
NASA Contractor Report 178023 NASA-CR-178023
19860008527

I_E REPORT NO. 85-54

PARTITIONING PROBLEMS IN PARALLEL_ PIPELINED

AND DISTRIBUTED COMPUTING

Shahid Bokhari

,.o .,.

.... _. :'.::,
Contract Nos. NASI-17070, NASI-18107

November 1985 ,.,.;C-_E: !:£SEARC_tCE_,'!ER
[_iDR.'-.RY,; _/,£:..',

f :.r:hii:'.[0 H, VIRGIHIA

INSTITUTE FOR COb_UTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

, Operated by the Universities Space Research Association

NationalAeronaut,csand
SpaceAdmin,stration

LangleyResearchCenter
Hampton,Virginia23665

https://ntrs.nasa.gov/search.jsp?R=19860008527 2020-03-20T16:27:52+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42842203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

l- ,Z-',l I I-W"

i.7' _ i _-%i..i,iaca-,:--p-i?£:,'::,PR
K'lSVLfff!//'hi!

:R_:{..,,i......s_m_-_:,-:-_•................._:__:!__c ":4 _-_r:'.-. i 14;--".4 P,",TB-_'2rY.g,V_-...q D'.aT_. _,i,',q.',-r-".:.'- i ?_--::(--]_"--::
.. ._=-.'4

.... : !..b_.! :-..;s---J: ._
€,'!] i H: Rik',t'KH_h" i • "--:,.

..... -';;ATI _-.;T T, _

¢",:5T: iiHiT'.:n C:T&T._q -'--::.,.b,n-,iff._-ci_c:_" r,,.,.b] ic:.=.,fian

'..-'.x..-:."_'':" _'....._,L! I.1i_. :l t ""

• Partitioning Problems
in

Parallel, Pipelined and Distributed Computing

Shahid H. Bokhari

Institutefor ComputerApplicationsin Science& Engineering,
NASA, LangleyResearchCenter,Hampton,Virginia23665, USA

and
Departmentof ElectricalEngineering,

University of Engineering & Technology, Lahore-31, PAKISTAN

ABSTRACT

The problem of optimally assigning the modules of a parallel program over the processors

of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed

that permits the efficient solution of many variants of this problem under some constraints on

the structure of the partitions.

In particular, the following problems are solved optimally for a single-host,multiple satellite

system: Partitioning multiple chain-structured parallel programs, multiple arbitrarily structured

serial programs and single tree structured parallel programs. In addition, the problems of

partitioning chain structured parallel programs across chain connected systems and across

shared memory (or shared bus) systems are also solved under certain constraints. All solutions

for parallel programs are equally applicable to pipelined programs.

These results extend prior research in this area by explicitly taking concurrency into account

and permit the efficient utilization of multiple computer architectures for a wide range of

problems of practical interest.

This research was supported by NASA Contracts NAS1-17070 and NAS1-18107 while the
author was in residence at the Institute for Computer Applications in Science & Engineering
(ICASE), NASA Langley Research Center, Hampton, Virginia 23665, USA.

5.

j-qq

2

1. Introduction

Given a multiple computer system made up of n processors, and a program made up of rn

modules, each of which can, in general, execute on any processor, one is faced with the
v

problem of partitioning the program over the processors in order to improve performance. If n

=2 and the program is serial, (i.e. even though there are m modules, only one module is active

on one processor at one time), this problem can be solved efficiently using the network flow

approach pioneered by Stone [14]. If the program is serial and the interconnection structure of

the modules tree-like, it is possible to solve it for any number of processors n using a shortest

tree approach [2]. Several variants of this problem have been solved [1],[11],[16]. Other

related research is reported in [5],[10].

If the modules are executable in parallel, it is very difficult to find efficiently the optimal

assignment because, depending on the setting, the problem is computationallyequivalent to one

or the other of the notorious NP-Complete graph partitioning or multiprocessor scheduling

problems. At the same time, as commercial multicomputer systems proliferate and cheap,

easily interconnectable, 'building block' microcomputer systems become commonly available,

it is becoming increasingly important to develop techniques to solve this problem.

In this paper we look at several variants of the partitioning problem for parallel programs

and show that, under certain constraints on the structure of the program and/or the

multicomputer system, this problem can indeed be solved in polynomial time.

We start the paper by discussing in Section 2 the relatively simple algorithm for finding the

optimal partition of a chain-structured parallel or pipelined program over a chain or ring of ,

processors. A chain structured program is made up of rnmodules numbered I .. rnand has an

intercommunication pattern such that module i is connected only to modules i, 1 and i-1.

Chains or rings of processors have similar structure. We work under the constraint that each

processor have a contiguous subehain of program modules assigned to it. That is, partitions of

the chains have to be such that modules i and i+ 1 are assigned to the same or to adjacent

processors. We call this the contiguity constraint.

3

This problem arises in signal and image processing applications. Our solution technique

involves creating a weighted assignment graph and finding the minimum bottleneck path in it.

This result is related to prior research for serial programs [2] in that both construct a weighted,

layered assignment graph and find a path in it. It differs from [2] in that concurrency is

explicitly taken into account and a minimum bottleneck weight path, instead of a sum weight

path yields the optimal solution. The method for constructing the assignment graph is also

different.

The discussion of Section 2 permits us to better appreciate the central result of this paper

which is the polynomial time Sum-Bottleneck path algorithm described in Section 3. This

algorithm can be applied to a doubly weighted graph (i.e. one which has two kinds of weights

associated with each edge) to find the path for which the maximum of (1) the sum of one kind

of weight and (2) the bottleneck of the other kind, is minimum. This algorithm can be

considered to be a combination of the classical sum weight algorithmand the bottleneck weight

algorithms for conventionally (i.e. singly) weighted graphs.

In Section 4 we show how this algorithm may be applied to solve the problem of

partitioning chain-structured programs over a single-host, multiple-satellite system under the

contiguity constraint. Section 5 discusses the problem of partitioning a single chain structured

parallel or pipelined program in a multiprocessor system that uses a shared memory or global

bus for communication.

Section 6 we show how to optimally assign several arbitrarily structured serial programs

over a single-hostmultiple-satellite system. Each program is associated with a specific satellite

and executes serially. We may choose to move some of the modules of a program from its
t

satellite to the host in order to take advantage of the host's greater power. However as more

and more modules from different satellites are assigned to the timeshared host, its effective

power goes down. The problem is to find the assignment that minimizes the time for the

slowest program to finish. The efficient solution of this problem is of great relevance to

organizations that use a large central timeshared machine connected to a number of

4

workstations as it allows the central machine's computing capacity to be apportioned fairly

among the workstations.

Our solution to this problem uses Stone's network flow algorithm [14] for single-host

single-satellite assignments combined with his results on nested assignments under varying

load conditions [15] to transform the problem of assigning arbitrarily structured programs into

the problem of assigning chains. A layered, doubly weighted assignment graph is created that

includes all costs associated with the problem. An optimal Sum-Bottleneck path in this graph

yields the optimal assignment of modules between the host and the satellites.

Section 7 discusses how a tree structured parallel or pipelined program may be partitioned

optimally over a single-host, multiple-satellite system under the constraint that if a module is

assigned to a satellite, all its children modules are also assigned to the same satellite. This

problem is of relevance in process monitoring applications where information from many

sensors is processed in a hierarchical fashion. The assignment graph for this problem is the

most complex of all graphs presented in this paper. However, like all the above mentioned

problems, this can also be solved in polynomial time by the application of the Sum-Bottleneck

path algorithm.

We conclude with a discussion and tabular summary of our results in Section 8.

2. Mapping chains onto chains

The problem of mapping chains onto chains has applications in the fields of signal

processing and image analysis. Certain methods for the parallel solution of partial differential
a

equations can also utilize the techniques presented in this Section to improve running time on

multiprocessors. In fact, these techniques are applicable to the parallel processing of any

problem in which the communication pattern between different processes is chain-like (either

because of the inherent structure of the problem or by deliberate choice of the algorithm

designer) and the architecture is a chain or ring.

5

2.1 Signal Processing

A common requirement in a communication system is to apply repeatedly a fixed sequence

of operations (or transforms) to an essentially unending series of signals. For example, each

arriving packet (or 'window' or 'frame') of data may have to be Fourier transformed,

multiplied by a fixed frequency, filtered, clipped, inverse transformed etc. This kind of

application thus has a serial or chain-like structure to it and naturally lends itself to

pipelining[3].

Should we choose to carry out all these processes on a uniprocessor, the maximum rate at

which we can process incoming data frames is determined by the time required for the

processor to apply all the processing steps to one frame. Clearly, this process can easily be

pipelined by putting each process on a separate processor. Since the intercommunication

pattern of the processes is serial, the processors need only be connected in a chain. The

maximum rate of processing is now determined by the processor that takes the longest amount

of time to perform its task (the bottleneck processor). This is an expensive solution in that it

requires as many processors as processes. It is also inefficient because many processors may

be very lightly loaded and spend most of their time waiting for the bottleneck processor to

finish.

° _ Fourier JFrequency BandpassTransform _]Multiplication _ Filter _ m

Fig. 1 Typical processing steps in a communication system.

The following problem then emerges. Given a set of m modules connected in a chain-like

6

fashion and a multiprocessor system of size n<m, find the assignment of subchains of

processes to processors that minimize the load on the most heavily loaded processor. The

contiguity constraint ensures that two modules that communicate with each other lie on directly

connected processors.

Fig.2 A 9 modulechainmappedontoa 4 processorchain.

The optimal assignment of subchains to processors is influenced by

(1) the time required to run each module (which may vary across processors, in case the
processors are dissimilar),

(2) the amount of intermodule communication (which can be non uniform because once a

frame of data has been transformed,it may have a different number of data points) and

(3) the speeds of the links between pairs of connected processors.

2.2 Image Analysis

Very similar problems arise in the field of image analysis where the requirement is to take an

image or a set of images and apply various operators to it [13]. An interesting variation here is

the possibility of obtaining a degree of pipelining greater than the number of different types of "

operations to be performed. This can be done, for example, if one needs to apply an operator

to every 3 x 3 square of pixels in the image. Assuming that data can be transferred between

processors at a sufficiently fast rate, it is possible to have as many pipeline stages as there are 3

x 3 squares in the image. The techniques discussed in this paper permit us to find the optimal

degree of pipelining given the processing and communication times of the processors.

2.3 Partial Differential Equations.

A straightforwardtechnique for the parallelsolution of certain typesof partialdifferential

equationson a possibly non-uniformmesh is to partitionthe mesh into verticalstrips. During

each iteration,an estimate is made of the values within a strip. Since strips only influence

adjacent strips, the communicationpattern required is chain-like and thisproblem can be run on

a chain or ring of processors[12]. There again emerges the problem of optimal assignment of a

chain of processes or modules (i.e the strips of the matrix) onto a chain of processors. The

structure of this problem is the same as that shown in Fig. 2 except that the edges

interconnecting modules or processors are undirected (communication takes place in both

directions). The time required to complete one step of the computation is equal to the time

required by the most heavily loaded processor to complete that one step. The important

difference between this case and the signal or image processing examples described above is

that this is parallel not pipelined processing. As we will describe later, the assignment

algorithm is insensitive to this difference.

2.4 Construction of layered graph

Our approach to the solution of this problem is to first draw up a layeredgraph that contains

all information about the run times of the modules. A path in this graph corresponds to the

. assignment of subsequences of modules to processors. The weight of the heaviest edge in a

path corresponds to the time required to execute the assignment in parallel or pipelined fashion.

Thus, having drawn up the graph, all we need do is find the minimum bottleneck path in it

(i.e. the path for which the weight of the heaviest edge is minimum.)

In Fig. 3, each layer corresponds to a processor and the label on each node corresponds to

a subchain of modules. Any path connecting nodes 'and t corresponds to an assignment of

modules to processors. For example the thick edges correspond to the assignment of Fig. 2.

To avoid a congested diagram many nodes and edges have been omitted in Fig. 3.

The rule for generating this layered graph for a problem with m modules and n processors is

as follows. Each layer contains all subchains of nodes, in other words all pairs <ij> such that

l<=i<=j<=m. A node labeled <ij> is connected to all nodes <j+1,k> in the layer below it for

allj except 1 and n. All nodes <1,i> (<i,m>) in the first (last) layer are connected to node s

(t). As stated above, each path from s to t represents an assignment of subchains to processors

under the contiguity constraint. If this path contains the node <i j> of layer k, this represents

the assignment of modules i through j to processor k. Clearly, there is a path in this graph

corresponding to every possible contiguous subchain assignment.

oo

%1 1 1 o o

a 0 0

Fig. 3 The layered graph for a problem with 9 modules and 4 processors.

Weights can now be added to the edges of this layered graph as follows. In layer k, each

edge emanating downwards from node <i,j> is first weighted with the time required for

9

processor k to process nodes i through j. This accounts for the computation time. The

communication time is now included in the graph: to the weight of the edge joining node <a,b>

in layer k to node <b+l,d> in layer k+l is added the time to communicate between modules b

and b+l over the link connecting processors k and k+l. It is clear that the influence of both the

amount of data transmitted between modules b and b+l as well as the speed of the link

between processors k and k+l can be included in the graph.

2.5 Finding the Optimal Assignment

A path in the layered graph in which the heaviest edge has minimumweight -- the bottleneck

path -- can be found using a simple labeling procedure. Each node i is given a Label L(i).

Initially all nodes are given infinite labels except in the first layer, where the nodes are labeled

zero. The following procedure is applied to all layers of this graph, starting at the top and

working downwards.

LabelingProcedurefor MinimumBottleneck Path
Examine each edge e emanating downwards from a layer. Suppose it connects node a

(above) to node b (below). Let the weight on this edge be W(e). Then replace L(b) by
min(L(b), max(W(e),L(a)).

The number of nodes per layer is O(m2). The total number of nodes is O(m2n) since there

are n layers in all. Since each node has at most m edges connected to it, there are O(m3n)

edges in all. The labeling algorithm looks at each edge once. Therefore the space as well as

time required by this algorithm is O(m3n) for a problem with m modules and n nodes.

2.6 Memory Constraints

To take memory constrains on individual processors into account it suffices to add up the

memory requirements of all modules in every subchain. If the sum of memory requirements

for nodes i through j exceeds the capacity of processor k, node <ij> in layer k is deleted, along

with all edges incident on it.

10

3. Sum-Bottleneck paths in Doubly Weighted Graphs.

In the previous section we found the bottleneck path in the assignment graph in time

proportionalto the numberof edges. This was possible because the assignmentgraph had a

layeredstructure. In an arbitrarygraphwith n nodes the time requiredto find the bottleneck

path is O(n2) [6]. The more familiarshortestpathbetween two nodes can also be found in

O(n2) time using Dijkstra'salgorithm [4]. In this section we discuss the notion of Doubly

Weighted graphsand optimal Sum-Bottleneck(SB) paths in them. We describe anefficient

algorithm for finding the optimal SB path. This algrorithmis veryuseful for solving a wide

range of assignmentproblems.

3.1 Definitions

A doubly weighted graph D=<N,E> has two weights associatedwith each edge e from E :

a SumWeight tr(e) anda Bottleneck Weight fl(e). So, insteadof a single weight on each edge

as in the traditionalweightedgraph,we have an orderedpairof weights on each edge.

As usual, a path between any two nodes in this graph will be composed of a sequence of

edges eI , e2 , e3 The Sum Weight of this path,S, is the familiar sum of all cr(ei).

TheBottleneck weight,B, is the largest of all fl(ei).

The Sum-Bottleneck weight (SB weight) of this path is defined to be max(S,B). The

optimal Sum-Bottleneck path (SB path) between two nodes in a doubly weighted graph is the

path for which the the Sum-Bottleneck weight is minimum. In Fig. 4 the labels on each edge

represent <cr,fl> ; the optimal SB path between nodes s and t has weight 8.

The notion of doubly weighted graphs is due to Lawler [9] who uses them for certain types

of combinatorial optimization problems (e.g. shortest paths in networks with specified transit

times). The contributions of the present paper are (1) the interpretation of these weights as sum

11

and bottleneck, (2) definition of the SB weight criterion for paths, (3) the specific polynomial

time algorithm for finding the optimal SB path which follows, and (4) subsequent application

of this algorithm to several partitioningproblems.

3.2 An algorithm for finding the optimal SB path.

Assume we are given a Doubly Weighted graph D with n nodes and e edges and that the

Dijkstra algorithm for shortest paths in a conventional graph is available to us. We wish to find

the optimal SB path between two distinguished nodes s and t in the graph.

1. Create a list of all unique fl weights sorted in descending order. Insert pointers from each
entry in this list to the edges in D that have the corresponding weight. Let FIRST (LAST)
be pointers to the f'n'st(last) elements of this list.

2. Select the midpoint, M, of list FIRST..LAST. Suppose the entry at that point is Bm. In
graph D, remove all edges in which the Bottleneck weight is greater than Bm. Delete (or
ignore) all Bottleneck weights less than or equal to Bm. The Doubly weighted graph D
has now been transformed into a conventional (singly) weighted graph.

3. Apply Dijkstra's algorithm to this conventional graph to obtain the shortest path between s
and t. Let the weight of this path be W.

4. If W= Bm then stop; the path found by Dijkstra's algorithm is the optimal SB path.

5. If W..,Bm then FIRST:=M; restore D to its original form; go to step 2.

6. If W< Bm then LAST:=M; restoreD to its original form; go to step 2

To understand the working of this algorithm, refer to Fig. 5 which shows plots (as
i

functions of Bm) of Sum weight S and Bottleneck weight B for a path in a Doubly weighted

graph in which all edges with fl weight greater thanBm have been removed.

The plot labelled B shows an upper bound for the bottleneck weight. As we travel from

right to left (Bm decreases), B is a non-increasing curve, because this line represents the

12

weight of the bottleneck path, given that all edges with/_ weight greater than Bm have been

removed. If a path exists between the given nodes after all edges ei with _(ei)>Bm have been

removed, the bottleneck weight of this path is clearly less than or equal to Bm. As Bm gets

smaller, more and more edges get removed from the graph and it eventually gets disconnected.

This is indicated by the shaded region in the graph.

The plot labelled S, on the other hand, shows the value of the minimum Sum weight of a

path in the graph, given that all edges with/3 weight greater than Brn have been removed. As

we decrease Bm , this curve is non-decreasing. This is because as we delete more and more

edges from a graph, the weight of the minumum sum weight path can either remain

undisturbed or increase. This curve also stops at the point the graph gets disconnected.

Fig. 4 Fig.5

It should now be clear that steps 2 and 3 of the algorithm serve as a probe into this plot at a

13

fixed value of Bm. The SB weight (i.e. max(S,B)) is given by the thick line in Fig. 5. The

- optimal SB weight occurs at the minimum point of this curve. Because S (B) is

• non-decreasing (non-increasing) with decreasing Bm , there is one unique minimum, which

can be found using a binary search, and that is what the remaining steps of the algorithm

achieve.

The number of distinct valuesBm can have is no more than the total number of edges in the

graph (the x-axis in Fig. 5 is a sorted list of unique j6 edge weights--it is not a continuous

range of real numbers). The complexity of this algorithm is thus O(n21og e), since each

application of Dijkstra's algorithm takes O(n2) time.

4. Partitioning Multiple Chains across a Host-Satellite System

The algorithm presentedin the previous section can be used to solve several difficult

partitioningproblems in Host-SatelliteSystems of the sort shown in Fig. 6. Here we have a

largehostcomputerconnectedto severalsatellitecomputerswhich receivedatafroma real-time

environment (for example, an aircraft.)The data streamsentering each satellite have to be

processed in a pipelined fashion (as shown in Fig. 1). The individual satellites may have

different computationalcapabilities, the data streams could have different arrivalrates (in

frames per second), andthe chains of computationsto be performedon each stream need not

• be identical.

. Each relatively small satellite computer has the capability of partitioningits workload

between itself and the larger, more powerful, host to improve its individualprocessing time.

Howeverthe act of movingsome modulesto the host would adverselyimpactthe performance

of othersatellites. It is the complexinteractionbetweenthe loadsof the satellitesvia the shared

host which makes this a difficultproblem.

14

The factors influencing the cost of an assignment are the same as those enumerated in

Section 2.1, except that there is a different set of costs for each satellite. We have for each

module i of satellitej the time required to run it on the satellite, eij, and on the host, hij. For

each pair of modules i and i+1 from satellitej we have the time required for interprocessor

communications, cij, should i be assigned to the host and i+1 to the satellite.

Since all processing is to be done in a pipelined fashion, the times for execution and

interprocessor communication are the times to pass through one frame of data. We assume that

the data streams flowing into each satellite are all to be treated equally. Our assignment should

be such that the time required to process one frame of data each from all streams is minimized.

As an alternative, we may wish to give more importance to some data streams at the expense of

others. For example, we may wish to process 5 frames of stream 1 for every 3 frames of

stream 2. This is easily done by multiplying the cost figures for these streams by 5 and 3

respectively.

Real-time
Environment

Host Satellites

Fig. 6 A host satellite system processing real time data.

15

Without loss of generality, assume that each chain has m modules and that there are n

• satellites in all. Let us number the modules from left to right and define the partition point of

each chain by the highest numbered module in that chain that is assigned to the host. When

these n chains are partitioned between the host and the n satellites, the time required by the

entire system to complete the processing of one frame of data from each stream is determined

by the greater of (1) the individual load on the most heaviliy loaded satellite and (2) the sum of

the collective loads on the host. Of all the satellites, the one which has is the most heavily

loaded--the bottleneck satellite--determines the processing time as far as the satellites are

concerned. On the other side, the sum of all loads on the host determines the time it will take.

The greater of these two is the actual time since either the host waits for the slowest satellite to

finish, or vice-versa.

4.1 Construction of Assignment Graph

Armed with the Sum-Bottleneck algorithm of the previous section, we can proceed to

capture all this information in a new kind of layered assignment graph. This graph has n

layers, one for each satellite. Each layer has m nodes, one for each module. An edge extends

from each node in layer k to all nodes in layer k+l. There is a start node s above the first layer

and a terminating node t after the last layer.

The assignment graph for a problem with 5 satellites and 5 modules on each satellite is

shown in Fig.7. It is clear that a path from s to t represents a partitioning of the 5 chains

• between the host and the satellites. The path shown by thick edges in Fig. 7 represents the

assignment of modules 1-4 of chain 1, 1 of chain 2, 1-3 of chain 3 etc. to the host and the
o

remainder of each chain to the correspondingsatellite.

To capture all information about run times, we proceed to doubly weight this graph as

follows. Each edge leaving nodej in layer k is first given a tr weight equal to the cost of the

sum of the execution times of modules 1 throughj of chain k. The fl weight of this edge is the

16

sum of execution times of modules j +1 through rnof chain k. To both these weights is added

the communication time for modules j andj +1 over the link connecting the host to satellite k

(this is because the communication overhead is incurred on both sides of the link.) Edges

emanating from node s have all zero weights.

Fig. 7 Assignment graph for Host-Satellite assignment problem.

17

4.2 Solution of Problem

Because of our method of adding trand fl weights to the edges of this graph, the SB weight

• of any s to t path corresponds to the time required by the equivalent assignment of modules and

therefore the optimal SB path corresponds to the best assignment. This optimal path may be

found using the algorithm described in the preceeding section. However, the layered structure

of the assignment graph means that we do not have to use Dijkstra's algorithm to find the

shortest paths at step 3 (Section 3.2). The labeling process of Section 2.5 can find the shortest

path in time proportional to the number of edges in the graph. For a problem with n satellites

and m modules, the assignment graph of Fig. 7 has O(m2n) edges.The entire algorithm thus

takes O(m2n log m) time assuming m>n and O(m2n log n) otherwise.

18

5. Partitioning Chains in Shared Memory Systems.

The SB algorithm of Section 3 may also be used to solve the problem of partitioning chains

in shared memory or bus interconnected systems. In such systems, all communication is

through an area of shared memory or through a shared bus. In this case the sum of

communication costs between all pairs of communicating processors--not the worst

communication cost between a pair of processors--determines the degradation in performance

due to interprocessor communication (Fig. 8). For an n processor problem, the partition is

constrained to be composed of n subchains.

SharedMemoryor Global Bus

1 2 3 4 5

Fig. 8 A 12 module chain partitioned over 5 processors that use a shared memory or global
bus for communication.

This problem is solved by constructing an assignment graph of the type shown in Fig.3 and

doubly weighting it as follows. The communication costs are inserted as tr weights and the

execution costs as fl weights. Application of the optimal SB path algorithm to this graph yields

the assignment of subchains to processors that minimizes the maximum of (1) the worst

execution time of any processor and (2) the sum of interprocessor communication overheads.

19

6. Partitioning arbitrary programs in a Host-Satellite system.

° In Section 4 we showed how multiple independent chains could be partitioned across a

host-satellite system so as to minimize the time for execution for the most heavily loaded

satellite. The chains could be streams of pipelined signal processing tasks as discussed in

Section 2.1 or parallel programs with a chain like interconnection,as described in Section 2.3.

If we constrain the execution of a program in a host-satellite system to be serial, we can

solve the problem of optimally assigning programs with arbitrary interconnection structure. In

this setting we have one large host connected to multiple satellites or workstations. Each

satellite is assumed to have a single program associated with it. The satellites are dissimilar,

and the programs running on them could be composed of dissimilar modules. For simplicity,

but without loss of generality, the number of modules on each program is assumed to be m.We

will show how the SB path algorithm can be used to optimally partition arbitrary serial

programs across a single-host, multiple-satellite system.

6.1 Stone's solution to the Single-Host, Single-Satellite problem.

In 1975 Stone showed how a distributedprogram could be optimally assigned over a

single-host, single-satellite system, to minimize either serial execution time or total cost of

computation (e.g. the finiancial cost of executing on both processors). The motivationin

distributingcomputationin this case is to take advantageof specific efficiencies of the two

processorsin executing specific partsof the computation[14]. If two modules (or subroutines

• or coroutines) of a program are assigned to different processors, interprocessor

communications cause an overhead which must be added to the total cost of executing the

program.

Stone's method involves the construction of a network flow graph in which edge capacities

represent computation and communication costs in such a fashion that the minimum weight cut

,separating two distinguished nodes in the graph corresponds to the optimal assignment (i.e. the

assignment that minimizes the sum of computation and communication costs). This minimum

20

weight cut can be found using any one of several available network flow algorithms, in time no

worse than O(m3) for a problem with m modules, o

In later research, Stone analyzed the behavior of the optimal assignment as a function of the

load on the host [15]. The crucial result here is the Nesting Theorem which states that as the

load on the host increases the optimal assignmentis always such that modules move away from

the host and on to the satellite. It is never necessary during the course of an increase in load for

the host and satellite to exchange two modules. Thus successive optimal assignments for

successively increasing loads are nested inside each other, as illustrated in Fig. 9. There exist

values of load which, once exceeded, cause one or more modules to move away from the host

onto the satellite. These critical loadfactors may be found very efficiently (in no more than m

applications of the network flow algorithm) using the method developed by Eisner and

Severance[8].

H* 3Qs
Hos _'1 > X2 > X3 > _'4

Sat.

_1 > 2_2 > _'3> X4

Fig. 9 Fig. 10

We will show how these results allow us to view the interconnection of the modules as

chain-like, regardless of the actual interconnection. We can then attack successfully the

problem of optimally assigning or partitioning multiple distributed programs across a

single-host, multiple-satellite system, which has remained unsolved until now.

I

21

6.2 Transformation into Chains

. The program graph of Fig. 9 may be transformedinto the Loading Chain shown in Fig. 10.

All program modules lying between two adjacent cuts in Fig. 9 are clumped together into one

super node in Fig. 10. The critical load factor property states that, in this specific case, if the

load on the host is less than ,71.1modules 2, 3 and 8 will lie on the host. If the load is more than

_I' they will lie on the satellite. These modules move as a group or clump--there is no value of

load for which this group is split up. It is, however, possible to contrive communication and

execution costs where the Loading Chain is made up of individual modules (i.e. there is no

clumping). We will assume the worst case in subsequent analysis: a program graph of m

modules gives rise to a Loading Chain of m nodes. We will lose no information by

renumbering these nodes in a left to right order.

6.3 Construction of the Assignment Graph

Suppose we are given a single host connected to n independent satellites each of which has

an arbitrarily connected program ofm modules associated with it. We consider each particular

program to go through an unending series of iterations. For each program i and module j we

have hij (sij), the number of time units per iteration that the program spends in modulej should

this module be assigned to the host (satellite). In general hij is not equal to sij since the host

(satellite) may be more efficient than the satellite (host) in executing certain types of

• computations. For example, the host may have a powerful floating point unit which will cause

hij to be far less than sij for a module that does intensive arithmetic. This is in fact the

motivation for distributing the computation of a serial program.

To account for interprocessor communication costs, we have for each pair of modules, i and

22

j, the number of time units per iteration spent in communication between the modules, cij,

should they not be resident on the same processor.

We first independently find the n loading chains for each individual host-satellite

combination. This takes no more than O(m4n) time and yields n Loading Chains of size no

more than m each. Each node p of a loading chain corresponds to the assigment of nodes 1..p

to the host and p.l..m to the satellite. We can therefore compute for each node of every

Loading Chain:

(1) t/p, the number of time units of satellite time that it requires per iteration. This is the sum

of the individual sij's of the modules assigned to the satellite.

(2) Hp, the number of time units of host time that it requires per iteration. This is the sum of

the individual hij's of the modules assigned to the host.

(3) Cp, the number of time units of interprocessor communication time that it requires. This is

the sum of all communication times cij such that i<--p andj>p, i.e. all pairs of modules i,j
that are not coresident.

The global assignment of modules from n programs in this system is given by a vector z[i] of

separate assignments. The time required by an assignment is

max (,Ei=l, n {Hz[i] . Cz[i] }, maxi=l, n {Tz[il .Hz[i]. Cz[il }) .

For a given z[i] the sums Tz[i] . Hz[i] . Czr[i] represent the times for the n individual

assignments as if the n programs were running on n isolated host-satellite systems. On the

single-host system, however, the time for every program to complete one iteration each is

determined by the slowest, hence the selection of the maximum of these. The time for the host

to complete its share of the work is the sum of all Hz[i] . Cz[i] . The time for the entire

system to complete one iteration of every program is the maximum of these quantities.

23

Thesetimescan be usedto createa doubly weighted layered graph similar to theonein Fig.

7. Each layer correspondsto a LoadingChain. Each path from s to t standsfor a lr[i]. All

possible lr[i]'s exist in this graph. An edgeemanatingdownwardfromnodep in layerk has

cr weightequalto Hp+Cp and/3weightequalto IIp+Hp+Cp. It can beverifiedthat theSB

weight of each path equals the time requiredfor the correspondingglobal assignment. It

foUowsthatappicationoftheoptimalSBpathalgorithmwiUyieldtheoptimalassignment.

The time requiredto solve this problem is dominatedby the time requiredto find the

individualloadingchainsi.e.O(m4n).

24

7. Partitioning Trees in a Host-Satellite System.

The final problem we solve in this paper is that of partitioning a tree structured program

over a single-host, multiple-satellite system. The tree represents a parallel or pipelined

computation and we assume the satellites to be similar. For example, external information may

be input to the leaves of the tree which then process and pass this information up to their

parents.

Satellite1 _ Sat.3 Sat.4J

Fig. 11 A 13 node tree-structured parallel or pipelined program partitioned
over a host-satellite system.

This is a good model of many industrial process monitoring systems where information

from several sensors is collected by small satellite computers and transmitted to a large central

host for processing. Depending on the volume of information being received from each

processor and the type and amount of processing to be done, part of the work can be done in

the satellites. By offloading work to the satellites, we reduce the load on the host and improve

the response time of the system. The amount of work that can be assigned to the satellites is

constrained by their lower computational power and small memories. The amount of

interprocessor communication, which depends on the amount of data being transmitted and the

speed of the links, also has to be taken into account when making the assignment.

25

The solutionwe presentyields thepartitionthat optimizespipelinedorparallel execution

timeundertheconstraintsthat

(1) the root is always assigned to the host,

(2) once a node is assigned to a satellite, all its children nodes are also assigned to the same
satelliteand

(3) if two nodes are assigned to a satellite their lowest common ancestor is also assigned to that
satellite.

Informally speaking, this constraint means that individual maximal subtrees of the given tree

are assigned to each satellite. Fig. 11 shows a 13 node tree that has been partitioned under

these constraints. It is assumed that we have available as many satellites as there are leaf nodes

in the tree and that we may choose not to use some of them if the optimal assignment so

dictates.

Fig. 12

To solve this problem we draw up an assignment graph as shown in Fig. 12. A dummy

26

node A is placed below the tree and connected to all the leaf nodes. This creates several

regions or faces in the graph. Assignment graph nodes (squares in Fig. 12) are inserted in

each region and on the left and right sides of the tree. There is an unambiguous left to right "

ordering of these nodes (indicated by the sequence A, B..... H in Fig. 12.) A directed dual

graph of this modified tree is now drawn by adding a directed edge between every pair of

nodes that belong to regions that have a common edge. The direction of the edge is from the

lower ordered node to the higher. To avoid a congested diagram we have omitted the

arrowheads in Fig. 12 (their direction is evident from the node labels).

As before, we assume that we have available for each module i the time required to execute

it on the host, hi and on a satellite si (recall that all satellites are similar in this case.) For each

edge in the tree connecting parent node i to child node j, we have the time required for

interprocessor communication cij, should i be assigned to the host andj to a satellite.

The dual graph can now be doubly weighted. Suppose an edge of the dual graph separates

a subtree "cfrom the program tree (i.e. removal of the tree edge that the dual edge crosses

separates _from the tree.) Then the fl weight of this edge is the sum of all si for all i t__', plus

the communication cost between the root of the subtree "t"and the node in the program tree to

which it is connected. For example, consider the assignment graph edge E-F that crosses tree

edge 3-6. The fl weight on this edge is s6 , s13+ c36.

The procedure for inserting o-weights is somwhat involved. First move back to the original

program tree augmented with dummy node A. Split A into as many nodes as there are leaf

nodes in the original tree. The resultant modified tree (Fig. 13) is equivalent to the original

program tree of Fig. 11 with an additional pendant vertex attached to each leaf. Give all edges

27

eij connecting parent i to childj an initial weightwij=O.

Traverse the nodes of this tree in preorder. When visiting node j, which has parent i and

• leftmost child k, give edge ejk the weight Wjk-- wij . hj. The root is assumed to have an

incoming edge of weight zero so that the edge connecting the root to its leftmost child has

weight hroot and the edges to the remaining children have weight zero. The resulting

weighting of edges is shown in Fig. 13.

h1 0

hl.h 2 o o

o o

h.h-h4 o h3+% h8

"5

h, 14*h9 hlo h13 !h7 h8*h12

Fig. 13 Host execution times have been added as edge weights to the modified
program tree. Communication times will be added to these before they are
transferred as tr weights to corresponding edges of the assignment graph.

Now add the communication costs. For all edges connecting parent i to childj, replace wij

by wij . cij. The weights of Fig. 13 are now copied onto corresponding tree edges in Fig. 12.

Now each edge of the assignment graph is given a tr weight equal to the weight of the tree

edge that it crosses. For example, the assignment graph edge A-C crossing tree edge 2-4 is

28

given tr weight hI . h2 . c24. The assignment graph edgeD-E crossing tree edge 2-5 is given

o'weight c25.

The dual assignment graph has now been doubly weighted. It can be verified that each path

between A and H corresponds to an assignment and the SB weight of the path is the time

required for the assignment. It remains to apply the optimal SB path algorithm of Section 3 to

this graph between nodes A and H to obtain the optimal SB path and hence the assignment that

minimizes the larger of the load on the host and the worst load on any satellite.

To analyze the running time of this algorithm it must be observed that the assignment graph

in this case is a multigraph (i.e. more than one edge connects the same pair of nodes.) For a

program tree with m nodes andfleaf nodes, this graph hasf+l nodes and m edges. With the

addition of dummy nodes and edges, this multigraph can easily be transformed into a

conventional graph with no more than 2m nodes and m edges to which the optimal SB path

algorithm can be applied in time O(m2logm) time.

Limited memory on the (identical) satellites can be accounted for by deleting all assignment

graph edges that separate subtrees with total memory requirements greater than the capacity of

the satellites.

29

8. Conclusions.

We have addresseda varietyof problemsin parallel,pipelinedand distributedprocessing

and shownhowto solvethemusingthe optimalSBpathalgorithmfor doublyweightedgraphs

of Section 3. This is an efficient polynomial time algorithm and contains the traditional

shortest path and bottleneck path algorithms as special cases. For example, the 'pure'

bottleneckproblemin Section2 canbe solvedby theSB algorithmby settingall o'weightsto

zero. The shortestpathproblemspresentedin earlierresearchon distributedprocessing[2]are

solvableby theSB algorithmby settingall fl to zero.

However,themereexistenceof thisalgorithmis notenoughto solveotherproblemsin this

field--an appropriate assignment graph must first be discovered. We have described

assignmentgraphsfor a range of problems. Each assignmentgraphhas to be designedvery

carefullyin order to captureall informationaboutthe problem. The structureof the graphis

related to the structureof the problem and the methodof adding the double weightshas to

reflect the cost being minimized. The graphshave to be polynomialin size so that the time

requiredto find theoptimalSBpathwillalsobe polynomial.

The assignmentgraphspresentedin this paper range from the relatively simpleones for

mappingchainson chains,discussedin Section2,to thefairlycomplexgraphsforpartitionsin

host-satellitesystems,describedin Sections6 and7. Allarepolynomialin sizeandpermitthe

solutionof a particularassignmentproblemin polynomialtime. We believethat the SBpath

• algorithmis a powerfultool thatcan be usedto solveefficientlymanyotherproblemsin the

. fieldof multiplecomputing.

TableI (followingpage)is a summaryof the resultspresentedin this paper. Mostof the

columnheadingsare self explanatoryexceptperhapsthe secondlast whichlists if a memory

constraintcanbe takeninto accountby thegivenalgorithm.

30

Table I
Summary of Results

Sec- Problem Processor Processing Partition Mem. Time
tion Structure Structure Constraint Limit. "

2 Single chain Chain Pipelined/ n contiguous Yes m3n
m nodes n nodes Parallel subchains

4 n chains of Single host Individualpipe- 2 contiguous On rn3nlog rn
m nodes n dissimilar lined/parallel subchains of satel-
each satellites chains executing each chain lites

in parallel

5 Single Chain n identical Pipelinexl/ n subchains Yes m3n log m
m nodes commun, via parallel

memory/bus

6 Arbitrary Single host Individual None No m4n
n programs n dissimilar serial progs.
rnmodules satellites executing
each in parallel

7 Single tree Single host Pipelined/ Maximal On m2 log rn
m modules n<m identical parallel subtrees on satel-

satellites satellites lites

9. Acknowledgements

I am indebted to M. E. Rose and R. G. Voigt for their constant encouragement of this

research. G. Erlebacher was generous with his time and patience in teaching me the use of the

Macintosh. Discussions with J. Saltz, M. Berger and A. Iqbal have also been very useful.

31

10. References

[1] S.H. Bokhari, "Dual processor scheduling with dynamic reassignment," IEEE Trans.

Software Engineering, vol. SE-5, No. 4, pp. 341-349, July 1979.

[2] S.H. Bokhari, "A shortest tree algorithm for optimal assignments across space and time

in a distributed processor system," IEEE Trans. Software Engineering, vol. SE-7, No.

6, pp. 583-589, November 1981.

[3] G. Bolch, F. Hofman, B. Hoppe, H. J. Kolb, C. U. Linster, R. Polzer, W. Schussler,

G. Wackersreuther and F. X. Wurm, "A multiprocessor system for simulating data

transmission systems (MUPSI)," Microprocessing and Microprogramming, vol. 12,

pp. 267-277, 1983.

[4] E.W. Dijkstra, "A note on two problems in connexion with graphs," Numer. Math.,

vol. 1, pp. 269-271, 1959.

[5] K.W. Doty, P. L. McEntire and J. G. O'Reilly, "Task allocation in a distributed

computer system," Proc. IEEE Infocom, pp. 33-38, 1982.

• [6] J. Edmonds and R. M. Karp, "Theoretical improvements in algorithmic efficiency for

network flow algorithms," JACM, vol.19, pp. 248-264, April 1972.

[8] M. J Eisner and D. G. Severance, "Mathematical techniques for efficient record

segmentation in large databases," JACM, vol. 23, No. 4, pp. 619-635, October 1976.

32

[9] E.L. Lawler, Combinatorial Optimization: Networks and Matroids. New York: Holt,

Rinehart and Winston, 1976.

[10] V.M. Lo, "Heuristic algorithms for task assignments in distributed systems," Proc. 4th.

Int. Conf. Distributed Proc. Systems, pp. 30-39, May 1984.

[11] G.S. Rao, H. S. Stone and T. C. Hu, "Assignment of tasks in a distributed processor

system with limited memory," IEEE Trans. Computers, vol. C-28, No. 4, pp. 291-299,

April 1979.

[12] J.H. Saltz, "Parallel and adaptive algorithms for problems in scientific and medical

programming," Ph.D. Thesis, Dept. of Computer Science, Duke University, 1985.

[13] S.R. Sternberg, "Biomedical image processing," Computer, vol. 16, No. 1, pp. 22-34,

January 1983.

[14] H.S. Stone, "Multiprocessor scheduling with the aid of network flow algorithms,"

IEEE Trans. Software Engineering, vol. SE-3, No. 1, pp. 85-93, January 1977.

[15] H. S. Stone, "Critical load factors in distributed computer systems," IEEE Trans.

Software Engineering, vol. SE-4, No. 3, pp. 254-258, May 1978.

[16] H.S. Stone and S. H. Bokhari, "Control of distributed processes," Computer, vol. 11,

No. 7, pp. 97-106, July 1978.

I. Report No. NASA CR-178023 2. Government Acceuion No, 3, Recipient'l Catalog No.

ICASE Re_ort No, 85-54
4. Title and Subtitle 5. Report Date

PARTITIONING PROBLEMS IN PARALLEL, No_ember 1985
PIPELINED AND DISTRIBUTED COMPUTING 6. Performing Organization Code

i,

7. Author(s) 8. Performing Organization Report No.

Shahid Bokhari 85-54

10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering '11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17070, NASI-18107

Hampton, VA 23665-5225 , 13. Typeof Reportand PeriodCovered
12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration

Washington, D.C. 20546 14. SponsoringAgencyCode
505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Trans. Comput.
J. C. South Jr.

Final Report

16. Abstract

The problem of optimally assigning the modules of a parallel program over

the processors of a multiple computer system is addressed. A Sum-Bottleneck

path algorithm is developed that permits the efficient solution of many

variants of this problem under some constraints on the structure of the

partitions.

In particular, the following problems are solved optimally for a single-

host, multiple satellite system: Partitioning multiple chain-structured

parallel programs, multiple arbitrarily structured serial programs and single
tree structured parallel programs. In addition, the problems of partitioning

chain structured parallel programs across chain connected systems and across

shared memory (or shared bus) systems are also solved under certain

constraints. All solutions for parallel programs are equally applicable to

pipellned programs.

These results extend prior research in this area by explicitly taking

concurrency into account and permit the efficient utilization of multiple
computer architectures for a wide range of problems of practical interest.

q

17. Key Words (Suggest_ by Author(s)) 18. D,stributi_ Statement
optimal Sum-Bottleneck paths 59 - Mathematical & Computer Sciences

parallel processing (General)
pipeline processing 66 - Systems Analysis

distributed computing

partitions, assignments Unclassified - Unlimited

19. Security_a_if.(ofthisreport) _.SecurityCla_if.(ofthis_ge) 21. No.of Pages 22. Dice

Unclassified Unclassified 33 A03

.-3os ForsalebytheNatio_lTechnicallnf_mat.onService.Springfield.Virginia2216!

