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MULTIGRID METHOD FOR NEARLY SINGULAR AND

SLIGHTLY INDEFINITE PROBLEMS

A. Brandt

Weizmann Institute of Science, Rehovot, Israel

and

S. Ta'asan

Institute for Computer Applications in Science and Engineering

ABSTRACT

This paper deals with nearly singular, possibly indefinite problems for

which the usual multigrid solvers converge very slowly or even diverge. The

main difficulty is related to some badly approximated smooth functions which

correspond to eigenfunctions with nearly zero eigenvalues. A modification to

the usual coarse-grid equations is derived, both in Correction Scheme and in

Full Approximation Scheme. With this modification, the algorithm exhibits the

usual multigrid efficiency.
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INTRODUCTION

Usual multigrid for indefinite problems is sometimes found to be very

inefficient. A strong limitation exists on the coarsest grid to be used in

the process. This limitation is not so much a result of the indefiniteness

(existence of eigenvalues with different signs) itself, but of the nearness to

singularity, that is, the existence of nearly zero eigenvalues. These

eigenvalues are badly approximated (e.g., they may even have a different sign)

on coarse grids, hence the corresponding eigenfunctions, which are usually

smooth ones, cannot efficiently converge. As a remedy, one could avoid using

grids which are too coarse, but in many cases this would degrade efficiency.

This trouble of the coarse-grid approximation has been resolved by

introducing a modification to the usual coarse-grid equations, based on the

observation that there are just few smooth eigenfunctions which are not well

represented on the coarse-grid, and these can be controlled by specially added

relations. This modifiction removes the restriction on the coarseness of the

grids that can be used.

Another issue when dealing with indefinite problems is the choice of

relaxation. Mode analysis shows that the Gauss-Seidel relaxation is suitable

for such problems if fine enough grids are considered. Indeed, even though

some smooth components diverge with this relaxation, on fine enough grids this

divergence is slow and can, therefore, easily be corrected by the coarse-grld

corrections. On coarser grids, however, the divergence of smooth components

in Gauss-Seidel relaxation is faster, hence, another relaxation scheme is

needed. We have used for that purpose the Kaczmarz relaxation, which always

converges.
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The multigrid algorithm obtained here has good asymptotic convergence

rates for problems in which the indefiniteness is not too high, i.e., the

number of eigenvalues with the "wrong" sign (positive in our text) is small.

For higher indefiniteness another method has been developed and will be

reported elsewhere.

2. RELAXATION

Generally, in order to achieve good multigrid performances, the relaxation

involved need to have good smoothing properties on one hand, and at most slow

divergence on the other hand. We discuss below Gauss-Seidel and Kaczmarz

relaxations and their proper use in our context.

2.1. Gauss-Seidel

Fourier analysis of Gauss-Seidel relaxation even for slightly indefinite

problems shows that on fine grids high frequencies converge very fast. The

reason for this is that the principal part for indefinite problems is the same

as that of definite ones. Smooth components may diverge on such grids, but

slowly enough to be handled by the coarse-grid correction. For example, in

case of the operator A + k2 in two dimensions the worst divergence factor

per sweep of smooth components is I/(I -1/2 k2 h2), h being the mesh size.

On coarse grids, typically when this factor becomes larger than 1.2 or so,

Gauss-Seidel relaxation can no longer be used.
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2.2. Kaczmarz Relaxation

Given an equation

Ax = b (2.1)

where A is an n x n nonsingular matrix, define a new unknown y such that

A* y = x (2.2)

where A* is the adjoint of A. The equation obtained for y is

AA* y = b. (2.3)

The matrix AA* is symmetric positive definite for any A which is

nonsingular. Hence, Gauss-Seidel relaxation for equation (2.3) will

converge. It induces a relaxation on equation (2.1) via the relation (2.2).

This relaxation of (2.1) is called Kaczmarz relaxation. Its i-th step is

x.3+ x.3+ --aij6i (J = l,.-.,n)

= - 12_i (bi lj aij xj)/lj laij

where aqj is the complex conjugate of aij. For general smoothing

properties of this relaxation, see [I] Section I.I and [2].

Kaczmarz relaxation converges whenever solution exists, and can therefore

be used on coarse grids. Moreover, when more than one solution exists the

convergence is to the one closest to the initial approximation (Tanabe [3]).
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Hence, this relaxation would not allow the growth of error eigenfunctions

corresponding to X = 0, and would similarly allow only very slow change in

eigenfunctions corresponding to X close to 0.

3. TROUBLES WITH THE COARSE-GRID APPROXIMATION

Having settled the question of relaxation, another difficulty is

encountered: some coarse grids do not well approximate some smooth

components. To understand this situation, suppose the error on the fine-grid

(grid h) contains a smooth eigenfunction _h, so that the corresponding

residual is Lh lh = xh lh. The corresponding equations on the coarse-grid

(grid H) are

LH VH = xh lhH _h

H

where Ih is the flne-to-coarse transfer, i.e., some local averaging. Since

H _hlh is a smooth eigenfunction of Lh, Ih is approximately an

eigenfunction of LH, hut with slightly different eigenvalue XH. The

solution of the coarse-grid equations is approximately

_H= Xh H

X__I h _h.

After interpolating the _H as a correction to the fine-grid solution, the

new error is approximately

_h _ _ _H _ (I - Xh" h
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h
is the interpolation operator and since _h is a smooth function,where IH

h H_hwe assume that IH lh = sh. Thus, due to the coarse-grid correction the

error is reduced by the factor [I - %h/%Hl; hence a condition for good

convergence is

11 <<i
(3.1)

for any eigenfunction @h which has poor convergence by relaxation.

When xh, %H are close to zero, relation (3.1), even if it holds on fine

enough grids, it may strongly be violated on coarse grids. Such coarse grids

cannot then be used in the multigrid process. Without them, however,

efficiency may very much degenerate. We will therefore present a new method

in which restriction (3.1) is removed.

4. MODIFIED COARSE-GRID EQUATIONS: Two-Grid Case

The modification described here is based on the assumption that there are

only few smooth eigenfunctions for which relation (3.1) is violated. Denote

by H0 the subspace spanned by these badly approximated eigenfunctions. We

assume for the description below that H0 is known. In Section 6 we present

a method for approximating H0.

4.1. Correction Scheme (CS) Version

Assume first that H0 is spanned by one function lh, and let uh be the

exact solution of the fine-grid (grid h) equation

Lh uh = Fh. (4.1)
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~h h
Supposethe currentapproximationu to u satisfies

<u h, #h> = <_h + rich, ch>. (4.2)

_h n@hIf n were known we would have the approximation u + on the fine-grid

~h
instead of u . This would yield the coarse-grid (grid H) equation

- u - nLh ] (4.3)LH vH = lh[Fh Lh ~h ¢h

h h ~h nchwhere vH approximates the error v = u - u - . Since by (4.2) the

latter does not have components in H0, equation (4.3) could be used to

accelerate fine-grid convergence. However, since _ is not known, we need to

add another equation on the coarse grid which will enable us to solve also for

n. A reasonable choice for such an equation is an approximation of equation

(4.2), namely

<vH, I_ _h> = 0 (4.4)

where I_ is some fine-to-coarse transfer, not necessarily identical with

IH. Equations (4.3), (4.4) form the modified CS equations.

Suppose now that H0 is spanned by {€i,-..,€ h} and <¢h, ch> = 6jk"

Because of linearity, the corrected CS equations for this case will be

N

H Rh _ [ nj H Lh h (4.5a)
LH vH = lh j=l lh CJ

<vH, ¢_> = 0 j = I,...,N (4.5b)
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where Rh Fh Lh ~h ~h= - u , u being the current flne-grid approximation, and

Cj = ¢ . The coarse-grld correction will finally be done either by

u + u + + _ ~ € (4.6a)
j=1nj

or by
N

Nh ~h _h h

u + u + IH _H + _ _ (4.6b)
j=1 j Cj

depending on whether or not €_ ~ _j
are stored on the fine grid, u and

being the computed (approximate) solutions to equations (4.5). The difference

h need not be
between (4.6a) and (4.6b) is usually unimportant, so Cj

stored. The only case where (4.6b) must be used is when the flne-grid problem

is much closer to singularity than the coarse-grid one. In that case _j may

h _j H may have large high frequency components, whichbe large; therefore, IH Cj

will magnify the residuals on the fine grid. By doing (4.6b) one avoids

H

introducing high frequency components that arise from interpolating _j Cj,

and therefore the mentioned difficulty is removed. See Section 7, Tables 5

and 6.

4.2. Full Approximation Scheme (FAS) Version

The Full Approximation Scheme is essential for nonlinear problems or when

local refinement is used. It is important, therefore, to derive the modified

equations in that formulation too. This derivation can be done directly from

(4.5), but to gain an additional insight we do it independently. The usual

FAS equation on the coarse grid is
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LH H FH Hr~h
u = + ThOU j (4.7)

where T_(_h) LH i_ ~h H Lh ~h ,,f.= u - Ih u iS the ine-to-coarse (defect)

~h
correctlon," FH = ihH Fh, u is the current approximation on the fine

grid, and I_ is the fine-to-coarse solution transfer (see [I, Sections 8.1-

8.2]).

In the present case, however, we wish to approximate on the coarse-grid

only the part of the error which is free of H0 components; hence, the H0

components of the correction, _ nj _, should be considered part of
the fine

grid approximation, replacing (4.7) by

LH uH = FH + rhH h + j=l_ qj _ " (4.8)

The additional conditions, ensuring that the coarse-grid correction is indeed

approximtely free of H0 components, can be written as

<uH, _ >=H <_h ~hu , _ >+H nj<_H, H>, (j = I,...,N). (4.9)

Equations (4.8) and (4.9) together should determine uH and _i,...,_ N. Once

an approximate solution (uH _ • _ ) has been calculated, the correction' I'" "' N

to the fine grid solution can be done analogously to either (4.6a) or (4.6b),

but the former option yields here a particularly simple formula, namely

u + u + (uH ~h- u ) (4.10a)
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which is just the usual FAS correction formula. The latter option, which must

be used in some extreme cases, reads

N N

u + u + (uH- IN u- j=l_ _J i + j=ll_j _jh .

Equation (4.8) is not in a form convenient for calculations on grid H.

In case the problem is linear, a more convenient form is

N

LH H =F--H + _ _J H
u (4.11)

j=i _J

where

F--H= FH + H(_h)
h"

(4.12)

H Rh + LH(I h ]h)= I h

and _ = _h( _ . The solution of (4.9) and (4.11) thus involves the 2N+I
H

input functions F-t'I , _,.o',_, O_''°''ON' of which _ should be calculated

and stored whenever the algorithm switches from level h to level H, while

the other 2N functions can be calculated and stored once for all. The same

H generally
equations can be used also for nonlinear problems, but with _j

calculated by

H -I H h H ~h

_j = _ {_h(_h + _j) - Th(U )}, (4.13)

H ~h
with sufficiently small positive _. The dependence of _j on u is very

crude (e.g., no dependence at all when Lh is linear); hence it will usually

be unnecessary to update them on a new switch to level H.
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5. GENERALMULTIPLE GRID EQUATIONS

Suppose a sequence of discretlzatlonwith mesh sizes hI > h2 > ... >_

is given,where hj = 2h.]+I. Let the hk-grid equationsbe

Lk uk = Fk

where Lk approximates Lk+l for k < M, and LM approximate some

differential operator L.

Usually, if level M well approximates the differential equation (even in

terms of H0 components) then level M - 1 will approximate level M well

enough for acceleration purposes. Hence, modified coarse-grid equations may

not be needed on level M - i. Denote by £ the finest level on which

modified equations are needed. We describe now the modified equations on

levels k _ £, assuming the subspace of bad components, H0, is spanned on

level £ by the orthogonalset € '''''¢N"

5.1. CS Version

k k
For k _ £ the equations to be solved for v , _. on level k are

3

N

Lk vk = fk _ [ n_ Ik L£+I £+Ij=I _+I Cj (5.1a)

where

fk k (_k+l Lk+l _k+l= Ik+ 1 - v ) (k < £) (5.2a)
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N

~k k L4+I 4+1 (k < _) (5.2b)
_k = fk_ _ qJ i_+i +j _

j=l

_4+I = f4+l (5.2c)

k k+l _ <_k+l k+l> (k < _ j = I,...,N) (5.2d)
pj = pj , +j

•-.,N) (5.2e)
pj = 0 (j = i,

k = I_+ k+l_j 1 q_j (k < _; j = I,...,N) (5.2f)

_+I l_k+l_-k+l ik k _k+l (5.2g)= 14+I' _+I = Ik+l 14+i

i_ k+i' Ik+l are fine-to-coarse grid transfers, not necessarily the same.

~k k k

_k, _J are the current approximation to v , qj respectively. Initial
~k ~k

approximations are v = 0, _j = 0. The input functions for level k are

thus fk, _jk and 14+ik L_+I _j4+1, (j = I,.-.,N), of which only fk should be

updated on every new switch from level k + I.

For efficient relaxation, instead of storing fk one should store _k

~k

and update it whenever the qj are changed.

Note that _-i is designed to be a correction to n_. Thus, the coarse-

grid corrections for 2 J k J 4 will be done by the replacements

~k ~k ~k-I

nj + nj + qj (J = I,...,N) (5.3a)

N

~k-I k L_+I _+i
_k= _k_ _ qJ 14+1 ,j

(5.3b)

j=l
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~k ~k k ~k-i
v + v + Ik_1 v (5.3c)

while for k = £ + 1 use

<_ N ~£ £)~£+Iv + _£+I + I£+i£ £ + j=l_ nj _j (5.3d)

\
or

_£+i _£+i i£+I N£ N N£ £+I

+ + £ v + j=l_ nj _j , (5.3e)

(see discussion in Section 4.1 for the use of (5.3d) versus (5.3c)).

5.2. FAS Version

k k

For k J £ the equations to be solved for u , nj on level k are glven

by
N

Lk k F--k+ _ n_ k
u = (5.4a)

j=i _J

<uk kj. k k k (j = I,...,N) (5.4b), @ > = oj + nj _j

whe re

k -if k (uk+l k+l k (uk+l I k k+l_j = _ Tk+ 1 + _j ) - Tk+1 ) + Ik+ 1 _j (k_< £) (5.5a)

k k . k+l k k+l

(hence _j = Tk+li_j ) + Ik+ 1 _j in the linear case)

4£+1 = 0 (j = I,...,N) (5.5b)J

k (]k+l Lk ~k+l _ ik Lk+l ~k+l
Tk+ 1 ) = I_+ 1 u k+l u (5.5c)
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k l-kk+ k+l_j = 1 _j (J = I,...,N) (5.5d)

F-k= Lkl_ ~k+l k (_k+l Lk+l ~k+l+I u + Ik+1 - u ) (5.5e)

N

_k = F--k+ j=l_ _k @jk (k_< _) (5.5f)

_¢+i=y_+l (5.5g)

0 (k = £)

k <l-_k ~k+l k_j = +I u , _ > + (5.5h)
~k+l _ <uk+l k+l> (k < _)
oj , +j

~k k ,N) (5.51)~k k + _. (j = I,...
_j = aj nj 0

k <ik k> (j = I,--.,N) (5.5j)

~k ~k k k

and Hi, u are the current approximations to Hi, u respectively. Intital

~k ~k I_+i _k+l The input functions are F-k,approximations are Hi = 0, u =

k k

i_,...,_, _I,...,_N, of which only F- must be recalculated each time the

level k problem is formulated.

k
For efficient relaxation, instead of storing F-k and o. (j = I,...,N)

3
~k ~k

should store ~Fk and _. and update them whenever _= is updated.one
3 J

_k k
Initially (when the level k problem is set up) _k = F--k and a. = a..

J J

The coarse-grid corrections will be done by the replacements

~k ~k ~k-I

nj + nj + nj (2 < k_< £; j = I,.-.,N) (5.6a)
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~k-i k

_k + _k + _ nj Cj (2 < k < 41 (5.6b)

~k ~k ~k-I k-I

_j + _j + _j _j (2 < k < 4; j = I,.-.,N) (5.6c)

~k ~k k --k
u + u + ik_l(uk-i _ ik-I uk) (2 _< k_< M). (5.6d)

In case, for some 2 < k _ 4+I, the grid k problem is much closer to

singularity than grid k+l problem, (5.6d) should be replaced by

~k-1 - ~k-1 k

u + u + Ik_l_U - u - j=l[ nj _ + j=IY nj _j (5.6e)

which is the analogue of both (5.3c) and (5.3e). Of course, (5.6e) can always

be used, but (5.6d) is somewhat simpler (cf. end of Section 4.1).

Observe, indeed, that in the linear case

k k _ k+l k k+l Lk k k L£+I .4+1
_j rk+l [_j ) += Ik+ 1 @j = +j - 14+ 1 _j

I_ ~k+l vk k k the equivalence of theand by identifying uk with +I u + + Z nj _j

FAS and the CS is easily seen.

5.3. Solution Process for Modified Equations

We refer in this section to the FAS version, namely the equation

N

Lk uk = F-k + _ k k
j--i @J (5.7a)

k k k k<uk, i > = o. + nj _. (j = I,...,N), (5.7b)3 3
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U k
k

where the unknowns are the function and the constants _I_''''_N"
The CS

~k ~k _k ~k will denote the
version is treated similarly. As before, u , nj, and oj

(stored) approximations to uk, _, the right-hand side of (5.7a) and
current

the right-hand side of (5.7b), respectively.

In relaxing equations (5.7) we distinguish between the following:

(i) a local relaxation sweep

~k
Relax Lk uk = _k for u by either Gauss-Seidel or Kaczmarz, keeping

~k

_j, and therefore also _k, fixed.

(ii) a global step

k k

This will be the step for updating _I,...,_N, and the H0 components

in uk by using (5.7b) together with (approxlmatley) the H0 components of
A

(5.7a). Most generally this is done by solving simultaneously for Bj, qj

(j = I,...,N) the system of 2N equations:

<Lk k + _ Bi _ , _ = <_k + _ _i _ ' _ (J = I,...,N) (5.8a)
i=l i=l

k k k (j = 1 ...,N) (5.8b)

and then introducing the following changes

N
~k k

_k + u + j=IY 6j _j (5.9a)

~k ~k ^

nj + _j + _j (j = I,...,N) (5.9b)

N
k (5.9c)

_k + _k + I _j _j
j=l
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~k ~k ^ k

aj = o. + _ _. (j = I,...,N). (5.9d)J J J

The local relaxation is used to smooth the error in uk and therefore

should be done at all levels. On the other hand, it may be enough to do step

(ii) on the coarsest grids only, since it deals with global variables (n_)

and with global changes to uk. Thus, step (ii) will be done on grids k < m,

where usually m < _. This will usually reduce the storage requirement of the

k

algorithm, since there is no need to store lj on levels m < k J %. In

fact, it is often unnecessary to store even _ for m < k J _. Indeed for

m < k < _ these functions are only used in the interpolation step (5.6b),

which can be skipped in case of a V cycle, because as a smooth change to

_k, its effect on the subsequent relaxation on level k is negligible. On

the other hand, step (5.6b) cannot be skipped in case it is followed by a

switch back to the coarser (k - I) grid, since in this case the smooth

k

update to _k is essential. Thus, in case of W cycles, _j must be stored

for all levels k J %. Generally, m < _ can be used only if no intermediate

level k (m < k < £) is much closer to singularity than level k+l.

5.4. Summary. Work and Storage

~k ~k k k

A cycle for improving u and n = (ql,...,nN) (k J _) is denoted by

~k
(uk, _k) + CMG(uk, _ , Lk, _k, _k)

and is defined recursively by the following steps (A) through (D).
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(A) Make the following Vl(k ) times

(a) a local step for Lk uk = _k

(b) for k < m make a global step defined in (5.8), (5.9). For k = I,

choose vl(k) to guarantee convergence to small residuals, or solve the

equations directly, and then terminate the cycle. If k > i, continue.

~k-I i_-I ~k ~k-i(B) Starting with u = u , _j = 0 (j = I,...,N) make the cycle

(uk-i ~k-I,n ) + CMG(uk-l, ~k-I Lk-I _k-l, ~k-in , , a )

y(k) times, where ~Fk-I
~k-i

, o. are defined by (5.5) with k replaced by
J

k - I.

~k ~k ~k-i

(C) qj + nj + _j (k < m; j = I,...,N)

N
~k-I k

_k + _k + I _j _j (k _< m)
j=l

~k ~k ~k-I k-I
+ o. + n- _. (k < m)

°3" J .l .1 --

and interpolation is done either by

uk ~k k (uk-I _ i_-1+ u + Ik_ I uk)

or

N N

Nk ~k k (uk-I i_-i ~k ~k-I k-I ~k-I ku .u + k-1 - u -j=IInj ¢j )+j=ilnj

The second option is necessary in case the grid k problem may be almost

singular.
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(D) Make steps (a), (b) of (A) v2(k) times.

y(k) = 2 corresponds to a W cycle; hence if y(k) = 2, the global step

has to be done on level k, which implies m > k. If y(k) = i we can choose

m to be smaller than k. Since equations (5.7) are for k < £ < M, this

cycle is part of a bigger cycle for k = M.

The storage and work required by this algorithm are essentially the same

as in the usual multigrid algorithm, since all extra work and storage involved

are made on very coarse grids, often only on level i, sometimes also on level

2. In fact, _ = M-I should be used only when the finest (grid M) problem is

itself a rather poor approximation to the differential problem, so usually

< M-I, in which case the extra work is negligible compared to the work of

relaxing grid M.

6, APPROXIMATION OF SUBSPA_ HO

In the preceding discussion it is assumed that H0 is accurately known.

This section deals with how accurately H0 needs to be known and how to

approximate it.

6.1. Accuracy Needed for H0

h

Let _i (i _ i) be the smooth eigenfunctions on the finest grid

Lh h h
if = 1i @i' <@i' @j> = _ij' (6.1)

h h

and let H0 be for simplicity spanned by _I alone. Suppose that _I is
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not known to the algorithm, and instead lh is used, where

h

lh = _ ai _i" (6.2)
i>l

h

Suppose an error vh = el _i has emerged on the fine grid so that

h

Lh vh = el %1 _I' (6.3)

and the corresponding modified CS coarse-grid equations are

H Lh _h = el %1 HLH vH + qlh _i (6.4a)

<VH, iH> = 0 (6.4b)

where H H H H H h= lh h, li = lh li" For smooth eigenfunctions li' we can assume

H

that _i are again eigenfunctions

LH H H H H H
_i = li _i' <_i' _j> = 6ij' (6.5)

neglecting changes in eigenfunctions since important to our discussion are

only changes in the eigenvalues. If we write the solution to (6.4) as

H
vH = _ Ei _i (6.6)

i>l

then (6.4) gives
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killEi + qkh ai = 0 i _> 2 (6.7a)

klHEl + qkh al = klhel (6.7b)

Z a.lEi = 0. (6.7c)
i>1

Equations (6.7) imply

ql al el

q - 2 (6.8a)

B + ql al

E1 = _B/al' Ei = -_qi ai (i >__2) (6.8b)

where

2 1

= i>21 qi ai' qi = _. " (6.9)
p i

Hence, the coarse-grid correction is

VH + _ H = [ (Ei + _ai)¢_
i>l

2

B + aI H ql al ai H

- 2 ql el _i + Z 2 (I - qi)el 0i. (6.10)
+ ql al i>__2B + ql al

H . };Extra errors have thus been introduced in the directions of {02, 03 ,.. ,

but these should be small (relative to el) , since qi should be close to

H

1 for 0i not in H0 (and also ai will be small compared to aI by the

condition below) and, more importantly, these errors can efficiently be

reduced by the next coarse-grld correction. Our focus here should thus be the

h h H h

behavior of the 01 component. Assuming IH _I _ 01 by smoothness, the
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coarse-grid correction, when interpolated to the fine grid and subtracted from

the old fine grid error, gives in this component the new error _I #h, where

_i = (I - ql)B(B + ql a_ )-I el" (6.11)

The main condition for convergence is therefore

i h H
-2 " _ < I, (6.12)

X1 aI + X1 Bl

and the convergence factor per cycle is bounded (below) by the left-hand side

H is a good approximation toof (6.12). This bound is indeed small when X1

X1,h i.e., when IX1 - X << X . But if that is not the situation (which is

h

why one should want to include _1 in H0 in the first place) then the

necessary condition for fast convergence is that both IX 61 and IX1 61

h a_. Since qi 1 for i > 2, the condition forare small compared to XI = _

fast convergence can be summarized as

a_ << min I, (6.13)

i>_2 _-_i[_ at"

h 0 that is if the
This condition implies in particular that, if X1 = ,

given problem is singular, then a2 = a3 ..... O, i.e., the eigenfunctlon

h

_1 must be known exactly. This seems to be too stringent, but in fact, the

h

increase in accuracy for _I can be obtained as the algorithm proceeds, by

doing for each cycle of the original problem, a cycle for improving _.

(See Section 7, Tables 8 and 9.)



-22-

On the other hand,(6.13) implies that there is no complication when the

coarse-grid problem is singular (see Section 7, Tables i-4).

h

Generally, condition (6.13)gives a precise idea as to how closely _I

should be approximated.

6.2 Algorithm for Approximating H0

We motivate the algorithm by considering the case where H0 is spanned by

one function. It is assumed in this discussion that the finest grid problem

is well-posed. This implies that errors in components which belong to H0

show sizeable average residuals on the finest grid.

The method for approximating H0 is based on the following observation:

components which belong to H0 are spanned by eigenfunctions whose

eigenvalues are much closer to zero than others, and exactly such

eigenfunctions will converge in Kaczmarz relaxation much slower than other

eigenfunctions. Hence, if the coarse-grid equation

Lk Wk = 0 with homogeneous boundary conditions (6.14)

is relaxed, starting with a random approximation, then when convergence has

slowed down, the dominant part in the resulting _k must be a component in

H0; therefore, _k at this stage can serve as an approximation to a function

in H0 on the coarse grid. H0 is needed on finer grids. A first candidate

will be just an interpolation of _k to these grids. However, since inter-

polation introduces high frequency errors which will leave large residuals in

equation (6.14) on finer grids, and therefore give the wrong _, one needs to

smooth somehow the interpolated _k from coarser grids. A reasonable way to
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do it is to relax (6.14) on fine grids after obtaining a first approximation

from coarser grids. This is summarized in the following algorithm.

Algorithm

Repeat the following for i = I,...,N (N = dim H0)

(A) Set k = I

(B) _k = random function if k = 1

_k k _k-I if k > I.
= Ik_ 1

(C) Relax (6.14), starting with initial approximation _k, keeping

_k orthogonal to {_ '''''_i-l}' until convergence becomes slow

(D) k + k + 1

(E) if k J £+i go to (A), else i_+l = _£+i.

k k k+l

(F) Define _i = Ik+l _i (k = £,£-I,-..,I).

In case N is not known in advance, stop the above procedure when step

(C) no longer reaches slow convergence in just a few sweeps. If, after few

cycles of solving the original problem, convergence rate still deteriorates,

repeat (A) through (F) once more, replacing the random function in (B) by the

residuals left by the original problem on the coarsest grid. If the addition

of the new function _[+i to the set {€[+I '''''_i-1_ does not improve

convergence rate significantly, it means that the accuracy of {€_+I '''"_i }

is not enough and this can be improvedby inverseiterationon the grid

k = £+I (using standard multigrid for doing the inverse iteration). The

£+I by inverse iteration is done by one
improvement of the functions _j

multigrid cycle before each multigridcycle of the originalproblem. Such an

improvementis needed when the originalfinest grid probelm is much closer to

singularitythan the next level;see Section7, Tables 8 and 9.
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Finally, if cycles on level _+i converge satisfactorily, but not on

finer levels, then _ should be increased (by I). The above algorithm can

then, of course, be shortened, starting with the known H0 on level _.

7. NUMERICAL RESULTS

Experiments were performed with the new algorithm using the model problem

I (A + k2)U = F in _ = (0,i) × (0,i)U = g on _.

The tables below show the residual history on the finest level. We denote

by M, m, £, hI the following:

M -- the finest level,

-- the finest level on which corrected equations are needed,

m -- the finest level on which the global step is performed,

hI -- the mesh size of the coarsest grid (grid i).

The subspace H0 was calculated by the algorithm of Section 6.2, where in

step (B) 40 relaxations were done on the coarsest grid (k = i) and two on

every finer grid (i < k < £). The algorithm CMG of Section 5.3 was used with

_l(k) = 2, v2(k) = 1 when Gauss-Seidel relaxation is used,

vl(k) = _2(k) = 3 when Kaczmarz relaxation is used,

_l(k) = 13 for k = I,

y(k) = 1 for k > 2, y (k) = 2 for k = 2.
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We give below the discrete first two eigenvalues of the Laplacian for the

grids used in the examples of this section. This will enable us to see how

far from singularity is each of the different levels used in the process.

h h

h %1 %2

.25 -18.74516600406 -41.37258300203

.125 -19.48683967711 -47.23375184668

.0625 -19.67587286709 -48.81161578777

.03125 -19.72335955067 -49.21342550952

In Tables I-4 interpolation of corrections was made according to (5.6b);

in other tabels the interpolation is specified. Residuals were transferred by

9-point full weighting and the local relaxation was Gauss-Seidel for kh < .5

and Kaczmarz for kh > .5. In all examples M = 4, hI = .25, _ = 3, m = 2.

Tables 3, 4 show a case in which the second eigenvalue is very close to

zero, and its corresponding eigenspace is two-dimensional. Therefore, only

two functions were used in spanning HO. The algorithm for finding functions

in H0 finds first these eigenfunctions whose eigenvalues are closest to

zero. Therefore, the eigenfunction belonging to the first eigenvalue was not

used in these computations, and it was not needed as can be seen from the fast

convergence shown by these tables. This clearly shows that H0 is related to

almost-slngularlty, not to indefiniteness.

In Tables 5, 6 we show that in case the finest grid problem is too close

to a singularity one must use interpolation of correction according to (5.6e)
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(or (5.3e) in the CS version) and not the usual FAS interpolation. In these

two tables the exact H0 was used.

Table 7 shows that if _ is not known accurately enough, poor results are

obtained. @ in this example is found by the same procedure described in the

beginning of this section.

In Table 8 inverse iteration (done by usual multigrid) was used to improve

the accuracy of 4- Starting with _ obtained as in Table 7, one multigrid

cycle of inverse iteration was done to improve _ before each multfgrid cycle

for the original problem. Results are identical to the ones obtained with the

exact _ (Table 5).

Table 9 shows a case in which the distance of the closest eigenvalue to

zero is about 1.10-8 . As seen from this table, improving _ by only one

cycle of inverse iteration per cycle of the original problem is not quite

enough to maintain the full speed of the algorithm. Once in few cycles the

residuals are magnified, and this happens whenever the L2-norm of the error in

the approximation is reduced significantly. This reduction of the error is

due to a correction of the approximate solution by _. If _ is not

accurate enough, components other than the desired ones enter to uh and

since their residuals are much higher than those of _@, a magnification of

the residuals occurs. (A similar phenomenon can be seen also in Table 7,

where the distance from singularity is larger, but _ is not improved at all

by inverse iterations.) This would not have happened if we allowed the speed

of convergence of the inverse-iteration cycles to be slightly faster than that

of the main cycles, e.g., by adding an extralnverse-iteratlon cycle once per

several cycles. But this is not really needed, because all that may happen is

a minor slowdown at high-accuracy solutions (much below truncation errors) for

cases of extreme closeness to singularity.
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In fact, we believe that, to obtain solutions with errors smaller than

trunction error, all one has generally to do is a one-cycle FMG algorithm for

calculating H0 (meaning one inverse-iteration cycle for level k after step

(C) in the algorithm of Section 6.2), followed by a one-cycle FMG algorithm

for solving the original problem.
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_bl_ I: k2 = 18.745166, dim H0 = i

cycle # llresidualsfl2

I .363(+3)

2 .172(+2)

3 .114(+1)

4 .891(-1)

5 .762(-2)

6 .685(-3)

7 .652(-4)

8 .658(-5)

9 .684(-6)

i0 .744(-7)

Tabl_ 2: k2 = 19.486839, dim H0 = 1

cycle # llresiduals112

I .363(+3)

2 .174(+2)

3 .114(+1)

4 .892(-I)

5 .763(-2)

6 .687(-3)

7 .654(-4)

8 .661(-5)

9 .688(-6)

I0 .749(-7)
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Tab1_ _: k2 = 41.372583, dim H0 = 2

cycle # llresidualsI12

1 .363(+3)

2 .172(+2)

3 .112(+1)

4 .938(-1)

5 .864(-2)

6 .832(-3)

7 .820(-4)

8 .815(-5)
9 .796(-6)

10 .811(-7)

TabIQ A: k2 = 47.233752, dim H0 = 2

cycle # llresiduals112

1 .363(+3)

2 .171(+2)

3 .110(+1)

4 .910(-i)

5 .824(-2)

6 .778(-3)

7 .755(-4)

8 .740(-5)

9 .682(-6)

I0 .673(-7)
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19.723368, dim H0 = i, interpolation according to (5.6e).

cycle # llresidualsll2

1 .363(+3)

2 .172(+2)

3 .114(+1)

4 .893(-1)

5 .765(-2)

6 .687(-3)

7 .691(-4)

8 .685(-5)

9 .759(-6)

I0 .768(-7)

19.723368, dim H0 = I, interpolation according to (5.6d).

cycle # llresidualsll2

1 .363(+3)

2 .172(+2)

3 .114(+I)

4 .893(-1)

5 .125

6 .102(-1)

7 .162(-1)

8 .132(-2)

9 .909(-3)

I0 .742(-4)
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_$_ 7: k2 = 19.72336843, dim H0 = I, interpolation according to (5.6e),

il crudely computed.

cycle # llresidualsII2

1 .363(+3)

2 .174(+2)

3 .114(+I)

4 .879(-1)

5 .116

6 .550(-2)

7 .134

8 .427(-1)

9 .465(-2)

I0 .534(-3)

Table 8: k2 = 19.72336843, dim H0 = I, interpolation according to (5.6e).

il successively improved.

cycle # Uresiduals II2

1 .363(+3)

2 .174(+2)

3 .114(+I)

4 .893(-1)

5 .765(-2)

6 .687(-3)

7 .691(-4)

8 .683(-5)

9 .759(-6)

i0 .768(-7)
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_ 9: k2 = 19.72335955955, dim H0 = I, interpolation according to (5.6e).

cycle # lIResidualsfl2 il_h - uhli2

1 .363(+3) .555

2 .174(+2) .392

3 .114(+1) .392

4 .893(-1) .392

5 .764(-2) .392

6 .687(-3) .392

7 .655(-4) .392

8 .359(-3) .268(-1)

9 .284(-4) .268(-I)

I0 .219(-5) .268(-1)
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