
r 

.. 

NASA Contractor Report 175021 

NASA-CR-175021 
19860008318 

Closure of Fatigue Cracks at High Strains 

N.S. Iyyer and N.E. Dowling 

Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 

December 1985 

Prepared for the 
Lewis Research Center 
Under Grant NAG 3-438 

NI\SI\ 
National Aeronautics and 
Space Administration 

111111111111111111111111111111111111111111111 
NF01232 

JJ.i ;GLU I\ESEAfiCd CENTER 

LmRAI1V, r~AS/\ 

n~n",-e-r:otl. YJRGINl8 

https://ntrs.nasa.gov/search.jsp?R=19860008318 2020-03-20T16:28:48+00:00Z



TABLE OF CONTENTS 

Chapter Page 

1 Introduction and Literature Review 

1.1 Short Cracks and Their Importance •....••..•••• 1 

1.2 Fatigue Crack Propagation..................... 3 
• 

1.3 Crack Closure................................. 6 

1.3.1 Plasticity Induced Closure............. 6 

1.3.2 Roughness Induced Closure.............. 11 

1.3.3 Oxide Induced Closure.................. 12 

1.3.4 Discussion of Crack Closure Effects.... 12 

2 Experimental Program 

2.1 Material...................................... 15 

2.2 Specimen Design and Geometry.................. 16 

2.3 Test Equipment................................ 16 

2.4 Mounting the Specimen and Alignment........... 18 

2.5 Test Procedures and Methods................... 20 

3 Experimental Results and Discussion 

3.1 Experimental Results.......................... 25 

3.2 Discussion of the Results..................... 26 

3.2.1 An Estimate and the Model of Budiansky 

and Hutchinson......................... 27 

; 



3.2.2 Models of Newman and of Nakai.......... 31 

3.2.3 Comparison of Experimental Results 

with Existing Models .•••••••••••••..... 
.. 

33 

4 General Discussion................................... 36 

5 Conclusions and Scope for Further Study •••••••..•.... 42 

6 References........................................... 46 

ii 

.. 



r 

CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

The present day concern of fracture mechanics is the study of 

critical crack sizes which have a significant effect on the life of a 

component. The failure of a structure or a component is often due to 

the presence of a crack of critical size. Fatigue, which causes 

failure of materials by the incipient growth of flaws, ;s the most 

important cause. Thus, understanding the behavi~r of microcracking 

and growth of small cracks in fatigue leads to the development of 

improved methods of predicting lives of components. 

Failure of materials under fatigue involves 11] the following: 

1. Initial cyclic damage (cyclic hardening or softening) 

2. Formation of initial microscopic flaws (microcrack initiation) 

3. Microcrack coalescence to form a propagating flaw (microcrack 

growth) 

4. Macroscopic propagation of this flaw (macrocrack growth) 

5. Failure instability 

Often steps 1 and 2 described above are referred to as crack 

initiation, 3 and 4 as crack propagation. 

1.1 SHORT CRACKS AND THEIR IMPORTANCE 

The definition of a short crack depends on the nature of the 

problem being considered. Reference 2 lists various considerations 

for defining short cracks, such as the following: 

1 
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1. Relative s1ze of the crack with respect to the microsructure 

(grain size etc., 0.4 x 10-6 in to 2 x '10-3 in.) 

2. Relative size of the crack with respect to the plastic zone 

(typically 0.004 in. in high strength materials, or 0.04 in. to 

0.4 in. in low strength materials, and varying with stress level) 

3. Size of the crack with respect to thickness (constraint) 

4. Size of the crack with respect to the applicability of linear 

elastic fracture mechanics, LEFM. 

5. Crack detecting capability i.e., cracks that are so small that 

they are difficult to find (0.004 in. to 0.04 in.) 

Thus, an exact definition of a short crack cannot be made. The 

size of a crack to be considered as short (small) depends on the 

perspective of the problem that one is faced with. 

A reasonable and improved estimate of the life of a component 

can be made by the study of short crack initiation and growth. Since 

most service failures are caused by cyclically varying stresses which 

cause progressive failure of a component, the short crack problem in 

fatigue is of major concern. Advances in the understanding of short 

crack growth have enabled increasingly quantitative studies to be 

pursued into the specific mechanisms that affect initiation and 

growth. Manufacturing related problems associated with small cracks 

that affect the lives of structural components have been identified 

[31. References [4,5,61 discuss the importance of the short crack 

problem. 

---------------------------------------------------------------------------==~~-~-~-
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Since the similitude relative to the metallurgical structure 

breaks down for short cracks, the local effects will be dominant in 

the materials respon~e. Material inhomogenieties, such as crack 

front irregularities, second phase particles or inclusions, and grain 

boundaries playa vital part in affecting the local stress field and 

hence the materials response. In the case of long cracks, all these 

effects are integrated and averaged over many grains. But in the 

short crack case, the following are important: applied stress, yield 

stress and yield properties, crystallographic anisotropy, 

homogeneity, and environment. 

The behavior of short cracks as to their propagation is 

different from that of long cracks, which can be generally handled by 

LEFM. The literature indicates that study of short cracks should 

consider the following aspects: 

1. Fracture mechanics characteristics involving elastic-plastic 

fracture mechanics, and 

2. Physics of crack propagation involving microstructure, 

environment, crack closure, crack extension, crack size, and 

crack shape. 

1.2 FATIGUE CRACK PROPAGATION 

Rice [71 and Hult and McClintock [81 used plastic superposition 

methods which are valid in cases where plastic strains are in 

constant proportion to one another and where total strain theories 

can be applied. These are ideal cases, and in reality, there are 

of 
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deviationsfrom'proportional flow. The ideal case assumed by Rice 

[7j permits a general treatment of the reponse to unloading, 

re loading a'nd cycl i c 1 oadi ng. 

Small scale yielding solutions for cyclic loading are obtained 

directly by replacing the stress intensity factor by its variation 

and doubling the yield stress, cry' and yield strain, Ey• One of the 

important results from analyzing the elastic-plastic models for small 

scale yielding is that plastic deformation is entirely determined by 

the history of variation of the stress intensity factor, K. Thus, 

two different cracked bodies will exhibit identical fatigue crack 

extensions if each is subjected to the same variations of K. 

But in large scale yielding, especially when the crack itself is 

small, no single parameter is known that plays the role of the 

elastic stress intensity factor in determining crack tip 

plasticity. Large scale yielding analyses are not available for all 

cases, since with perfect plasticity models, unrestricted flow 

occurs. Thus, crack propagation under repeated overall plastic 

straining has not been analyzed mathematically because of the 

complexities involved. 

LEFM is based on the result that the strength of the elastic 

stress field singularity at the crack tip is expressed by K, which is 

a function of the applied load and geometry [9.10j. The resistance 

of metals to fracture under static and cyclic loading can be 

described by this stress intensity factor in a geometry independent 

" . 
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::::::::::at1gue crack growth models also do not 

ities of the long crack behavior. Hence, 

this method of using LEFM for predicting 

limited. Kanninen 1121 observes that crack 

crack tip plasticity, but the result ·is not 

ties involving similitude •. Thus, for short 

litude does not usually exist, LEFM based 

~d • 

icale yieldin9' srack growth rate is 

:h as the J-integral [13,14,15), crack 

16,17,18], and the size of the plastic 

d on small scale yielding generally 

rates, especially when the crack length 

F short cracks can thus be atrributed to 

Jum mechanics assumption used with LEFM, 

elasticity assumption. 

compared to the plastic zone, cracks are 

1 expected from the long crack LEFM 

~d to inappropriate use of LEFM analysis 

I. One approach is to remove the 

Id long cracks in the use of the J-
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Ritchie [2] lists the following factors which have significant 

impact on short crack growth behavior: 

1. Plasticity at stress raisers (notches) 

2. Microplasticity 

3. Grain boundary blocking of slip bands 

4. Cessation of growth and crystallographic reorientation of growth 

at grain boundaries. 

5. Crack closure 

1.3 CRACK CLOSURE 

Since Elber [201 showed that fatigue cracks can be partially 

closed even under tensile loading, crack closure has been widely 

investigated and recognized as an important factor affecting fatigue 

crack propagation behavior. Briefly, crack closure can be induced by 

plasticity, crack surface roughness, or oxide wedging. 

1.3.1 PLASTICITY INDUCED CLOSURE 

A schematic illustration of the mechanism of plasticity induced 

closure is' shown in Fig. 1. 

Plasticity induced closure is due to the contained plasticity 

and due to the residual tensile strains left behind the crack tip. 

As the load is applied, the material ahead of the crack tip yields 

due to the stress concentration, even if the applied stress on the 

specimen is below the yield stress. The size of the plastic zone is 

related to the crack length and applied stress [91. The material 
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surrounding the plastic zone remains elastic, and as the load is 

decreased, compressive stresses build up in the region of the crack 

tip. This compressive stress must be overcome before the crack tip 

can open on reloading. 

The other mechanism which causes crack closure behavior is due 

to the residual strains that exist in the wake of the moving crack 

tip. There exists a region of residual tensile strains 

(deformations) which are left in the material behind the crack tip. 

These are illustrated schematically in Fig. 2. These residual 

strains existing inside of the envelope of all previous plastic zones 

are also responsible for crack closure [20,211. These cause the 

crack surfaces to come into contact before the minimum stress level 

in the cy1e is reached. Upon loading, the crack will open only when 

the applied. stresses overcome the residual compressive stresses 

between the crack surfaces. Since crack growth can occur only when 

the crack tip is open, an effective stress intensity is defined to 

correlate crack growth rates. E1ber [211 defines an effective stress 

range as 

where am ax is the maximum stress level 

Defining 

O'max - a 
U = op 

~max - amin 

- a op 

and crop 

6aeff =--60' 

( 1) 

is the opening level. 

(2) 
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Elber obtained the following crack propagation equation for an 

aluminum alloy: 

da = C(~K )n = C(U~K)n 
dN eff 

where da/dri is the crack growth rate and ~Keff is the"effective 

stress intensity range. By his results, he fitted an emperical 

relation for U as 

2 U = 0.5 + 0.1R + 0.4R 

where R is the ratio of the minimum stress level to the maximum 

stress level. 

Some other relations developed for U by various workers are 

given as 

U = 0.68 + 0.91 R (Ref. 22) 

1 - Cf U = .------=,..;.. 
1 R (Ref. 23) 

(3) 

(4) 

(5) 

(6) 

Kmax 
U = 100 (880R + 6.01 + 1.30R + 0.2 (Ref. 24) (7) 

Equations (4) - (7) can be expressed in the general form 

U = f(R, Kmax ' material) (8) 

Crack closure is thus a complicated process influenced by 

cracking mode (I, II, or III) environment, and microstructure. 
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From the various reported work, the following, not fully 

consistent, observations have been made: 

1. U = f(R) for a material is i~dependent of other parameters 

[22,23) 

2. U increases with increase in R in all cases, whereas the 

relationship of U with Kmax is not usually the same. 

3. No crack closure is observed at higher values of R, i.e., U 

becomes more than unity (24). 

4. Crack closure measurement technique is found to influence the 

value of U. 

The role of compressive stress in the plastic zone envelope in 

the wake of the crack would be limited for a small crack of length 

comparable to the plastic zone size ahead of the crack tip. This may 

be one of the reasons why short cracks can grow at a level below the 

threshold stress-intensity range. 

Analytical work [25,26) 'has'been done to predict the crack 

opening load. These results may give closure loads which differ from 

the opening load [27). Budiansky and Hutchinson [25) have determined 

the residual stresses and .crack opening and closure loads for R > 0 

loading in plane stress situations. Recently, Nakai, et.al. [28] 

have published results based on Budiansky and Hutchinson's analysis 

which can be extended to R < 0, also for small scale yielding 

situations. 



10 
.f 

In their analytical work, Budiansky and Hutchinson [25] solved a 

boundary value problem at Kmin with a residual displacement or along 

the contact' region (-~,o), a compressive yield stress, -cry over the 

reversed plastic zone, ~w, in (o,a), and with a displacement o=oM' 

between reversed and maximum plastic zone size "(a,w). The' crack tip 

parameters that were used in their analysis are shown in Fig. 3 •. As 

is indicated in their work, the Dugadale model which has bee~ used is 

most appropriate for plane stress problems, whereas plane strain 

conditions are more relevant to fatigue crack growth. It;s also 

noticed that cyclic hardening produces increased closure effects. 

Dill et.al. [29,30) obtained an integral equation formulation to 

determine the contact stresses and effective stress intensity by a 

different approach. 

Thus it ;s observed that most of the work on crack closure has 

been focused on long cracks and small scale yielding conditions. 

Newman [26,31,32] has developed a model based on the Dugdale model, 

leaving the plastically deformed material in the wake of an advancing 

crack tip. The advantage of using this model is that plastic zone 

size and crack surface displacements are obtained by superposition of 

two elastic problems. Ohji et.al [33,34) also have used finite 

element tecniques based on a Dugdale type model to study closure 

behavior .. Newman has used elements, which behave as perfectly 

plastic material for any applied load. These elements can be either 
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intact ahead of the crack tip, or broken behind it, to represent 

residual plasticity effects. The elements which are not in contact 

are used to calculate Gop' Using the effective stress-intensity, 

Newman [261 has used plasticity corrected K values in his 

calculations. Figure 4 describes the crack 'surface displacements and 

stress distributions along a crack line with the elements as used by 

Newman [261. 

It is important to observe from Newman's analysis that at equal 

K values, the applied stress needed to open a small crack is less 

than that required to open a large crack. Consequently, aGeff is 

greater for small cracks. This correlates well with the high crack 

growth rates for short cracks. Thus, the short crack effect may be 

at least partly a result of the differences in the crack closure 

effect between long and short cracks [261. The effects of the stress 

ratio, R, peak stress, Gmax ' and the degree of constraint at the 

crack tip can all be included in Newman's analysis. 

1.3.2 ROUGHNESS INDUCED CLOSURE 

In shear mode (II or III) ·extension of the crack, the rough 

irregular fracture surfaces [35,361 induce roughness induced 

closure. In these cases, crack closure will be strongly dependent 

upon crack size [36,371. In the case of short cracks, roughness 

induced closure is less significant because of the near zero crack 

lengths. A schematic diagram of roughness induced closure is shown 

in Fig. 5. The amount of crack closure has been observed to 
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correlate with increasing fracture surface roughness and the degree 

of crack path deviation from a straight line (46). Thus, for' 'long 

cracks, a zig-zag path of the c~ack should be considered along the 

crack front because of the pronounced crack deflection. The extent 

and angles of these deflections and concurrent stresses are thought 

to be related to texture and grain size. 

1:3.3 OXIDE INDUCED CLOSURE 

There are situations in which 'crack closure occurs because of a 

wedging action from oxidation or corrosion products [381. A 

schematic diagram of the oxide induced closure is shown in Fig. 6. A 

number of workers have studied oxide induced closure and have offered 

explanations for near threshold corrosion fatigue crack growth 

behavior. 

1.3.4 DISCUSSION OF CRACK CLOSURE EFFECTS 
, , 

Since short cracks possess a limited wake, it is'to be expected 

that in general such cracks will be subjected to less closure. There 

are difficulties in experimental techniques to observe closure as 
i 

such. The experimental techniques reported in the literature on 

crack opening/closure measurements vary from one investigator to 

another. The location of the crack opening displacement has also 

been shown to influence the results significantly [471. As observed 

in Newman's analysis, residual stresses at 0min have been estimated, 

and crack opening loads to overcome them have been calculated. The 
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other analytical work on crack closure has mostly been done for R > 0 

loading. 

Sehitoglu (27) has observed a difference between crack opening 

and closure levels, while in most experimental studies crack opening 

and closure levels were assumed to be"equal. The level of crack 

closure is, low~r than the opening level, so that use of the closure 

level results in conservative values of 6Keff • 

Because of the inadequate characterization of the crac~ tip 

stress and deformation fields and surface interaction effects, crack 

closure studies are not complete. Reference (39) reports a crack 

that was open throughout the entire cycle under R=-1 loading. 

Similar observations have been made under large scale yielding. No 

solution yet exists to analyze closure effects in the case of general 

yielding. 

In most previous work, a Dugdale type of model is used, where 

the plastic strain gradient perpendicular to the crack axis is 

considered by assuming all the sample to be elastic except a small 

strip in the weakest cross section. This severely strained region is 

considered to model the redistribution process due to the elastic 

material response on its boundary. From this viewpoint, the shape of 

the plastic zone is less significant compared to its extent along the 

crack axis. Thus, this type of model can be applied only to a 

special case of elastic-plastic fracture mechanics problems and 

cannot be generalized to completely describe real fatigue crack 
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growth behavior. Added to these complexities is the three­

dimensional nature of the crack, where plane strain conditions exist 

in the interior and plane stress conditions at the surface. Since 

most experimental techniques measure closure by observing surface 

cracks, they may not give good inslght into the actual crack closure 

phenomenon. 

From the various reported work, it has been observed that study 

of crack closure effects has been limited to mostly elastic analysis, 

i.e., small scale yielding. Crack closure observations in ~~mpletely 

. reversed cycling at high strains have not been reported. The effect 

of plastic strain on the crack closure behavior is thus poorly 

understood. For a better understanding of the crack growth behavior, 

experiments are to be conducted at different strain levels, at 

different R ratios, and on different grain sizes. This in turn will 

result in a more general elastic-plastic analysis describing the 

crack growth behavior in all cases. This study concentrates on the 

closure behavior of cracks at high strains. The experimental results 

of this study is hoped to reveal the effects of the residual crack 

tip plasticity and its manifestations, i.e., crack closure in a 

broader perspective. 

-------------------------------------....-....-....-....---------....---------....--------------------~~~ 



CHAPTER 2 

EXPERIMENTAL PROGRAM 

Controlled strain tests were conducted on uniaxial test 

specimens, and detailed observations of crack opening and closing 

were made. The details and scope of the testing procedures and 

methods are described here. 

2.1 MATERIAL 

The experiments are conducted on strengthened metal alloy AISI 

4340 steel. The chemical composition and the mechanical properties 

are tabulated in tables 1 and 2, respectively. The material was 

obtained in thick section to obtain the most isotropic and 

homogeneous state possible, and was heat treated in slabs 

sufficiently thin to obtain through hardening, specifically 2 

inches.· Also, the material was relatively free of any crack 

arresters such as large nonmetallic inclusions. Reference [40] 

illustrates typical inclusions and their sizes. The presence of such 

crack arresters would invalidate the results, since measurements are 

made on surface cracks, which propagate through the thickness also. 

The AISI 4340 steel chosen for the study has a mean prior austenite 

grain size of 0.00063 in. Cyclic stress-strain and low cycle fatigue 

data for this material are shown in Figs. 7 and 8 [401. The data 

obtained from the present study are also shown on 

15 



16 

these figures, and these correlate well with the previous work of 

Dowling [40] on the same material. 

2.2 SPECIMEN DESIGN AND GEOMETRY 

Smooth unnotched a~ial ~pecimens are used in the present 

study. The specimen geometry is shown in Fig. 9. Material for these 

specimens was obtained from a 7.5 in. diameter bar, the axis of the 

specimens being parallel to the axis of the circular bar. In the low 

cycle fatigue region, surface finish in the reduced section is not 

that important. A good surface finish of 4 x 10-6 in.) was 

nevertheless used in the reduced section to help in differentiating 

the crack from polishing or grinding marks. Since longitudinal 

strains are measured with a 0.5 in. gauge length, straight gage 

sections were employed. To minimize buckling problems, we have 

employed a length to diameter ratio of 2.0. We have been able to 

reach strains of 0.02 in/in without buckling. The secimen with 

straight gage section helped us in the surface topographical studies 

and provided an ample amount of equally strained, bulk material. All 

marks from the final polishing were required to be longitudinal, 

i.e., parallel to the axis of the specimen, since cracks grow on 

planes generally perpendicular to the axis of the specimen. 

2.3 TEST EQUIPMENT 

All the tests were conducted on a closed loop, servo controlled 

hydraulic MTS testing system of 20 kips capacity. To arrest the 

----------------------------------------------------------------------~~~ 
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lateral motion of the hydraulic actuator (ram) during its travel, a 

fixture was designed to stiffen the hydraulic actuator against 

lateral motion. This fixture is shown in Fig. 10. This ensures 

alignment and also minimizes the problem of specimen buckling. This 

fixture 'essentially consfsts of a sleeve shrunk fit on the actuator, 

which slides inside a bronze plated demountable bushing, which is in 

turn fixed in position by a bottom plate secured to the bottom platen 

of the MTS machine. 

To avoid extraneous bending and to obtain high quality test 

results meeting ASTM standards for alignment, special grips were 

designed. An assembled view of the grip and the detailed drawings 

are shown in Figs. 11 and 12, respectively. The grips were made out 

of Carpenter Custom 450 stainless steel of hardness Rc42. The grips 

are hydraulically operated, and the piston is designed for a maximum 

of 3000 psi of hydraulic pressure. An essential feature of the grips 

is that, once the grips themselves are centered and aligned, each 

test specimen ;s then automatically centered and aligned when 

gripped. Operation of these grips involves the movement of the 

piston upward due to hydraulic pressure applied at the bottom oil 

port, forcing the collet to squeeze on the grip ends of the 

specimen. This ensures that the specimen end surfaces are held 

evenly by the collet. The collet ends were smoothed and given a 

small radius to avoid any fretting problems. Releasing the grips is 

also by hydraulic pressure, the piston being made to move downward by 
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oil pressure applied from the top port. Proper sealant (o-rings) 

were used in the grips to preserve oil and to avoid any leakage. 

These grips are found to be effective in testing smooth 

specimens with circular ends. Although these grips are intended for 

0.5 in. diameter specimen ends, ~ompatible collets with different 

inside diameters are available for testing different specimens. 

Several advantages of this gripping arrangement are as follows: 

1. specimen alignment and centering are automatic 

2. there is no backlash in the grip, 

3. total mounting time is less, and 

4. it can be used for other tests, such as tension testing, etc. 

2.4 MOUNTING THE SPECIMEN AND ALIGNMENT 

Alignment and centering of the grip is checked as follows: With 

the head of the hydraulic ram retracted, a specimen is gripped in the 

top grip. A dial gage indicator of high resolution (0.0001 in.) is 

mounted on the bottom grip, such that the dial gage stylus is in 

contact with the test section of the specimen. By moving the ram 

upward and downward, the parallelism of the test section with the 

grip axis is checked, specifically by noting any deflection on the 

dial gage. If the gage defle~tion is greater than 0.0005 in. over 

the test section, then the parallelism is not satisfactory. To 

obtain good parallelism, circular bevelled shims which give proper 

tilt, are to be provided beneath the bearing area of the top grip. 

The concentricity of the specimen axis with respect to the grip 
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axis is checked by rotating the ram 360 0 and noting the maximum and 

minimum of the readings on the dial gage~ It should be noticed that 

the maximum and minimum occur at opposite end~ of the specimen 

diameter. The offset, which is half the difference between the 

readings, is then adjusted by loosening the locking nut on top of the 

crosshead and moving gently in the direction where correction is 

required. 

This initial alignment procedure is absolutely necessary to 

avoid bending strains and specimen buckling. A furth~r check is made 

using a specimen with 6 strain gages mounted on it, 3 gages 120 0 

apart on top of the test section, and 3 on bottom 'of the test 

section. First, this specimen is held in the top grip and the strain 

readings adjusted to zero. After gripping the lower end, the strain 

readings of all six gages are noted. The difference between he 

readings before and after grippi~g for the same strain gauge should 

not exceed 40xlO-6 in/in. which corresponds to the maximum bending 

strain. Otherwise, the initial alignment procedure is to be repeated 

and checked again. 

• • ~ext, the specimen is cycled at a low stress level, ,and plots of 

strain versus load for each of the gages are then obtained. If the 

slopes on the plots do not differ more than 2%, then alignment is 

considered satisfactory, and the system is ready for testing. 

Alignment checks are not considered necessary for individual 

specimens, further checks being done only at infrequent intervals. 
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2.S TEST PROCEDURES AND METHODS 

Constant amplitude controlled strain tests were carried out in 

the present study. Although the closed-loop hydraulic testing 

machine is capable of frequencies upto 100 Hz, the recording 

equipment, the dynamic characteristics of the clip gage, and heat 

generation in the sample limits the actual testing frequency to the 

range 0.01 to S Hz. Our strain controlled tests were carried out at 

a cyclic frequency given by an ampirical relation [411 

where f is the frequency and Epa is the stable plastic strain 

amplitude estimated prior to the test. 

(9) 

Note that use of the above implies a constant average plastic 

strain rate in a cycle. Thus, at higher strain levels, where the 

life of the specimen is less than 103 cycles, a frequency of 0.01 to 

O.S.Hz is employed, and up to S Hz is used for greater lives 

corresponding to low strain levels. At low ?train amplitudes where 

the life is expected to exceed IDS cycles, the tests are usually 

carried out in stress control, which allows a nigher cycli~ frequency 

up to about 20 Hz. This modest change in frequency above S Hz is not 

expected to affect the behavior. Since approximately isothermal 

conditions are maintained in the normal room temperature testing, and 

since no other significant effect of frequency on life is known to 

exist in this material at room temperature, the effect of frequency 
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on the life is not included in the study. 

Since it is desired to follow crack growth with a large degree 

of plastic strain, two pairs of identical tests are conducted •. The 

first of these involves controlling .the grip deflection using a 
. I ' . .' , 

longer clip gage mounted across the grip ends al~ng with a smaller 

clip gage mounted on the test section. This is shown in' Fig. 13. 

Use of this pair of gages provides a correlation between the test 

section strain nd grip deflection. Such a correlation is shown in 

Fig. ~4 along with a schematic diagram of strain measurements. In 

particular, there is a correlation between the test section plastic 

strain range, 6E 2' and the plastic strain range on the grip 
. p 

ends, 6E p1 • It is observed from the plot of 6E p1 versus 6E p2 that 

the relation between the two strain ranges is almost linear (on a ' 

log-log plot) at higher levels and nonlinear at lower levels. The 

plastic strain in the test section is then estimated from the 

correlation of Fig. 14, and the elastic strain, known from the 

measured stress, is then added to obtain the total strain [131. 

The second of these tests has the longer clip gauge mounted 

across the grip ends, with the smaller clip gage not present, as 

shown in Fig. 15. This is done so as to have access for surface 

crack measurements. This type of test allows crack growth data to be 

obtained under conditions of known large plastic strains. 

Cracks are either naturally initiated or are initiated from 

artificial defects. The growth behavior is then monitored by surface 
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crack measurements using cellulose acetate replicas. In the earliest 

experiments, defects in the specimen were made by drilling a 

hemispherical hole of diameter 0.004 to 0.012 in. In one case, the 

crack was initiated by creating a region of residual tensile stresses 

by piercing the surface of the specimen with "the tip of a sharp 

needle. Although this is not highly recommended, we tried this as an 

expedient. However, the best approach was found to be a small pit 

made by electro-discharge machining, EDM. The smallest crack length 

that could be observed had to be limited to 0.01 inches, which 

includes the size of the artificial flaw, so that the res~lts were 

not affected by the proximity of the crack tip to the artificial 

flaw. 

A dense array of cracks was observed at higher levels of strain 

greater than 0.02 in/in. Since the cracks were close to one another, 

affecting the stress/strain field and complicating the interpretation 

of the data, the tests were mostly limited to a maximum of 0.015 

strain amplitude. 

Cellulose acetate replic~·tapes were used to monitor the crack 

growth. The replicating tape thickness used was 0.005 in. and 

acetone was employed to soften the tape. The tape was wrapped firmly 

around the specimen, taking carenot:to allow excessive air bubbles 

inside the area between the specimen and the tape. The tape was 

removed after it dried, so as to obtain the impression of the 

surface. Two or three replicas were taken to cover the entire test 
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section of the specimen. 

A low power microscope (up to 280X) was fitted to the system as 

shown in Fig. 15 •. This aided in observing the cracks. Since the 

crack could start anywhere in the test section, the microscope 

mounted from the top grip could be swivelled 360 0 around the 

specimen, enabling detection of cracks on the test section in any 

region. 

The replicas thus obtained provided a permanent record of crack 

growth and its measurements, and cracks of smaller lengths could be 

traced back. Crack lengths and closure measurements were then made 

by examining and measuring the replicas under a microscope. Typical 

crack length versus cycles data obtained from surface replicas are 

shown in Fig. 16. Crack growth rate, da/dn, versus stress intensity 

range, ~K, as obtained by Dowling [40\ on the same material is shown 

in Fig. 17. Note that the earlier work of Dowling on this material 

did not include closure measurements. 

Crack closure measurements are mad~ by measuring the offset of 

an inclined scribe line intersecting the crack [42\. This is 

illustrated in Fig. 18. A scribe line at an angle to the crack axis 

is drawn across the crack at the minumum stress level. As the load 

level is increased in the cycle, the crack opens. Thus, there 

results an offset between the. lines. By measuring this offset, the 

crack opening displacement, COD, was computed. Lines drawn at 

several points along the crack give rise to COD measurements at 
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various points along the crack. In a few cases, when the crack was 

very nearly parallel to the scribe line, it sometimes became 

necessary to compute COD from enlarged pictures, by direct 

me~surement of the width of the crack surfaces. 



CHAPTER 3 

EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 EXPERIMENTAL RESULTS 

The experiments were conducted' ~o observe the closure behavior 

of small cracks. The term small crack in our present study is used 

to indica'te a crack' which is physica:lly small, but which can be 

easily observed in detail under a microscope at a magnification of 

100X. Thus, the short cracks in this context fall in the region of 

0.01 to 0.1, inches of crack length. 

Constant amplitude controlled deflectfon was used with a 

completely reversed (R=-1.0) sinusoidal wave form. Tests were 

conducted at four different values of test section strain, by 

employing four different deflection amplitudes on the grip ends. The 

four different strain amplitude levels, Ea, chosen for the study are 

0.0125, 0.0066, 0.0042, and 0.0024 in/in. These cover conditions 

from predominantly elastic to grossly plstic strain. At each of the 

strain levels, crack closure measurements were made at 3 or more 

different crack lengths. Crack closure measurements are made by the 

offset technique as described in chapter 2. The COD, crack opening 

displacement, was obtained at various points along the crack 

length. A typical observation of the crack at various levels of 

stress (strain) in one cycle is shown in Fig. 19. 

Figures 20-38 illustrate the variation during a cycle of the 
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crack opening displacement with the stress and strain at various 

points along the crack length. Along with this also is shown the 

load versus displacement loop obtained from the longer clip gauge 

mounted across the grip ends. Data for both loading and unloading 

are shown in each case. It is noteworthy that here we are measuring 

crack opening displacement, at the indicated positions, since it is 

difficult to measure the crack tip opening displacement, CTOD. Fig. 

39 indicates typical loading and unloading paths in COD vs stress, 

and COD vs. strain plots. 

The determination of the crack opening stress level is shown in 

Fig. 40. A scatter of ±0.05(CODmax ) is attached to each .of the 

points on the loading part of the cycle, where CODmax is the largest 

value in the cycle. A corresponding scatterband is then drawn as 

shown in Fig. 40. The crack opening stress level, crop' is then 

defined as the stress level where the center of the scatterband 

crosses a COD value of zero. Similarly, the crack opening strain 

level, E ,is defined as the strain which occurs at the same time op 

as 0op. 

A plot of 0op/omax versus crack length is shown in Fig. 41 for 

the different strain amplitudes chosen for the study. Figure 42 

illustrates a similar plot of Eop/Emax versus crack length. 

3.2 DISCUSSION OF THE RESULTS· 

The work of Elber [201 suggested that the plastic zone left in 

the wake of the advancing crack tip causes the crack to be closed 
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after unloading even under tension-tension loading. But as observed 

from the present study at R=-1.0, i.e., at completely reversed 

cycling, no closure could be observed at zero load. The crack closed 

only as the lowest stress level, 0min' was approached. However, the 

crack opening was delayed, but still occurred in the compressve part 

of the loading cycle. Thus, there is a significant difference 

observed between the closure and opening levels of the crack, while 

some of the other work in the literature assumes the crack opening 

and closure levels to be the same. For the contained plasticity 

problem, not involving wake effects, Newman [261 calculates that 

cracks are open for approximately 1/4 of the total cycle, i.e., half 

of the tensile loading part of the cycle. A similar result was 

obtained by Budiansky and Hutchinson [25], who included the plastic 

wake effect. In the present study, it is observed that the crack is 

open more than 1/2 of the loading portion of the cycle. This drastic 

difference in behavior is almost certainly due to the large scale 

plasticity involved in the present tests. 

3.2.1 AN ESTIMATE AND THE MODEL OF BUDIANSKY AND HUTCHINSON 

In the case of small scale yielding, a first order estimate for 

crack closure levels can be made. The following is based on 

Budiansky and Hutchinson'S 1251 analysis. Recalling Fig. 3, the 

crack tip opening displacement, 00' which is calculated using the 

Dugdale strip yield model, corresponding to an applied maximum 

load, 0max' is 
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(10) 

where cry is the ideally plstic tensile yield stress, and E is the 

elastic modulus. 

The corresponding plastic'zone size, w, is given by 

(11 ) 

Thus, crack tip opening displacement is given by 

K2 8 
o = max = cry w 
o Ecry lTE 

(12) 

The piastic stretch variation, or the crac~ opening displacement from 

the weight function analysis, is then given by 

where 

and 

Tl = x/w 

g(~) = 11-n - n/2 ~n 11 + I~I 
1 - /1 - ~ 

(13) 

(14) 

It should be noted that the above equation is valid only for small 

scale yielding. The crack tip displacement variations, upon 

unloading to a level K from Kmax ' then is 

(K - K)2 
~o = f(~K) = max g(x/w) 

2E cry (15) 

This is based on Rice's [7] work where the plastic flow is 

proportional, and the plastic strains are in proportion to one 
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another. 

Similarly, the variation of the plastic zone size, 6w, is 

(Kmax - K)2 
6w = 2!. ( ) 

Defining, 

8 20 
Y 

Z; = 6w , then 
w 

Z; = 6w = 1 (1 _ _K_) 2 
w 4 Kmax 

The function g(x/~w) similarly takes the form 

g(X/6w) = g(~!iw) = 9 (D/Z;), 

g(~) = /1 _ D/Z; _ ~ ~n /1 + /1 - D/Z;/ 
z; 2z; 1 - /1 - D/Z; 

If the crack, is assumed to have a residual displacement 

(16) 

( 17) 

(18) 

of 0 appended to its surfaces, then the crack closure can be assumed 
r 

to occur at the tip to get a lower bound on (Kclos/Kmax)' when 

Normalizing with respect to crack tip opening displacement, 0
0 

6 M oR 
-----=0 6

0 
6

0 
6

0 

Observing the crack tip displacement, at D=O i . e. , when 0=6 
0' 

60

1 ~ x=O 

(K _ K)2 K2 
= [ max

2E 
clos g(x/~w)1 / I maxi 

0y Eoy x=O 

(19) 

(20) 

(21) 

(22) 
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Since g(x/~w)lx=o =1 we get 

~6 ~ -21 (1 _ KC10S)2 
Uo Kmax 

(23) 

Equation (13) becomes 

1 1 ( --=Kc:....;.,.;l o:;..=.s) 2 
-"2 1 - ~ax (24) 

or 

(25) 

This closure level is for the crack tip, but first contact of cracks 

may occur behind the crack tip, as is the case in Budiansky and 

Hutchinson's [25\ analysis. A similar form of the equation for the 

first contact closure level has been shown [25,27\ to be 

(26) 

~uring the reloading process, the crack starts opening, and the value 

if Kopen when the crack has been fully opened up has been calculated 

as for R=O loading as [25\ 

Kopen _ 
0.557 

Kmax -
(27) 

The above equations have been derived based on the assumptions of 

small scale yielding, ideally plastic materials, and plane stress 

situations. 

From equations (25) and (26) it is observed that the K level at 

the contact in the crack tip region and at first contact anywhere are 
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different. In their analysis, Budiansky and Hutchinson showed that 

first contact occurs behind the crack tip. Contrary to this, it has 

been observed that in our study, within;the resolution experimentally 

possible, that contact of cracks occurs first at the tip, in 

agreement with the analysis of Newman [26]. It was also observed in 

one case only that the crack front irregularities enabled the crack 

to close behind the crack tip in a manner consistent with roughness 

induced closure. 

3.2.2 MODELS OF NEWMAN AND OF NAKAI 

An analytical fatigue crack closure model was developed by 

Newman [261 which is based on the Dugdale model, but modified to 

leave plastically deformed material in the wake of the advancing 

crack tip. A fatigue crack growth analysis program (FASTRAN) 

developed by Newman calculates the crack opening stresses under 

simulated plane stress and plane strain conditions. The model 

developed cannot handle general yielding conditions but is q~ite 

representative of small scale yielding conditions. A simulated plane 

strain situation is chosen and the results of Newman's analysis are 

shown in Fig. 43. 

Recently Nakai et.a1. [281 extended Budiansky and Hutchinson's 

analysis to short cracks growing from notches under small scale 

yielding conditions, and they arrived at an equation for opening the 

stress as 
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where ~ = ~w/w is the reversed plastic zone ratio at Kmin , 

h=~/w, ~, being the crack length, and R is the ratio of the minimum 

stress level to the maximum stress level. The term I{/-f-h} is a 
1;-

first order elliptical integral, which is read from mathematical 

tables. The reversed plastic zone ratio, ~ at Kmin has been obtained 

[271 from Budiansky-Hutchinson's analysis. Such as 

1; 1/2 1 1/2 I 1/2 
R = 1 I n-h dn + .1. i (n-h) .1. ~n 1 + (l-n) I dn 

- 2 0 ((~-n)n) n ~ (n-~)n 2 1 _ (1_n)1/2 (29) 

Solving this equation numerically for ~ for representative cases 

similar to the crack size and plastic zone sizes in our study, the 

results are depicted in the crack opening map of Fig. 43. It is to 

be noted that the above equations are obtained for small scale 

yielding and for cracks growing from nothces where closure cannot 

occur over the notch. 

Along with these results, values obtained from Elber's estimated 

empirical relation (equation 2) is also shown in Fig. 43. The 

results from the present study are also indicated in the same fig. 

43. 
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3.2.3 COMPARISON OF EXPERIMENTAL RESULTS WITH EXISTING MODELS 

The effective stress intensity opening ratio, U, has been found 

to increase as the crack length becomes shorter and approaches 

unity. When the crack ;s open throughout the unloading part of the 

cycle, closing only at the minumum stress level, the the effective 

stress intensity range, defined by 

(30) 

becomes equal to ~K, the overall stress-intensity range. From our 

present experimental results, conducted at R=-1 at different strain 

levels, it is observed that the crack closes first at the lowest 

stress in the cycle, 0min' and remains closed for a part of the 

loading cycle till it opens at a value crop (crop> 0min) . This can 

be seen from the Figures 20-38. 'If we apply these results to the 

equation for crack closure obtained earlier in equation (26) we 

observe that 

K ° 2 clos __ 1 R - 11 - (-) 
Kmax °0 

(31) 

since 0R/oo·1 as R+l, and 0R/oo.O as R.-~, a reasonable choice for 

the estimate of 0R/6
0 

could not be made from our present study, since 

closure of the cracks was first observed at a . , corresponding to mln 

Kmin' . (For R=O loadings, Budiansky and Hutchinson [251 have 

estimated the oR value as 0.8500)' 
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Crack closure and opening stress level analysis for cracks 

subjected to stress beyond the· yield stress does not exist in the 

literature. Following the elastic, small scale yielding analysis 

givestnconsistent results. This is observed in fig. 43 where the 

present data is pictured along with the analytical results. 

Our observation that crack closure occurs only at a . , suggests mln 
that 0R/oo =-1, (from eqn. 25) which is not meaningful. If oR taken 

to' be zero then, 

since 

Kclos 
1 - -K-

U = ( max ) 
1 - R = 1 (32) 

Thus, for short cracks which are subjected to stresses beyond yield, 

the crack closure level which occurs at amin , and the crack opening 

level, aop' may both have significant effects on the growth behavior 

of the crack. Since the crack tip advances only in the loading part 

of the cycle, the crack opening level, aop' may be relatively more 

important. If we define the effective stress intensity as 

6K = U"6K eff (33) 

where, U" is defined dS 

1 - K /K 
U" = [ op max J 

1 - R (34) 

then, we observe that the increased plastic deformations, the value 

of Kop/Kmax decreases and approaches the value of R making the value 

of U .. to approach unity. From this definition of effective stress 
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intensity we observe that for shorter cracks, under large scale 

deformations, the value of the effective stress intensity, 6Keff , is 

significantly different from the earlier definition of the effective 

stress intensity. 

From our present results it is observed in most of the cases 

that the crack opened in the compressive part of the loading cycle. 

This revealed the significant difference in the crack closure and 

opening levels, and these do not occur at the same stress level as 

assumed in some studies. 

From the crack opening displacement versus strain plots in 

Figures 20-38, it is also noted that the cracks do not open and close 

at the same strain levels. Hence, at high stress-strain levels where 

significant plstic strain is involved, the available analysis on 

closure/opening of fatigue cracks is insufficient. 



.' 

CHAPTER 4 

GENERAL DISCUSSION 

Figure 41 illustrates the crack opening stresses normalized with 

respect to the maximum stress, as a function of the crack length at 

different strain levels. Since at each strain level, 3 or more crack 

length measurements were made, lines are fitted to the data points 

representing each strain level. It is observed that at higher strain 

levels~ as the crack length increases, this relative opening level 

increases only slightly with the crack length. At lower strain 

levels, the relative opening level is higher for any given crack 

length and 'found to increase more with the crack length. 

The corresponding strain level for crack opening, EOp ' normal­

ized with respect to the maximum strain level, Emax ' as a function of 

the crack length is shown in Fig. 42 for different levels of strain 

amplitude. Here also it is observed that, at higher cyclic strain 

levels, the crack opens very early in its loading path, and the crack 

opening is delayed more for the lower cyclic strain levels. It is to 

be noticed that at low strain amplitude cycling, the crack opening 

level increases with crack length. 

It is observed that the stress or the strain opening level is 

dependent upon the point along the crack length where the observa-

tions are made. The difference can be attributed to the irregular 

crack front, the measurement technique, and other microstructural 
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features. Stress and strain opening .levels in this study are made 

considering points which are relatively near the crack tip, typically 

0.004 in. Though it would be desirable to measure the crack opening 

displacements right at the crack tip, this is not feasible because of 

the limitations of the measuring techniques. 

Figure 43 describes the variation of crack opening stress level 

as a function of 6J. 6J has been calculated without considering 

closure effects, but considering plastic strain effects, using the 

formula obtained by Dowling [40] 

(35) 

where Za is the crack length, E is the elastic modulus, 60 is the 

stress range and 6Ep is the plastic strain range. 

The data shown in Figure 43 do not indicate a clear correlation 

of the trends of the behavior with 6J. Thus no significant 

interpretations could be made from this figure. A larger number of 

tests covering the entire range would be helpful in describing the 

behavior with modifications to ~J accounting for closure effects. 

It is expected that, for an ideal rigid-plastic material, when 

the crack opens during the loading part of the cycle, the crack never 

closes unless a compressive strain is imposed which exceeds the ten-

sile strain reached. This sets one limit and is shown by the solid 

line in Fig. 43. For cases where predominately elastic loading is 
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applied to the specimen, as is done in the usual fracture specimens 

under R > 0 loadings, there exists a crack opening level~ obtained I 

from different analyses [26,28] as illustrated in Fig. 43. All the 

earlier analyses on crack closure/opening have been done for the case 

of small sc'ale yielding situations. 

Extending the same small scale yielding analyses to R = -1 load­

ing for smooth specimens, as done in our tests, where there are large 

scale deformations, the results seems to be not meaningful enough to 

describe the phenomenon observed. 

Thus we observe that the analysis existing in the literature is 

limited to only special cases. We believe that cracks under large 

scale yielding conditions behave more similarly to an ideal crack 

with no wake effects and with no contact. Figure 45 illustrates the 

behavior of real (fatigue) crack behavior under large scale yielding· 

conditions. Also shown in the figure is the behavior of an ideal 

linear elastic crack with no wake effect. As can be observed from 

Fig. 45, the closure level is lower than the opening level. Also it 

is to be noticed that the ideal crack closes and opens at a = O. 

This behavior"of a ideal elastic crack sets one bound, while the 

other bo~nd for large scale yielding situations is still to be 

analytically investigated. 

It is also illustrated in the Fig. 45, in a manner qualitatively 

consistent with the present eperimental results, how the opening 

behavior of a real crack varies from large scale yielding to small 
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scale yielding conditions. This needs to be investigated and mathe-

matical analysis and modelling done. Such an effort would aid in 

bridging the gap between the growth behavior of small microscopic 

flaws and that of long cracks. 

It 'is observed that in the analysis [25,281 existing in the 

literature that the residual displacement, oR' is assumed to be con­

stant. But this may not be so, since the residual displacements near 

the tip of the crack may be different from that of the residual dis-

placements behind the crack tip. This stems from the argument that, 

because the contact stress may exceed negative yield, the residual 

displacements are changed considerably as the crack front grows far 

beyond a given point. 

Note that under compressive loading, the crack tip starts 

closing and the apparent crack tip recedes. This makes the crack tip 
-singularity, such as of the type Ir in elastic analysis, to become 

weaker and vanish when the crack is fully closed. Considering the 

ideal rigid, perfectly plastic behavior of the material, it may be 

assumed that the apparent crack tip at any point during the compres-

sive loading starts receding only when the contact stresses ahead, 

between the original crack surfaces, exceed the yield stress. Thus, 

a residual compressive deformation of the material exists along the 

original crack surface. Extending the same analogy to cyclic loading 

situations, it is believed that these contact stresses between the 

crack surfaces resulting in compressive residual deformation are 
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responsible for the observed Ina closure l effe.ct in large·scale 

deformations in R = -1 loading situations, as in our study. Since 

these residual deformations must be overcome during reloading, the 

crack opening is delayed and as observed takes place at a stress 

level 00p > amine 

It is thus observed that linear residual displacements, as done 

in earlier analysis [25,261, holds if the maximum state fulfils small 

scale yielding conditions. This is the case if the monotonic plastic 

zone is small compared to the crack length. In the case of a real 

fatigue crack under large strains, the above analyses fails to 

predict the crack growth behavior accompanied by crack 

closure/opening. 

Another aspect that is to be noted is the three dimensional 

nature of fatigue cracks. The 2-D analyses are only ideal and are 

only appropriate for thin sheets. Sinc~ the plastic zone ahead of 

the crack in a plane strain region is small compared to the plane 

stress zone, closure of cracks is less significant in plane strain 

situations. The crack closure measured by electric potential [381, 

ultrasonic [431, or compliance [441 methods reveal only an average 

obtained at the specimen surface and interior, with stress interac­

tion effects being less significant in the interior. There exists in 

the literature [46\ data from the measurement of closure behavior of 

cracks under pure plane strain conditions. But in that study also, 

the remote load level was gradually decreased as the crack propagated 
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to maintain the small scale yielding situations. 

Other factors to be considered while studying crack 

closure/opening anal~sis are the effects of loading condition and 

specimen geo~etry. Dowling and Begley (14) applied the J-integral to 

e1astic-plastic and general yield conditions and obtained a good cor­

relation between the crack growth rate and the range of the J­

integral, (6J). The application of this J-integral to fatigue crack 

growth studies at h~gh cyclic stresses and strains at different R 

ratios to observe the crack closure/opening phenomenon is planned to 

be investigated. 



CHAPTER 5 

CONCLUSIONS AND SCOPE FOR FURTHER STUDY 

The observed closure/opening behavior of cracks reveals the 

limitations of the existing elastic-plastic fracture mechanics 

approach to the study of crack growth behavior. There exist no 

closed form solutions for the redistribution of stresses and 

displacements in a cracked body under any general elastic-plastic 

conditions. Assumptions made in several analyses just simplify the 

problem to a very special case of elastic-plastic fracture 

mechanics. The use of the Dugdale model is one such approximation. 

In this model, the size of the plastic zone ahead of the crack tip is 

completely ignored, and so is the elastic field surrounding it. The 

model can be applied to thin sheets under plane stress, where only 

the entire strip along the crack dxis in front of the crack undergoes 

plastic deformation. In real crack situations, the Dugdale model 

fails to explain the observed behavior in totality, and in general 

cannot be extended to all cases. 

An energy balance investigation (model) may be a suitable 

approach, thereby the plastic dissipative work within the plastic 

zone can be fully considered with the bounded elastic zone in a 

cyclic hardening or softening material. The early approach by Rice 

[71 to problems of fatigue cracks is to use deformation theory of 

plasticity, which is difficult to use for nonlinear cases such as 
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crack closure and an extending crack, even under small scale yielding 

situations. 

Thus, the discrepancies observed between the experimental 

observations and the analytical models are because of both mechanics 

related factors and material related factors. 

The mechanics related factors are: 

(1) Re-distribution of stress and displacements in cracked 

bodies 

(2) Material deformation behavior 

(3) Local closure and contact stress effects 

(4) Macroscopic closure due to residual stress and deformation 

(5) Anisotropic effects and homogeneity 

(6) Three dimensional nature of crack 

Some of the material related factors are: 

(1) Differences in cracking process 

(2) Characteristic length comparisons, such as crack length 

versus the microstructural dimensions of the material 

(3) Transient effects due to grain boundaries, inclusions, grain 

to grain non-orientations, etc. 

Because of the complexities involved in fatigue crack growth, it 

is impossible to single out anyone of the factors as a major 

controlling parameter. Thus, further research is needed in this area 

to critically analyze the most important parameter (material and/or 

geometric) related to plastic strains for the closure behavior of 
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cracks in fatigue. 

Further research in this area includes conducting tests at 

different R ratios such as -0.5, 0 and 0.7, and examining the 

validity of ex'isting analyses of the closure behavior of cracks in 

fatigue. This includes various parameters such as different strain 

levels, crack lengths, and different specimen geometries. Tests are 

being conducted, and the results are expected to provide a good 

understanding of this subject. Also, it is planned to carry out 

tests on different grain sizes, to expose the effects of grain size, 

thus checking the limitations of the continuum mechanics approach 

also. 

We are at present conducting tests of 2-D cases on flat 

specimens to examine the effects of various parameters on the closure 

behavior of cracks. This is expected to bring results leading to 

differentiating among the actual mechanism of crack growth and its 

closure in fatigue in 2-D and 3-D situations. The variables that are 

being included in this study are the load ratio, maximum load, 

plastic strain level, and crack growth rate. The data will be 

analyzed based on J-integral, and new analysis of the closure of 

short cracks will be attempted. 

Further work is also aimed at developing a model which describes 

the crack tip stresses and displacements, and hence redistributions 

of the stresses and displacements, under general elastic-plastic 

conditions, which are in turn expected to help in a better 
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understanding of the crack growth behavior over all strain ranges 

from gross plastic to elastic deformation. 
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TABLE 1 

CHEMICAL COMPOSITION 

AISI 4340 Steel 

P Si Mn \ 

0.052 0.012 0.29 0.77 

Mo I Cr 

0.21 0.83 

1. Austenitize at 1560°F, 5 hours to temperature; hold 3 hours; oil 
quench. 

2. Temper at 1225°F, 4 hours to temperature; hold 8 hours; air cool. 



Heat No: Ultimate 
(Ksi) 

61738 114 
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TABLE 2 

MECHANICAL PROPERTIES 

0.2% yield % Red. Area 
(Ks;) 

94 68 

True Fr. 
Strength 

225 
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• data points from present study .. 

plastic strain 
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Fig. 8: Strain life curve for AISI 4340 steel (40) 
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All dimensions in inches 
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Fi';jo lU: Hydraulic actuator with the stiffener 
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Part Nci • Part Name No. Reqd. Material Hardness 

1 Universal AF.123 2 (supplied) Collet . 

2 Cover 2 CC 450SS Rc 42 

Collet Holder 
,. 

J 2 CC 450SS R.. 42 

4 J/8-16SocK Hd Cap Screws 16 (std. bolting) SAE Grade 8, 1.25 In. long .. 

5 Housing 2 CC 450SS Rc 42 

Filj. 11: Assembled view of the grip 
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Fig. 13: Deflection control testing with two clip gauges 
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Strain control testing with the clip gauge mounted 
across the grip ends. 
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q?to,flX = 74.8 ksi 
specimen no. 617-5 
strain amplitude= 0.0066 
N1200R 
2a=O.0171 in 
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Fig. 19: Typical crack at various stress levels in one complete 
cycle 
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:aao lb. 

stress strain 
(ksi) 

1 -59.13 -0.0115 

2 - 7.07 -0.0095 

3 44.98 -0.0055 

4 75.97 0.00435 

5 42.44 0.0105 

6 -21. 22 0.007 

7 -59.27 0.0013 

8 -81. 34 -0.0089 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement JooP as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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(a) Increas i n':l Strai n 
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74.67 0.0057 

52.77 0.01215 

0.00 0.0096 

-42.44 -0.00615 

-70.73 - 0.0025 

-82.76 - 0.0104 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 



c:: .-
+oJ 
c:: 
~ 
Qj 
u 
IQ -~ 
VI 
.~ 

~ 

jl 

c:: 
c:: 
QJ 
~ 
0 

~ 
u 
IQ 
L.. 

:....> .. 
::::l 
':> 
:....> 

t 

J - . 8! 
aT 
r 
I 

i 
t 

1 
l . 

~ t 

86 

3 ' 
""'-.. ,~."-

~ . -~ _ ~ 1 
r~'- c.:.:. .:; 

o 
0.000(1(' :J .:'SC(:t, 

-x/~a, Kelative Position 

I. .. _ . 

cpr 
o~t--------------------~ 

c:: ... 
.. 

+oJ 
c:: 
~ 
Qj 
U 
"0 

::l.. 

~ 
8 

° 

.~ 8 
~ ~ 
~ 0 
:::: .-c:: 
QJ 
::l.. 

{D} uecredsin\1 strain 

5 

6 

7 
~. ~ 

;eoo.·l·· ~~~::~==::8====2±;"::::z===LJ s. ~ " Y---;t I 
0.00 0.25 0.50 0.75 1.00 

x/~a, Kelat;ve ~ositiun 

(0) CraCk open;n\1 o;splacE:ment durin':;! ;ncreas;n':;j (loaa;n':;J) 
ana decredsin~ strain lunloda;n~) dt o;tterent ~oints alun~ 
tht! cracl( lell~tJ1. Uirtercnt ::,tr~!)5 lstraln) leve:ls 
c()rres~un<l tJ tnt:: ~uints SJ10\~11 in IUcll.l t1;SfJlaC~llient loo~. 



c: 
. -
~ 
c: 
QJ 
c 
Qj 
U 
~ 

:l. 
-./I 

"0 

=' 
c: 
<l.I. 
:I-
0 

::.e. 
U 
~ 
L. 
U 

'::l 
"=> 
'..J 

c: .-
~ 
c: 
~ 
li 
u 
~ 

:l.. 
-./I 

-::l 

.n 
= .-c: 
<l.I 
":l.. 
::I 

::.e. 
u 
~ 
I... 

'-' 

~ 

8· 
N 

8 
0 

§ 
8 
0 

~ 
0 
-IOO.CO 

0 

'" ~ 
0 

8 
~ 
0 

( a) lncreasin~ 

~ 
~ 

C) 

0.0 

cr, S t res s, k S i 

87 

::itrain 

6 
~ 

(0) Uecreasiny strain 

* 

+ 
X 

. 
I 

x( in) x/2a 

0 0.00506; 0.0844 

.:I. 0 .. 01133 0.1888 

+ 0.01546 0.2577 
+ 

x 0.0433 0.7217 
X 

0 0.04946 0.8243 
0 

... 0.05667 0.9445 m , 

~oo.o~o 

3 ~ ~ 
o 
-100.00 1.C 

(j, stress, I<S i 
~'O .J 

(c) l.raCI< Of-iAnin:1 ais~lac~::lerlt d::i a rune!:i,]" Jr Str~SS at 
dirtcrcnt ~oint:~ alun,:! the ,:raCi< Icn";jtn uurln:1 1rlcr~jsin'j 
jlld uecrp.dS i Il~ strd ill. 



8' 
'" E! 
Q 

C ,-
.. 

4o.J 
C Ii! 
~ 8 Qj 
u 0 
I1:l 

:l. 
VI 

~ ~ 
;\ E! 

Q .-c: 
'lJ 
:l. 
0 

~ ~ U 
I1:l 
c... 0 
:..J .. 
:::l 
":> 
:..J 

~ 

88 

I 

x(in) x/2a . I (a).lncredsin'.;! ~train 
0.00506, 3.0844 : C) 

.!. 0.01133 0.1888 
.-

+ 0.01546 0.2577 
+ .-

x 0.0433 0.7217 
X 

¢ 0.04946 0.8243 
0 I ... 0.05667 0.9445 
~ 

~ 
~ ~ 

AC) 

(a) CraCk opening ais~lacement as a function of strain at 
ditferent points alan'.;! the craCK len'.;!tn ~urin~ increasin~ 
and decredsin~ strain. 



! I 

I ------,.-

Fig. 24: 

89 

; ! 
; I 

I - ...... __ ;-:-- o. -""'F"-
-'-~ ----' 

stress strain 
(ksi) 

1 -63.66 -0.01105 

2 -14.14 -0.00925 

3 44.09 -0.0045 

4 56.59 -0.00225 

5 74.67 0.0057 

6 52.77 0.01215 
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Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Crack opening displacements measured in one complete 
cycle 
{a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Fig. 27: Crack opening displacements measured in one complete 
cycle 
(a) Load displacemenf lo6p as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observation~ were made. 
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6 17.83 0.0032 

7 -72.85 -0.0047 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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110 

§ 
C Q .... 
...., (a) Increas i n~ :)tra in 
C 
<1J = Qj 
U 
." 

:l. 

'" 
"C !(l 
:n ~ c 

Q 
C 
<1J 
:l. 
0 

~ 
U 
." 
'-

W 

~ 
2 . 

"=' w 

~ ., 
0.00 0.Z5 0.50 0.75 1.00 

'" § 
x/2a, Kelative Position 

c:i 
c .... 

(b) LJecreasin~ strdin 
...., 
C 
<1J 
E 
<1J 
U 
." 

:l. 

'" .- '" "'::I N 

':'1\ ~ 
C Q 

5 
C 
<1J 
':l.. 
":) 

.:.l. 
U 
." 
'-

:..J 

'::l 
~ 

~ "..J 

0 

, 
6 m X 

/ '\ 
7 \ 

~ 
hi \ 

8 
\~ 

\.. 
0.00 0.25 0.50 O.i5 I .... .) 

:</,t.a. r<e:lativ~ Positivn 

(b) CraCK ofjeniny displacement durinlj increasin~ (Ioad;n~) 
dnd aecreasin~ strain (unloadin~) at ditterent ~oints alon~ 
tne craCK len~tn. Different stress (strain) levels 
correspond to the ~oints shown in load ~isplacement loop. 



c: 
''-

~ 

c: 
QJ 
= a:; 
u 
ro 
~ 
III 

1:l 

~ 
c: 
c: 
'1J 
:l. 
0 

~ 
U 
'0 
'-

:..J 

:=! 
::> 
u 

II> 

~ 
0 

\II 
N 

.~ 
0 

~ 
o 
-100.00 

\II 

111 

( a) Increasin\:l ~train 
0 

6 

6. + 

+ x 
C) 

+ 
6. X 
(!) 

6- ~ 
.!!% 

""" -50.00 0.00 50.00 100.vO 

cf', stress, Ksi 

§~------------------------~ o 

c: .... 

~ 
." 0 
c: 

(0) Uecreasin~ strain 

+ 
6 

x(in} x/2a .-
0.0037 0.1491 

0.0062 0.2742 

0.0183 0.7379 

0.0206 0.8306 

::l 

3 ~~ ___ ~~~_~m ________ ~ ______ ~ ________ ~ 
o ...... -
-100.00 -so .00 o.nn SO.CO 100.(;0 

~, stress. ks i 

(c) Crack ojJenint.J displacelflent as a function of stress at 
different points alon~ the craCK len~tn aurin~ increasin~ 
and decreasin~ strain. 



§ 
C 

c: .-

~ 

":::l 
-::> 
~ ~ 

c: .. -
.., 
c: 
~ 
iij 
U 
ta 

:l.. 

'" .-
"0 

~ 
c: 

c: 
~ 
":l.. 
0 

~ 
U 
ta 
'-

:...J 

:::l 
"::l .-> 

o 
-0.01 

\II 

§ 
c 

\II 
N 

§ 
c 

~ 
c 
-0.01 

6 

.~ 
"-" 

( a) 

~ 

~ 

112 

Increasiny ~train 

+ 
6 

C6 

0.00 

c , strain 

6-

+ 
C) 

X 

tb) Uecreasin~ strain 

0.00 

C, straln 

xCin} x/2a 
.-

C) 0.0037 0.1491 

6 0.0062 0.2742 

+ 0.0183 0.7379 

x 0.0206 0.8306 

0.01 

0.01 

(a) Crack o~enin~ ais~lacement as a function of strain at 
aifferent ~oints alony the craCK lenytn aurin~ increasin~ 
ana aecr~asiny strain. 



113 

t.£\.. = O. 0066 
617-5. N1200R 
2a= 0.0171 in .• ; I : 

.. ::: I:: 

Fig. 30: 

· ......... . · ....... . 
...... · .. _. ,,- .. 

:i~!~;::= . ......... .. 

2000 lb. 

b 

·1 

-===-------1 ~ t=,,--, 

· ......... . .. - .~--­
• •• L.~ .••• · ..... ':' .. .. 
:.:r::;::: 

1 

2 

3 

4 

5 

6 

7 

8 

stress strain 
(ksi) 

-41.02 -0.0058 

- 0.28 -0.004 

44.13 -0.0011 

66.33 0.0037 

52.48 0.0061 

14.71 0.00464 

-54.60 -0.00052 

-74.27 -0.005 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the pOints 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Strain 
x(in) x/2a 

(a) Ihcreasill~ 
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I + 0.0152 0.8539 
, x 0.0171 0.955 , 
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( b) Uecreasiny strain 
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6 
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6 
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Q 

+ X 
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0 

C) 

~ .:::.. Q 
-100.00 -50.00 0.00 50.00 ICO.~ 

(f, stress, Ksi 

(c) CracK openin~ dis~lacement as a function of stress at 
different points alon~ tne craCK len~tn aurin~ increasin~ 
and decreasin~ strain. 
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::;tra;n 

~ 

+ 
~ 

to) Uecredsing strain 

£, strain 

'* e; 
X 

(!) 

~ 

+ 

x 

0.00750 

0.C075 

x(in} x/Za 

0.0017 0.0955 

0.0032 0.1797 

0.0152 0.8539 

0.0171 0.955 

(d) Crack openi n~ ai 51-! 1 ace'nent as a funct i on at' strain at 
different points alon~ the craCK len~tn aur;n~ increasin~ 
ana decreas;n~ strain. 
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...... --. ... 0 .... 1 -29.42 -0.0052 

Fig. 31: 

2COQ I.,. 
2 25.74 -0.0027 

3 58.71 0.0009 

S 4 69.03 0.0036 

./ 5 55.17 0.006 

~ 1 ~ 6 17.83 0.0032 

~20~ 
7 -22.35 0.0027 

8 -72.99 -0.0047 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the pOints 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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x/c.a, Kelative Position 

(D) Cral:K openin~ displacement duriny increasin~ (loadiny) 
ana decreasiny strain (unloadiny) at different ~oints alony 
the crack length. L)ifTerent stress (strain) levels 
correspond to.the ~oint~ Shown in load dis~lacement loop. 
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t.I 
N 

§ 
Q , 

x(in) ! x/2a 
( a) Increasin~ ~tra;n 

" 0.0012 0.0784 

a ~ 0.0027 0.1764 
X 

+ 0.0138 0.9019 
~ I 

I x 0.0146 0.9477 
(')X 

Q 

~ -. ., I I ". -100.00 -50.00 0.00 50.CO 10O.CU 

N 
<r, stress, k s i 

§ 
Q 

( b) Decreasing strain 

Q) 

+ 
>.c 

6- ! 
(') 

~ X 

8 
§ 

I ~ 
Q W 
-100.00 -50.00 o.ca 50.00 IC':.'JO 

if, stress, ks i 

(c) Crack o!Jen i n':l di s~ 1 acernent as a funct i on or stress at 
aitrer~nt !Joints alon~ the craCK lenytn durin~ increasiny 
and decreasin~ strain. 
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l a) lncreas i n~ Strai n 
0 

1 ~ 

+ 

x 
x 

I 

~~~-~.--~&.-----------­
':0.00750 .., 0.00:::00 o.c::nso 
N £', strain 
§r---------------~~~----, o 

(b) Decreasiny strain 

C) 

+ 
X 

6 6 

0 
C) 

§ 
0 

x(in) ! x/2a 

0.0012 0.0784 

0.0027 0.1764 

0.0138 0.90l9 

0.0146 0.9477 

3 ~ -. 
o~----~~~---------+----------------~ 
-0.00750 o.coooo 0.00751 

f:, strain 

(d) CracK ofJenin:;j tlistJlacement as a function or strain at 
different pOints alon:;j tne craCK len~tn durin~ increasin~ 
and decredsin~ strdin. 
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I: .. ~ ....... , ......................... F '-.-

I ~~:~ ;~:~ ~::~ :~~;l~~:: ~:~~ i:~: :::J=' (ksi) . '" .......................... . 
;::: .:;~ :~~~ g:~ :::~ :~~: ::' 

1 -49.37 . I' . I . I' ......... . : .. ,::.:;".' CL !..... I j 
f 
• 

2 -20.23 

3 -13.58 

-0.00364 

1a:D .. 

-0.0027 

-0.0013 

4 34.23 -0.0018 

5 64.08 

6 44.84 

E 

'I 
0.00264 

0.0032 

7 11.17 0.0020 

8 -23.77 0.00042 

9 -46.82 -0.0010 

10 -63.80 -0.00266 

Fig. 32: Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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(a) lncreasin,;! Strain 

m~ ____ ~5~ __________ m 

o 

~ 
o 

0.2S o.so 0.7S 1.00 

~~ _______ x/_2_a_, __ R_e_l_a_t_iv_e __ p_o_s_i_t_i_o_n ______ , 
o 

(0) Uecreasin~ strain 

6 

2 
§ 7 

-~ 
0 

/ 8 
/ ~A- -~ ," / A. / . 

// ~\. 
.// to '" g = 

'" § 
~ g 

0 
0.2S 0.50 0.7S I. ::0 0.00 

xl C.a, r<elat;ve i-'osition 

(b) Crack o~enin~ ais~lacement durin~ incredsin~ (loadin~) 
and decreasiny strain (unloadin~) at ditterent ~oints alon~ 
tne craCk len~tn. Ditterent stress (strain) levels 
correspona to tne ~~ints snown in loaa ais~lacement loop. 
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~train 
: x( in} x/2a 

l a) lncreasin';j I 
I 

c::: ..... 
I 0.0013 0.0448 
I 

0 

I 
6 0.00667 0.2306 6' 

+ 0.0236 0.8138 
I x 0.02667 0.9196 ; 

6 : 
6 + I 
+ ® 

\ .. 

6 C) C) I + X 
~ C) 

X 

I X 
~ I 

• I I I 
0 .so.oo 0.00 5::.00 IC:J.CO .Ioo.eo 

N cr"", stress, ksi 
§ 
0 

c: ( D) Uecreasin::l strain ..... 
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1', stress, Ksi 

( c) CraCK openin~ displacement as a function of stress at 
different points alony tne craCK 1 en'::jtn dur;n';j increas;n~ 
and decreasin~ strain. 
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§ 
0 I 

x( in} x/2a ( a) Strain I Increasiny 

I 0 0.0013 0.0448 ,. 
2: .0. 0.00667 0.2306 

+ 0.0236 0.8138 
~ 
§ 
0 

; x 0.02667 0.9196 
66 I 
++ @ I 

6 C)C) 

+ Xx 
ds C) 

8 
§ ~ 

X 
0 
.O.JOSOO a 00000 

£., st r a in 
c.c;:;s~o 
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0 

~ 
0 

~ 
0 

(b) Decreasiny strain 

6 

+ 

t· 

6 
+ 

·0.00500 O.oc:oo 0.005 

t., strain 

(a) Crack openin~ displacement as a function or strain at 
dirrerent points alony the craCK len~tn duriny increasiny 
and aecreasing strain. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0"L'::: 

strain 

-49.37 -0.00364 

-20.23 -0.0027 

-13.58 -0.0013 

34.23 -0.0018 

64.08 0.00264 

44.84 0.0032 

11.17 0.0020 

-23.77 0.00042 

-46.82 -0.0010 

-63.80 -0.00266 

Crack QjJeniny displacements Ineasured in one cOlrljJlete cycle 
(a) Loaa aisplacement' 1001-' as ()otainea t'rulI! clijJ ::Iau~e 
mounted across the ~ril-' enas ana tne points (corresjJonain~ 
stress and strain levels snown i~ taole) wnere Closure 
oDservations were h~de. 
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8~ ________________________________ ~ 
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(a) Increasin~ Strdin 

2 x/2a, !{elative Position 8 
0 

( b) Decreasiny strain 
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~"'-Iii 8 "'~'" ~"~ j,? , 9 ~ 'J:) 
'v- ,/. : " ;.:, ----.::: 
a - ~"'. . 

,;(' P' ~ -¥-~~ 10~.' 8 ',~~ .. ~/ 
'" "./ ' ,", 8 :~~} !., 
n 
0.00 0.25 0.50 0.75 1.00 

x/'t.a, Keldtive Pusitiun 

(b) Crack Orlenin';j disfJlacehlent durin~ incr:asin,:! (loadin,:!) 
and decreasin~ strain lunloadin';j) dt uitter2nt ~oints alon,:! 
t nee r a c l< len ';j tIl 0 lJ i tt ere n t 5 t r 2 $ 5 (s tr a in) I eve I s 
corresrlona tv tne fJoint$ snown in luad aisfollaceillent lOOt-! 0 
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(a) Increasiny Strain 

;.~ Z ... 
L 0 
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x(ln} x/2a 

" 0.0024 0.053 
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1--. 
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(c) Crack open i n':J (Ji s~ I acelllent as a funct i on of stress at 
ditferent ~oints alon~ tne craCK len~th durin':J increasin~ 
ana decreasin':J str~in. 
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( a) Incredsin~ Strain i x( in) x/2a 
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(!) 0.0024 
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I x ·0.00746 0.1657 
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0 c. 
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• I --0 
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8 .... ~ 
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(d) CraCK openin~ aisfjlacement dS a function or strain at 
ditrerent points alany tne craCK len~tn aurin~ increasln~ 
and aecreasiny strain. 
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3 

stress 
(ksi) 

-47.67 

-15.56 

strain 

-0.00364 

-0.00242 

14.99 -0.0012 

-= I =- 4 39.61 0.00021 

~2>-J 5 

t= i ~. 34: 

- 2.82 0.00013 

6 -29.42 0.00018 

7 -63.09 -0.0025 

Cracl< o!-,eninoj aistJlacernents Illeasurea in une cOlIIlJlete Cycle 
(a) LUiia aisfollacelllcnt lou~ dS uDtdlnetJ 1'rOIlI Cli~ :1dU~~ 
Inuuntell dcross the -:;ri IJ enas ana tfle tJoi nts ~ correspOflu i n'j 
stress ana strdin levels sn0W1l in taDI~) wl1er~ clusure 
oDservat ions were llidae. 
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(b) CracK otJenil1';l disfJlacement duriny increasin:j (loaain~) 
ana decreasin~ strain (unloadin,:!) at aifferent "oints alon';! 
tl1e craCK len':!th. 0; t'ferent stress (strain) level s 
correspond to tne ~o;nts shown in load dis"lacement loo~. 
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( a) Increasill~ Str~in 
x(in) x/2a 

: C) 0.00173 0.0715 

6 0.00406 0.1678 

+ + 0.00586 0.2421 
a 

§ x 0.0233 0.9628 
X a 

+ + 
~ X 

X <::) 

A 
C) 

+ m 
8 ~ 

a 
-50.00 O.C:I ~CJ.":O I~:.~C -100.00 

~ 
<r, stress, ksi 
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+ 
( b) Uecreasin!;j strain 

+ C) 

X 
~ 

X C) 

~ 0 I I I --; . , 
0 

-50.00 0.00 50.00 100.CO -100.00 

c 
cr, stress. Ksi 
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stress strain 
(ksi) 

1 -46.54 -0.00356 

2000 lb. 2 -14.28 -0.00239 

3 16.97 -0.00106 

4 41.16 0.00032 

5 60.97 0.00264 

6 40.31 0.00296 

7 4.10 0.00126 

8 -27.72 0.00016 

9 -48.24 -0.0013 

10 -61. 82 -0.00410 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge· 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations 'were made. 
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(c) CraCK ofJenin~ displacernent dS a t'unctiun or stress at 
dirferent fJointS alan,;! tne craCK len~tn aurin~ increasin~ 
and decreasiny strain. 
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.( a) Increas;n~ ~train x( ;n) x/2a 
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£, strain 

(d) Crack openi n9 di Sfll acernent as a funct i on ot' stra in at 
different points alon~ tne craCK len~tn durin~ increasin~ 
and ~ecreasin~ strain. 
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stress strain 
(ksi) 

; LJ ~.+-.·t:tttt:t. I~O b:i~ 
1 -43.28 -0.001925 

2 -26.44 -0.00132 

,~~ .. , .. 

Fig. 36: 

~o _I' .J.. + 
• oj 0 3 7.64 -0.0002 

4 33.94 0.00083 

5 49.22 0.00165 

6 47.24 0.002 

7 - 7.07 0.00018 

8 -26.87 -0.00062 

9 -59.54 -0.00205 

Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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I x(in) x/2a 
(a) Increasinlj Strain 

0 0.0028 0.0965 
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(j, stress, ksi 

(b) uecreasin~ strain 

0.00 

0", stress, ksi 
75.00 

(c) CracK openin~ dis~lacement as a function of stress at 
ditferent points alon~ the craCk lenyth durin~ increasiny 
and decreasiny strain. 
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( a) Increasin~ ~train 
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(d) CraCK olJenin~ d;stllacement as a function of strain at 
different ~oints alon~ tne craCk len~tn durin~ increasin~ 
and decreasin~. strain. 
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stress strain 
(ks1) 

-44.28 -0.00185 

-21. 64 -0.00125 

0.00 -0.0005 

24.05 0.0004 

42.72 0.00128 

39.60 0.0018 

5.65 0.00065 

-28.28 0.00066 

-55.16 -0.00192 

CraCK oiJ~nin~ aisfJ1acements measurea in one COlnf,llete cycle 
{a) Loaa disf,llacelilent loofJ as oetained trolll cli"" ~au~e 
mountea across the ~ri~ enas ana the ""oints (corres~onain~ 
stress ana strain levels snuwn in taele) wnere closure 
oeserva.ei ons . were made. 
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~o) cracK of}enin';j dis~lacement aurin,:! increasiny (loaCliny) 
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tnt! craCK len':;jtn. Llit1'erent stress (strain) levels 
corresfJonu tll tne ~oints sno-vln in loaa aisplacement IOOfl. 
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\ c) Crack o~eni ng di s~ 1 acement as a function of stress at 
different points alon~ tne craCK len~tn durin~ increasiny 
and aecreasin~ strain. 
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(d) Crack o~enin~ displacement as a function of strain at 
different ~oints alon~ tne crack len~th durin~ increasin~ 
and decreasiny strain. 
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Crack opening displacements measured in one complete 
cycle 
(a) Load displacement loop as obtained from clip gauge 
mounted across the grip ends and the points 
(corresponding stress and strain levels shown in table) 
where closure observations were made. 
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Fig. 43: Crack opening stress level as a function of aJ 
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