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ABSTRACT

A survey of the ~1 MeV/nucleon heavy ion abundances in 66 3He-rich solar

particle events has been performed using the Max-Planck-Institut/University of

Maryland and Goddard Space Flight Center instruments on the ISEE-3 space-

craft. The observations were carried out in interplanetary space over the

period 1978 October through 1982 June. We confirm earlier observations which

show an enrichment of heavy ions in 3He-rich events, relative to the average

solar energetic particle composition in large particle events. For our survey

near 1.5 MeV/nucleon the enrichments compared to large solar particle events

are approximately **He:C:0:Ne:Mg:Si:Fe = 0.44:0.66:1. :3.4 :3.5 :4.1:9.6. Sur-

prising new results emerging from the present broad survey are (1) the heavy-

ion enrichment pattern is the same within a factor of ~2 for almost all cases,

and (2) the degree of heavy ion enrichment is uncorrelated with the 3He

enrichment. Overall, the features established here appear to be best

explained by an acceleration mechanism in which the 3He enrichment process is

not responsible for the heavy ion enrichment, but rather the heavy ion enrich-

ment is a measure of the ambient coronal composition at the sites where the

3He-rich events occur.

Subject headings: cosmic rays: abundances—particle acceleration—

Sun: abundances—Sun: corona—Sun: flares



I. Introduction

Solar energetic particle events rich in 3He represent one of the most

extreme fractionation processes known to occur in astrophysical sites, and as

such may yield important clues to conditions in the solar corona and to the

mechanisms of particle acceleration in solar flares. This class of particle

events was first identified from their ê/̂ He ratios of a few percent to >1

(Hsieh and Simpson 1970; Dietrich 1973; Garrard, Stone and Vogt 1974; Anglin

1975; Serlemitsos and Balasubrahmanyan 1975; Hempe et al. 1979). These large

3He/lfHe ratios represent an enrichment of 10 ̂lO1* over typical coronal and

solar wind values (e.g. Geiss and Reeves 1972; Coplan et al. 1984) of 5 x

10"1*. Hurford et al. (1975) showed that there was a tendency for 3He-rich

events to be enriched in elements with Z>6, and subsequent work with more

advanced instrumentation established that the enriched heavy nuclei covered

the range through Fe (Hovestadt et al. 1975; Gloeckler et al. 1975; Anglin,

Dietrich and Simpson, 1977; Zwickl et al. 1978; McGuire, von Rosenvinge and

McDonald 1979; Mason, Gloeckler and Hovestadt 1979a, b; Mason et al 1980;

Reames and von Rosenvinge 1981; Mobius et al 1982), and that the element

carbon was sometimes strongly depleted (Mason, Gloeckler and Hovestadt 1979

a,b; Mason et al. 1980). Ramaty et al. (1980) and Kocharov and Kocharov

(1984) have reviewed many features of these events.

The association of heavy ion enrichments with the enrichment of 3He has

important implications for particle mechanisms invoked to explain the 3He-rich

events. Thus, models which produce enrichments of 3He through spallation or

thermonuclear reactions (see discussion in Ramaty et al. 1980) were generally

discarded in part because they contained no mechanisms for enriching heavy

nuclei. In addition, the spallation models could not explain extreme cases

with 3He/l*He ̂ 1 simultaneously with only small upper limits for 2H and 3H. On



the other hand, plasma heating mechanisms which selectively heat 3He can also

selectively heat heavy ions under certain conditions. One set of such models

has been proposed by Ibragimov and Kocharov (1977) and Kocharov and

Orishchenko (1983; 1985), although Weatherall (1984) has questioned basic

assumptions in these models which bear directly on their ability to

selectively heat heavy ions. Another model using ion-cyclotron waves (Fisk

1978; Varvoglis and Papadopoulos 1983) can achieve selective pre-heating of

3He and also partially stripped heavy ions. Experimental measurements of the

ionization states of heavy ions measured during a single 3He-rich event lend

some support to the ion-cyclotron wave models (MaSung et al. 1981).

Previous studies of heavy ion enrichments in 3He-rich events have covered

only a few isolated cases, making it difficult to discern systematic features

associated with the heavy nuclei enrichments. In order to more thoroughly

explore the properties of these enrichments we have undertaken a survey of the

heavy nuclei abundances in 66 3He-rich events which occurred during the period

1978 October through 1982 June. The most surprising result of the study is

the discovery that there exists a characteristic heavy ion enrichment pattern

in these events that is remarkably constant (generally within a factor of 2)

from one event to the next, independent of the degree of 3He enrichment. The

heavy ion enrichments also appear to be independent of energy or spectral

index, thus suggesting that the enrichments exist in the coronal material

before acceleration to the ~ MeV energies observed in interplanetary space.

Our observations of an association of heavy ion enrichments with 3He

enrichment are compatible with the plasma resonance models mentioned above.

However, we suggest that the lack of detailed correlation between the 3He and

heavy ion abundances may be due to a mechanism wherein the 3He enrichment

process operates only at coronal sites which happen to be enriched in heavy



nuclei due to other reasons—and thus the ^Ve heating mechanism itself does

not preferentially heat the heavy ions.

The observational techniques are described in section II, and the

observations presented in section III. Preliminary reports on parts of this

work have been given elsewhere (Mason et al. 1984, 1985).



II. INSTRUMENTATION AND EVENT SELECTION

The observations reported here were carried out in interplanetary space

using sensors carried on the ISEE-3 spacecraft. ISEE-3 was launched on 1978

August 12 into a unique "halo orbit" about the sunward libration point

approximately 240 earth radii away from earth on the earth-sun line (Ogilvie,

Durney and von Rosenvinge 1978).

All the measurements of 3He and **He reported here were taken with the two

Very Low Energy Telescopes (VLETs) of the Goddard Space Flight Center Cosmic

Ray experiment. The VLETs are solid state telescopes which identify particle

type and energy using the dE/dx versus residual energy technique. The

telescopes have an opening cone angle of 50° (full width) with excellent

resolution of 3He and ^He (see Reames and von Rosenvinge 1981). Measurements

of ions heavier than He reported here were performed with the Ultra Low Energy

Wide Angle Telescope (ULEWAT) sensor, which was a portion of the Max-Planck-

Institut/University of Maryland Nucleonic and Ionic Charge Distribution

Particle Experiment. The ULEWAT is a multiple dE/dx versus residual energy

telescope which employs flow-through proportional counters as the dE/dx

elements. The use of proportional counters enables the simultaneous

achievement of low energy threshold and large geometrical factor making this

telescope ideal for studies of low energy solar flare heavy ions. The ULEWAT

has a rectangular field-of-view with opening angles of 104° by 39° where the

larger angle is approximately bisected by the ecliptic plane. A complete

description of the VLETs has been published by von Rosenvinge et al. (1978)

and the ULEWAT has been described by Hovestadt et al. (1978).

Since the present study involves flux measurements from two different

sensors, the question of intercalibration is important. Fluxes measured with



the VLET and ULEWAT agreed well during diffusive solar flare or interplanetary

events. However, during 3He-rich events, the fluxes did not agree well, with

the ULEWAT He flux being a factor of ~2 lower than the VLET measurements. The

origin of this difference apparently lies in the large anisotropies observed

in these events for He (Reames and von Rosenvinge 1983; Reames, von Rosenvinge

and Lin 1985). This situation violates the assumption of isotropy used in

calculating the telescope geometrical factors (e.g. Sullivan 1971). Such

anisotropy would still yield agreement between the VLETs and ULEWAT if they

sampled the same particle population, however the ULEWAT has a much lower

energy threshold than the VLETs, and therefore samples lower energy, more

nearly isotropic protons simultaneously with the anisotropic Helium. In the

ULEWAT, this can lead to a "diluting" of the He flux by the low energy proton

flux, resulting in a lower calculated He flux than would be calculated using

the VLET. Since the instruments do not transmit enough detailed information

to unambiguously identify the relative roles of these type of flux

differences, it was decided to intercompare the He flux levels as observed in

11 3He-rich events at the beginning of the survey period. This comparison led

to an average measured ULEWAT Helium flux level of 0.48 of the VLET reported

value: it was then decided to apply this correction factor to the VLET fluxes

when comparing them with the ULEWAT. Figure 1 shows the ratios of fluxes for

the 11 events from the two instruments after this correction has been

applied. The 1-sigma spread around 1.0 derived from the scatter about the

mean is 0.20; we thus conclude that this empirically derived correction factor

yields agreement to within ~20% between the two telescopes for the events in

this study. It was not possible to extend the comparison shown in Figure 1 to

periods beyond September 1979, due to a decrease in the gain of the ULEWAT

proportional counters which resulted in He signals falling beneath the



instrument's triggering threshold.

The 3He rich-events in this study were identified with the VLET in a

search of the data from 1978 August 15 through 1982 June 30. Details of the

search and selection criteria are given in Reames and von Rosenvinge (1983),

and a list of key parameters of the 66 events has been published by Kahler et

al. (1985b). Briefly, the data were scanned with 6-hour time resolution, and

to be considered as a candidate event, the 3He/**He ratio had to exceed 0.2 in

2 successive time periods. The energy intervals examined were 1.3-1.6 and

2.2-3.1 MeV/nucleon. Candidate events were then examined at higher time

resolution in order to separate obvious multiple events and to identify the

onset time. However, it is probable that some of these 66 periods contain

unresolved multiple particle events. It is important to note that in only 35

of the 66 events were ^He flux increases identified; and only 15 of the 66

events were accompanied by obvious proton events. Twelve (12) events showed

both proton and ^He flux increases (Kahler et al. 1985b). It should be

pointed out that at the low energies of the particles discussed here, there

are often rather high ambient flux levels of protons and 4He in interplanetary

space, due to, e.g., decays of large solar particle events, etc., and these

ambient flux levels might mask modest H and ^He flux increases associated with

3He-rich events.

Spectral index data presented below for He and Fe was obtained by

averaging the spectra over the entire 3He-rich event, and performing a

weighted least-squares fit to the data assuming a power law in kinetic energy

per nucleon dJ/dE <= E~Y. The minimum energy range covered was ~0.5 - 2

MeV/nucleon, with higher energy points used as available in those events large

fluences. Over the limited energy range investigated here, it was found that

the spectra could in almost every case be adequately fitted by power laws in



kinetic energy per nucleon.
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III. OBSERVATIONS

a) Relative Abundances

Figure 2 shows the abundances relative to oxygen calculated in an

unweighted manner for all events for which there were observable increases in

the ^He flux, and a finite oxygen flux. Near 1.5 MeV/nucleon, 34 of the 66

events met these criteria, while 32 events were usable for measurements near

2.5 MeV/nucleon. In estimating the 1-sigma widths of the abundance

distributions, it is necessary to note that the measurements of abundances in

individual events were not distributed in a gaussian fashion around the mean

values. Rather they were spread out much more widely. In order to represent

the widths of the distributions in the data near 1.5 MeV/nucleon, we therefore

show in Figure 2 the limit of values for 2/3 of the cases centered around the

mean: i.e. the range of values covered with the extreme 1/6 of the

distribution on both the high and low sides discarded. For the 2.5

MeV/nucleon point, these "1-sigma" spreads are somewhat larger, and are given

in Table 1. Note that overall these "1-sigma" limits are within ± a factor of

~2 about the mean for all species. Table 1 lists the average abundances and

"1-sigma" limits, as well as the entire range of relative abundances

observed. The formal errors on the mean values of the abundances given in

Table 1 are ~±10%.

It can be seen from Figure 2 that the mean values of the relative

abundances near 2.6 MeV/nucleon are well within the "1-sigma" limits of the

points near 1.5 MeV/nucleon. Thus over this rather limited energy range, we

observe no dependence of the relative abundances on energy. From Figure 2 it

is apparent that Fe is the most abundant of the heavy ions, and that the
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average ^He/Fe ratio is >20. Since the minimum ê/̂ He ratio accepted for

inclusion in the survey was ~0.15, it should be noted that the 3He flux

exceeds the Fe flux in these events. Examination of all 34 events yields a

range from ~2 to >150 for the 3He/Fe ratio, with an average 3He/Fe value of

~30. Thus, the heavy ions are indeed the minor species in these events, with

3He almost always outnumbering the total number of heavy ions accelerated.

In view of the large range of ê/̂ He enrichments (from ~103 to >10I*

above coronal values) and, e.g. the range of a factor of >80 for the 3He/Fe

ratio reported here, one of the most surprising aspects of the heavy nuclei

relative abundances is the relatively narrow spread of values observed. The

clustering of these values is displayed in Figure 3, which shows the

histograms of the deviations from the 3He-rich event average values for the

elements C-Fe and 0-Fe near 1.5 MeV/nucleon. These histograms were

constructed by comparing individual event abundances with the average

abundances (Figure 2 and Table 1) as follows: a single normalization value

was found which minimized the weighted least-squares logarithmic deviation of

an individual event's abundances from the average abundance for the range of

elements C-Fe, and, separately, 0-Fe. Taking this value of the normalization,

the ratios between the re-normalized event's abundances and the overall

average abundances were calculated, and the values of these entered into the

histogram with one value for each element. This procedure assures a histogram

centered on unity, and the width of the histogram shows the degree to which

individual elements deviate from the average pattern. In order to remove

cases of poor statistical accuracy, only those events with relative abundance

errors <0.8 were used: out of the total sample, 42 events met this test for

elements with non-zero abundances.

The key feature of Figure 3 is the relative narrowness of the
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distributions: in the case of the range C-Fe, 90% of the points fall within a

factor of 2 of the mean, that is in the range 0.5-2.0. Most of the more

extreme deviations in the C-Fe histogram are due to the element carbon, as can

be seen by comparing this histogram with the histogram covering the range 0-

Fe. For the 0-Fe histogram, 93% of the points fall within a factor of 2 of

the mean. While this factor of ~2 spread in the range of heavy ion abundances

is larger than the spreads seen amongst large solar particle events (e.g.

Mason et al. 1980), it is nevertheless very small compared to the range of 3He

abundance variations and the range of the, e.g., ̂ e/̂ He ratio.

b) Enhancements Relative to Large Flares

The average abundances of the 3He-rich flares in the present survey are

compared in Figure 4 and Table 2 with composition in large solar particle

events and with previous work. For the data presented here, we have

normalized to the large event abundances near 1 MeV/nucleon from Mason et al

(1980). Although the enhancements are normalized to unity at oxygen, this is

an arbitrary choice and it can be seen that there is an enrichment which

increases with mass or atomic number over the whole range Ĥe-Fe. As a guide,

the Fe/0 ratio is enhanced by a factor of 10 compared with large events, and

the Fe/^He ratio is enhanced by a factor of ~20.

It has been pointed out by several workers that the for normal solar

particle events, the ratio of the energetic particle to "local galactic"

abundances shows a correlation with the first ionization potential (F1P) of

the elements (e.g. Cook et al. 1979; McGuire et al. 1979a; Mewaldt 1980;

Breneman and Stone 1985). It is found that low first ionization potential

elements such as Mg, Si and Fe are enhanced by a factor of ~3-4 with respect
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to high first ionization potential elements such as 0, Ne and He. The

abundance pattern shown here in Figure 4 for 3He-rich events does not appear

to fit into this FIP pattern, since for the two elements with highest first

ionization potential (He and Ne), one shows a decrease from normal flare

abundances by a factor of >2 and the other shows an increase by a factor of

~3. This destroys the pattern seen in plots using normal flare energetic

particle abundances, since in the 3He-rich events the element Ne is

overabundant even though it has a high first ionization potential. We

conclude that the enrichment pattern seen in 3He-rich events, compared to

large solar particle event abundances, is not a more extreme version of the

FIP pattern, but is rather distinct and therefore must be due to other

processes than those responsible for the FIP pattern.

Fig. 4 also shows enrichments near 1 MeV/nucleon for 3 "carbon poor"

flares which occurred in 1974 as reported by Mason et al. (1980). The data

from McGuire, von Rosenvinge and McDonald (1979) cover the energy range 4-15

MeV/nucleon, and are based on a survey of 17 3He rich events observed during

1974-1978 (3 of these 17 events are among the 66 flares in the present

survey). In the enrichments from McGuire, von Rosenvinge and McDonald (1979),

the "normal flare" reference composition is from flare events "not enriched in

Fe", nevertheless these higher energy observations are in good agreement with

the more extensive survey presented here.

In Figure 4 we note that the stated errors from the earlier work are the

uncertainty in the mean of the distribution, and therefore are smaller than

the "1-sigma" limits (i.e. the width of the distributions) shown in the

present work. The 1-sigma limits used here give a better idea of the range of

values observed over a number of events. Given the fact that the earlier

results for heavy ion enrichments shown in Figure 4 are based almost
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completely on an independent set of events from the present work, the close

agreement with the present work re-enforces our earlier conclusion that the

heavy ion abundance pattern is remarkably constant from one 3He-rich event to

another. In addition, the close agreement between the present results near

1.5 MeV/nucleon, and the considerably higher energy observations of McGuire,

von Rosenvinge and McDonald (1979) extends and significantly strengthens the

earlier cited evidence (Figure 2) that there is no appreciable energy

dependence to the abundance pattern.

c) Search for Correlations Amongst Measured Quantities

i) Flux Level Correlations

In order to see if any pairs of ion fluxes showed unusual correlations,

correlation coefficients for logarithms of the weighted flux levels amongst

all the species in the survey were calculated and are given in Table 3. For a

flux level in a particular event to be used in the calculation for this table,

a fractional error of <0.8 was required, and, in the case of 3He and **He

fluxes, it was required that the ^He flux showed an increase over ambient

levels. With these criteria, between 20 and 30 flux values were available for

calculating each correlation coefficient. Because fluxes always increase

together in the events, the correlation coefficients are all quite high,

covering the range 0.62 to 0.93. Even for the points with the lowest

correlation coefficients, the probability that there is no correlation between

the quantities is <0.001. Note that the Sflê He correlation coefficient is

not as large as many other values in the table, particularly amongst the heavy

ions. The correlations with Fe are strongest for Ne, Mg, and Si, and are
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rather less with the lighter elements. Overall there is a trend for elements

to be most strongly correlated with those of nearby atomic mass or atomic

number similar to the case with large flare particle events (Mason et al.

1980). However no pair of elements stands out from the group by showing

dramatically higher correlations than other pairs.

ii) Enrichments Versus Spectral Index

Differing acceleration processes may produce particle energy spectra with

distinctive shapes (e.g. review by Forman, Ramaty and Zweibel 1982), which

might be usable to help discern properties of the acceleration mechanism. For

example, in large particle events the strong correlation of the electron

proton ratio and the electron spectral index (Evenson et al. 1984) may be a

signature of shock wave acceleration (Lin, Mewaldt and Van Hollebeke 1982;

Ellison and Ramaty 1985). In the case of 3He-rich events, Mobius et al.

(1982) have proposed a stochastic fermi acceleration mechanism in which the

calculated energy spectra depend on the power law index n of the magnetic

irregularity spectrum at the acceleration site. In this model the energy

dependence of the 3He/4He ratio and the Fe/0 ratio depend on n, with smaller

values of n producing steeper energy dependences. Thus, spectral forms or

energy dependences of the relative abundances (or lack of such dependences)

constrain possible models for the acceleration.

Figure 5 shows the SRe/^He ratio plotted versus 3He + 4He spectral index

for those events observed with the ULEWAT in the period before the

instrument's sensitivity to helium decreased. The weighted least squares fit

(dark line) in the figure is consistent with no correlation (slope -0.02 ±

0.18), while unweighted fit (dashed line) shows a significant positive
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correlation (slope 2.5 ± 1.2). Inspection of Figure 5 shows that a single

event (14 Dec. 1979) with low spectral index and high SHe/^He ratio is

responsible for most of the difference between the two fits. In view of the

relatively small number of events, and the relatively narrow energy range over

which the He spectral index is measured, it is clear that further

investivations would be necessary in order to establish the degree of

correlation between the ê/̂ He ratio and spectral index. A positive

correlation between these quantities might also be inferred from the data of

Reames and von Rosenvinge (1983).

Figure 6 shows a correlation plot for the Fe/0 ratio versus the Fe

spectral index for 48 flares in the survey. The slope of the least squares fit

line shown in the figure is -0.27±0.28, and is thus consistent with no

correlation. It should be pointed out that the lack of correlation of Fe/0

ratio with spectral index, along with the previously shown energy independence

of the abundance enhancement pattern, suggests that the enrichments are due to

abundance patterns in the injected material, rather than a result of the final

step of the acceleration mechanism which energizes the particles to MeV

energies.

iii) C/0 and Fe/0 Enhancements Versus ê/'+He Ratio

It has been shown above that, compared with the large flare particle

event composition, 3He-rich events as a group have a distinctive enrichment

pattern for heavy ions. In order to examine whether these enrichments

correlate in detail with the 3He enrichments, Figure 7 shows the C/0 ratio

versus 3He/1+He ratio, and Figure 8 shows the Fe/0 ratio plotted versus

3He/'tHe. For these plots the ratios were used only if they had relative
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errors <0.8, and only if there was an increase of **He fluxes over ambient

levels for the event. In the case of the C/0 ratio, note that in some flares

there is a very small value (i.e., carbon-poor flares), but these depletions

do not correlate with the ê/̂ He ratio. The slope of the least squares fit

line of 0.07±0.09 is consistent with no correlation.

The Fe/0 ratio plot in Figure 8 might be expected to show the greatest

sensitivity to the ^e/^He ratio, since this ratio is enhanced by a large

amount in 3He-rich events compared to large solar particle events. Yet there

is no statistically significant correlation (least squares fit line slope is

0.02±0.06). Notice however, that the Fe/0 ratio is sufficiently enhanced in

these events that even the lowest value shown in the figure is still well in

excess of the range of values of Fe/0 seen in large flares (Mason et al.

1980). Table 4 shows the composition of all elements for each flare included

in Fig. 8.

iv) Fe/0 Enhancements in Proton Events

As mentioned previously, 12 of the 66 events in this survey showed proton

and ^He flux increases over ambient levels. Kahler et al. (1985b) have shown

that for the same set of events, those 12 with proton and ^He flux increases

showed a lower ê/̂ He ratio (0.42) than the average SRe/^He ratio (0.76) for

the 35 events which showed ^He increases. This difference was interpreted as

being due to an admixture of "normal" particle event material in the proton

events which tended to reduce the^e/^He ratio (Kahler et al. 1985b). We do

not observe such an effect for the heavy ion abundances: for the 12 proton

events, Fe/0 = 1.7 ± 0.9 while for the events with 4He increases Fe/0 = 1.3 i

0.7, where the uncertainties are the "1-sigma" limits as discussed above.
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Thus, the Fe enhancement characteristic of %e-rich events is not decreased to

lower values by "normal" flare event material in proton events.

d) Deviations From 3He-rich Flare Average Abundances

Having described the average properties of heavy ion abundances in

previous sections, we now turn to cases of extreme deviations from the average

in order to see if there are any additional, unusual properties which might

yield further information on the acceleration mechanism. In searching for

events with abundance patterns significantly different from average, we must

note that with some 66 reference events with several species measured in each,

there are altogether several hundred individual abundance points, and so a few

cases of extreme variations would be expected from statistical fluctuations

alone. To identify candidate events, a least-squares fit was done between the

average abundance values (Figure 2 and Table 1) and the abundances in each

event. The reduced x2 from these fits for the elements 0-Fe are shown in

Figure 9 along with the distribution of reduced x2 expected from random

fluctuations alone (line labeled "calculated" in the figure). It may be seen

from the figure that the distribution of reduced x2 follows the calculated

pattern rather well except that there were 8 cases with x2 > 3, versus only

about 1 such case expected from random fluctuations. A similar set of fits

for the range C-Fe identified 10 events with x2 > 3, versus 1 expected; these

events included all the cases identified in the 0-Fe fits except one, for a

total of 11 separate events with x2 > 3 for the heavy-ion fits to the average

abundances. Before examining these cases in more detail, we point out that

the distribution of x2 when comparing the present set of events with large

solar particle event abundances produces generally very poor results (open
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circles in Figure 9) with almost 2/3 of the cases producing x2 > 3. This

comparison can be taken as an indication of the statistical accuracy of the

heavy-ion data in this survey: in about 2/3 of the cases the accuracy is

great enough to clearly distinguish between these events and large solar

particle event abundances.

Inspection of the previously cited eleven events with the x2 > 3 made it

immediately clear that the most intense events, whose abundances are measured

with the greatest statistical precision, would tend to produce large x2 values

even for very small deviations from the 3He-rich event average values. It was

found that 7 of these 11 events had abundances which fell within the "1-sigma"

range of values shown in Figure 2, and therefore could not be really

considered anomalous. The remaining 4 cases are shown in Figure 10, where we

plot the individual flare enrichment versus large events, and show also the 1--

sigma range of values for 3He-rich events. In terms of 3He fluence, these

events were not especially large: 1978 November 3 was 16th in 3He fluence out

of 66; 1978 December 23 was 7th; 1980 November 9 was 3rd; and 1982 March 18

was 33rd.

Considering case (a), 1978 November 3, it is apparent that the range 0-Fe

is consistent with the pattern found in 3He-rich events, while carbon is

enriched by about 3 standard deviations. The probability of such a positive

deviation is roughly 0.17%, and could be expected once amongst about 600

samples. In view of the large number of element abundances tested (64 events

with 6 elements per event for a total of 384 cases) a single such deviation

might not be too surprising. Case (b), 1979 December 23 shows a pattern that

appears to be merely a somewhat more extreme case of the average enrichment

pattern observed in 3He-rich events. This event has also been discussed by

Reames and von Rosenvinge (1981). Case (c), 1980 November 9, shows a range of
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elements (C-Ne) with relative abundances typical of large solar particle

events while heavier elements are consistent with the 3He enrichment

pattern. Case (d), 1983 March 18, shows normal particle event abundances

except for Fe, which is moderately enriched. The limited "range" of

enrichments for cases (c) and (d) are similar to those reported by Mason et

al. (1980) for the 1977 October 12-13 3He-rich event, where only the elements

Si-Fe appeared to be enriched compared with large solar particle event

abundances.

e) Summary of Observations

Based on our survey of the low energy heavy-ion abundances in a set of 66

3He-rich events, the major observational findings are:

(1) There exists a characteristic abundance pattern (within a factor of ~2)

wherein heavy ions C, 0, Ne, Mg, Si, Fe are enriched compared to large

solar flare abundances; for example, Fe/0 is enriched by a factor of ~10

and Fe/^He is enriched by a factor of ~20.

(2) This enrichment of heavy ions

i) increases with atomic mass and/or atomic number, but

ii) does not correlate well with first ionization potential

iii) is energy independent

iv) is independent of spectral exponent, and

v) is independent of the SRe/^He ratio.

(3) The heavy ion abundances tend to be well correlated with each other, and

show a smaller range of relative values than the ^e/^He ratio.
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(4) Although heavy ions are enriched in these events, the average 3He/Fe

ratio is ~30, with a range from ~2 to >150; thus, 3He is much more

abundant than heavy ions in these events.

(5) Deviations from the 3He-rich event average heavy ion abundance pattern

are rare, with 2 cases out of 66 exhibiting an apparent mixing of normal

particle event and 3He-rich event abundance patterns.
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IV. COMPARISON OF HEAVY ION ENRICHMENTS WITH MODEL CALCULATIONS

The present study has confirmed and significantly extended previous work

concerning the association between 3He enrichments and heavy nuclei

enrichments in solar particle events. This association, along with the lack

of 2H and 3H in these events has been generally accepted as indicating that

proposed 3He enrichment mechanisms depending on spallation reactions or

thermonuclear reactions are unable to explain the full range of observed

charcteristics of these events (e.g. Ramaty et al. 1980; Kocharov and Kocharov

1984). We now consider other suggested models for 3He-rich flares in order to

compare their predictions with the new results presented here. It must be

emphasized that all these models are two stage models in which the first step

involves preferential heating of the plasma followed by a second step in which

those ions above some e.g. velocity or rigidity threshold are energized to the

~MeV energies observed in interplanetary space. Based on the similarity of

the particle energy spectra leading to the overall lack of energy dependence

of the relative abundances (e.g. Section III), it is assumed that the

enrichments are due to plasma abundances after the first step heating

mechanism with the second stage merely energizing the particles without

introducing additional significant distortions. Below we therefore discuss

only the abundances in the plasma after the first stage, taking for granted

the operation of the second stage.

a) Plasma Resonance Models

The only theoretical papers with explicit predictions for heavy ion

enrichments in 3He-rich events are by Kocharov and Orischenko (1983; 1985).
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Their model uses stochastic acceleration by Langmuir or ion-sound waves, and

is an outgrowth of work by Ibragamov and Kocharov (1977) and Kocharov and

Kocharov (1981). Figure lla_ compares the heavy ion abundance pattern reported

here to the pattern from Kocharov and Orischenko (1983) for two different time

limits of heating in their model. While there is a general similarity between

the model predictions and observations, the agreement is not particulary

good. A revised model (Kocharov and Orischenko 1985) produces a better fit

for the element Si, but overestimates the Fe enrichment to the same degree as

shown in Figure lla_. In their papers Kocharov and Orischenko compare their

model with single events only (the 1974 May 7-13 period in one case, and the

3He poor flare of 1977 Sept. 24 in the other), and it is possible that another

selection of model parameters would yield better agreement with the average

data presented here. As mentioned earlier, Weatherall (1984) has questioned

the calculations of the series of papers by Kocharov and collaborators, and so

their model must be considered controversial.

Another plasma resonance mechanism, proposed by Fisk (1978) enriches 3He

by preferential heating via electrostatic ion-cyclotron waves (see also

Varvoglis and Papadopoulos 1983). The Fisk model is only a pre-heating model,

and it explicitly assumes an additional mechanism which takes the heated

material above some velocity threshold and accelerates it to higher

energies. Fisk (1978) pointed out that the 3He enrichment mechanism in this

model might also preferentially heat heavy ions, since they can have the

second harmonics of their gyrofrequency in the range of the ion-cyclotron wave

frequencies. Mason et al. (1980) showed that for this mechanism to operate

for a range of heavy ion species, a range of temperatures was required since

at no single temperature were all the heavy ions in the proper ionization

states. However, no specific predictions have been made for heavy nucleus
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enrichments with this model, other than a qualitative noting that the element

carbon might be greatly depleted compared to heavier nuclei (Fisk 1979; Mason

et al. 1980).

In order to examine the specific predictions that might arise from the

Fisk model we have calculated the fractions of material that are in the proper

ionization state for resonant heating under various assumed coronal

conditions. By normalizing the resonantly heated fractions of each element

isotope to the comparable fraction of oxygen we have a set of values for

preferentially heated abundances relative to oxygen. Presumably this set of

values is also the observed enrichment compared with large solar flares, since

it is assumed that the "normal" flare composition arises from an ambient

coronal population. For example, if the fraction of Fe in the proper

ionization state for resonant heating was twice the fraction of 0 that was in

the proper ionization state, then in this simple model the Fe/0 ratio would be

twice the normal values for large flares. The isotopic abundances of the

coronal material were taken from solar system abundances of Anders and Ebihara

(1982), and element ionization states as a function of temperature were from

Shull and Van Steenberg (1982)5.

5 In the range of a few times 106 K the tables of Jordan (1969) show higher

Fe ionization states that Shull and Van Steenberg (see Luhn et al. 1984),

but this will not affect the model calculations below since we select a

temperature range broad enough to generate all resonantly heated Fe charge

states
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In order to complete the calculation for this simplified model, it is

necessary to specify also (a) the range of temperatures in the plasma, (b) the

lower bound of the electrostatic ion-cyclotron wave frequencies, and (c) the

volumes of plasma at each temperature. For the temperature range, it was

decided to span a broad range from lO^-lO7 K in order to cover the full range

of temperatures required for each element in our survey to have the proper

ionization state (although of course any single element would have the favored

ionization state(s) over a small portion of this range). Such a broad range

of temperatures might arise from joule heating of the plasma during the pre-

heating process (Mason et al. 1980), or, it could reflect the differing

volumes of material having different temperatures. For example, in cool loops

over sunspots a broad range of temperatures is observed (e.g. Foukal 1976).

In the case of specifying the wave frequencies, the lower bound of the 2nd

harmonic of the waves was kept near the typical value of 1.05, while the upper

bound was taken as: 2^i/^ne 1 !'
19 + °-13 ̂Hê î 1 ' wnere fy and ^HA are

the cyclotron frequency of the ion and ^He, respectively, and mHe and m.^ are

the atomic masses (see Mason et al. 1980, equation 6).

Figure llb_ compares the heavy ion element enhancements reported here with

the results of the simplified "Fisk" model for parameters specified in the

figure caption. A slightly low value of <ih of 1.0 was used in order to

improve the fit for carbon: using the nominal value of Wiow =1.05 produced a

C/0 ratio of 0.2, somewhat lower than the observations. The dependence of

volume elements on temperature T was chosen in order to optimize the fit for

Fe enrichments: increasing the volumes of plasma at the higher temperatures

increases the Fe enrichment to values above the observations. For example,

selecting volume <* T1, predicts an Fe/0 enhancement of 30:1, versus our

observed enhancement of about 10:1. While the agreement between the
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observations and this "Fisk" enhancement model for the case plotted in Fig ll_b_

is not unacceptable, we note that is has been achieved only through the use of

several parameters and it is not at all clear why these particular parameters

would appear with such regularity in a large number of 3He-rich events.

Seemingly minor variations of these parameters (e.g. <">iow or the volume-

temperature relation) produce patterns markedly different from the average

result observed in our survey. We note also that the feature of essentially

the same enrichment (versus oxygen) for Ne, Mg, Si seen in our observations,

is not reproduced in this model nor in the Kocharov plasma heating model.

b) Coulomb Friction Model

Another possible explanation for the heavy element enrichments observed

in ^He-rich events is that their heavy element composition is a reflection of

the ambient source composition (e.g. Zwickl et al. 1978). A specific

mechanism suggested by Gloeckler et al. (1975) was enrichment of heavy ions in

the lower corona in the presence of thermal gradients which result in thermal

diffusion dominating over the pressure gradients (e.g. Geiss 1972 and

references therein). These suggestions have been neglected since Fisk (1978)

pointed out the possibility that a plasma-reasonance 3He heating mechanism

might also heat heavy ions. However in view of the lack of correlation

between the degree of 3He and heavy nuclei enrichments reported here, it seems

appropriate to re-examine these processes.

Nakada (1969; 1970) has presented model calculations of the lower coronal

composition due to transport processes from the photosphere including thermal

and pressure gradient effects. Such models produce large enhancements of

heavy ions (see also Jokipii 1965, 1966; Delache 1967). Figure lie displays
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calculated heavy element enrichments compared with the source (photosphere)

material from the detailed calculations of Nakada (1969, his figure 5). A

temperature gradient of 1 K/cm at T=105 K was assumed, and the line in Figure

llc_ covers the range of enhancements found from temperatures of 5 x 105 K

through 9 x 10s K (at higher temperatures the functional form assumed for

heavy ion ionization states was inappropriate). The pattern appearing in

Nakada's calculation is a surprisingly good fit to our observed heavy ion

enhancements in 3He-rich events, and is all the more interesting because

basically the same enrichment pattern is observed over a broad temperature

range. An enrichment pattern which occurs over such a wide range of

temperatures is consistent with our observations of essentially a single

enrichment pattern in almost all of the 3He-rich events in our survey.

It should be pointed out that the enhancements in Nakada's calculation

were with respect to a photospheric composition; however if the same physical

conditions applied in the corona then the enhancements would be with respect

to the coronal composition which closely resembles the large flare particle

abundances used here as the reference. Additionally, we note that H and ^He

are much more strongly depleted in this model (e.g. they are less abundant

than 0) than in our observations; clearly, then, if coulomb friction models

are invoked to explain the heavy ion enrichments, other mechanisms must be

responsible for the H and "*He abundances.
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V. DISCUSSION

It has been shown in the previous section that the heavy nuclei

enrichment pattern observed in 3He-rich events can be generally reproduced by

simple models based on plasma heating, and also by mechanisms based on thermal

diffusion. We now examine to what extent these models are consistent with the

other observational features summarized in section III(e), and also

observations of the particle ionizatiori states reported in other studies.

The simple plasma resonance model was able to reproduce the enrichment

pattern observed, but rather minor modifications of some of the model

parameters produced enhancement patterns different from any of those observed

in our large sample of events. It is difficult to reconcile this property

with the fact that the 3He-rich events have a characteristic enrichment

pattern for heavy nuclei: one might expect to see large variations in the

heavy nuclei abundance patterns if this were the case. This is probably a

general feature of such resonance models: if they are on the one hand capable

of producing enrichments of 3He with respect to "*He of 10 ̂lO1*, they will

probably also be capable of producing dramatic heavy ion abundance enrichments

and variations—but this property is not observed in the events. Similarly,

if it is assumed that the heavy nuclei enhancements are produced by the same

physical mechanism which enhances the 3He, then is is difficult to understand

why the degree of 3He enrichment is uncorrelated with the degree of heavy

nuclei enrichments. Thus, the plasma resonance models appear unattractive as

an explanation for the heavy nucleus enrichments observed in these events.

The thermal diffusion model might provide a plausible explanation for our

observations if it is assumed that the mechanisms which enrich 3He occur in

coronal locations which are typically enhanced with heavy elements. Such an
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association might not be unexpected: for the example in the Fisk (1978) model

the operative plasma resonance requires a rather large helium abundance

(noe/nu ~0.3). The same processes which would tend to concentrate helium

would also concentrate heavier elements as shown, e.g., in Nakada's model. The

fact that Nakada's (1969) calculations produced virtually the same enhancement

pattern over a broad range of temperatures is entirely consistent with the

observation of an enhancement pattern that is basically the same for all the

3He-rich events. However, the Nakada model considered temperatures only up to

~106 K, while the recent observations of Klecker et al. (1983) of Fe charge

states of 19.5±1.5 and Luhn et al. (1985) of fully tripped Si indicate source

regions with temperatures >5 x 106 K for 3He-rich flares.6 It is not clear

6 Such high Fe and Si charge states are also significantly above the optimal

ionization states for enrichment in the Fisk (1978) plasma resonance model.

whether or not the enhancements of heavy elements in the Nakada model would

presist at these higher temperatures. If the high ionization states of Fe are

indeed indicators of the source plasma temperature, then the source location

could be rather high in the corona. Such high coronal locations for these

events might help the accelerated particles gain access to interplanetary

magnetic field lines. We note that Kahler et al. (1985a) have also suggested

a high coronal location for 3He-rich events based on their association with

kiloraetric type III radio bursts.

In summary, our new observations, along with previously reported

properties of these 3He-rich events, indicate that while a plasma resonance

mechanism mey well account for the dramatic 3He enrichments observed in these

events, this mechanism does not appear to be an attractive one for explaining
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the associated heavy nuclei enrichments. Rather, the heavy nuclei enrichments

appear to be due to enrichments in the ambient plasma pre-existing at the

sites where the 3He-rich events occur. Model calculations of thermal

diffusion effects by Nakada (1969) indicate that there may well be such sites

routinely occuring in the corona. Although the heavy nuclei enrichments have

been calculated only for the lower corona (where temperature gradients are

large), the Fe charge states (Klecker et al. 1983) indicate a higher coronal

source, which might help explain how the particles from these small particle

events escape into interplanetary space.
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Table 3

3He Rich Events
Correlation Coefficients Between In(fluxes)

3He "He

3He 1.

"He

C

0

Ne

Mg

Si

Fe

C 0 Ne Mg

0.813 0.759 0.781 0.622

1. 0.846 0.867 0.694

1. 0.836 0.685 0.718

1. 0.870 0.903

1. 0.917

1.

•>

Si

0.709

0.748

0.795

0.905

0.864

0.924

1.

Fe

0.810

0.810

0.645

0.882

0.917

0.930

0.916

1.

0.639

0.667



34

(U

01
4J
C
>

CU
1-1
o

1-1
4-1

i-l
CO

Oco
X!
O

CU
EC

en

•a
OJ

0
0)

cu
CO

B

u
n
d
a
n
ce

s
 
i

^

XI
B
60

1"

O
4-J

le
la

ti
v
t

CO
CU
CJ

«
-o
3
Xj

PC

0)
b

•H

ff

s

O

CJ

T)
O
•H

<rt

£
o
CM
ON

d

O
4H

O

§

O

o
s
vO

d

•
i-H

CO
00

o
ON

-H

iH

O

£

S
o£
C-.

o

r-

|
0

CO
CO

o
4-1
oo
o

CO

o
4H
oo

o

•
i-H

O

£
in
r— i

?,
CM

r—
CN

O

S
in
o

0
-H
-*

o

o
<r
0
4H
CM
00

O

o
CO

o

*
in
o

•
^H

O

o
»-4

o
vo
CO

p~

o
-H
CO

0

O
4-1
<r

o

o

o
-H•— i

o

o

o
4-1
o
0

•
r— \

CM

o
44
CM

o

o
CO

o
-H
0

co

o
g
o

CO
i-H

o
-H

o

00

0
-H
m
m
o

CO

o
4-1
CM
in
o

2

%
CM
CM

O

r-.
i-H

O

s
o

CM

O

vO
ON

O

O
CM

O
-H
O
<t
o

CO

o3
CO

o

CM
^H

o
44
CM

o

00
o
o
44
f-H

o

o
-H
1-4

CO

o
-H
CM
oo

0
*-H

o
4»
CO

O

i-H

r-H

o

o

CO
^H

O
-H
i-H
m
o

o
o

*^Ho

in
o
o

3

o
CO

o
4H
CO

_

o
-U
o

o

CM

0

o

CO
1— 1

3
-*
o

o
o
4j
CM

O

00
0

o
-Ho

-t 0
-* o
O -i
-H 41
CO i-H
co in

CO !•»
— I CM

32
o o

O 00
--t CM

o o
-H 4>
Is- 00
<r o
0 "t

vO vO
O CM

13
CM ON

0 0

vD ^^
0 0

o o
-H 4»
r-« ON
CM -H

O 0

r- co
O CO

o o
-H 4»
\o \o

C ^
O CO
tH (-1
4J 3

CO O
)- f.

(U
e H

i—I ^ O CM

-3- 00 -* O
CM CM CM CM

O O O O
O O O O
• • •« •• ••

vD 00 CM O
-* CM -H

~-< r-1 O O '-*

CM oo -a- o vo oo
l-~ <• «3- >3- CO <•

O O O O O O
O O O O O O

CM in vf vO CM «H

OOOOOOOO-HOOO
-H - H - H - H - H - H - H - H - H - H - H - H-

— < O N V O - H

CM O O — <

oo
- t t - t t - H - K - H + l - H - H - H - H - f - H
m r » c M - d - o c M - * v o - < r c M O O

oooooooooooo
-H - W - H - H - H - H - H - H - H - H - H - H
O v O - ^ O C O C M v O C O t ^ O O v C s T

oooooooooooo

C M ^ H C M C O O C M O t N C M C M O C O

O O O O O O O O O O O O
- H - H - H - H - H - H - H - H - H - H - H - H
oocoinoooo-*i^vocin'-^o

o

ooooooooooo
l« U Ij Ji l| Ij Jj JJ ii 11 l|

^T Tl ^^ ^^ ^n i* ^^ i* i* it ^n

oooooooooooo

^-n-3-OOOOOOOOO

dooododododd
^5 CT^ r̂ * <r ^o oo co ^^ i/̂  ^^ co uo
c o o c N i ^ r r ^ - ^ - d - c N c o c o * * - ^ -

^ H ^ H ^ H O O O O O O O - ^ O

CO —< CO CM •—I —I CM i—I »H CM i—I

ooo ooooooooo
oooooooooooo

m O in CM
co -* CM CM

o o o o
-H-H-H-H
vo ^o co <r
co m oo CM

O vO \O 00
CM —< —I O
• • • •

o o o o
+1 -H 4H +1
a\ oo en oo
m -* «3- co
• • • •

o o o o

r^ vo o oo
i—* i—t i-^ O
• • • *o o o o

4-1 4s +i 4^oo P~ r>- m
m -* CM co

• • • »
o o o o

O O —i O

vO -J- vO vO
CO CM CO CO

O O O O
O O O O

ro ON \o r-.
— i co <r CM

4-1 4» 4) 4H
•-* O --ioo

vo ON ON

CM -H -a- —i
*—< -H ~4 m
• • • •

o o o o
4-1 4J 41 -U
-d" ON CO vO
m co -* «a-

• • • •
o o o o

r̂  -* co CM
o -H CM oo
• • • •

o o o o
4-1 4» 41 -H
CM 00 ON m
co <r r~ O• • • •
O O O -H

sr -* m oo
^•H f-H ^H O

d d d d
4-1 -H 4-1 -H
r*^ c*«i co c^
<T" -̂  CO cO

o o o o

• • • •
^ ^H ^ ̂ 4

CO CO CO \O
^ O -H O

• * • •o o o o
££££
\O CM ^ CJ
• • • •

o o o o

m o *^ *»o
O -H CM 00

d o d o
4-1 4» -H 4»
CM O \O ON
CM CO 1^ O

d o d ~*

• • • •
^H ^^ ^H ^H

r»> r̂  CM oo
O O -i vO

d d d d
4-1 4» •» -H
CM »-H CO 00
• • • •

o o o o

B
o
0)

^H
o
3
B

"••—

Q)
S
oo•

6 ^
O 1
0) O
I-l •
0 -^
3
B

oo CM CO
CM i-H

o o o o

00 CM CM CM
CM -H i-H ,-t

O O O O
O O O O

VO 00 CO CO
-H CM -H

<a

VT CO O CM
O O -H O

* * * •o o o o
4H 4H -H 4-1
oo co r» vo
CM CO ̂  -H

sr «n •* -*
O O O -H

d d d d
4H -H -H 41
oo co ^H oo
OO CM ̂ - 00

1 00
CO K

• Q)

— < B
0)

<u
60
B

* cn

6 •
0) d)

Z

•H O
0)

0

CO

§
(1)rn

CO

CO
CM

<u
4-1

tS
oo

i-H

4-1

O
0

CO

>

00

>
o

vO \O O
CM -H

ON
O r~
CD ON
P -H

X& XI
0) 0)

vO CO

a. 4-1
cu o

CO O

-*

o
cu
P

CO
(M

O

&
O
oo
-H

C O C O v O m O c O C O O O C T i C J N C T i v O
^ H ^ I , - ) C M C O i — I C M C M C M <-*

•

a . 3 3 3 3 O

CO
fsj

r— (

oo
2

Vi

£

_l
CO

rH

>->

m*— *

a.
CU

o
CM

>

O
i-H

CM
00
ON
•-4

I-l
CO

in
CM

B
S

m
CM

B
3

O
CO

B

• •

CO
01
4J
O



35

REFERENCES

Anglin, J.D. 1975, Ap.J., 198. 733.

Anglin, J.D., Dietrich, W.F., and Simpson, J.A. 1977, Proc. 15th Intl. Cosmic

Ray Conf., (Plovdiv), _5_, 43.

Anders, E. and Ebihara, M. 1982, Geochim. et. Cosmochem., 46, 2363.

Breneman, H. and Stone, E.G. 1985, Proc. 19th Intl. Cosmic Ray Conf., (La

Jolla), _4, 213.

Cook. W.R., Stone, E.G., Vogt, R.E., Trainor, J.H., and Webber, W.R. 1979,

Proc. 16th Intl. Cosmic Ray Conf, (Kyoto), 12, 265

Coplan, M.A., Ogilvie, K.W., Bochsler, P. and Geiss, J. 1984, Solar Phys.,

21, 415.

Delache, P. 1967, Ann. Astr., 30, 827.

Dietrich, W.F. 1973, Ap.J., 180, 955.

Ellison, D.C. and Ramaty, R. 1985, Ap.J., (submitted).

Evenson, P., Meyer, P., Yanagita, S. and Forrest, D.J. 1984, Ap.J.., 283,

439.

Fisk, L.A. 1978, Ap.J., 224, 1048.

. 1979, Proc. 16th Intl. Cosmic Ray Conf., (Kyoto), _5_, 134.

Forman, M.A., Ramaty, R. and Zweibel, E.G. 1982, Chap. 11, in The Physics of

the Sun, eds. I.E. Holzer, D. Mihalas, P.A. Sturrock and R.K. Ulrich, Univ.

of Colorado Press.

Foukal, P.V. 1976, Ap.J., 210, 575.

Garrard, T.L., Stone, E.G. and Vogt, R.E. 1973, Proc. Symposium High Energy

Phenomena on the Sun, ed. R. Ramaty and R.G. Stone (NASA SP-342), P. 341.

Geiss, J. and Reeves, H. 1972, Astr. and Ap., 18, 126.



36

Geiss, J. 1972, Solar Wind, (eds. C.P. Sonnet, P.J. Coleman, Jr. and J.M.

Wilcox), NASA SP-308, p. 559.

Gloeckler, G. , Hovestadt, D. , Vollmer, 0. and Fan, C.Y. 1975, Ap.J.

(Letters), 200, L45.

Hempe, H., Muller-Mellin, R., Kunow, H. and Wibberenz, G. 1979, Proc. 16th

Intl. Cosmic Ray Conf., (Kyoto), 5_, 95.

Hsieh, K.C. and Simpson, J.A. 1970, Ap.J. (Letters), 162, L191.

Hovestadt, D. , Gloeckler, G., Fan, C.Y., Fisk, L.A., Ipavich, P.M., Klecker,

B., 0'Gallagher, J.J. , Scholer, M. , Arbinger, H., Cain, J. , Hofner, H.,

Runneth, E. , Laeverenz, P. and Turns, E. 1978, IEEE Trans. Geosci. Electr.,

GE-16, 166.

Hovestadt, D., Klecker, B. , Vollmer, 0., Gloeckler, G. and Fan, C.Y. 1975,

Proc. 14th Intl. Cosmic Ray Conf., (Munich), _5_, 1613

Hurford, G.J., Mewaldt, R.A., Stone, E.G. and Vogt, R.E. 1975, Ap.J.

(Letters), 201, L95.

Ibragimov, I.A. and Kocharov, G.E. 1977, Proc. 15th Intl. Cosmic Ray Conf.,

(Plovdiv), 11. 340.

Jokipii, J.R. 1965, thesis, California Institute of Technology.

. 1966, The Solar Wind, eds. R.J. Mackin and M. Neugebauer, (New York:

Pergamon Press), 215.

Jordan, C. 1969, M.N.R.A.S., 142 , 501

Kahler, S.W., Lin, R.P., Reames, D.V., Stone, R.G. and Liggett, M. 1985a,

Proc. 19th Intl. Cosmic Ray Conf., La Jolla, _4_, 269.

Kahler, S. , Reames, D.V., Sheeley, N.R., Jr., Howard, R.A., Koomen, M.J. and

Michels, D.J. 1985b, Ap.J., 290, 742.

Klecker, B., Hovestadt, D. , Gloeckler, G. , Mobius, E. , Ipavich, F.M. and

Scholer, M. 1983, Proc. 18th Intl. Cosmic Ray Conf., (Bangalore), 10, 330.



37

Kocharov, L.G. and Kocharov, G.E. 1981, A.F. loffe Physico-Technical

Institute, Leningrad, preprint No. 722.

. 1984, Space Sci. Rev., 38, 89

Kocharov, L.G. and Orishchenko, A.V. 1983, Proc. 18th Intl. Cosmic Ray Conf.,

(Bangalore), ̂ _, 37.

. 1985, Proc. 19th Intl. Cosmic Ray Conf., (La Jolla), ̂ , 293.

Lin, R.P., Mewaldt, R.A. and Van Hollebeke, M.A.I. 1982, Ap.J., 253, 949.

Luhn, A., Klecker, B. , Hovestadt, D., Gloeckler, G. , Ipavich, F.M., Scholer,

M. , Fan, C.Y. and Fisk, L.A. 1984, Adv. Space Res., _4_, 161.

Luhn, A., Klecker, B. , Hovestadt, D. , and Mobius, E. 1985, Proc. 19th Intl.

Cosmic Ray Conf., (La Jolla), in press.

Mason, G.M., Gloeckler, G. and Hovestadt, D. 1979a, Proc. 16th Intl. Cosmic

Ray Conf., (Kyoto), _5_, 128.

. 1979b, Ap.J. (Letters), 231, L87.

Mason, G.M., Fisk, L.A., Hovestadt, D., and Gloeckler, G. 1980, Ap.J., 239,

1070.

Mason, G.M., Reames, D.V., Hovestadt, D. and von Rosenvinge, T.T. 1985, Proc.

19th Intl. Cosmic Ray Conf., La Jolla, _4, 281.

Mason, G.M., Reames, D.V., von Rosenvinge, T.T., Klecker, B. and Hovestadt,

D. 1984, Trans. Am. Geophys. U., 65, 1036.

Ma Sung, L.S., Gloeckler, G., Fan, C.Y. and Hovestadt, D. 1981, Ap.J.

(Letters), 245, L45.

Mewaldt, R.A. 1980, in Proc. Conf. Ancient Sun, ed. R.D. Pepin, J.A. Eddy and

R.A. Merrill, (New York: Pergamon), p. 81.

McGuire, R.E., von Rosenvinge, T.T. and McDonald, F.B. 1979, Proc. 16th Intl.

Cosmic Ray Conf., (Kyoto), _5_, 61

. 1979b, Proc. 16th Intl. Cosmic Ray Conf, (Kyoto), 5, 90.



38

Mobius, E., Hovestadt, D., Klecker, B. and Gloeckler, G. 1980, Ap.J., 238,

768.

Mobius, E. , Scholer, M. , Hovestadt, D., Klecker, B. and Gloeckler, G. 1982,

Ap.J., 259, 397.

Nakada, M.P. 1969, Solar Phys., 7_, 302.

.1970, Solar Phys.. 14, 457.

Ogilvie, K.W., Durney, A. and von Rosenvinge, T.T. 1978, IEEE Trans. Geosci.

Electr., GE-16, 151.

Ramaty, R., Colgate, S.A., Dulk, G.A., Hoyng, P., Knight, J.W., Line, R.P.,

Melrose, D.B., Orrall, F., Shapiro, P.R., Smith, D.F. and Van Hollebeke,

M. 1980, Solar Flares: A Monograph from the Skylab Workshop II, ed. by

P.A. Sturrock, Colorado Assoc. Univ Press, 117.

Reames, D.V. and von Rosenvinge, T.T. 1981, Proc. 17th Intl. Cosmic Ray

Conf., (Paris), _3_, 162.

. 1983, Proc. 18th Intl. Cosmic Ray Conf., (Bangalore),̂ , 48.

Reames, D.V., von Rosenvinge, T.T. and Lin, R.P. 1985, Ap.J., 292, 716.

Serlemitsos, A.I. and Balasubrahmanyan, V.K. 1975, Ap.J., 198, 195.

Shull, J.M. and Van Steenberg, M. 1982, Ap.J. (Suppl.), 48, 95.

Sullivan, J.D. 1971, Nucl. Instr. and Methods, 95, 5.

Varvoglis, H. and Papadopoulos, K. 1983, Ap.J. (Letters), 270, L95.

von Rosenvinge, T.T., McDonald, F.B., Trainor, J.H., Van Hollebeke, M.A.I, and

Fisk, L.A. 1978, IEEE Trans. Geosci. Electr., GE-16, 208.

Weatherall, J. 1984, Ap.J., 281. 468.

Zwickl, R.D., Roelof, E.G., Gold, R.E., Krimigis, S.M. and Armstrong, T.P.

1978, Ap.J., 225, 281.



39

FIGURE CAPTIONS

Fig. 1 Intercomparison of flux measurements of the VLET and ULEWAT sensors

in 3He-rich events, after adjustment for particle anisotropies.

Fig. 2 Abundances of the elements relative to oxygen in 3He-rich events for

2 different energies. Error bars on open points denote the range of

values observed for the 2/3 of the cases clustered around the mean

values. Error bars on filled points are not shown to avoid crowding

the figure.

Fig. 3 Deviations of individual element abundances in 42 events from a best

fit to the average pattern (Fig. 2). Left histogram; deviations for

fits over the element range C-Fe; right histogram; deviations for

fits over the range 0-Fe.

Fig. 4 Enhancement of 3He-rich event element abundances compared to large

solar particle event element abundances.

Fig. 5 VLET 3He/4He ratio versus the ULEWAT 3He + ^He spectral index,

assuming a power law in kinetic energy per nucleon. Dark line;

weighted least squares fit to the data. Dashed line; unweighted

fit.

Fig. 6 Fe/0 ratio (1.0-1.8 MeV/nucleon) versus Fe spectral index.

Fig. 7 C/0 ratio versus ê/̂ He ratio.

Fig. 8 Fe/0 ratio versus ê/̂ He ratio. Table 4 lists the abundances for

other species for all the events whose Fe/0 ratio is in this figure.

Fig. 9 Distribution of reduced x2 f°r 64 3He-rich flare heavy ion abundances

compared with (•) 3He-rich event set average abundances, and (0),

large solar flare event abundances.
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Fig. 10 Enhancements with respect to large solar particle event abundances of

3He rich events with unusual heavy ion abundance patterns.

Fig. 11 3He-rich event enrichment pattern compared to

(a) model of Kocharov and Orishchenko (1983) for short heating

time limit (solid line) and long heating time limit (dashed

line),

(b) "Fisk" plasma heating model with <UIQW = 1.0, temperature T

range of lO^-lO^, and plasma volume elements « T°*5.

(c) Nakada (1969) lower coronal heavy ion abundance enhancements.
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A

1

'

1 1 1 1

c

t

^~^^Fl

—

__

1 ,

$-\% 1 _

~

, . . .

5 C\J
O*

k
CD
ro

0 i
00

CO

-0 CD
Is- £

^ CD o
^ u_
< M-

o
^ <u

a
h Q

-
Q

Z CO

o 2

CO

131A fPV/lVM3in

Figure 1



CD
CJ
c
o
•a
c
13

_Q

CD
>
4-
_g
CD

CT

10

0.

T T

ISEE-3 °He Rich Flares

o

He C

~L5 MeV/nucleon,
34 flares
~2.6 MeV/nucleon,
32 flares

1
0 Ne Mg Si

Element

Fe

84-39

Figure 2



1

o

oin 0 0

LJL.
I

O

O
LO

O 0

CD
_D
O

CD
cn
D

CD

CD
k_
D
LL

o
ir
CD

ro

e
0

c
o

CD
Q

00

Figure 3



CO
CD
O
c
O
-a
c
13

_Q

CD

_g
U_,T 10

CD
CD

O

CD
>

_g
CD

CD
E
CD
O
C
O

LU

0.

I I I I I I I

ISEE-3 3He-Rich Flare Abundances

O This work, 1.0-1.8 MeV/nucleon

V Mason et a I. (1980) ; Carbon Poor ;
1.5 MeV/nucleon

• McGuire et al. (1979) ,
4-15 MeV/nucleon

I

'He C 0 Ne Mg Si Fe
Element

84-40

Figure 4



1 1 1 1 1 1 1

__

1 1 1 1 1 t 1

\

\

\

V

i

1
T

••••

i

V

i i i i i i

\_

\ [
\ '

\
\

i i i t i i

o
D 0

i i

i i

Tc

o
LO

O
*

o
•ro

q
cvi

o

:>

ID
C

O
k-
•f-
o

CL
CO

CD

I
in
CD

Figure 5



o
o
o

x
CD

o
CDQ_

CO

CD
LL.

CO

i
to
CO

O

Figure 6



O
O
o o

o

°0 o

CM

'o
cvj —
'o

0
or
CD

CD

CD
I

in
oo

0/0

Figure 7



I I I I I

o o

o

o
2 o

O

o

ocr
o>

CD
X

LO
00

Figure 8



CD
(f)
a
O

c
CD
O
.̂

CD
CL

1.0-1.8 MeV/nucleon, 0-Fe

64 3He Rich Flares

30

20

10
O

O

O

0

O

O

Calculated

Observations compared
with 3He avg. abundances
Compared with large
solar flare abundances

I 64% with

O
O

0

X

2
2

Figure 9 84-42



I \ I I I

(a)
3 Nov 1978

CO
(D

LJL.

(D
en

10

O.I

(D
i-
O
Q.
E
o
o

CD
E
.c
o
"^,
c.

LU

I I I I

(0
9 Nov 1980

10

0.1

He rich flare
l-a-" range

I i i i
C 0 Ne Mg Si Fe

i i i i r
(b)
23 Dec 1979

i i

i i i i i i
(d)
18 Mar 1982

j i
C 0 Ne Mg Si Fe

Element

84-45

Figure 10



CJ
O

O

ro

CD

c )
01

Q)

O

O

c
CD
E

ÛJ
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