53	. 22	. 06	99.7
22-3r	61.4	17.5	5.1	3.6	2.6	5.0	3.6	. 73	. 42	. 08	98.2
$22-4 r$	61.5	17.3	4.6	4.2	2.7	5.2	3.4	. 71	. 40	. 09	97.1
22-5r	60.0	17.0	$5 \cdot 3$	5.4	3.2	4.7	3.4	. 31	. 55	. 11	96.7

Sample	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	TiO_{2}	$\mathrm{P}_{2} \mathrm{O}_{5}$	MnO	Raw Total
23 s	68.9	(19.1)	2.7	1.4	1.0	1.8	4.5	.35	.15	.06	96.3
$23-1 \mathrm{Br}$	69.9	18.0	2.0	1.0	1.9	1.7	5.1	.28	.12	.04	97.1
$23-1 \mathrm{Gr}$	70.5	17.8	2.1	0.9	1.6	2.3	4.4	.26	.11	.03	97.0
$23-2 \mathrm{Dr}$	72.4	17.0	1.8	1.0	0.4	2.6	4.4	.26	.12	.02	99.0
$23-2 \mathrm{Lr}$	70.3	17.8	2.0	0.9	1.7	2.5	4.4	.26	.11	.03	97.6
$23-3 \mathrm{r}$	71.1	17.5	2.1	1.1	1.1	2.3	4.4	.27	.12	.05	97.9
24 s	70.1	16.2	2.8	0.6	1.5	3.1	4.8	.57	.18	.08	97.5
$24-1 \mathrm{r}$	69.0	15.6	2.9	0.8	1.8	2.8	(6.3)	.59	.18	.08	98.6
$24-2 r$	68.8	15.6	2.7	0.7	1.3	2.2	(7.8)	.60	.21	.06	99.2
$24-3 \mathrm{r}$	68.0	16.4	2.9	0.7	1.2	2.7	(7.5)	.61	.15	.06	98.5
26 s	71.4	17.1	2.5	0.8	1.0	2.6	4.1	.36	.13	.03	98.3
$26-1 \mathrm{r}$	68.9	18.4	2.9	0.8	1.2	3.0	4.4	.43	.12	.03	98.3
$26-2 r$	69.9	17.8	2.7	0.8	1.3	2.7	4.2	.40	.15	.03	98.9
$26-3 r$	68.0	(19.2)	3.0	0.9	1.2	2.9	4.2	.44	.12	.04	98.0
$26-4 \mathrm{r}$	68.7	18.2	2.7	0.9	2.2	2.5	4.2	.40	.11	.03	98.1
$26-5 r$	70.5	17.3	2.7	0.6	1.3	2.9	4.2	.42	.13	.02	100.2

