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Abstracf

A control system design approach for flexible spacecraft is presented.
The control system design is carried out in two steps. The first step
consists of determining the "ideal" control system in terms of a desirable
dynamic performance. The second step consists of designing a control system
using a limited number of actuators that possess a dynamic performance that is
close to the ideal dynamic performance. The effects of using a limited number
of actuators is that the actual closed-loop eigenvalues differ from the ideal
closed-Toop eigenvalues. A method is presented to approximate the actual
closed-loop eigenvalues so that the calculation of the actual closed-loop
eigenvalues can be avoided. Depending on the application, it also may be
desirable to apply the control forces as impulses. The effect of digitizing

the control to produce the appropriate impulses is also examined.
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Introduction

A great deal of work has been dedicated to the development of structural
control theories. Although the developments are extensive, the designer often
finds it difficult to apply many of these theories to "real structural control
problems." Indeed, it is of primary concern to bridge the gap between
engineering design and the structural control theories.

The focus of the research into structural control theories is diverse.
Many of the researchers are concerned with practical implementation problems

and toward that end, promote decentralized control (Refs. 1 and 2). Others

promote a centralized modal control approach and toward that end, point out
that a control theory should not destroy certain characteristics which are
natural to a structure (Refs. 3-5). Still others, in .search for a gﬂgﬁgﬂ_
optimum, are concerned with distributed controls (Refs. 6 and 7). Much
attention is also given to describing the robustness of the contrd] theories
in the presence of modelling errors, particularly in view of the fact that it
is difficult to characterize structural stiffness in mathematical models
(Refs. 8-10).

A1l of these concerns support the objective to uniformly dampen the

motion of a spacecraft. As it turns out, a uniform damping control is a

robust, decentralized, natural control with near globally optimal performance

(Ref. 11). Thus, a uniform damping control answers the concerns raised in the
previously cited references.

In this paper, an engineering design approach to structural control is
described, The design of a uniform damping control system is carried out in
two independent steps. The first step consists of identifying the solution
which leads to the ideal dynamic performance. Toward that end, one recognizes

that the state of a spacecraft is distributed over its domain, implying that



the ideal dynamic performance will require distributed actuation and sensing
devices. On the other hand, it is recognized that the use of these
distributed devices is, for the most part, impractical. The second step
consists of constructing a control system of minimal cost which exhibits
dynamic performance that is as close as possible to the ideal. Therefore, the
second step consists of implementing the uniform damping control obtained in
the first step using discrete actuation and discrete sensing devices. As it
turns out, ideal performances can be obtained with a relatively small number

of actuators.

II. Mathematical Description

The equations of motion of a flexible structure can be expressed in the

form
Mx(t) + Kx(t) = E(t) (1)

where x(t) is an n-dimensional vector of nodal displacements and slopes and
F(t) are forces and moments at the corresponding nodes. M and K denote n by
n mass and stiffness matrices, respectively, and overdots represent
differentiations with respect to time. The mass and stiffness matrices are
obtained Using the finite element method. Common computer programs capable of
generating the mass and sfiffness matrices include NASTRAN ahd SAP.

Associated with the equations of motion, one commonly defines the

eigenvalue problem

AMg = Ko (2)
The solution of this problem is known as the eigensolution which consists of
the eigenvector ¢ and the associated eigenvalue A. There exist n
eigensolutions, i.e. n eigenvectors op (r =1, 2, ..., n) and n associated

eigenvalues A, (r =1, 2, ..., n). Structural dynamicists commonly refer to



the eigenvectors as natural modes of vibration. The associated eigenvalues

are related to the natural frequencies w. by Ao = mrz (r =1, 2, vevy, n). As

a general rule of thumb, the computed eigensolution with higher associated
natural frequencies are inexact. Indeed, modelling error will significantly
effect these quantities. Only the eigensolutions with Tower associated
natural frequencies can be computed accurately. However, more often than not,
we are only concerned with the lTower modes, so this presents no difficulty.
NASTRAN and SAP are two typical computer programs capable of computing the
eigensolution (Ref. 12).
‘The natural modes can be normalized so that
iIMfks: Sps (3)

where Gfs =0 for r #s and 6., = 1. We express the displacement vector i(t)
as a linear combination of the lowest m modes, written

X(t)

where m<<n, and u.(t) (r

Qlul(t) + gz(t)uz(t) + .. + imum(t) (4)

1, 2, ..., m) are modal displacements which express

1]

the degree to which the modes participate in the system response. Generally,
the higher modes do not contribute significantly in the response so they are
not included in Equation (4). The modal displacements are governed by the
scalar equations,

u (t) +w2u (t) = f (t), (r=1,2, .., m) (5)
where the modal forces f.(t) are related to the nodal force F(t) by

f.(t) = gl E(t), (F =1, 2, oy m) (6)
We have assumed here that the modes are normalized, i.e. that Equation (3) is
satisfied. It remains to compute the modal displacements in Equation (6).
Toward this end, we first distinguish between rigid-body modes for which

wp = 0 and flexible-body modes for which wr# 0.



() Rigid-body Modal Responses (w. = 0)
We rewrite Equation (5) in the state space by introducing the change of
variables y (t) = [&r(t) ur(t)]T and obtain the modal equations

() = Ag,(8) + B (¢) ()

e B g

The solution to Equation (8) can be converted into a difference equation.

where

Letting T denote the time step, and letting &r(k) and ur(k) denote the modal
velocity and modal dispacement at time kT, (k = 0, 1, 2, ...) we obtain the

difference equations

dr(k + 1) ar(k) + Tf (k) (9a)

00T + u (k) + of (k) (9b)

Equation (9) is used to compute the response of a rigid-body mode.

"

ur(k + 1)

(B) Flexible-body Modal Responses (. # 0)
Equation (5) describes the motion of an undamped oscillator. However,
structures experience small degrees of structural damping. We can introduce
some damping into the mathematical model at the exponential rate‘ar by
replacing Equation (5) with

Gr(t) + 20 0 (t) + (2 +w2)u (t) = f (t) (10)
The natural frequency in Equation (10) is identical to that in Equation (5).

We rewrite Equation (10) by introducing the change of complex variables

ur(t) = Re{wr(t)}, u_ (t) = Re{Arwr(t)} where A = -a  + iw., and we obtain the

r
complex modal state equations

W (t) = A w (t) + F )/ () (11)
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Letting T denote the time step, the response to Equation (11) is given by the

difference equation

wr(k+1) = ¢rwr(k) + rrfr(k) (r=1, 2, «e., m) (12)

where

0. = e ,I = (@r— 1)/(1xrwr) (13)
Equation (12) is used in order to compute the response of a f]exib]é-body
mode. For these purposes, it is desirable to take a time step smaller than

one tenth of the smallest flexible body period of oscillation.

III. Control System Design

The control system design is carried out in two steps. In the first
step, one constructs the "ideal" control system with the best dynamic
performance that nature will allow. Such a system requires distributed forces
which are certainly impractical for most applications. The second step
consists of designing a control system of minimal cost and greatest simplicity
and one which imitates the ideal control system., Perhaps the simplest way to
carry out the second step is to consider various designs and to compare the
dynamic performances of these designs with the dynamic performance of the

ideal control system.

Step 1: The ideal control system.

For vibration suppression, pointing, and shape control, the ideal control
system is one which dampens all the modes of vibration at a single exponential
rate a (Ref. 11). The linear feedback control law is

F(t) = -20Mx(t) - o?Mx(t) (14)
Substituting Equation (4) into Equation (14) while considering the
orthonormality conditions, Equation (3), we obtain the expressions for the

modal control forces

£(t) = -2ad (t) - ?u (t), (r =1, 2, .oy m) (15)



We observe from Equation (15) that only the rth modal displacement and the rth
modal velocity control the rth modal force. Such a control is referred to as
natural because the modal coordinates do not couple the equations of motion
(Refs. 7 and 11). Substituting Equation (15) into Equation (5), we obtain the

closed-loop modal equations

u (t) + 200 (t) + (o + 0.2) u (t) =0 (r=1,2, ..., m) (16)

The corresponding closed-loop eigenvalues are given by

M. = Vel-2a £/ (20)2 - 4(o? + u.2)] = -a t fu, (17)

From Equation (17), the closed-loop modes all decay at the same exponential

rate a and the closed-loop frequencies of oscillation are identical to the

t

natural frequencies. Also, observe that the control law, Equation (14), is

independent of the spacecraft stiffness. As a general rule of thumb, when a

control system is designed to dampen modes in a more non-uniform manner, the

control law will tend to depend more on the structural stiffness. Therefore,

in the interest of designing a robust control system and one which does not
depend explicitly on the fidelity of the mathematical model of stiffness, we
uniformly dampen the motion.

The objective to uniformly dampen the motion can also be arrived at from
.other points of view. For example, let us assume that we wish to drive the
motion of a given point on the structure to equilibrium at the exponential
rate a, i.e. we wish that a given point be exponentially stable. Then, it can
be shown that this point will be exponentially stable at the exponential decay
rate o only if all of the natural modes of vibration are exponentially stab]e
at the rates o not less than ao. Also, note that any effort to dampen a given
mode at an exponential rate o strictly greater than o will require unnecessary

fuel., Therefore, the most effective way to drive the motion of any point to

equilibrium at the exponential decay rate o is by damping the motion of the

natural modes uniformly at the exponential decay rate o (Ref. 11).




Finally, we observe that the uniform damping control law, Equation (14),
is decentralized. Because the mass matrix is diagonal, if we write
M = diag(my, my, ..., M), | (18)
then Equation (14) becomes
Fr(t) = -Zamrkr(t) - aZmrx (t), r =1, 2, ..., n) (19)
Clearly, Equation (19) represents a set of independent control laws, which
suggests that uniform damping is relatively easy to implement. As a matter of
theoretical interest, uniform damping control represents a close approximation
to globally optimal control (Ref. 11).‘ |
In view of the considerations presented in the previous paragraphs, the

objective to uniformly dampen the motion has been chosen, and for the purpose

of design, it will be viewed herein as an ideal.

Step 2: Implementation of the ideal control system.

It is usually impractical to consider a large number of control forces as
in Equation (19). Therefore, we arrive at the second step and design a
control system that performs as closely as possible to the ideal control
system. The control law obtained in the second step can be given by

F(t) = -Ck(t) - Dx(t) (20)

where C and D are usually sparce matrices because in most applications only a
relatively small number of control forces are required. It is of immediate
éoncern to describe the degradation in performance due to implementing the
controls with a Timited number of control forces. As it turns out, the
degradation in performance can be marginal. Substituting Equation (20) into
Equation (6) and considering Equations (3) and (4), we obtain the modal
equations

. m
u () + w2 u (t) = -z§¢1c$sas(t) + gD u (£)), (r = 1, 2, wu, m) (20)
§=



Equation (21) can be rewritten in the form
m
(2] . T .
2 2 = - -
ur(t) + 2aur(t) + (a2 + wr)ur(t) EE(QrCQS 2a6rs)us(t) +
T

(gngS - a26rs)us(t)], (r=1, 2, «o., m) . (22)

The flexible-body modes and the rigid-body modes in Equation (22) can we

rewritten in the state space by introducing the complex change of variables

ur(t) = Re {wr(t)}, ur(t) = Re {Arwr(t)}, (r=1, 2, ..., m) (23)
where Ar = ~q + imr are the system eigenvalues that would be obtained using
the ideal control system. We obtain the complex modal state equations

m
wo(t) = aw (t) + l/sil(grsws(t) * g, M () (24)
where
T . T .
Ipg = (azars' grngs)/(1wr) + (ZaGrS— QPCQS)XS/(1wr), (25)

(ros =1, 2, vauy, m)

The eigenvalues of the controlled spacecraft lie in the circles with centers
C,. and associated radii Rps given by

m .

Cp = AL *+ Qpp/2, R = 3 lgrsl (26)

s=1

S#r
Note that the centers C,. are also first-order approximations of the
eigenvalues associated with the ideal control system. Equation (26) can be

used in order to compare the performance of the control system design with the

performance of the ideal control system.

IV. Digitization of the Controls

In the previous section, distributed cohtro]s were discretized in‘space
leading to the implementation of the controls using a limited number of
control forces. The controls acted continuously in time. The controls can
also be discretized in time leading to digital controls. In the process, the

dynamic performance of the controls are expected to change depending on the
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level of digitization. The question arises, at what level of digitization
will the dynamic performance of the spacecraft vary significantly from the
dynamic performance of the spacecraft with an ideal control system. Consider
the continuous controls acting at the rth node with the associated control Taw

Fr(t) = —2amrir(t)-a2mrxr(t) (27)
Here, m. refers to the mass of the region within which the control force Fr(t)
acts. Over a small time increment T, we apply an impulse

_rtHT _-

Ir(t) —ft Fr(r)dr = Fr(t)T (28)

so that
: ) ) 9

Ir(t) = -2aTmrxr(t)-a Tmrxr(t) (29)
Instead of applying continuously acting controls as suggested by
Equation (27), let us apply an impulse every k seconds. Then, we replace the
continuous control law, Equation (27), with the digital control law

. 2

Ir(t)'= -2aKTmrxr(t)—a KTmrxr(t) (30)
where the impulse Ir(t) is applied every KT seconds. The particular effects
of implementing Equation (30) rather than Equation (27) are described in the

numerical example.

V. Uniform Damping of a Simply Supported Beam

As an illustrative example, we control a simply supported beam of length
a = 10,0 units with unit mass per unit length and unit stiffness density. For
this simple example, the equations of motion admit closed-form expressions.
The normalized eigenfunctions and natural frequencies are

0 (x) = (2/2)1/2 sin(F7%) w,

=2, r=1,2 w0, (31)
For the sake of this example, we assume that the Towest m = 10 modes of
vibration contribute significantly to the overall system response and that the

contribution of the remaining modes to the motion is negligible. The beam is
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given an initial unit step input at x = 4.0 for 2.0 seconds., We design for a
uniform exponential decay rate of a = 1.0 and we assume that 1 percent
structural damping is present in the beam.

As a first step, the ideal control system is designed. The free response
is shown in Figure 1 and the ideal control system response is shown in
Figure 2. The ideal closed-loop eigenvalues are given in Table 1. Next we
consider implementing the control system using a discrete number of Contro]
forces. In order to approximate the ideal control system, we locate control
forces along the beam at the points Pr’ (r =1, 2, «v., 83 5 =4, 5)
(See Table 2). The associated control laws are given by

Fr(t) = —2amrir(t)—a2mrxr(t), m.= a/s, (r=1,2, ..., s) (32)

where x.(t) is the displacement at P.. Here, again, m. represents the mass in
the region of the rth control force. The responses of the beam with the
discrete controls are shown in Figures 3 and 4. The corresponding fuels
consumed by the controls are shown in Figures 5 and 6. Also, the
corresponding first-order approximations of the closed-loop eigenva]ues»are
given in Tahles 3 and 4.

Next we digitize the control law Equation (30). The responses of the beam
usiﬁg digitized discrete controls are shown in Figures'7 and 8. The
corresponding fuels consumed by the controls are shown in Figures 9 and 10. A

computer program listing is given in Appendix A.

VI. Conclusions

A control system design approach for flexible spacecraft has been
presented. The control system design is carried out in two steps. The first
step consists of determining an “ideal" uniform exponential rate at which we

desire the spacecraft motion to dampen. Next, we construct a control with



12
dynamic performance that is close to the "ideal" using a limited number of
actuators. It is also shown that the controls can be digifized when it is
desirable to create forces using impulses.

The control system design approach is demonstrated with a simple
numerical example in which it is shown that close to ideal dynamic.
performances can be obtained with a relatively small number of actuators.
Also, the effects of digitizing the controls on the dynamic performance is

illustrated.
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Ideal Closed-lLoop Eigenvalues

Ar = -0 + iwr
r ~ ok 1mr
1 -1.0 + 10.098
2 -1.0 + 10.394
3 -1.0 + 10.888
4 -1.0 + 11.579
5 -1.0 + i2.467
6 -1.0 + 13.553
7 -1.0 + 14,836
8 -1.0 + 16.316
9 -1.0 + 17,994
10 -1.0 + 19.869

Table 1
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Locations Pr of the Control Forces.

Five Forces 1.0 3.0 5.0 7.0 9.0
Four Forces 2.0 4.0 6.0 8.0 -

Table 2
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First-Order Approximation of the

Closed-lLoop Eigenvalues Using Five Control Forces

r Ar = -a 4 iwr
1 -1.0 + 10.098
2 -1.0 + 10,39
3 -1.0 + 10.888
4 -1.0 + i1.579
5 -2.0 + i2.264
6 -1.0 + 13.553
7 -1.0 + i4.836
8 -1.0 + 16.316
9 -1.0 + i7.99%
10 0.0 + 19.920

Table 3

16



First Order Approximation of the

Closed Loop Eigenvalues Using Four Control Forces

r Ar = -0+ iwr
1 -1.25 + 10.078
2 -1.25 + 10.747
3 -1.25 + i1.167
4 -1.25 + 11.500
5 -1.25 + 12.760
6 0.00 + i3.517
7 -1.25 + 14,810
8 -1.25 + 16.296
9 -1.25 + 17.978
10 0.00 + 19.920

Table 4
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Appendix A. Computer Program Listing.

+NULL.
CCCC  CCCCCCCCCCCCCCCCCCCCCCe
CCCC  CCCceccecececeececececceccececee

cccC

gggg DATA GENERATION PROGRAM

cCCC THE STRUCTURAL SYSTEM PARAMETERS
cCcCC ARE DEFINED INCLUDING THE NATURAL
gggg FREQUENCIES AND THE NATURAL MODES.

CCCC  CCCCCCCCCCCCCCCCCCCCCCC
CCCC  CCCCceCceeccecececcceececececcee

CCCC
REALX8 VEC(25)
COMPLEXX16 LAMDA
gP%g(UNIT=11,FILE=’DQT’,STRTUS=’UNKNOUN')

ZETR=0.01
SQ20A=SQRT(2./AR)
DO 1 I=1,M
OMEGA=(IXPI/AR)XX2

9¢



100

Appendix A. Continued.

OMEGA= (IXPI/AA)XX2
ALFA=2 . XZETAXOMEGA
LAMDA=(0,,1,. )XOMEGA~-ALFA
WRITE(11,X)LAMDA

CONTINUE

DO 3 I=1i.N

DO 2 J=1i,M

N1i=N+1
UVEC(J)=5Q20RXSIN(JXPIX(I-8.0)/N1)
CONTINUE
WRITE(11,100)(VEC(J),J=1,M)
CONTINUE .
FORMAT(2X,5E15.6)

CLOSE(11)

- STOP

BOTTOM

END

Le




+NULL.
CCCC
CCCC
CCCC
CcCCC
CCCC
cccce
CCCC
CCCC
CccCC
CCCC
ccce
CCCC

BOTTOM

Appendix A. Continued.

CCCCCcceececcceeccccccecee
CCCCCCCCCCceceececceccececee

EXTERNAL DISTURBANCE PROGRAM

THE EXTERNAL FORCES NOT INCLUDING CONTROL
FORCES ARE DEFINED.

CCCCCCCCCCCCCCCCCCCCCC
cccCcccceceecceceececccecece

OPEN(UNIT=13,FILE="FORCES’

NP=1

IFOR1=4
WRITE(13,%)NP
WRITE(13,%)IFOR1
Fi1=1

F4=0

DO 1 K=1,40
WRITE(13,%)F1
DO 2 K=21,200
WRITE(13,%)F4
CLOSE(13)
STOP

END

s STATUS="UNKNOUWUN" )

8¢



Appendix A. Continued.

+NULL.

¢CCC

CcCCC CCCCCCCCCCLCCCCCececlcee

8888 CCCCCCCceeececeeceecececececece

gggg THE CONTROL PARAMETERS ARE DEFINED
CCCC CCCCCCCCCCCCCCCCCCCCCCCl 7
CCCC CCCCCCCCCCecccececececece

CCCC
REALXB XMASS(9)
OPEN(UNIT=11,FILE="CONTROL’,STATUS="UNKNOWN")
OPEN{UNIT=12,FILE="DAT’,STATUS="UNKNOUN’)
ALFA=1.0
READ (12, X)MMM
READ (12, X)IN
DO 10 J=1,N
XMASS(J)=10./N

io CONTINUE

KTIME=1
WRITE(11,X)(XMASS(I),I=1,N)
WRITE(11,X)KTIME
WRITE(11,X)ALFA
CLOSE(11
CLOSE(12
STOP
END

BOTTOM

E4
)
)

6¢



+NULL.

CCCC
CcCCC
CCCC
CCCC
CCCC
CcCcCC
CCCC
cCCC
CCCC
CCCC
CCCC

BOTTOM

Appehdix A. Continued.

SUBROUTINE LAW(FOR,X,XDOT,I,FORT,XMASS,KTIME,ALFA)

CCCCCCCCCCCcceeccececececececee
CCCCCCCCrcceeceeeeccecececcece

SUBROUTINE LAU
THE CONTROL LAW IS DEFINED.

CCCCCCCCCCceeeeececeeccee
CCCCCCCCLeceeececececeecececcee

EEALXE T(g),XDOT(Q),FOR(Q),XNQSS(Q),FORT(Q)

1 K=1,

IF(CI/ZKTIMEDXKTIME.NE.I)GOTO1

FORK=-ALFAXXMASS (K)XKTIMEX(2.XXDOT(K)+ALFAXX(K))
FOR(K)=FOR(K)+FORK

FORT(K)=FORT(K)+ABS(FORK)

CONTINUE

RETURN

END

0€



+NULL.

CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
cCcC

Appendix A. Continued.

SUBROUTINE RESP(VEC,VARL,X,XDOT,T,FOR,M,N,U,UDOT, W)

CCCCCCCCCCCCCCCCCCCC
CCCCCCCceiceceeececececec

SUBROUTINE RESP

THE SYSTEM RESPONSE IS UPDATED FOR EACH
TIME STEP. THE COMPUTATION DISTIGUISHES
gg;%ggN RIGID-BODY MOTION AND FLEXIBLE-BODY

CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCcceceeccee

REALX8 VEC(9,25),%(9),XDOT(8),FOR(9),U(25),UDOT(25)
COMPLEXX16 UAL(25),W(25),PS5I,GAMA,OMI
DO 3 J=1.,M

F=0

DO 1 K=1,N

F=F+VEC(K,JIXFOR(K)
IF{CDABS(VAL(J)}.LT.1.D-61GOTO 2
PSI=CDEAP(UAL(JIXT)
OM=(0.,-1.)%VAL(J)

oMmi=(o.,1.)1x0M
GAMAR=(PSI-1)/VUAL(J)/0MI
W(JI=PSIXU(I)+GAMAXF

Uedi=Wedd

UDOT(J)=VAL(JIXW(J)

1€




BOTTOM

Appendix A. Continued.

UDOT(J)=VAL(J)IXW(J)

GOTO 3
UCJ)=U(J)I+TXUDOT(J)+TXX2/8.XF
UDOT (J)=UDOT(JI+TXF '
CONTINUE

DO 4 K=1,N

0
K)
DO 4 J=
X(K)=X(
XDOT (K)
CONTINU
RETURN
END

=0

i,m

KY+UEC(K,J»xU(J)
EXDOT(K)+UEC(K,J)XUDOT(J)

A



+NULL.
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
cCCC
CCCC
CCCC
cCCC

Appendix A. Continued.

CCCCCCCCCCCCCCCCCe
CCCCCCCCceceececcecee

SYSTEM RESPONSE PROGRAM

THE RESPONSE OF THE CONTROLLED SYSTEM IS
COMPUTED AT UARIOUS POINTS.

CCCCCCCCCCCCCCCCCl
CCCCCCCCCCCCCCCCCl

REALX8 UVEC(9,25),X(9),XDOT(9),FOR(9),U(25),UDOT(25),FORT(8)
REALX8 XMASS(9)

COMPLEXX16 UAL(25),U(E5)

INTEGER IFOR(9)
OPEN(UNIT=11,FILE="DAT’,STATUS="UNKNOUN"’ )
OPEN(UNIT=13,FILE="FORCES’,STATUS="UNKNOWN")
OPEN(UNIT=14,FILE="0UT1’,STATUS="UNKNOUWN")
OPEN(UNIT=15,FILE="0UT2’,S5TATUS="UNKNOUWN")
OPEN(UNIT=16,FILE="0UT3’,5TATUS="UNKNOUWN")
OPEN(UNIT=17,FILE="0UT4’,5TATUS="UNKNOUWN" )
OPENCUNIT=18,FILE="0UT5’,S5TATUS="UNKNOWN")
OPENC(UNIT=6,FILE="FOR1’,STATUS="UNKNOUWN")
OPEN(UNIT=7,FILE="FOR2’,5TATUS="UNKNOUWN" )
OPEN(UNIT=8,FILE="FOR3’,STATUS="UNKNOWN‘ )
OPEN(UNIT=9,FILE="FOR4’,STATUS="UNKNOWN’ 3
OPEN(UNIT=10,FILE="FORS5’,STATUS="UNKNOWN’ )
OPEN(UNIT=19,FILE="CONTROL’,STATUS="UNKNOWN")
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Continued.

Appendix A.

1,N)

,I

~~
=~
LY.
Lo o IR Y
=
ar)
~4 w4
W~ =
[ e Kl
“ o
Lamd o0 A4
=t~ (N [ R I R S | ]
~ O WL L S S S UL S, U, O [ S
HAWTE T LT d e d s o o o

OPEN(UNIT=19,FILE="CONTROL’,STATUS="UNKNOWN")

PEIIEICIHIEIII « n o & aIEIII « ~ & OO
“® 4w nhn ot ATINO-0) w w4 1] Ll u
vttt et DN DN et At A~ (O ~-00 0 " - o I | B W
et w4 v v e v e v N e e S e e N N N e AN
o Nt et S S e e e LS L L L L L) L Ll L L] N o~ R RN 1]
oA FFFEFRFRFFRFERERFS A E S EUEX S
CLCLCTLTTTT A A bbb bt e ) HOHRZ KON
Wl Wl E Y K EEEE X E O~ QOO O WL
XXX XKXEXXHEHEEIBTZIBIIIIIZIFAQIDIDOIO2OAL X



100

Appendix A. Continued.

X(K)=0
XDOT(K)=0
CONTINUE
READ (13, X)NP
READ(13,X)(IFOR(K),K=1,NP)
DO 4 I=1,L

DO 3 K=1,N

FOR(K)=

- CONTINUE

READ(13,X)(FOR(IFOR(K)),K=1,NP)
CALL LAW(FOR,X,XDOT,I,FORT,XMASS,KTIME,ALFA)
CALL RESP(VEC,VUAL,X,XDOT,T,FOR,M,N,U,UDOT, W)
WRITE(14,100)TM,X(1),XDOT(1)
WRITE(15,100)TN,X(3),XDOT(3
URITE(16,100)TM,X(5),XDOT(5S
WRITE(17,100)TM,X(7),XDOT(?
WRITE(18,100)TM,X(9),XDOT(S
URITE(B,i@@)TN,FORT(i),FOR¥
T
T
R

WRITE(7,100)TM,FORT(3),FOR
WRITE(8,100)TM,FORT(5),FOR
WRITE(9,100)TM,FORT(7?),FOR
WRITE(10,100)TM,FORT(9),FO
TH=T+TM
CONTINUE
FORMAT(F6.3,2E22.13)
CLOSE(11)
CLOSE(13)

4)

5)

6)

)
)
)
)
(
(
(
(
T(S9)
CLOSE(

1
CLOSE(1
CLOSE(1

G¢
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Appendix A.

Continued.
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.NULL.
CCCC
CCCC
cCCC
CCCC
CCCC
CCCe
- ccCC
CCCC
cCCe
CCCC
cCCC
CCCC
CCCC
CCCC
cecee
CCCC
CCCC
CCCC
cCCC
CCCC
CCCC
cCCe
cCCe

Appendix A. Continued.

CCCCCCCCCCCCCCCe
CCCCCCCCCCcceeccee

CONTROL ROBUSTNESS PROGRAM

IDEALLY, & DESIRABLE DYNAMIC PERFORMANCE

REQUIRES DISTRIBUTED SENSING AND ACTUATION

WHICH IS FOR THE MOST PART IMPRACTICAL.

THEREFORE, ONE RESORTS TO FINITE-DIMENSIONAL

SENSING AND ACTUATION.THIS PROCESS OF GOING FROM

DISTRIBUTED TO DISCRETE IS CALLED CONTROL

DISCRETIZATION.THIS PROGRAM LOOKS AT THE EFFECTS

OF CONTROL DISCRETIZATION ON THE DYNAMIC PERFORMANCE.

TOWARD THIS END, WE LOOK AT:

1) CHANGES IN THE NEIGHBOURHOODS OF THE CLOSED-LOOP
EIGENVALUES.

2) FIRST-ORDER PERTUBATIONS OF THE CLOSED-LOOP
EIGENVALUES.

CCCCCCCCCCCCeCee
cceececeecececece

REALXZ VEC(25,25),C(25,25),D(25,25),XMASS(25),RAD(ES)
COMPLEXX16 UAL(25),CEN(25),LAM(25),GRS,GJS5,GJII,0N(E5)
OPEN{UNIT=11,FILE="DAT’,STATUS="UNKNOUWN" )
OPEN(UNIT=12,FILE="CIRCLE’,STATUS="UNKNOWN’)
OPEN(UNIT=13,FILE="CONTROL’,STATUS="UNKNOWN’)
READ(11,%X3M

LE
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100
150

coo

300

BOTTOM

Appendix A. Concluded.

GJI==(C(J, IIXLAM(IS)I+D(J,I))/70M(IR)

GJS=GJS+GJIXVEC(I,IS)

CONTINUE

GRS=GRS+VEC(J,IR)IXGJS

CONTINUE

IF(IR.EQ.IS)GRS=GRS+(2.XLAM(IR IXALFA+ALFAXX2)/0M(IR)

IF(IR.EQ.IS)CENC(IR)=CEN(IR)+GRSX0.5 .

IF(IR.NE.IS)IRAD(IR)=RAD(IR)I+CDABS(GRS)

CONTINUE

CONTINUE

WRITE(12,100)(LAM(I),I=1,M)

FORMAT(2X, IDEAL EIGENVALUES’,/,25(2X,2E15.57))

WRITE(12,150)(XMASS(I),I=1,N)

FORMAT(2X, REGIONAL MASSES’//,25(E15.57))

URITE(12,200)

WRITE(12,300)(CEN(I),RAD(I),I=1,M)

FORMAT(2X, “NEIGHBOURHOODS OF THE CLOSED-LOOP’
s’ EIGENVALUES’/,/2X,4X, ’CENTERS(FIRST-ORDER APPROX)’,5X
,eX,’RADII’ /)

FORMAT(2X,2E15.5,5X,E15.5)

CLOSE(11)

CLOSE(12)

STOP

END
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