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NONLINEAR BENDING-TORSIONAL VIBRATION AND STABILITY OF ROTATING, 

PRETWISTED, PRECONED BLADES INCLUDING CORIOlIS EFFECTS 

K.B. Subrahmanyam,* K.R.V. Kaza, G.V. Brown and C. Lawrence 
Nat10nal Aeronaut1cs and Space Adm1n1strat1on 

lewis Research Center 
Cleveland, Oh10 44135 

SUMMARY 

The coupled bend1ng-bend1ng-tors1onal equations of dynam1c mot1on of 
rotating, linearly pretw1sted blades are derived 1nclud1ng large precone, sec­
ond degree geometr1c non11near1t1es and Cor1ol1s effects. The equat10ns are 
solved by the Galerk1n method and a l1near perturbation techn1que. Accuracy 
of the present method is verified by comparisons of predicted frequenc1es and 
steady state deflections with those from MSC/NASTRAN and from experiments. 
Parametric results are generated to establish where 1nclus1on of only the sec­
ond degree geometric nonl1near1t1es is adequate. The non11near terms caus1ng 
torsional divergence in th1n blades are 1dent1f1ed. The effects of Cor1ol1s 
terms and several other structurally non11near terms are studied, and their 
relat1ve 1mportance is examined. 

INTRODUCTION 

It 1s now widely recognized that the 1nclus1on of geometric non11near1ties 
in the equat10ns of mot1on of rotating elastic blades 1s necessary for a fair 
pred1ct1on of their dynam1c character1st1cs. For the analysis of helicopter 
rotor blades, an appropr1ate set of nonlinear equat10ns based upon Euler­
Bernoulli theory was found to y1eld sat1sfactory results s1nce the blades were 
essent1ally slender (refs. 1 to 5). However, there rema1n certain quest10ns 
concerning the degree to wh1ch the geometric non11near1t1es should be retained, 
and concern1ng the in1t1al assumptions 1n prescr1b1ng an order1ng scheme 
(refs. 6 to 7). Another area, somewhat s1m1lar dynamically, but further com­
plicated due to the geometry, 1s the advanced turboprop blade dynam1cs 
(refs. B to 9). In contrast to he11copter rotor blades, the turboprop blades 
are more plate or shell-l1ke, possess var1able sweep along the span, and have 
smaller th1ckness rat10s. Furthermore, the ratio of the rotat10nal speed to 
the f1rst nonrotating normal mode frequency of the turboprop blade 1s usually 
less than one, while the corresponding rat10 for the helicopter blade can be 
somewhat more than one. Because of the unusual geometr1c features of the 
advanced turboprop blades, f1n1te element methods are normally used. However, 
when finite element modeling is used, 1t 1s d1ff1cult to obta1n a phys1cal 
understand1ng of the complicat1ng effects. 

In order to determ1ne the individual and comb1ned effects of pretwist, 
sweep and rotat10n on the blades, parameter1c studies are conducted by using a 
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simpler beam model in which the effects of sweep are incorporated by precon1ng 
the blade with respect to the plane of rotation. Precone, a component of 
sweep, is of the order of 50° for an advanced turboprop blade at the tip. 
Assuming constant precone, linear pretw1st and steady rotational speed, the 
coupled nonlinear equations for bend1ng-bend1ng-tors1onal motion are derived 
by using the theory presented in references 3 and 4. In deriving the equa­
tions, it is assumed that the elongations and shears are negligible compared 
to unity and the squares of the derivative of the extensional deformation of 
the elastic axis is negligible compared to the square of the bending slopes. 
Shear deflection and rotary inertia effects are not considered. Geometric non­
l1near1t1es are retained up to second degree. Parametric results from the 
present beam theory for the special case of torsionally rigid blades (refs. 10 
and 11) indicated excellent agreement with finite element model results 
generated by MSC/NASTRAN. 

In the present paper, the important effect of torsional flexibility is 
addressed. A brief derivation of the coupled nonlinear equations of bend1ng­
bending-torsional motion are first presented. Next, implementation of the 
Galerk1n method with nonrotat1ng normal modes for the solution of the nonlinear 
steady state equations and the linearized perturbation equations is presented. 
Parametric results generated from the present beam theory are compared with 
similar results produced by MSC/NASTRAN. The limitations of restricting the 
geometric nonl1near1t1es to second degree, and the effects of Cor1ol1s forces 
for blades with various thickness ratios are shown. Results obtained from 
experimental tests are also presented for typical precone angles, rotational 
speed and setting angles. Finally, the accuracy of the present equations, the 
limits where the second degree geometric nonlinearities are adequate, and the 
parameters affecting the onset of instability are discussed. 

EQUATIONS OF MOTION AND METHOD OF SOLUTION 

Figure 1 shows a linearly pretwisted, preconed, and rotating blade of 
uniform rectangular cross section. The coupled bend1ng-bending-tors1onal 
equations of motion for such a blade are derived by using the theory presented 
in reference 3, and by including large precone and linear pretw1st over the 
blade length. When shear and rotary inertia effects are ignored, and second 
degree geometric nonl1near1t1es and Cor1ol1s effects are retained, such equa­
tions reduce to the following form (a list of notation is given in appendix B): 
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Flatw1se bending: 

roW + 2mQ sin BpcV - (TWI)1 - mQ2 s1n2 Bpcw 

+ mQ2 (k~2 - k~l) cos 2Bpc (Vi sin e cos e)1 

+ mQ2 cos 2Bpc [WI(k~2 s1n2 e + k~l cos 2 e)JI 

2 ( 2 2 ) + mQ km2 - kml sin ape cos Bpc (~ s1n 2e)1 

+ 2Q cos Bpc [~(mk~2 s1n
2 

e + mk~l cos
2 

e)J I 

• {WOO [EInn co/e. EI~~ s1n
2 

6 • ~ (EI~~ - EInn) sIn 26] 

• v" [(EI~~ - EInn )(sln 6 cos 6 • ~ cos 26)] - ~'v' GJ}' 

= - mQ2 s1n Bpc cos Bps (x - UF) - Q2 sin Bpc cos Bpc (mk~2 s1n
2 

e + mk~l cos
2
e)' 

(1 ) 

Edgew1se bend1ng: 

mii - 2mQ s1n BpcW - mQ2v + (~'WIIGJ)' - 2mQ cos Bpc UF - (Tv')' 

+ 2Q cos Bpc [ ~(mk~2 - mk~l) s1n e cos e ] ' 

+ mQ2 (k~2 - k~l) cos 2Bpc (w' s1n e cos e)' 

+ mQ2(k~2 - k~l) sin Bpc cos Bpc (~ cos 2e)' 

- ma
2 

S1n2apc [v' (k~2 cos 2 6 • k~l s1n2 6)]' 

• {Woo( (EI~, - EInn) (sIn e cos e • ~ cos 26)] 

• v"r1nn(sln2 6. ~ sIn 26)' EI~~ (cos
2 

6 - ~ sIn 26f' 

= -rl[S1n Bpc cos Bpc(mk~2 - mk~l) s1n e cos e]' 
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Torsion: 

2.. 2 2 ( 2 
mkm~ + mQ ~ cos Bpc km2- k~l) cos 2a 

Where: 

+ 2mQ cos Bpc I (k;2 -
2 ) • kml Vi sin a cos a 

• ( 2 2 + Wi km2 sin a + 
2 

kml cos
2 

a)! + (Eel ~")" - [EAki ul 

+ EBla~~~' + GJ~I - vlw" GJJ I + (mk~Q2 cos
2 BpC~') I 

+ (EI~~ - EI •• )[V"W' cos 20 + (w,,2 - v,,2) sin 0 cos oJ 

- mQ2 sin Bpc cos Bpc(k~2 - k~l) Vi cos 2a 

- mQ2 sin Bpc cos Bpc(k;2 - k;l) Wi sin 2a 

2 2 ( 2 2 ) = - mQ cos Bpc km2 - kml sin a cos a 

T = - [L~ Q2
W sin Bpe cos Bpe - 2Qv cos Bpe 

(apt + ~I) 

(3) 

Q2(R + x - u
F

) cos 2 Bpc - tiF] dx (4) 

x 
u

F 
= t! (V

,2 
+ w,2) dx (5) 

EAu ' = T - EA[k! ~Ialpt] (6) 

and 

m = f fPdYdZ. A =f f dydz. \~ = J J.JdYdZ. Inn=f J l-dydZ. 

( 7) 
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In der1v1ng the equat10ns g1ven above, an order1ng scheme g1ven 1n ref­
erence 3 1s followed. Geometr1c non11near terms up through second degree only 
are ret"a1ned. In general, terms up to 0(£4) 1n the elast1c forces and 0(£2) 
1n the 1nert1al forces are needed 1n the bend1ng equat10ns. for the sake of 
ver1f1cat10n, certa1n l1near terms of the order 0(£3) 1n the 1nert1a1 forces 
are 1nc1uded 1n equat10ns (1) and (2). However, these add1t10nal terms have 
been found to have an 1ns1gn1f1cant affect on the solut10ns and can be d1s­
carded safely. Cons1der1ng the tors10n equat10n~ terms of the order 0(£5) 
1n the elast1c forces and terms of the order 0(£ ) 1n the 1nert1al forces 
forces together w1th the structural and 1nert1al warp1ng terms, [v1z. (EC1.")" 
and (mkiQ2 cos 2Bpc $1)1], are reta1ned. A large number of h1gher order terms 
other than those shown 1n the second degree tors10n equat10n are be11eved to 
be un1mportant (see ref. 3), and are thus d1scarded. The well known tenn1s 
racquet effect term appears 1n the tors1on equat10n as mQ2$ cos 2 apc(k~2 -
k~l) cos 26, wh1le the tens10n-tors10n coup11ng term appears 1n 
[EAk~ul(6pt + $1)]1. The extens10nal degree of freedom 1n the present equa­
t10ns has been d1scarded, s1nce 1t has been estab11shed 1n reference 11 that 
the effect of the extens10na1 coup11ng on v1brat10n and stab1l1ty character-
1st1cs for pract1cal blade conf1gurat1ons 1s 1ns1gn1f1cant. One can e11m1nate 
the extens10na1 slope, ul , by us1ng equat10ns (4) to (6). The effects of the 
tens1on-tors1on and tenn1s racquet terms and the structural and 1nert1al 
warp1ng terms were d1scussed 1n deta1l 1n references 12 and 13 for uncoupled 
tors1onal v1brat10n of pretw1sted, rotat1ng blades. In v1ew of the d1scuss10n 
presented 1n these references, the 1nert1al warp1ng term 1s discarded and the 
structural warp1ng effect terms 1s reta1ned. 

Def1ning the following parameters, 

w = w/L, v = v/L, ~ = x/L, ~ = Qt, R = R/L, etc., 

assum1ng solut10ns are separable 1n t1me and space, and mak1ng note of the 
follow1ng re1at1ons 

d QnL lL d d 
dx = dx dn = L dn' dt = Q d~ etc., 

one can wr1te equat10ns (1) to (3)1n the fo110w1ng nond1mens10nal forms: 
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·. • 
sin2 

+ [2 CDS B ~0k2 2 sin2 9 + mk 2 cos 2 w + 2 sin Bpc V - w Bpc pc m m' 

1 n 2 2 
- s1n B cos Bpc ! (Vi + Wi) dn 
2 pc 

- iv ( 2 + ~w cos b2 2) 9 + d2 sin 9 

+ w'" (2y~ sln 29)(:: - 1) + WOO 2/~ CDS 29 (:: - 1) 

+ ~ii 1V(:~ -1) sln 9 CDS 9 + ii"'(2y~ CDS 29)(:: -1) 
- ii" (2/ sln 29)(:~ - 1) + ~ (~- 1) {w hoi> sln 29 

+ 2W' I 14>1 sin 29 + WIl 4>11 sin 29 + 4yW' I 14> cos 29 + 4yW II 4> I cos 29 

412 WIl4> s1n 29 + ij 1V4> cos 29 + 2ij' I 14>1 cos 29 + ijlltll cos 29 

- 4yii" '<I> sln 29 - 4yii "01> , sln 29 - 4/ ii"<I> CDS 29 } 

= - n s1n B cos B - YI 2TJ (b~ -'\sin Bpc cos Bpc sin 29 
pc pc AL d ) 

6 

9)} /mL 2 

( , 0) 



v - 2 s1" BpeW V + [2 cos Bpe$~k~2 mk~l) s1" 8 cos 8]'/mL
2 

eos
2 

Bpe (v"Q - V'S) - 2 cos Bpe[V" { ~ d. - v,ij] 

- cos Bpe }. f (v,2 + w,2) d. + s1" Bpe cos Bpe [V" t W d. - v'w] 

+ W 1v~ (:: _ 1) s1" 8 cos 9 + w"'(2y~ cos 29)(:: - 1) 

- w"(2i~ s1" 28) (:: _ 1) + V 1v~ (S1"2 9 + :: eos
2 

9) 

- v'" (2y~ s1" 29) (:: - 1) - v+i~ cos 29) (:: - 1) 

+ ~~L4 (<I>"W" + <I>'W" ') + ~(~ - 1) {w 1V<I> cos 29 

+ 2Wl I 14>1 cos 28 + WI4>" cos 28 - 4XWI I 14> s1n 28 - 4xW"cpl s1n 28 

2 - - 1v - -41 Wilt cos 28 - V cp s1n 28 + 2v l I 1.1 s1n 28 + V"cp" s1n 28 

+ 4,i"'$ cos 29 + 4,i"$' cos 29 - 4,2." s1" 29} 

- s1n 13 cos 13 ('YI!J
2

n) cos 28 
pc pc AL 

(11 ) 
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- 2 v" ) sin e cos e 

= - fl 
2 sin e cos e - yS 2 

Bpc cos Bpc cos ( 12) 

where 

Q = R( 1 n) O. 5( 1 2 S (R + n) , + - n ), = 

2 2 
b2 d2 2 

b2 
fl 

km2 - kml 
f2 

km2 
= 

k2 = 
b2 2' k2 = 

b2 
+ 

2' 
+ d d m m 

k2 
d2 Eel Eb2d2 

f3 
-1!ll f4 = 
k2 = 

b2 
+ 

2' = 
mslk2L 4 = 

l2pQ2L4(b 2 + d2) d m m 

EAk4 
E(b2 + d2} EBleQ~ Elb4 

f5 
A 

f6 = 
mQ2k2L4 l2pL 4Q2 

= 
mQ2k2L2 

= 
15pQ2L4(b2 + d2) m m 

4Gt 2 4 
b2t 2 

f7 
GJ 

fa 
mk).. 

= 
mQ2k2L2 pQ2L2(b2 + d2)' 

= 
mk 2L2 l2L2(b2 + d2)' 

m m 

a 



f9 
E(I~~ - I!l!l) E{b2 _ d2} 

flO = ~ = 2 2 = 
p~lL 2(b2 + d2)' mQ2L4' pQ L (I

H 
+ 1

1111
) 

~(:: - 1) 
EI 

f" ~ !l!l a C4 + YI1, apt rr YI1, = , = pAL4Q2' = L 

• d fL Wi (w) and w (w) ( 13) = dl1 = d'T . . 

Before discussing the method of solution, it is worthwhile to point out 
the various important linear and nonlinear terms in the present equations. In 
equations (10) and (11), certain linear and nonlinear terms are underlined 
once. These terms constitute the linear and nonlinear Cor1ol1s force terms and 
nonlinear terms arising from the foreshortening, (uF), and tension terms, 
(Tw')' and (Tv')'. Individual and collective effects of these important terms 
were assessed in references 10 and 11. It was shown in these references that 
the linear and nonlinear Cor1ol1s effect terms significantly affect the onset 
of instability for large preconed thick blades and thus they must be retained 
in analyzing blades having moderate to large thickness ratios. It was also 
shown that the nonlinear terms in the coupled bending-bending equations which 
vanish for zero precone are extremely important. These terms can produce sig­
nificant frequency changes (of the order of 20 percent increase in the funda­
mental mode frequency for a 45° preconed thin or thick blade rotating at a 
speed equal to the fundamental frequency of the same blade). Next, the 
Cor1ol1s effect terms due to torsional coupling in the bending equations and 
the flexural coupling in the torsion equation are addressed. Referring to 
equations (10) and (11), one can find the Cor1ol1s effect terms 
[2 cos Bpc~(mk~2 s1n2 a + mk~l cos 2 a)/mL2]' and [2 cos Bpc$(mk~2 - mk~l) . 
sin a cos a/mL ]'. The corresP9nd1ng terms in the torsion equation are 2flV' 
sin a cos a cos Bpc + 2 cos Bpcw'(f2 ~1n2 a + f3 cos 2 ~). It may be noted that 
the linear Cor1ol1s forces, 2 sin BpcVand -2 sin Bpcw, in the two bend-
ing equations indicate skew symmetry of the gyroscoplC matrix. One may thus 
consider that inclusion of torsional degree of freedom does not alter this 
nature of the gyroscopic matrix provided that an appropriate sign change is 
made in the torsion equation throughout. Keeping in view the ordering scheme 
followed, the bending equations should contain terms of order 0«(2) in the 
inertial terms. Consequently, the Cor1ol1s effect terms in the bending equa­
tions which are associated with the torsion variable ~ should be discarded. 
To preserve the skew symmetric nature of the gryoscop1c matrix in linear 
Cor1ol1s force terms, one must discard the corresponding Cori011s force terms 
in the torsion equation also. In the following, we maintain this consistency 
and disregard the aforementioned Cor1olis effect terms associated with ~ 
in the bending equations (10) and (11) and all the Cor1011s force terms in the 
tors1on equat1on. 

Finally, the twice underlined terms in the bending equations are the non­
linear terms arising from torsional coupling with the bending motions (p1tch­
flap and pitch-lag couplings). The corresponding terms in the torsion equation 
are shown by underscoring them thrice. These terms were first discussed by Mil 
et al. (ref. 14) and subsequently by others. From the present equations, it 
can be seen that these terms are premultipl1ed by the rotational parameter 
~ and square of thickness ratio factor, (b2/d 2 - 1). For thin blades, the 

9 



flatwise steady state deflection, w, will become significant with increasing 
speeds and makes these terms quite significant in the perturbation equations. 
Furthermore, these effects are aggravated due to the coefficient (b2/d 2 - 1) 
as the thickness ratio (d/b) becomes smaller. Thus, one may anticipate a 
significant influence of these terms on the vibration and stability behavior 
of thin blades subjected to large rotational speeds. The terms shown by the 
dashed underlining are associated with the torsional rigidity, GJ, and the 
terms shown by the double dashed underlining arise due to tension effects. It 
will be shown that these terms are not as significant as the aforementioned 
nonlinear terms. 

The coupled bending-bending-torsion equations are solved by the Galerkin 
method by expanding the dimensionless deflections in terms of a series of gen­
eralized coordinates and mode shape functions as follows: 

where 

-~ w = j (woj + ~Wj(T»Wj(n) 

v 

~ 

=~(VOj + ~Vj(T»Wj(n) 

=~(~Oj + ~~j(T»ej(n) 

ej(n) = 2 sin (yjn) 

1 
Yj = ~(j - 2) 

Equations (17) and (18) represent the nonrotating normal modes for a 
cantilevered beam fixed at n = 0 and free at n = 1. The values of Bj 
are taken from reference 15. It may be noted here that sinusoidal mode 

(14) 

(15) 

(16) 

(18) 

(19) 

shape assumed for the torsional degree of freedom is not compatible with the 
boundary conditions when warping is included. However, the effect of warping 
is not significant for large aspect ratio blades (L/b ~ 6 (ref. 13». Thus, 
the mode shape assumed here should produce satisfactory results for blades with 
moderate aspect ratios. The quantities Woj, Voj and ~oj are the equilib­
rium quantities while ~Wj' ~Vj and ~~j are the perturbation quantitites 
in the generalized coordinates. 

Proceeding as in reference 11, one can apply the Galerk1n process for the 
solution of the nonlinear steady state equations and the linearized perturba­
tion equations (expressed in terms of the equilibrium generalized coordinates) 
which define the blade motion about the equilibrium operating condition. 

The steady state equilibrium equations, and the linear perturbation 
equations are written in the following forms for a solution with n normal 
modes assumed for each independent variable: 
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[L + NL] {x } = {B} 
- '" 0 

(20) 

( 21 ) 

where 

(22) 

{x} = {I1Wl , I1W2, ... , I1Wn, I1Vl , I1V 2, ... , I1V n, 11411' 11412 , ••• , l141n} T 

(23) 

w1th L, LN be1ng the 11near and non11near parts of the equ111br1um equat1ons, 
and M7 C;and K be1ng the mass, Cor1011s and st1ffness matr1ces respec­
t1velY. ~Elements of those matr1ces are presented 1n append1x A. 

RESULTS AND DISCUSSION 

The non11near, steady state, equ111br1um equat10ns (20), and the e1gen­
value problem that results from the transformat1on of equat10n (21) were _ 
solved by us1ng computer programs developed 1n FORTRAN language. Integrat10ns 
are performed on the computer us1ng a 15 po1nt Gauss1an quadrature formula. 
The general computer program developed for the solut10n of equat10n (21) g1ves 
the natural frequenc1es per un1t rotat10nal speed, (p/Q). In the presence 
of Cor1011s forces, the frequenc1es w111 occur 1n pa1rs of purely 1mag1nary 
quant1t1es for a conservat1ve system. In the absence of Cor1011s effects, the 
frequency equat10n (21) reduces to a standard e1genvalue problem the e1gen­
values of wh1ch are real quant1t1es, (p2/Q2). Spec1a11zed cases were solved 
by mod1fy1ng the general computer program. Parametr1c stud1es were conducted 
for th1ckness rat10s (d/b) rang1ng from 0.05 (represent1ng approx1mately an 
advanced turboprop blade) to 0.25 (represent1ng approx1mately a convent10nal 
propeller blade) for var10us precone angles, pretw1sts, sett1ng angles and 
rotat1onal speeds. The d1sc rad1us 1s assumed to be zero 1n most of the 
calculat10ns except for cases correspond1ng to a test conf1gurat10n developed 
at the NASA Lew1s (ref. 16). Results were also generated from the f1n1te 
element code, MSC/NASTRAN, us1ng 250 or 500 CQUAD4 elements for the purpose of 
compar1sons w1th present theoret1cal results. It should be noted here that 
the MSC/NASTRAN calculat10ns 19nore the Cor1011s effects although there 1s no 
restr1ct1on on the degree of geometr1c non11near terms. All these results are 
presented and d1scussed 1n what follows. 

Convergence 

The convergence of the solut10ns produced by the Galerk1n method w1th 
var10us numbers of nonrotat1ng normal modes 1n the coord1nate funct10ns 1s 
1l1ustrated 1n table I. The blade cons1dered for th1s convergence study has a 
precone of 15°, pretw1st of 30° at 1ts t1p, and a th1ckness rat10 of 0.05. 
The blade chord at the root 1s set perpend1cular to the ax1s of rotat10n 
(a = 0°) and the blade rotat10nal speed 1s one-half of the fundamental mode 

11 



frequency of the same nonrotat1ng blade w1th zero pretw1st and zero precone 
(Q/~l = 0.50). The frequency rat10s (p/~) shown 1n table I are representat1ve 
of the convergence trend that one m1ght expect for a general case of pretw1sted 
rotat1ng blade when geometr1c non11near1t1es up to second degree and Cor1ol1s 
effects are 1ncluded 1n the analys1s. For the purpose of compar1son of the 
present beam theory results, and to prov1de a measure of accuracy of the pre­
sent beam theory formulat10n, the results produced by MSC/NASTRAN by us1ng 500 
CQUAD4 elements are also 1ncluded 1n th1s table. The convergence pattern of 
the components of steady state, d1mens1onless, t1p deflections are shown in 
table II for th1s blade as obta1ned from the Galerk1n method calculations 
together w1th those produced by MSC/NASTRAN. 

From the convergence pattern of the frequency ratios presented in table I, 
1t can be seen that a five mode solution produces the lowest six coupled 
bend1ng-bend1ng-tors1on frequencies that are in reasonable agreement with the 
corresponding values produced by MSC/NASTRAN. Furthermore, the steady state 
deflections produced by the present beam theory calculations with a five mode 
solution agree quite closely with those from MSC/NASTRAN. Among the several 
factors unknown so far, the s1nuso1dal mode funct10ns used for tors1onal 
deformation instead of hyperbol1c functions may perhaps be responsible for the 
osc1llatory convergence trend observed for the frequenc1es and steady state 
deflections shown 1n tables I and II as the number of nonrotat1ng normal modes 
1n the assumed solutions are 1ncreased. It emerges clearly, however, that the 
convergence of h1gher mode frequenc1es to accurate values can be accomp11shed 
by 1ncreas1ng the number of modes 1n the solut10n, and that accurac1es of 
practical 1nterest can be ach1eved from the present theoretical formulat1on. 
F1nally, the close agreement of the present theoret1cal results, 1nclud1ng 
Cor1ol1s effects, w1th the MSC/NASTRAN results, that ignore the Cor1ol1s 
effects, sUbstantiate the conclus1on reached by the present authors 1n 
reference 11 that Coriol1s effects can safely be ignored for th1n blades. 

Compar1son w1th Exper1mental Results 

In order to ver1fy the present theoret1cal development of the equat10ns 
of motion, a typ1cal set of results were obta1ned for rotat1ng, preconed, 
untwisted blade cases correspond1ng to those obtained from the NASA Lew1s sp1n 
test r1g (ref. l6). The test r1g 1s capable of accommodat1ng bladed rotors up 
to 51 cm (20 1n.) 1n d1ameter, wh1ch can be spun to 16 000 rpm. A rotor cap­
able of hold1ng two blades w1th adjustable sweep (precone) and sett1ng angles, 
was des1gned for th1s sp1n r1g. Tests were conducted for nonrotat1ng, steel, 
flat plates having an aspect ratio, Lib, of 3 and th1ckness rat10, d/b, of 
0.05. Frequenc1es of the lowest f1ve modes as g1ven by the stat1c sp1n r1g 
tests were 94.2, 572, 586, (1643.5!11.5) and 1795 Hz respect1vely. Results 
obta1ned from the holography tests were respect1vely 93.0, 572, 586, 1628, and 
1793 for the lowest f1ve mode frequenc1es. Of these frequenc1es, the f1rst two 
correspond to the fundamental bending and tors1on modes of the flat plate 
respect1vely. 

In order to match these frequenc1es from theoret1cal cons1derat1ons, the 
elast1c modu111 were determ1ned from standard relat10ns. A value of 0.283 
lb/1n3 was chosen for the mass dens1ty. The effect1ve root d1stance from 
the center of rotat10n of the sp1n r1g var1es s11ghtly w1th the precone. For 
precones of zero, 22.5° and 45°, the effect1ve root distances were 4.0, 3.952, 
and 3.816 in., respectively. Us1ng these geometr1c and phys1cal propert1es, 
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numer1cal results were generated for var10us sett1ng angles, precones, and 
rotat1onal speeds. Correspond1ng results obta1ned from the test r1g are com­
pared to the present theoret1cal results in table III. 

An exam1nation of these results, presented in table III, 1nd1cates that 
there 1s a reasonable agreement between the theoret1cal and exper1mental 
results for all the cases cons1dered. Furthermore, the trends shown by the 
theoret1cal and exper1mental results are consistent. From the compar1son of 
the theoret1cal and exper1mental results shown 1n table III (of the order of 
!6 percent d1fference 1n most of the cases cons1dered), and from the close 
agreement between the theoret1cal results and NASTRAN generated results pre­
sented 1n tables I and II, 1t 1s concluded that the present theoret1cal form­
ulat10n is accurate, and that 1t 1s capable of producing accurate results for 
the parameters cons1dered here. 

V1brat10n and Stabi11ty of Preconed, Rotat1ng Blades 

In order to determine the ind1vidual and combined influence of pretwist, 
precone, Coriolis forces, second degree geometr1c nonlinear1t1es and rotation 
on the coupled frequenc1es or stability boundaries, parametrics studies were 
conducted for various thickness ratio blade cases. A typ1cal set of such 
results are shown in table IV. Also included 1n this table are the results 
produced by MSC/NASTRAN. F1gure 2 shows a further compar1son of frequency 
rat10s obta1ned from the present beam theory and from MSC/NASTRAN for typical 
precones and thickness rat10 cases. A comparison of these results indicates 
that there is a good agreement between the present theoretical results and 
MSC/NASTRAN results for blade cases having moderate th1ckness rat10s (d/b > 
0.10), moderate precones (8 c = 15°) and for a w1de range of rotat1onal -
speeds (Q/wl up to 2.0). ~his trend of close agreement between the beam 
theory results 1nclud1ng second degree geometr1c nonlinearities and those from 
MSC/NASTRAN continues for blades with increasing thickness ratios for a wider 
range of precone angles and rotational speeds (see fig. 2(b». In the absence 
of precone, the present beam theory results agree very closely with MSC/NASTRAN 
results for all thickness ratios, (see fig. 2(a», over a wide range of rota­
tional speeds. However, when the thickness ratio is decreased, the agreement 
between the beam theory results and MSC NASTRAN results is found to be close 
for low rotational speeds (up to about Q/wl = 0.5 to O.B) only (see fig. 2(c) 
and table IV). 

From the parametric results generated, it was found that the present beam 
theory pred1cts tors1onal instability for thin blades (d/b = 0.05 or 0.06) at 
lower rotational speeds than does MSC/NASTRAN. This trend can be ver1f1ed from 
the results presented in table IV for the case of a thin blade (d/b = 0.05) 
hav1ng 30° pretwist and 15° precone. For this part1cular blade configuration, 
the beam theory results are in close agreement with those of MSC/NASTRAN for a 
rotational speed parameter value of Q/wl = 0.5. However, when the rota­
tional speed is increased, the torsional frequency predicted by the beam theory 
was found to be unstable, although the corresponding one from the MSC/NASTRAN 
calculation was stable. Similar trends were observed for this blade case even 
in the absence of pretwist (see fig. 2(c». Furthermore, a comparison of the 
results presented in table IV for the present blade case with Q/wl = 1.0 
indicates that the flexural frequencies predicted by the beam theory and 
NASTRAN calculat10ns are still 1n very close agreement. Sim1lar trends of 
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instability could also be found for blades of the same thickness ratio, rota­
tional speed and pretw1st but larger values of precones. 

From the comparison of the results presented in table IV, the following 
observations are made: 

(1) For blades of moderate thickness ratios (d/b of the order of 0.10 
and greater), for moderate precones (B pc of the order of up to 15°), and 
for rotational speeds of up to Q/wl = 2.0, inclusion of geometric non­
l1near1t1es up through second degree only appears to be adequate for a fair 
prediction of the blade frequencies. Thus, the present second degree equa­
tions appear to be adequate for application to helicopter blade vibration 
analysis. 

(2) The effect of Cor1011s forces on the frequencies of rotating preconed 
blades is insignificant for low thickness ratio blade cases, but could become 
significant for high thickness ratio blade cases (refer to the results pre­
sented in table IV). Conclusions concerning the linear and nonlinear Cor1011s 
forces on the frequencies of rotating blades that were presented in refer­
ence 11 are valid here also. 

(3) Thin blades possessing large precones and subjected to considerable 
rotational speeds exhibit torsional divergence at a much earlier rotational 
speed when the present beam theory is used than is the case when MSC/NASTRAN 
is used. 

In order to acquire further insight into the torsional instability of thin 
blades, results produced by the present beam theory and MSC/NASTRAN are pre­
sented in table V for an untwisted, 15° preconed, thin blade (d/b = 0.05) for 
various rotational speeds. To facilitate a clearer understanding, the fre­
quencies are listed in a columnw1se fashion, each column corresponding to one 
of the bending modes (Fl, F2, F3, F4) in the flatw1se direction, the torsion 
mode (T1) or the edgewise bending mode (S1) respectively. Also included are 
the dimensionless steady state tip deflections (w,v,~) in the last three 
columns of this table. An examination of the results presented in table V 
indicates that for all rotational speeds considered, the flatw1se steady state 
deflection, W, is the most significant one while the edgewise and torsional 
deformations are insignificant, as expected for the untwisted blade. Further­
more, the steady state deflections produced by the present beam theory are in 
excellent agreement with those from MSC/NASTRAN. Since the flatw1se deflection 
is the only significant one that can contribute to the nonlinear terms in the 
perturbation solution, corresponding terms in the torsional equations causing 
instability could easily be identified. For the system to be unstable, the 
off-diagonal terms in the stiffness matrix should become large and negative. 
An examination of the stiffness matrix, [K], for the perturbation solution, 
presented in appendix A indicates that the nonlinear terms T81jk, T91jk 
and T101jk are associated with the steady state equilibrium coordinates 
wok, and that these terms arise from the terms discussed by Mil et al. 
(ref. 14). To verify this, results for same blade configuration presented in 
table V are reproduced in table VI, but with the Mills terms discarded. From 
table VI, it can be seen that the instabilities predicted by the present beam 
theory, shown in table V, vanish once the Mills terms are discarded. However, 
the coupling trend between the fundamental torsional mode (Tl) and the funda­
mental edgewise mode (Sl), which now becomes evident by a mutual comparison of 
the results presented in tables V and VI [which decreases the lower uncoupled 
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frequency and 1ncreases the h1gher uncoupled frequency w1th 1ncreas1ng rota­
t10nal speeds] 1s also absent. Further, the present beam theory frequenc1es 
are more closely 1n agreement w1th those from MSC/NASTRAN when the Mills terms 
are present than when they are absent, 1n so far as stable configurations are 
compared. Thus, 1t can be concluded that the Mills terms are necessary for a 
reasonable pred1ct10n of the coupled bend1ng-tors10nal frequenc1es, however, 
they also can cause torsional d1vergence for th1n blades at larger precones and 
rotational speeds. It appears, then, that the level of approx1mat10n used for 
the Mills terms may not be adequate, and inclusion of the complete set of Mills 
terms, (presently truncated in accordance with the order1ng scheme or degree 
of geometr1c non11near1ty retained 1n the equations), may improve the present 
theoret1cal pred1ct1on of 1nstab1l1ty. These aspects are yet to be 
1nvest1gated. 

F1nally, the effect of var10us non11near terms on the coupled bend1ng­
bending-torsion frequenc1es of a part1cular blade with a 15° or 45° precone are 
presented 1n table VII. For assess1ng the 1nd1v1dual effect of each key non­
l1near terms, solut10n of the present non11near equat10ns 1s accomp11shed by 
reta1n1ng all nonlinear terms other than the one key element be1ng addressed. 
Thus, 1n table VII, ·results under the column w1th T51jk = T61jk = 0 represent 
non11near frequenc1es obtained by d1scard1ng the non11near terms ar1s1ng from 
the tension effects 1n the torsion equat10n, results under the column w1th 
T11jk = T41jk = T81jk = 0 correspond to e11m1nat10n of those nonlinear terms 
assoc1ated w1th GJ 1n the two bend1ng equat10ns together w1th GJ(VIW")1 1n 
the tors10n equation, and those under the column T31ik = T91jk = 0 (T21jk = 
T101jk = 0 for a = 0) correspond to e11m1nat10n of the M1l ' s terms. Further, 
when A1jk 1s set to zero, the foreshorten1ng effects are 19nored, wh1le 
D1jk = E1jk = 0 neglects the nonlinear terms arising from (TW')' and (TV')'. 
From the results presented in table VII, and by compar1ng them w1th those 
presented in table IV one can observe that: 

(1) The affect of the terms (tlvIGJ)" and (."w"GJ)I in the two bending 
equations (1) and (2) and the corresponding term (GJv'w")'1n the tors10n equa­
tion (3) 1s negl1g1ble on the coupled bend1ng-bend1ng-tors1onal frequencies. 
These terms can therefore be neglected. 

(2) The affect of non11near terms ar1s1ng from the tens10n coupling in 
the tors10n equat10n 1s also neg11g1ble on the coupled frequenc1es. 

(3) The M1l ' s terms are extremely 1mportant 1n br1ng1ng in the bend1ng­
tors10nal coup11ng, and can also cause tors10nal divergence for th1n blades. 
Further study w1th a careful cons1derat10n of these terms in the1r complete 
form 1s necessary. 

(4) Compared to the M1l ' s terms just d1scussed, all other non11near terms 
that result due to the tors10nal coup11ng 1n the bend1ng-tors10n equat10ns 
appear to be un1mportant. 

(5) Effects of the non11near terms ar1s1ng due to foreshorten1ng, tension 
coup11ng w1th flexural mot1ons, [(TV')' and (TW')'], and Cor1011s effects were 
discussed 1n reference 11 in deta1l. These terms are extremely important and 
must be reta1ned 1n the equat10ns. Conclus10ns concern1ng these terms as 
drawn 1n reference 11 are va11d even 1n the presence of tors10nal coup11ng 
addressed 1n the present work. 
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CONCLUDING REMARKS 

The coupled bend1ng-bend1ng-tors1on equat10ns of dynamic motion of 
rotating l1nearly pretw1sted and large preconed blades of symmetric cross 
sect10n 1nclud1ng second degree geometr1c non11near1t1es and Cor1ol1s effects 
are derived. These equations are solved by using the Galerk1n method and a 
linear perturbation procedure. Natural frequencies and steady state deflec­
tions produced by the solution of the present set of nonlinear equations are 
compared to those produced by MSC/NASTRAN calculations and also to those from 
experiment. Close agreement of the present theoretical results with those from 
other methods establishes the accuracy of the equations developed and the 
method of solution adopted. Parameter limits within which the second degree 
geometric nonl1near1t1es are adequate for a fair prediction of natural fre­
quencies and steady state deflections are established. The following specific 
conclusions have emerged from the present investigation. 

(1) For blades of moderate thickness rat10s (d/b > 0.10) and moderate 
precones (Bpc ~ 15°), inclusion of geometric nonl1near1t1es up through sec­
ond degree appears to be adequate for a fair prediction of the coupled fre­
quencies and steady state deflections. 

(2) The present nonlinear equations 1nd1cate torsional divergence at lower 
rotational speeds when the thickness ratio is decreased and the blade precone 
is increased than do the finite element calculat10ns. The nonlinear terms 
contributing to the coupling between bending and torsional motions, often 
referred to as kinematic pitch coupling terms and first discussed by Mil et al. 
(ref. 14) were found to be responsible for this torsional divergence. These 
terms are extremely 1mportant in producing the accurate coupling between the 
bending and torsional frequencies. Inclusion of a complete set of these terms 
(presently appearing in the equations in a truncated form) may lead to a 
satisfactory stability calculations. 

(3) The affect of linear and nonlinear Cor1011s forces on the coupled 
frequencies of thin blades is found to be negligible. The Cor1ol1s force terms 
can therefore be safely ignored in analyzing advanced turboprop type blade 
configurations. However, the Cor1ol1s effects must be retained in analyzing 
thick blades, as discussed in reference 11. 

(4) The affect of nonlinear terms arising from the tension coupling in the 
torsion equation, and the terms (GJ.1VI)", (GJ."w")I and (GJvIW")1 appearing 
respectively in the flatw1se, edgewise and torsion equations, is found to be 
negligible on the coupled frequencies and steady state deflections for 
preconed rotating blades. 
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APPENDIX A: 

THE GALERKIN INTEGRALS AND MODAL EQUATIONS 

The var10us 1ntegrals ar1s1ng from the Galerk1n process are def1ned 
below, and these are used 1n represent1ng the modal equat10ns 1n matr1x forms 
subsequently: 

l II 

B1j = 1J111J1j Q d" 
0 

1 I 

C1j = S 1J111J1jS d" 
0 

1 II 1 
D1jk = i 1J111J1j J IJ1k(X) dx d" 

" 
l II 

E1jk = 1J111J1j lJ1k d" 
0 

1 III 

G1j J 1J111J1j s1n 29 d" 
0 

l II 

H1j 1J111J1j cos 29 d" 
0 

1 1v 11j I 1J111J1j s1n 29 d" 

l III 

J 1j 1J111J1j cos 29 d" 
0 
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l II 

K1j "'1"'j sin 26 dn 
0 

L1 = l 
0 

"'1 n dn 

M1j l 1V( 2 b2 2 e) dn = "'1"'j sin 6 + 2" cos 
0 d 

= l II 

N1j "'1"'j dn 
0 

°1j l "'1 6j dn 
0 

1 II 

R1j [ 616j dn 

1 

S1 S 61n dn 
.0 

1 
U1 = S 

0 
"'1 sin 26 dn 

vi = l "'1 cos 26 dn 
0 

1 
"'i [6j ",1V sin 26 + 

I I I I II II I I I 

f 26j "'k sin 26 + 6j "'k sin 26 + 4Y6j "'k cos 26 
0 

I II 2 II 

26] dn + 4Y6j "'k cos 26 - 4y 6j "'k sin 

l "'1 [6j ",iV cos 26 + 
I I I I II II I I I 

26j "'k cos 26 + 6j "'k cos 26 - 4y6j "'k sin 26 
0 

I II 2 II 

26] dn - 4y6j "'k sin 26 - 4y 6j "'k cos 
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S7 1j = l 61"'~ cos 26 d" 
o 

S81 -- f' 61 s1n 6 cos 6 d" 
o 
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The 1 i near and non 1 i near parts of the steady state equil i br i um equat; ons are 
presented below in the matrix form, [!:. + !!L]{Xo} ~ {S} 

"2 1" L: A 11" L: A + S1n Spc6ij - 2" S1n Spc cos Spc k wok ijk - Z S1n Spc cos Spc k vok ijk 

- ",2 ."<',, -C,,) • "" '" ,o. .".1 ,(~ -1)1} I 'j • 2,J;; - 2J'lj 1 
~{WOkDijk - WokEljk } I 

+ ~~ij + 2Y(~ - 1) Gij + I 

d(:~ -1) Hij] I 
cos Spc sin SPC~k (V

ok
D

1
"kj - V

Ok
E-

1
"kJ") t6------- ----+----- --­

ij - cos 2spc (Sij - Cij ) + 

I ~ ( ) flO tWok T4 ijk 

I
t Mir 2y ~ - 1 rGij - + f ~w T3 " 

d ~ 11 k ok lJk 

2 b2 ]l I - f11 t VokT2 ijk 
1-2Y(~-1)Hlj~ I 

-- --- --- --- -- -- t--------- -L ---- --
- y sin Spc cos SpcOji I - f1 sin Spc cos SpcS7ij I f1 cos 2 SpcS1 ij 

- 2yf8 sin Spc cos SpcS6 ij I + f7t wokT8;jk I + f 4S4 ij 

- 2fl sin Spc cos SpcS2 ij I + f g t wOkT9 ljk I - cos
2 

SPcSSij 

+ sin Spc cos Spct~Ok(TSikj - T6 ikj ) I - fgtVokTlOijk I + (/fS - f6 - f7 

+ fg ~k wOkTl01"J"k I I + f 2 S ) R 8 cos Pc i j 

- 2yf 5 ~ ~ok T7 ijk 

~oj 

- (~) sin Spc 

x cos Spc vi (~- 1) 
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The mass, gyroscopic and stifness matrices resulting from the pertur­
bation equations are designated [fQ, [~ and [~ respectively, and are 
presented in the following: 

[J~J 

0i j I 0 I 0 

--I-----r--
o 0i j I 0 --+----l--
o I 0 I °ij 
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" 2 2 (B C) "E A I -f lO
E
k vOk Tl1"J"k - S1n apc 6;j - cos apc ij - ;j - S1n apc cos apc k vok ;jk 

E (2 ,\ I + fll fWokT2;jk 
- sin apc cos apc k WOkAjjk + + {~ l;j + 2y(J jj - YK ij )] ~ - 'l I 

~ [ ] - f lO
E
k "'okTl 1" kJ" + fll Ek vokT3 1"J"k 

sin ;,pc cos ~:TW)Ok Djjk + Dik]j - E;jk - E
ikj 

+ fU t:"'Ok
T3

;kj I 
+ ~[;j + 2Y\d2" - 1 (G jj + yH ij ) I I 
~1 f"'Ok

T2
ikj ________ L ________ +-________ _ 

LIS] = sin apc cos apCt:VOk(D;kj - E;kj) I - S;j - cos apc(B;j - Cij ) I flOf WOkT4;jk 

+ {~ lij + 2yJ jj - 2iKjj](~ - 1) I + sin apc cos apC~WOk(D;jk - Eijk ) I + fn fWOkT3;jk 

+ f lO t:"'Ok
T4

;kj I r ~ 2) .1 E 
+ ~L;j - 2Y\7 -I (G;j + yHij)J I -fn k vokT2;jk 

+ fn f"'OkT3 ikj I -fn t:"'OkT2 jkj 

--------------Tf7EkWokT81"J"k------~lfICOS2.pCS1;J"------
sin apc cos apc f"'Ok(TS jkj - T6;kj) " 

- sin apc cos apcyOji + f 7 t: VOkTa ;kj I - f1 sin apc cos apcS7;j I + f 4S4;j + sin apc cos apc x 

- 2yfa sin ape cos apcS6 jj I + fgt:WOkT9;jk I t:WOk(TS;jk - T6;jk) 

- 2fl sin apc cos apCS2jj - 2fgfVOkTlO;jk _ cos2 apcSS;j 

+ fg~VOkT9ikj - 2f9 t: WOkTlO ikj I I + 2yf s f"'Ok(T7;jk + T7;kj) 

I I -R;j(ifs - f6 - f7 + fa cos
2 

apc) 

23 



APPENDIX B - NOMENCLATURE 

A cross-sectional area of blade 

A
ijk

, Bij , Li , etc. modal integrals (see appendix A) 

b, d breadth (chord) and thickness of blade 

d/b thickness ratio 

{B}, {X}, {Xo} vectors 

[£] modal damping matrix (gyroscopic matrix) 

E Young's modulus 

f l , ... fll coefficients (see eq. (13) 

G shear modul us 

1, j, k dummy indices 

Ip polar second moment of area about centroid 

J 

kA 

km 

kml, km2 

L 

[ L], 
'" 

[LN] 
'" 

m 

[!!] 

n 

p 

R 

T 

area moments of inertia about major and minor principal 
centroidal axes 

torsional stiffness constant 

blade cross sect10n polar rad1us of gyrat10n 

blade cross section mass radius of gyration 

principal mass radii of gyration 

length of beam 

Linear and nonlinear components of the matrix 
representing steady state equilibrium equations 

mass of blade per unit length 

modal mass matrix 

number of nonrotat1ng modes for each of the flatwise 
bending, edgewise bending, and torsional deflections 

natural radian frequency 

radius of disc 

blade tens10n 
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t 

u, v, W 

- -
v, W, cP 

voj ' woj ' CPoj 

x 

y, Z 

Q 

Q
j

, I3 j , Yj 

I3pc 

Y 

l1V j , l1Wj , l1CPj 

°1j 

n 

a 

aj (n) 

apt 

>"1 

~ 

p 

,. 

Q 

) I 

time 

d1splacements of the elast1c ax1s 1n X, Y, Z d1rect1ons, 
respect1vely 

d1mens1onless bend1ng and torsional deflections 

steady-state equil1brium quantit1es 

running coordinate along X-axis 

centroidal pr1ncipal axes of beam cross section 

setting angle (collective pitch) 

constants for assumed mode shapes 

precone angle 

total pretwist of the blade over its length 

perturbation quantities 

Kronecker delta 

nondimensional length coordinate, x/l 

geometric pitch angle, Q + yn 

nonrotating torsional mode shape 

pretwist at a distance n from root, yn 

frequency parameter,,,El nn /pAl4 

nondimensional rotational parameter, El nn /pAl4Q2 

mass dens1ty of blade mater1al 

dimensionless t1me, Qt 

nonrotating flatw1se and edgew1se bending mode shapes 

exact fundamental mode frequency of straight, nonrotating 
beam, 3.51602 >"1 

rotor blade angular velocity, rad/sec 

primes denote different1ation with respect to x or n 

dot over a parameter represents differentiation w1th 
respect to t or ,. 
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TABLE I. - CONVERGENCE PATTERN OF FREQUENCY RATIOS (pIAl) OF A PRETWISTED, PRECONED, ROTATING BLADE 
INCLUDING SECOND DEGREE GEOMETRIC NONLINEARITIES AND CORIOLIS EFFECTS 

Mode 
number 

n = 1 

1 6.7647 
2 64.5292 
3 73.7530 
4 -------
5 -------
6 -------
7 -------
8 -------

[n/Wl = 0.5, ape = 15·, y = 30·, a = 0·, R = 0, dlb = 0.05, LId = 200.] 

Results from perturbation solution: Galerkin method 

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 

3.9948 3.9770 3.9715 3.9710 3.9840 3.9755 3.9699 3.9586 
38.4098 20.4184 20.1127 20.0309 20.0334 19.9880 19.9823 19.9707 
55.3224 52.5086 52.3541 52.4005 53.3161 51.8719 51.6155 51.4160 
87.9097 83.8938 61.4177 60.3757 58.1215 59.7126 60.1018 60.1548 

206.4990 137.3498 85.8415 85.3058 84.9539 86.2480 86.5334 86.7023 
438.1967 205.3006 205.2917 123.9113 123.4958 121.5896 120.8147 120.6553 
-------- 345.6017 274.0265 205.4352 198.2435 198.2884 199.2196 199.0793 
-------- 457.0644 343.8727 343.0762 343.5164 205.8776 204.6820 204.3840 

TABLE II. - CONVERGENCE PATTERN OF STEADY-STATE TIP DEFLECTIONS 

[Q/w1 = 0.5, Bpc = 15°, y = 30°, a = 0°, R = 0, d/b = 0.05.] 

Method Number of assumed Steady-state tip deflection 
modes or CQUAD4 (center line deflection) 

elements 
w v <p 

Galerkin n = 1 -0.018471 0.0018304 -0.0044147 
n = 2 -0.054886 0.0065991 -0.0016439 
n = 3 -0.054606 0.0058486 -0.0012554 
n = 4 -0.054841 0.0058761 -0.0011558 
n = 5 -0.054832 0.0058467 -0.0011435 

MSC NASTRAN 500 elements -0.054309 0.0058372 -0.0010209 

MSC NASTRAN 
(500 CQUAD4 
elements) 

3.9923 
20.0707 
57.7067 
64.5911 
86.1357 

121.1038 
199.4268 
219.5793 



TABLE III. - COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS 

[d/b = 0.05, Lid = 60, y = 0°, L = 152.4 mm, E = 32.3xl06 psi, 
G = 13.8xl06 psi, p = 0.283 lb/in3.] 

Bpc, a, Q, Method 
degree degree rpm 

45 90 1800 (a) 
(b) 

4200 (a) 
(b) 

5400 (a) 
(b) 

0 30 3600 (a) 
(b) 

4800 (a) 
(b) 

6000 (a) 
(b) 

22.5 90 2400 (a) 
(b) 

4800 (a) 
(b) 

6000 (a) 
(b) 

45 0 870 (a) 
(b) 

1506 (a) 
(b) 

22.5 60 1200 (a) 
(b) 

3600 (a) 
(b) 

0 0 0 (a) 
(b) 

apresent theoretical results. 
bExperimental result. 

Mode 1 

94.6 
95.5 
95.7 

100.0 
95.8 

100.0 

126.4 
129.0 
146.5 
146.0 
168.6 
166.0 

101.4 
101.9 
120.1 
121 .2 
131.8 
134.5 

94.8 
95.9 
96.3 
98.6 

96.5 
97.0 

111.5 
124.4 

94.2 
94.2 

Frequency, Hz 

Mode 2 Mode 3 Mode 4 Mode 5 

573.4 594.6 1656.2 1883.1 
571.0 599.0 1657.0 1798.0 
565.3 620.3 1669.7 1824.4 
545.0 640.0 1650.0 1823.0 
557.3 641.1 1675.2 1838.6 
522.0 675.0 1642.0 1854.0 

582.2 623.9 1683.4 1825.8 
570.0 630.0 1688.0 1807.0 
588.7 647.0 1700.4 1837.4 
582.0 665.0 1716.0 1817 .0 
597.0 673.4 1714.1 1853.3 
587.0 706.0 ------- -------

574.3 603.5 1665.4 1815.8 
571.4 602.9 1664.0 1799.0 
573.3 644.2 1700.6 1836.1 
562.0 654.0 1684.0 1826.0 
572.3 673.3 1721 .9 1855.1 
553.0 688.0 1695.0 1854.0 

570.2 591.0 1653.1 1780.5 
574.0 588.0 1655.0 1799.0 
541.0 593.0 1655.0 1675.0 
569.0 589.0 1662.0 1803.0 

572.5 593.4 1655.3 1796.3 
574.0 ------ ------- 1798.0 
489.9 625.2 1569.0 1684.5 
561.0 626.0 ------- ------

573.7 590.0 1652.0 1810.0 
572.0 586.0 1655.0 1795.0 



TABLE IV. - COMPARISON OF FREQUENCY RATIOS OF PRETWISTEO, PRECONEO, ROTATING BLADES OF 

VARIOUS THICKNESS RATIOS 

[a = 0°, R = 0, Lib = 10, geometr1c non11near1t1es 1nc1uded.] 

dlb y, Bpc ' Q/w1 Method Method 
degree degree 

Mode 1 Mode 2 

0.10 0 15 0.8 (a) 4.6097 23.1186 
(c) 4.6430 23.1970 

1.0 (a) 5.1488 23.7212 
(c) 5.1750 23.7841 

2.0 (a) 8.3781 21.3722 
(c) 8.3327 28.3285 

0.25 0 45 0.8 (a) 3.9975 12.5710 
(b) 4.1057 12.2505 
(c) 4.2598 12.8590 

0.25 0 45 1.0 (a) 4.4286 11.0558 
( b) 4.6184 10.6218 
(c) 4.8122 12.3085 

0.06 0 15 0.5 (a) 3.9654 22.4572 
(c) 3.9866 22.5073 

0.06 0 45 0.5 (a) 3.6499 22.2620 
(c) 3.7055 22.2822 

0.05 30 15 0.5 (a) 3.9710 20.0309 
(c) 3.9923 20.0707 

0.05 30 15 1.0 (a) 5.1659 21.7959 
(c) 5.1656 20.9982 

0.20 30 15 1.0 ( b) 5.1411 15.4978 
(c) 5.1619 15.5424 

0.20 30 45 0.8 (b) 4.0862 12.9163 
(c) 4.2651 14.2839 

0.20 30 45 1.0 (b) 0.1533 7.2997 
(c) Unstable 9.1287 

0.05 30 45 0.8 (a) Unstable -------
(c) Unstable -------

apresent beam theory 1nclud1ng Cor1011s effects. 
bpresent beam theory 19nor1ng Cor1011s effects. 
cMSC NASTRAN results 19nor1ng Cor1011s effects. 

Frequency rat10, pl>"l 

Mode 3 Mode 4 Mode 5 

30.4598 62.7814 68.0725 
31.9459 62.8686 72.0478 
27.7385 63.3946 68.1157 
30.7285 63.3849 73.5597 
28.3088 68.3325 70.3606 
28.7811 68.0478 75.6988 

22.7272 61.8443 62.4559 
22.7240 61.8860 62.4029 
22.6460 61.3970 67.2376 

23.2294 59.4052 62.9189 
23.2097 59.4123 62.8856 
23.0257 61.0894 67.1483 

48.9361 62.1175 72.6927 
52.2357 62.1740 75.2841 

Unstable 61.9376 75.9085 
40.7961 61.7824 85.4823 

52.4005 60.3757 85.3085 
57.7067 64.5911 86.1357 

Unstable 61.0581 86.4133 
49.2750 61.8346 92.8652 

26.0439 60.8242 67.1784 
26.0745 60.7458 70.4579 

23.3475 58.2695 64.4610 
24.4469 58.7436 73.0801 

19.0724 54.6244 63.4657 
18.2334 49.9820 84.9760 

-------- ------- -------
-------- ------- -------

Mode 6 

122.0243 
122.3435 
122.6629 
122.8331 
127.9158 
127.4200 

91.0506 
91.0091 
89.0158 

92.1810 
92.1343 
91.2117 

121 .3362 
121.4498 

121 .1543 
121.0251 

123.9113 
121.1038 

125.2654 
121.8441 

113.9297 
109.2493 

114.5998 
110.8504 

--------
--------

--------
--------
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TABLE V. - COMPARISO~ OF NONLINEAR FREQUENCY RATIOS AND STEADY-STATE DEFLECTIONS OF A PRECONED BLADE AT VARIOUS 
ROTATIONAL SPEEDS 

[a = 0·, y = 0·, R = 0·, Spc = 15·, Lib = 10, dlb = 0.05, Coriolis effects not included. Unstable as negative 
p2 obtained for I torslonal frequency.] 

Method Frequency ratio, p/).l Steady-state tip deflections 

Mode 1 (Fl) Mode 2 (F2) Mode 3 (F3) Mode 4 (Tl) Mode 5 (Sl ) Mode 6 (F4) W v q> 

(a) 3.5344 22.0513 61.7139 68.5155 70.5703 120.9191 -0.002803 ------------- -------------
(b) 3.5594 22.1618 61. 9851 68.1727 70.1475 121.4925 -0.002767 ------------- -------------

(a) 3.6805 22.1860 61.8476 62.9968 74.5192 121.0572 -0.02326 ------------- -------------
(b) 3.7062 22.2934 62.1044 63.9497 74.0049 121.6067 -0.02297 ------------- -------------

(a) 3.9654 22.4573 62.1175 50.3754 79.1494 121. 3362 -0.05572 ------------- -------------
(b) 3.9950 22.5585 62.3354 57.2115 79.8750 121.8374 -0.05500 ------------- -------------

(a) 4.6098 23.1186 62.7814 Unstable 82.3113 122.0243 -0.10620 ------------- -------------
(b) 4.6451 23.2026 62.8837 48.1742 86.2660 122.3773 -0.10463 ------------- -------------

( a) 5.1448 23.7213 63.3947 Unstable 82.2947 122.6629 -0.13383 ------------- -------------
(b) 5.1781 23.7926 63.4078 44.2514 88.2218 122.8856 -0.13173 ------------- -------------

(a) 8.3781 28.3089 68.3326 Unstable 81.0269 127.9159 -0.20305 ------------- -------------
(b) 8.3385 28.3445 68.0883 39.0512 87.6030 127.5273 -0.20001 ------------- -------------

(a) 11.8998 34.6488 75.8305 Unstable 82.1026 136.2440 -0.22464 ------------- -------------
(b) 11.7580 34.6610 75.5539 34.6610 84.4642 135.4860 -0.22205 ------------- -------------

apresent beam theory. 
bMSC NASTRAN results ignoring Coriolis effects. 

TABLE VI. - FREQUENCY RATIOS AND STEADY-STATE DEFLECTIONS OF A PRECONED BLADE 
NEGLECTING MILlS TERMS 

Q/wl 

0.1 
0.3 
0.5 
0.8 
1.0 
2.0 
3.0 

[a = Y = 0°, BpC = 15°, R = 0, d/b = 0.05, LIb = 10, T21jk = T31jk = 
T91jk = T101jk - O. Cor1011s effects 19nored.] 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 -w v 

3.5344 22.0513 61.7139 68.7889 70.3204 120.9191 -0.002803 -
3.6805 22.1860 61.8476 68.8022 70.3218 121.0572 -0.02326 -
3.9654 22.4573 62.1175 68.8274 70.3263 121.3362 -0.05572 -
4.6098 23.1186 62.7814 68.8879 70.3394 122.0243 -0.10620 -
5.1448 23.7213 63.3947 68.9454 70.3505 122.6629 -0.13383 -
8.3781 28.3089 68.3326 69.4571 70.4161 127.9159 -0.20305 -

11 .8998 34.6488 70.2570 70.5750 75.8305 136.2440 -0.22464 -

cp 

-
-
-
-
-
-
-



a pc ' 
degree 

15 

45 

Mode 

TABLE VII. - EFFECT OF IGNORING CERTAIN NONLINEAR TERMS ON THE FREQUENCY RATIOS, p/).l, OF ROTATING, PRECONED BLADES 

[dlb = 0.06, Lib = 10, ~ = y = 0·, R = 0, n/"'l = 0.5. Coriolis effects included.] 

All nonlinear T5 ijk = T6 ijk = 0 Tl ijk = T4 ijk = T3 ijk = T9 ijk = 0 Tl ijk through Aijk = 0, Tl ijk Aijk = Dijk = Eijk = 0 
number 

T8ijk = 0 TlOijk are 0 through TlOijk Tl ijk to TlOijk = 0 
terms ignored 

are 0 

1 3.9650 3.9650 3.9651 3.9651 3.9592 3.9475 3.9475 
2 22.4572 22.4572 22.4572 22.4572 22.4563 22.4497 22.4497 
3 48.9396 48.8668 58.6064 58.6070 58.6092 58.6104 58.6104 
4 62.1176 62.1176 62.1186 62.1186 62.1171 62.1113 62.1113 
5 72.6937 72.7639 68.8350 68.8341 68.8342 68.8342 68.8342 
6 121.3362 121.3362 121.3362 121.3362 121.3360 121.2972 121.2972 

1 3.6558 3.6557 3.6474 3.6474 3.6171 3.5543 3.5543 
2 22.2614 22.2614 22.2614 22.2614 22.2573 22.2251 22.2251 
3 Unstable Unstable 58.6235 58.6273 58.6368 58.6426 58.6426 
4 61.9371 61.9371 61.9412 61.9412 61.9360 61.9076 61.9076 
5 75.9208 76.1321 68.8184 68.8141 68.8141 68.8141 68.8141 
6 121.1544 121.1544 121.1544 121.1190 121.1187 121.1255 121.1255 
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Figure 1. - Blade coordinate system and definition of blade parameters. 
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